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Foreword: Thinking Inside and Outside

Hardly a minute of our lives goes by without reasoning,
without “going beyond the information given” (Bruner,
1966). Reasoning happens without our awareness and
without our intention. Our visual system rapidly parses
light arriving to the retina into figures and ground,
into the faces, bodies, objects, scenes, and actions that
we recognize in fractions of a second and that en-
ter awareness. The gist stays with us, but the details
are not recorded, a process revealed in change blind-
ness. Perception is deeply and inherently tied to action,
epitomized in mirror neurons, single cells in a mon-
key cortex that respond both to perceiving an action
and to performing it, linking perception and action in
a single neuron. The world we see is constantly chang-
ing; in order to act, perception is used to predict what
happens next, allowing us to catch balls and avoid
collisions. Experienced chess and basketball players
parse and predict at a more sophisticated level, but
the underlying processes seem to be similar, extensive
practice in seeing patterns, interpreting them, and se-
lecting appropriate actions. This kind of reasoning is
fast thinking (Kahneman, 2011) and the kind of rea-
soning thoughtfully and thoroughly analyzed in this
impressive volume is slow thinking, thinking that is de-
liberate and reflective and that can unfold over weeks
and years and even centuries.

How does deliberative reasoning happen? It hap-
pens in a multitude of ways, as is shown insightfully in
the many domains analyzed in the chapters that follow.
Might there be a way to encompass all of them? Here
is one view of thinking, let us call it the inside-outside
view, a view inspired by theories of Bruner (1966),
Piaget (1954), Norman and Rumelhart (1975), Shep-
ard (1984), and Vygotsky (1962), among others, who,
however, cannot be held responsible for the present
formulation. The inside part is the thinking that hap-
pens between the ears; the outside part is the thinking
that gets put into the body and the world. This view
is iterative, as what gets put in the world can get
internalized and then get worked on inside. Inside think-
ing can be further separated into representations and
operations. Representations and operations are useful
fictions, ways to think and talk about thinking. Do
not expect philosophical precision from them (there
is a temperamental difference between and psychol-
ogists and philosophers: psychologists live on gener-
alities that ignore sloppy variability, philosophers live

Barbara Tversky
Stanford University and
Columbia Teachers College

on elegant distinctions) or look for
them in the brain. On this view, rep-
resentations are internalized percep-
tions. However, representations cannot
be copies, they are highly processed.
They are interpretations of the content
that is the focus of thought. They may
select some information from the world
and ignore other information, they may
rework the information selected, and
they may add information, drawing on
information already stored in the brain.
In this sense, representations are mod-
els. On this view, operations are inter-
nalized actions, which are analogous
to actions in the world. Operations act on represen-
tations, transforming them and thereby creating new
representations. Examples are in order. We may form a
representation of the arrangement of furniture in a room
or a corporate structure. We can then draw inferences
from the representations by imagining or carrying out
actions on the representations, such as comparing parts
or tracing paths, for example that the coffee table is too
far from the couch or the route from one division to
another is too circuitous. You have probably noted that
those inferences also depend on functional information
stored between the ears. We can then transform the
arrangements to create new configurations and act on
those to draw further inferences. Seen this way, repre-
sentations can be created by operations; these processes
are iterative and reductive. However, momentarily, rep-
resentations are regarded as static and transformations
as active, changing representations to generate infer-
ences that go beyond the information given to yield new
thoughts and discoveries.

The ways that we talk about thinking suggest gen-
erality to this view. When we understand, we say that
we see something; we have an image or an idea, or a
thought or a concept. These are static and they stay still
to be acted on. Then we pull ideas together, compare
them, turn them inside out, divide them up, reorganize
them, or toss them out.

Forming representations, keeping them in mind,
and transforming them can quickly overwhelm the
mind. When thought overwhelms the mind, the mind
puts thought in the body and the world. Counting is
a paradigmatic example: actions of the finger or the
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hand (or the head or the eye) on an array of ob-
jects in the world, pointing to them or moving them,
while keeping track of the count with number words.
Counting is a sequence of actions on objects linked
one-to-one to a sequence of concepts. If representa-
tions are internalized perceptions and transformations
of thoughts are internalized actions, re-externalizing
representations and transformations should promote
thought. Moreover, they do, as counting and countless
other examples demonstrate. The actions of the body
on the objects in the world exemplify the outside kind
of thinking and, importantly, they are linked to internal
actions, in this case, keeping track of the count.

Putting thought into the world expands the mind.
Putting thought into the world allows physical actions
to substitute for mental ones. Putting thought in the
world makes thought evident to others and to ourselves
at other times. Putting thought into the world sepa-
rates the representing and the transforming and makes
them apparent. To be effective, both inside and outside,
the representations and the transformations, should be
congruent with thought (e.g., Tversky, 2011, 2015).
Maps preserve the spatial relations of landmarks and
paths. Discrete one-to-one actions help children add
and continuous actions help children estimate (Segal,
Tversky, and Black, 2014). Gesturing the layout of an
environment helps adults remember the spatial relations
(Jamalian, Giardino, and Tversky, 2013).

This analysis, representations and operations, inside
and outside, is simple, even simplistic. The complexity
comes from the interactions between and within inside
and outside, in the constructions of the representations,
and in the subtleties of the inferences. Representations
and operations are intimately interlinked. Representa-
tions, internal or external, carry content, but they also
have a format, i.e., the way that information is captured
and arrayed. The format encourages certain inferences
and discourages others. The Arabic number system is
friendlier to arithmetic computations than the Roman
number system. Maps are friendlier to inferences about
routes, distances, and directions than tables of GPS
coordinates. Finding the right representation, i. e., the
one that both captures the information at hand and
enables productive inferences, can be hard work; the
history of science is filled with such struggles from
the structure and workings of the universe to those
of the smallest particles. In The Double Helix (1968),
Watson describes the intricate back-and-forth between
empirical findings, theory, hypotheses, conversation,
photographs, and models that led to the discovery of the
model of DNA that succeeded in integrating the biolog-
ical and chemical structures and phenomena. Typically,
there is no single right representation exactly because

different representations capture different information,
highlight different relationships, and encourage differ-
ent inferences. A pilot’s map will not serve a hiker or
a bicyclist, or a surveyor. Chemists have a multitude
of representations of molecules, human biologists of
the body, statisticians of a set of data, each designed
to simplify, highlight, explain, understand, explore, or
discover different aspects of multifaceted, often elusive,
phenomena.

This very simple view hides enormous complexity.
It can be accused of being an oversimplification. If it
were all that simple, design, science, and mathemat-
ics would be done with, and they are not. Fortunately,
the volume at hand corrects that oversimplification. In-
troducing this volume is a humbling task. So many
kinds of reasoning are revealed so perceptively in so
many domains. The diverse thoughtful and thought-
provoking contributions reveal fascinating intricacies in
model-based reasoning, the nuances of finding suitable
representations (models), and the complexities of us-
ing them to draw inferences. The many insights in each
contribution and in the section overviews cannot read-
ily be summarized, they must be savored. They will be
a continuing source of inspiration.

Barbara Tversky
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Otávio Bueno
University of Miami
Editor-in-Chief, Synthese

Thomas Kuhn considered that a sign of maturity in the development of a scientific
field was the acquisition of a paradigm; researchers will no longer need to constantly
battle over the foundations of their discipline, could agree on the proper questions to
ask and the theories, techniques, and procedures to answer them. However, paradigms,
Kuhn thought, can also lead to quite esoteric research and, after periods of extended
anomalies and crises, are eventually displaced by sufficiently unprecedented, suffi-
ciently open-ended achievements, which, leaving a number of problems still to solve,
open new avenues for research.

Whether or not there are Kuhnian paradigms in model-based science is perhaps less
important than the undeniable fact that, as a domain of inquiry, we have here all the
significant signs of a mature field. Crucial questions are raised and addressed with in-
novative approaches, earlier and more traditional issues are revisited with new insights,
and a cluster of apparently unrelated problems are addressed from a perspective that
has noteworthy unifying traits.

The crucial concept that brings all of this together is one that is perhaps as rich and
suggestive as that of a paradigm: the concept of a model. Some models are concrete,
others are abstract. Certain models are fairly rigid; others are left somewhat unspeci-
fied. Some models are fully integrated into larger theories; others, or so the story goes,
have a life of their own. Models of experiment, models of data, models in simulations,
archeological modeling, diagrammatic reasoning, abductive inferences; it is difficult
to imagine an area of scientific investigation, or established strategies of research, in
which models are not present in some form or another. However, models are ultimately
understood, there is no doubt that they play key roles in multiple areas of the sciences,
engineering, and mathematics, just as models are central to our understanding of the
practices of these fields, their history and the plethora of philosophical, conceptual,
logical, and cognitive issues they raise.

What Lorenzo Magnani and Tommaso Bertolotti, together with their team of
subject-area editors, have created is more than a snapshot of a growing, sophisticated,
multifaceted field. They have provided a rich map (a model!) of a sprawling, gen-
uinely interdisciplinary, eclectic, and endlessly fascinating nested series of domains of
research.

With this SpringerHandbook, model-based science acquires more than a clear sign
of maturity: it has the excitement, energy, and innovation of those sufficiently ground-
breaking, sufficiently boundless, achievements that will nurture and inspire generation
upon generation to come.

Otávio Bueno
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Preface

The debate about models has crossed philosophy along
the centuries, ranging from the most speculative to
the most pragmatic and cognitive outlooks. Recently,
epistemological perspectives and both scientific and
cognitive insights sparked new interdisciplinary studies
about how models are created and used. The relevance
of the discourse about models transcended the bound-
aries of philosophy of science, as it was immensely
boosted by the progress being made in computation
since the 1950s, making the discourse on models not
only relevant to scientists and philosophers, but also to
computer scientists, programmers, and logicians. An-
other field of study, strictly connected to modeling, was
the study of inferential processes that would go beyond
traditional logic and yet play a crucial role in the cre-
ation and use of models. The most relevant field, in this
respect, concerns abduction and studies on hypothetical
cognition.

To provide an initial definition, we can agree that
a model is something we use in order to gain some ben-
efit in the understanding or explanation of something
else, which can be called the target. “A model allows us
to infer something about the thingmodeled,” as summa-
rized by the late John Holland in his 1995 book Hidden
Order. A model lets us understand the target, and con-
sequently behave in a way that would not be possible
without it; different models usually optimize the under-
standing of different aspects of the target.

This definition of a model should make it easy to
appreciate how many situations that we face every day
are tackled by making use of models; to deal with
other people we make models of their minds and their
intentions, to operate machinery we make models of
their functioning, in the remote case of trying to escape
from wild animals we make models of their hunt-
ing strategies and perceptual systems, to explore novel
environments we make models of their spatial configu-
rations, to mention only a few. We make use of models
in a wide array of circumstances, but what all mod-
els actually share is a dimension of non-abstractness;
we create them, or make use of models that have al-
ready been constructed by other people, and models
usually display a distributed nature, since they are ei-
ther built on external, material supports (i. e., by means
of artifacts, paper sheets, sound waves, body gestures)
or, in the case of mental models, are encoded in brain
wirings by synapses and chemicals (a mental map, for
instance, is the mental simulation of the action of draw-

ing a map – a powerful model construction activity –
whose embodiment in the brain was made possible by
the enhancement of human cognitive capabilities).

In order to grasp to the fullest the rich universe of
models, their relevance in model-based science, but also
as cognitive architectures, we divided the handbook into
nine parts. The first three parts can be seen as the ABC
of the discourse, providing a cognitive and theoretical
alphabet for the understanding of model-based science,
while the remaining six parts each deal with precise,
and applied, fields of model-based science.

Part A – Theoretical Issues in Models, edited by
Demetris Portides, sets the foundation for all of the sub-
sequent debates, exploring the relationships between
models and core notions such as those of theory, rep-
resentation, explanation, and simulation; furthermore,
the part extensively lays out the contemporary and com-
plex debate about the ontology of models, that is, the
different stances concerning their existence and reality,
answering questions such as How real are models?, Are
they fictitious?,Do they exist like an object exists or like
an idea exists?.

In Part B – Theoretical and Cognitive Issues in Ab-
duction and Scientific Inference, Editor Woosuk Park
selected contributions exploring the fundamental as-
pects of a key inference in the production of models,
both at the cognitive and scientific levels: abduction.
This can defined as the most basic building block of
hypothetical reasoning, or the process of inferring cer-
tain facts and/or laws and hypotheses that render some
sentences plausible, that explain (and also sometimes
discover) a certain (eventually new) phenomenon or ob-
servation.

Atocha Aliseda edited Part C – The Logic of Hy-
pothetical Reasoning, Abduction, and Models, offering
a broad perspective on how different kinds of logic can
be employed to model modeling itself, and how this
sheds light on model-building processes. As a bridge
between the more theoretical and the more specific
parts, Part D – Model-Based Reasoning in Science
and History of Science, edited by Nora Alejandrina
Schwartz, frames some issues of exemplar theory and
cases concerning the use and the understanding of mod-
els in the history and philosophy of physics, biology,
and social sciences, but is also about the relevant sub-
ject of thought experiments.

Albrecht Heeffer edited Part E – Models in Math-
ematics, which illuminates crucial issues such as the
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role of diagrams in mathematical reasoning, the impor-
tance of models in actual mathematical practice, and the
role played by abductive inferences in the emergence of
mathematical knowledge.

In Part F – Model-Based Reasoning in Cognitive
Science, Editor Athanasios Raftopoulos has selected
a number of contributions highlighting the strict re-
lationship between model-based science and model-
based reasoning (cognitive science being both a model-
based science and the science of modeling), namely
the model-based processes underpinning vision and di-
agrammatic reasoning, but also the relevance of deeper
cognitivemechanisms such as embodiment and the neu-
ral correlates to model-based reasoning.

Francesco Amigoni and Viola Schiaffonati edited
the contributions composing Part G – Modeling and
Computational Issues, concerning the main intersec-
tions between computation, engineering, and model-
based science, especially with respect to computational
rendering and the simulation of model-based reasoning
in artificial cognitive processes, up to robotics.

Part H – Current and Historical Perspectives on the
Use of Models in Physics, Chemistry, and Life Sciences,
edited by Mauro Dorato and Matteo Morganti, offers
an exemplary outlook on the fundamental aspects con-
cerning models in hard sciences and life sciences, from
a perspective that is not chiefly historical (absolved by
Part D), but rather focuses on practical and theoretical
issues as they happen in actual scientific practice.

Cameron Shelley edited the final Part I – Models
in Engineering, Architecture, and Economical and Hu-
man Sciences, providing a series of stimulating and
innovative contributions focusing on less represented
examples of model-based reasoning and science, for in-
stance in archaeology, economics, architecture, design
and innovation, but also social policing and moral rea-
soning. The focus of this closing part also resides in
its ability to show that model-based sciences go beyond
the tradition of exact and life sciences, as indeed the
reliance on models affects nearly all human endeavors.

The brief excursus on the contents does little jus-
tice to the richness and the extensive variety of topics
reviewed by the Handbook, but it should be enough to
convey one of the main ideas of the Handbook:Models
are everywhere, and the study thereof is crucial in any
human science, discipline, or practice. This is why we
conceived this book, hoping to make it highly relevant
not only for the philosophy, epistemology, cognitive
science, logic, and computational science communities,
but also for theoretical biologists, physicists, engineers,
and other human scientists dealing with models in their
daily work.

We like to see the ample theoretical breadth of this
Handbook as having a counterpart in its editorial gen-

esis. Indeed, when we were offered the opportunity to
be general editors of the Springer Handbook of Model-
Based Science, an intense activity of decision-making
followed. To be able to make a decision, we had to
think about what editing a handbook was like. Other-
wise said, in order to decide we had to know better,
and in order to know better we had to make ourselves
a model of handbook editing. This complex model was
partly in our heads, partly in sketches and emails. Part
of it was deduced from evidence (other handbooks),
part of it came out as hypotheses. Once the model was
sufficiently stabilized, giving us a good projection of the
major criticalities and some (wishful) scheduling, we
accepted the challenge, and the model – continuously
updating the progression of the work – would guide our
behavior step by step.

We undertook the editing of this Handbook because,
so far, there is a vast amount of literature on models, on
the inferential and logical processes underdetermining
them, and on the philosophy of model-based science,
but it is dispersed in more or less recent (and vari-
ably authoritative) collections and monographs, journal
articles, and conference proceedings. The aim of this
Handbook is to offer the possibility to access the core
and the state-of-the-art of these studies in a unique,
reliable source on the topic, authored by a team of
renowned experts.

The present Handbook is the exemplary fruit of re-
search and collaboration. As general editors, we were
able to rely on the formidable team of editors we men-
tioned above, who took the reigns of their parts: Atocha
Aliseda, Francesco Amigoni, Mauro Dorato, Albrecht
Heeffer, Matteo Morganti, Woosuk Park, Demetris Por-
tides, Athanasios Raftopoulos, Viola Schiaffonati, Nora
Alejandrina Schwartz, and Cameron Shelley. They are
all remarkable and hard-working academics, and we are
most grateful to them for taking the time and shoulder-
ing the burden to contact authors, inspire and review
contributions, whilst keeping in touch with us. In turn,
the editors could count on some of the most renowned
and promising scholars in each discipline and field; they
are too many to mention here, but our undying recog-
nition and gratitude go to them as well. In addition to
our recognition, all of the editors and authors certainly
have our congratulations and admiration upon the com-
pletion of this work.

Many of the editors and contributors were already
part of the ever-growingMBR (model-based reasoning)
community, an enthusiastic group of philosophers, epis-
temologists, logicians, cognitive scientists, computer
scientists, engineers, and other academics working in
the different and multidisciplinary facets of what is
known as model-based reasoning, especially focusing
on hypothetical-abductive reasoning and its role in sci-
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entific rationality. The outreach of this handbook goes
far beyond the theoretical and personal borders of the
MBR community, but it can nevertheless be saluted as
a celebration of the 17 years of work and exchange
since the first MBR conference was held in Pavia, Italy,
in 1998. For us, this Handbook is also a recognition of
the work and lives of the many beautiful minds who
came to join us, or interacted with theMBR community,
who are no longer among us but who will be forever re-
membered and appreciated.

Last but clearly not least, we are most grateful to
Springer’s editorial and production team for their con-
stant trust, encouragement, and support. In particular,
we wish to thank Leontina Di Cecco, Judith Hinterberg,
and Holger Schaepe, as their resilient help and collabo-
ration made a difference in achieving this Handbook.

Finally, beyond its tutorial value for our community,
it is our hope that the Handbook will serve as a useful
source to attract new researchers to model-based sci-
ence (and model-based reasoning), and inspire decades
of vibrant progress in this fascinating interdisciplinary
area. The contents of this Handbook admirably present
a very useful bringing together of the vast accom-
plishments that have taken place in the last 50 years.
Certainly, the contents of this Handbook will serve as
a valuable tool and guide to those who will produce the
even more capable and diverse next generations of re-
search on models.

Pavia, Italy
Lorenzo Magnani
Tommaso Bertolotti
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It is not hard to notice the lack of attention paid to sci-
entific models in mid-twentieth century philosophy of
science. Models were, for instance, absent from philo-
sophical theories of scientific explanation; they were
also absent from attempts to understand how theoretical
concepts relate to experimental results. In the last few
decades, however, this has changed, and philosophers
of science are increasingly turning their attention to sci-
entific models. Models and their relation to other parts
of the scientific apparatus are now under philosophical
scrutiny; at the same time, they are instrumental parts
of approaches that aim to address certain philosophical
questions.

After recognizing the significance of models in
scientific inquiry and in particular the significance of
models in linking theoretical concepts to experimental
reports, philosophers have begun to explore a number
of questions about the nature and function of models.
There are several philosophically interesting questions
that could fit very well into the theme of this set of chap-
ters. For example, what is the function of models? and
what is the role of idealization and abstraction in mod-
eling?. It is, however, not the objective of this set of
chapters to address every detail about models that has
gained philosophical interest over time. In this part of
the book five model-related philosophical questions are
isolated from others and are explored in separate chap-
ters:

1. What is a scientific model?
2. How do models and theories relate?
3. How do models represent phenomena?
4. How do models function in scientific explanation?
5. How do models and other modes of scientific theo-

rizing, such as simulations, relate?

Of course, the authors of these chapters are all
aware that isolating these questions is only done in or-
der to reach an intelligible exposition of the explored
problems concerning models, and not because differ-
ent questions have been kept systematically apart in
the philosophical literature that preceded this work. In
fact, the very nature of some of these questions dic-
tates an interrelation with others and attempts to address
one leads to overlaps with attempts to address oth-
ers. For example, how one addresses the question what
sort of entities are models? or how one conceives the
theory–model relation affects the understanding of their
scientific representation and scientific explanation, and
vice versa. Although this point becomes evident in the
subsequent chapters, a conscious attempt was made by
each author to focus on the one question of concern of
their chapter and to attempt to extrapolate and expli-
cate the different proposed philosophical accounts that

have been offered in the quest to answer that particular
question. We hope that the final outcome is helpful and
illuminating to the reader.

Axel Gelfert in his contribution, Chap. 1: The Ontol-
ogy of Models, explicates the different ways in which
philosophers have addressed the issue of what a sci-
entific model is. For historical reasons, he begins by
examining the view that was foremost almost a cen-
tury ago, which held that models could be understood
as analogies. He then quickly turns his attention to
a debate that took place in the second half of the twen-
tieth century between advocates of logical positivism,
who held that models are interpretations of a formal
calculus, and advocates of the semantic view, which
maintained that models are directly defined mathemat-
ical structures. He continues by examining the more
recent view, which identifies models with fictional enti-
ties. He closes his chapter with an explication of what
he calls the more pragmatic accounts, which hold that
models can best be understood with the use of a mixed
ontology.

In Chap. 2:Models and Theories,Demetris Portides
explicates the two main conceptions of the structure of
scientific theories (and subsequently the two main con-
ceptions of the theory–model relation) in the history of
the philosophy of science, the received and the semantic
views. He takes the reader through the main arguments
that led to the collapse of the received view and gives
the reader a lens by which to distinguish the different
versions of the semantic view. He finally presents the
main arguments against the semantic view and in doing
so he explicates a more recent philosophical trend that
conceives the theory–model relation as too complex to
sufficiently capture with formal tools.

Roman Frigg and James Nguyen, in Chap. 3: Mod-
els and Representation begin by analyzing the concept
of representation and clarifying its main characteristics
and the conditions of adequacy any theory of represen-
tation should meet. They then proceed to explain the
main theories of representation that have been proposed
in the literature and explain with reference to their pro-
posed set of characteristics and conditions of adequacy
where each theory is found wanting. The similarity, the
structuralist, the inferential, the fictionalist, and the de-
notational accounts of representation are all thoroughly
explained and critically assessed. By doing this the au-
thors expose and explicate many of the weaknesses of
the different accounts of representation.

In Chap. 4: Models and Explanation, Alisa
Bokulich explains that by recognizing the extensive use
of models in science and by realizing that models are
more often than not highly idealized and incomplete
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descriptions of phenomena that frequently incorporate
fictional elements, philosophers have been led to revise
previous philosophical accounts of scientific explana-
tion. By scrutinizing different model-based accounts
of scientific explanation offered in the literature and
exposing the problems involved, she highlights the dif-
ficulties involved in resolving the issue of whether or
not the falsehoods present in models are operative in
scientific explanation.

Finally, Nancy Nersessian and Miles McLeod, in
Chap. 5: Models and Simulations, explicate a more re-
cent issue that is increasingly gaining the interest of
philosophers: how scientific models, i.e., the mathemat-
ical entities that scientists traditionally use to represent
phenomena, relate to simulations, particularly computa-
tional simulations. They give a flavor of the character-

istics of computational simulations both in the context
of well-developed overarching theories and in the con-
text where an overarching theory is absent. The authors
also highlight the epistemological significance of sim-
ulations for all such contexts by elaborating on how
simulations introduce novel problems that should con-
cern philosophers. Finally, they elaborate on the relation
between simulations and other constructs of human
cognition such as thought experiments.

In most cases, in all chapters the technical as-
pects of the philosophical arguments have been kept to
a minimum in order to make them accessible even to
readers working outside the sphere of the philosophy
of science. Suppressing the technical aspects has not,
however, introduced misrepresentation or distortion to
philosophical arguments.
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Part
A
|1

1. The Ontology of Models

Axel Gelfert

The term scientific model picks out a great many
things, including scale models, physical mod-
els, sets of mathematical equations, theoretical
models, toy models, and so forth. This raises the
question of whether a general answer to the ques-
tionWhat is a model? is even possible. This chapter
surveys a number of philosophical approaches that
bear on the question of what, in general, a sci-
entific model is. While some approaches aim for
a unitary account that would apply to models in
general, regardless of their specific features, oth-
ers take as their basic starting point the manifest
heterogeneity of models in scientific practice. This
chapter first motivates the ontological question of
what models are by reflecting on the diversity of
different kinds of models and arguing that mod-
els are best understood as functional entities. It
then provides some historical background regard-
ing the use of analogy in science as a precursor
to contemporary notions of scientific model. This
is followed by a contrast between the syntactic
and the semantic views of theories and models
and their different stances toward the question
of what a model is. Scientists, too, typically oper-
ate with tacit assumptions about the ontological
status of models: this gives rise to what has been
called the folk ontology of models, according to
which models may be thought of as descriptions
of missing (i. e., uninstantiated) systems. There
is a close affinity between this view and recent
philosophical positions (to be discussed in the
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penultimate section) according to which models
are fictions. This chapter concludes by considering
various pragmatic conceptions of models, which
are typically associated with what may be called
mixed ontologies, that is, with the view that any
quest for a unitary account of the nature of models
is bound to be fruitless.

The philosophical discussion aboutmodels has emerged
from a cluster of concerns, which span a range of the-
oretical, formal, and practical questions across disci-
plines ranging from logic and mathematics to aesthetics
and artistic representations. In what follows, the term
models will normally be taken as synonymous to sci-
entific models, and any departure from this usage – for
example, when discussing the use of models in non-
scientific settings – will either be indicated explicitly
or will be clear from context. Focusing on scientific
models helps to clarify matters, but still leaves a wide

range of competing philosophical approaches for dis-
cussion. This chapter will summarize and critically dis-
cuss a number of such approaches, especially those that
shed light on the question what is a model?; these will
range from views that, by now, are of largely historical
interest to recent proposals at the cutting edge of the phi-
losophy of science. While the emphasis throughout will
be on the ontology of models, it will often be necessary
to also reflect on their function, use, and construction.
This is not meant to duplicate the discussion provided
in other chapters of this handbook; rather, it is the natu-
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ral result of scientific models having traditionally been
defined either in terms of their function (e.g., to provide
representations of target systems) or via their relation
to other (purportedly) better understood entities, such as
scientific theories.

The rest of this chapter is organized as follows:
Sect. 1.1 will set the scene by introducing a num-
ber of examples of scientific models, thereby raising
the question of what degree of unity any philosophi-
cal account of scientific models can reasonably aspire
to. Section 1.2 will characterize models as functional
entities and will provide a general taxonomy for how
to classify various possible philosophical approaches.
A first important class of specific accounts, going back
to nineteenth-century scientists and philosophers, will
be discussed in Sect. 1.3, which focuses on models as
analogies. Section 1.4 is devoted to formal approaches

that dominatedmuch of twentieth-century discussion of
scientific models. In particular, it will survey the syntac-
tic view of theories and models and its main competitor,
the semantic view, along with recent formal approaches
(such as the partial structures approach) which aim to
address the shortcomings of their predecessors. Sec-
tion 1.5 provides a sketch of what has been called the
folk ontology of models – that is, a commonly shared
set of assumptions that inform the views of scientific
practitioners. On this view, models are place-holders for
imaginary concrete systems and as such are not unlike
fictions. The implications of fictionalism about models
are discussed in Sect. 1.6. Finally, in Sect. 1.7, recent
pragmatic accounts are discussed, which give rise to
what may be called a mixed ontology, according to
which models are best conceived of as a heterogeneous
mixture of elements.

1.1 Kinds of Models: Examples from Scientific Practice

Models can be found across a wide range of scientific
contexts and disciplines. Examples include the Bohr
model of the atom (still used today in the context of
science education), the billiard ball model of gases, the
DNA double helix model, scale models in engineering,
the Lotka–Volterra model of predator–prey dynamics in
population biology, agent-based models in economics,
the Mississippi River Basin model (which is a 200 acres
hydraulic model of the waterways in the entire Mis-
sissippi River Basin), and general circulation models
(GCMs), which allow scientists to run simulations of
Earth’s climate system. The list could be continued in-
definitely, with the number of models across the natural
and social sciences growing day by day.

In philosophical discussions of scientific models,
the situation is hardly any different. The Stanford Ency-
clopedia of Philosophy gives the following list of model
types that have been discussed by philosophers of sci-
ence [1.1]:

“Probing models, phenomenological models, com-
putational models, developmental models, explana-
tory models, impoverished models, testing models,
idealized models, theoretical models, scale models,
heuristic models, caricature models, didactic mod-
els, fantasy models, toy models, imaginary mod-
els, mathematical models, substitute models, iconic
models, formal models, analogue models and in-
strumental models.”

The proliferation of models and model types, in the
sciences as well as in the philosophical literature, led
Goodman to lament in his 1968 Languages of Art [1.2,
p. 171]: “Few terms are used in popular and scientific

discourse more promiscuously than model.” If this was
true of science and popular discourse in the late 1960s,
it is all the more true of the twenty-first century philos-
ophy of science.

As an example of a physics-based model, consider
the Ising model, proposed in 1925 by the German physi-
cist Ernst Ising as a model of ferromagnetism in certain
metals. The model starts from the idea that a macro-
scopic magnet can be thought of as a collection of
elementary magnets, whose orientation determines the
overall magnetization. If all the elementary magnets are
aligned along the same axis, then the systemwill be per-
fectly ordered and will display a maximum value of the
magnetization. In the simplest one-dimensional (1-D)
case, such a state can be visualized as a chain of ele-
mentary magnets, all pointing the same way

� � � """"""""""""" � � �

The alignment of elementary magnets can be brought
about either by a sufficiently strong external magnetic
field or it can occur spontaneously, as will happen
below a critical temperature, when certain substances
(such as iron and nickel) undergo a ferromagnetic phase
transition.Whether or not a systemwill undergo a phase
transition, according to thermodynamics, depends on its
energy function, which in turn is determined by the in-
teractions between the component parts of the system.
For example, if neighboring elementary magnets inter-
act in such a way as to favor alignment, there is a good
chance that a spontaneous phase transition may occur
below a certain temperature. The energy function, then,
is crucial to the model and, in the case of the Ising
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model, is defined as

ED�
X

i;j

JijSiSj ;

with the variable Si representing the orientation (C1
or �1) of an elementary magnet at site i in the crys-
tal lattice and Jij representing the strength of interaction
between two such elementary magnets at different lat-
tice sites i and j.

Contrast this with model organisms in biology,
the most famous example of which is the fruit fly
Drosophila melanogaster. Model organisms are real or-
ganisms – actual plants and animals that are alive and
can reproduce – yet they are used as representations ei-
ther of another organism (e.g., when rats are used in
place of humans in medical research) or of a biologi-
cal phenomenon that is more universal (e.g., when fruit
flies are used to study the effects of crossover between
homologous chromosomes).Model organisms are often
bred for specific purposes and are subject to artificial se-
lection pressures, so as to purify and standardize certain
features (e.g., genetic defects or variants) that would
not normally occur, or would occur only occasionally,
in populations in the wild. As Ankeny and Leonelli put
it, in their ideal form “model organisms are thought to
be a relatively simplified form of the class of organism
of interest” [1.3, p. 318]; yet it often takes consider-
able effort to work out the actual relationships between
the model organism and its target system (whether it be
a certain biological phenomenon or a specific class of
target organisms). Tractability and various experimen-
tal desiderata – for example, a short life cycle (to allow
for quick breeding) and a relatively small and compact
genome (to allow for the quick identification of vari-
ants) – take precedence over theoretical questions in the
choice of model organisms; unlike for the Ising model,
there is no simple mathematical formula that one can
rely on to study how one’s model behaves, only the
messy world of real, living systems.

The Ising model of ferromagnetism and model or-
ganisms such as Drosophila melanogaster may be at
opposite ends of the spectrum of scientific models.
Yet the diversity among those models that occupy the
middle ground between theoretical description and ex-
perimental system is no less bewildering. How, one
might wonder, can a philosophical account of scien-
tific models aspire to any degree of unity or generality
in the light of such variety? One obvious strategy is to
begin by drawing distinctions between different overar-
ching types of models. Thus, Black [1.4] distinguishes
between four such types:

1. Scale models

2. Analog models
3. Mathematical models
4. Theoretical models.

The basic idea of scale and analog models is
straightforward: a scale model increases or decreases
certain (e.g., spatial) features of the target system, so
as to render them more manageable in the model;
an analog model also involves the change of medium
(as in once popular hydraulic models of the econ-
omy, where the flow of money was represented by
the flow of liquids through a system of pumps and
valves). Mathematical models are constructed by first
identifying a number of relevant variables and then de-
veloping empirical hypotheses concerning the relations
that may hold between the variables; through (often
drastic) simplification, a set of mathematical equations
is derived, which may then be evaluated analytically or
numerically and tested against novel observations. The-
oretical models, finally, begin usually by extrapolating
imaginatively from a set of observed facts and regu-
larities, positing new entities and mechanisms, which
may be integrated into a possible theoretical account of
a phenomenon; comparison with empirical data usually
comes only at a later stage, once the model has been
formulated in a coherent way.

Achinstein [1.5] includes mathematical models in
his definition of theoretical model, and proposes an
analysis in terms of sets of assumptions about a model’s
target system. This allows him to include Bohr’s model
of the atom, the DNA double-helix model (considered
as a set of structural hypotheses rather than as a phys-
ical ball-and-stick model), the Ising model, and the
Lotka–Volterra model among the class of theoretical
systems. Typically, when a scientist constructs a theo-
retical model, she will help herself to certain established
principles of a more fundamental theory to which she
is committed. These will then be adapted or modified,
notably by introducing various new assumptions spe-
cific to the case at hand. Typically, an inner structure or
mechanism is posited which is thought to explain the
features of the target system. At the same time, there
is the (often explicit) acknowledgment that the target
system is far more complex than the model is able to
capture: in this sense, a theoretical model is believed
by the practitioner to be false as a description of the tar-
get system. However, this acknowledgment of the limits
of applicability of models also allows researchers to si-
multaneously use different models of the same target
system alongside each other. Thus understood, theoret-
ical models usually involve the combination of general
theoretical principles and specific auxiliary assump-
tions, which may only be valid for a narrow range of
parameters.
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1.2 The Nature and Function of Models

The great variety of models employed in scientific prac-
tice, as illustrated by the long list given in the preceding
section, suggests two things. First, it makes vivid just
how central the use of models is to the scientific en-
terprise and to the self-image of scientists. As von
Neumann put it, with some hyperbole [1.6, p. 492]:
“The sciences do not try to explain, they hardly even try
to interpret, they mainly make models.”Whatever shape
and form the scientific enterprise might take without the
use of models, it seems safe to say that it would not look
anything like science as we presently know it. Second,
one might wonder whether it is at all reasonable to look
for a unitary philosophical account of models. Given
the range of things we call models, and the diversity of
uses to which they are being put, it may simply not be
possible to give a one-size-fits-all answer to the ques-
tion what is a model? This has led some commentators
to propose quietism as the only viable attitude toward
ontological questions concerning models and theories.
As French puts it [1.7, p. 245],

“whereas positing the reality of quarks or genes may
contribute to the explanation of certain features of
the physical world, adopting a similar approach to-
ward theories and models – that is, reifying them as
entities for which a single unificatory account can
be given – does nothing to explain the features of
scientific practice.”

While there are good grounds for thinking that
quietism should only be a position of last resort in
philosophy, the sentiment expressed by French may
go some way toward explaining why there has been
a relative dearth of philosophical work concerning the
ontology of models. The neglect of ontological ques-
tions concerning models has been remarked upon by
a number of contributors, many of whom, like Con-
tessa, find it [1.8, p. 194]

“surprising if one considers the amount of interest
raised by analogous questions about the ontology
and epistemology of mathematical objects in the
philosophy of mathematics.”

A partial explanation of this discrepancy lies in
the arguably greater heterogeneity in what the term
scientific models is commonly thought to refer to,
namely, anything from physical ball-and-stick models
of chemical molecules to mathematical models formu-
lated in terms of differential equations. (If we routinely
included dividers, compasses, set squares, and other
technical drawing tools among, say, the class of geo-
metrical entities, the ontology of mathematical entities,
too, would quickly become rather unwieldy!)

In the absence of any widely accepted unified ac-
count of models – let alone one that would provide
a conclusive answer to ontological questions arising
from models – it may be natural to assume, as indeed
many contributors to the debate have done, that “if all
scientific models have something in common, this is not
their nature but their function” [1.8, p. 194]. One option
would be to follow the quietist strategy concerning the
ontology of models and “refuse to engage with this is-
sue and ask, instead, how can we best represent these
features [and functions of models] in order that we can
understand” [1.7, p. 245] the practice of scientific mod-
eling. Alternatively, however, one might simply accept
that the function of models in scientific inquiry is our
best – and perhaps only – guide when exploring an-
swers to the question what is a model?. At the very
least, it is not obvious that an exploration of the on-
tological aspects of models is necessarily fruitless or
misguided. Ducheyne puts this nicely when he argues
that [1.9, p. 120],

“if we accept that models are functional entities, it
should come as no surprise that when we deal with
scientific models ontologically, we cannot remain
silent on how such models function as carriers of
scientific knowledge.”

As a working assumption, then, let us treat scientific
models as functional entities and explore how much on-
tological unity – over and above their mere functional
role – we can give to the notion of scientific model.

Two broad classes of functional characterizations
of models can be distinguished, according to which it
is either instantiation or representation that lie at the
heart of how models function. As Giere [1.10] sees it,
on the instantial view, models instantiate the axioms
of a theory, where the latter is understood as being
comprised of linguistic statements, including mathe-
matical statements and equations. (For an elaboration
of how such an account might turn out, see Sect. 1.4.)
By contrast, on the representational view, “language
connects not directly with the world, but rather with
a model, whose characteristics may be precisely de-
fined”; the model then connects with the world “by
way of similarity between a model and the designated
parts of the world” [1.10, p. 156]. Other proponents
of the representational view have de-emphasized the
role of similarity, while still endorsing representation as
one of the key functions of scientific models. Generally
speaking, proponents of the representational view con-
sider models to be “tools for representing the world,”
whereas those who favor the instantial view regard them
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primarily as “providing a means for interpreting formal
systems” [1.10, p. 44].

Within the class of representational views, one
can further distinguish between views that empha-
size the informational aspects of models and those
that take their pragmatic aspects to be more central.
Chakravartty nicely characterizes the informational va-
riety of the representational view as follows [1.11,
p. 198]:

“The idea here is that a scientific representation is
something that bears an objective relation to the
thing it represents, on the basis of which it contains
information regarding that aspect of the world.”

The term objective here simply means that the req-
uisite relation obtains independently of the model user’s
beliefs or intentions as well as independently of the spe-
cific representational conventions he or she might be
employing. Giere’s similarity-based view of represen-
tation – according to which scientific models represent
in virtue of their being similar to their target systems
in certain specifiable ways – would be an example of
such an informational view similarity, as construed by
Giere, is a relation that holds between the model and
its target, irrespective of a model user’s beliefs or in-
tentions, and regardless of the cognitive uses to which
he or she might put the model. Other philosophical po-
sitions that are closely aligned with the informational
approach might posit that, for a model to represent
its target, the two must stand in a relation of isomor-
phism, partial isomorphism, or homomorphism to one
another.

By contrast, the pragmatic variety of the represen-
tational view of models posits that models function as
representations of their targets in virtue of the cogni-
tive uses to which human reasoners put them. The basic
idea is that a scientific model facilitates certain cogni-
tive activities – such as the drawing of inferences about
a target system, the derivation of predictions, or per-
haps a deepening of the scientific understanding – on
the part of its user and, therefore, necessarily involves
the latter’s cognitive interests, beliefs, or intentions.
Hughes [1.12], for example, emphasizes the interplay
of three cognitive–theoretical processes – denotation,
demonstration, and interpretation – which jointly give
rise to the representational capacity of (theoretical)
models in science. On Hughes’ (aptly named) DDI
account of model-based representation, denotation ac-
counts for the fact that theoretical elements of a model

purport to refer to elements in the physical world. The
possibility of demonstration from within a model –
in particular, the successful mathematical derivation of
results for models that lend themselves to mathemati-
cal derivation techniques – attests both to the models
having a nontrivial internal dynamic and to its be-
ing a viable object of fruitful theoretical investigation.
Through successful interpretation, a model user then
relates the theoretically derived results back to the phys-
ical world, including the model’s target system. Clearly,
the DDI account depends crucially on there being some-
one who engages in the activities of interpreting and
demonstrating – that is, it depends on the cognitive ac-
tivities of human agents, who will inevitably draw on
their background knowledge, cognitive interests, and
derivational skills in establishing the requisite relations
for bringing about representation.

The contrast between informational and pragmatic
approaches to model-based representation roughly
maps onto another contrast, between what Knuuttila
has dubbed dyadic and triadic approaches. The former
takes “the model–target dyad as a basic unit of analysis
concerning models and their epistemic values” [1.13,
p. 142]. This coheres well with the informational ap-
proach which, as discussed, tends to regard models as
(often abstract) structures that stand in a relation of iso-
morphism, or partial isomorphism, to a target system.
By contrast, triadic accounts – in line with pragmatic
views of model-based representation – based represen-
tation shift attention away from models and the abstract
relations they stand in, toward modeling as a theoretical
activity pursued by human agents with cognitive inter-
ests, intentions, and beliefs. On this account, model-
based representation cannot simply be a matter of any
abstract relationship between the model and a target
system since one cannot, as Suárez puts it, “reduce
the essentially intentional judgments of representation
users to facts about the source and target object or sys-
tems and their properties” [1.14, p. 768]. Therefore,
so the suggestion goes, the model–target dyad needs
to be replaced by a three-place relation between the
model, its target, and the model user. Suárez, for exam-
ple, proposes an inferentialist account of model-based
representation, according to which a successful model
must allow “competent and informed agents to draw
specific inferences regarding” [1.14, p. 773] the target
system – thereby making the representational success
of a model dependent on the qualities of a (putative)
model user.
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1.3 Models as Analogies and Metaphors

Some scholars trace the emergence of the concept of
a scientific model to the second half of the nineteenth
century [1.15]. Applying our contemporary concept of
model to past episodes in the history of science, we
can of course identify prior instances of models be-
ing employed in science; however, until the nineteenth
century scientists were engaged in little systematic
self-reflection on the uses and limitations of models.
Philosophy of science took even longer to pay attention
to models in science, focusing instead on the role and
significance of scientific theories. Only from the middle
of the twentieth century onward did philosophical inter-
est in models acquire the requisite momentum to carry
the debate forward. Yet in both science and philosophy,
the term model underwent important transformations,
so it will be important to identify some of these shifts,
in order to avoid unnecessary ambiguity and confusion
in our exploration of the questionWhat is a model?.

Take, for example, Duhem’s dismissal, in 1914, of
what he takes to be the excessive use of models in
Maxwell’s theory of electromagnetism, as presented in
an English textbook published at the end of the nine-
teenth century [1.16, p. 7]:

“Here is a book intended to expound the modern
theories of electricity and to expound a new theory.
In it there are nothing but strings which move round
pulleys which roll around drums, which go through
pearl beads, which carry weights; and tubes which
pumpwater while others swell and contract; toothed
wheels which are geared to one another and engage
hooks. We thought we were entering the tranquil
and neatly ordered abode of reason, but we find our-
selves in a factory.”

What Duhem is mocking in this passage, which
is taken from a chapter titled Abstract Theories and
Mechanical Models, is a style of reasoning that is dom-
inated by the desire to visualize physical processes in
purely mechanical terms. His hostility is thus directed
at mechanical models only – as the implied contrast in
the chapter title makes clear – and does not extend to the
more liberal understanding of the term scientific model
in philosophy of science today.

Indeed, when it comes to the use of analogy in
science, Duhem is much more forgiving. The term anal-
ogy, which derives from the Greek expression for pro-
portion, itself has multiple uses, depending on whether
one considers its use as a rhetorical device or as a tool
for scientific understanding. Its general form is that of
“pointing to a resemblance between relations in two dif-
ferent domains, that is, A is related to B like C is related
to D” [1.17, p. 110]. An analogy may be considered

merely formal, when only the relations (but not the re-
lata) resemble another, or it may be material, when the
relata from the two domains (i. e., A and B on one side,
C and D on the other) have certain attributes or charac-
teristics in common.Duhem’s understanding of analogy
is more specific, in that he conceives of analogy as be-
ing a relation between two sets of statements, such as
between one theory and another [1.16, p. 97]:

“Analogies consist in bringing together two abstract
systems; either one of them already known serves to
help us guess the form of the other not yet known, or
both being formulated, they clarify the other. There
is nothing here that can astonish the most rigorous
logician, but there is nothing either that recalls the
procedures dear to ample but shallow minds.”

Consider the following example: When Christiaan
Huygens (1629–1695) proposed his theory of light, he
did so on the basis of analogy with the theory of sound
waves: the relations between the various attributes and
characteristics of light are similar to those described by
acoustic theory for the rather different domain of sound.
Thus understood, analogy becomes a legitimate instru-
ment for learning about one domain on the basis of
what we know about another. In modern parlance, we
might want to say that sound waves provided Huygens
with a good theoretical model – at least given what was
known at the time – for the behavior of light.

There is, however, a risk of ambiguity in that last
sentence – an ambiguity which, asMellor [1.18, p. 283]
has argued, it would be wrong to consider harmless.
Saying that sound waves provide a good model for the
theory of light appears to equate the model with the
sound waves – as though one physical object (sound
waves) could be identified with the model. At first sight,
this might seem unproblematic, given that, as far as
wave-like behavior is concerned, we do take light and
sound to be relevantly analogous. However, while it is
indeed the case that “some of the constructs called anal-
ogy in the nineteenth century would today be routinely
referred to as models” [1.19, p. 46], it is important to
distinguish between, on the one hand, analogy as the
similarity relation that exists between a theory and an-
other set of statements and, on the other hand, the latter
set of statements as the analog of the theory. Further-
more, we need to distinguish between the analog (e.g.,
the theory of sound waves, in Huygens’s case) and the
set of entities of which the analog is true (e.g., the sound
waves themselves). (On this point, see [1.18, p. 283].)
What Duhem resents about the naïve use of what he
refers to as mechanical models is the hasty conflation
of the visualized entities – (imaginary) pulleys, drums,



The Ontology of Models 1.3 Models as Analogies and Metaphors 11
Part

A
|1.3

pearl beads, and toothed wheels – with what is in fact
scientifically valuable, namely the relation of analogy
that exists between, say, the theory of light and the the-
ory of sound.

This interpretation resolves an often mentioned ten-
sion – partly perpetuated by Duhem himself, through
his identification of different styles of reasoning (the
English style of physics with its emphasis on mechan-
ical models, and the Continental style which prizes
mathematical principles above all) – between Duhem’s
account of models and that of the English physicist
Norman Campbell. Thus, Hesse, in her seminal essay
Models and Analogies in Science [1.20], imagines a di-
alogue between a Campbellian and a Duhemist. At the
start of the dialogue, the Campbellian attributes to the
Duhemist the following view: “I imagine that along
with most contemporary philosophers of science, you
would wish to say that the use of models or analogs is
not essential to scientific theorizing and that [. . . ] the
theory as a whole does not require to be interpreted by
means of any model.” To this, the Duhemist, who ad-
mits that “models may be useful guides in suggesting
theories,” replies: “When we have found an acceptable
theory, any model that may have led us to it can be
thrown away. Kekulé is said to have arrived at the struc-
ture of the benzene ring after dreaming of a snake with
its tail in its mouth, but no account of the snake appears
in the textbooks of organic chemistry.” The Campbel-
lian’s rejoinder is as follows: “I, on the other hand, want
to argue that models in some sense are essential to the
logic of scientific theories” [1.20, pp. 8–9]. The quoted
part of Hesse’s dialogue has often been interpreted as
suggesting that the bone of contention between Duhem
and Campbell is the status of models in general (in the
modern sense that includes theoretical models), with
Campbell arguing in favor and Duhem arguing against.
But we have already seen that Duhem, using the lan-
guage of analogy, does allow for theoretical models to
play an important role in science. This apparent tension
can be resolved by being more precise about the target
of Duhem’s criticism: “Kekulé’s snake dream might il-
lustrate the use of a visualizable model, but it certainly
does not illustrate the use of an analogy, in Duhem
and Campbell’s sense” [1.18, p. 285]. In other words,
Duhem is not opposed to scientific models in general,
but to its mechanical variety in particular. And, on the
point of over-reliance on mechanical models, Camp-
bell, too, recognizes that dogmatic attachment to such
a style of reasoning is open to criticism. Such a dog-
matic view would hold “that theories are completely
satisfactory only if the analogy on which they are based
is mechanical, that is to say, if the analogy is with the
laws of mechanics” [1.21, p. 154]. Campbell is clearly
more sympathetic than Duhem toward our “craving for

mechanical theories,” which he takes to be firmly rooted
in our psychology. But he insists that [1.21, p. 156]

“we should notice that the considerations which
have been offered justify only the attempt to adopt
some form of theory involving ideas closely related
to those of force and motion; it does not justify the
attempt to force all such theories into the Newtonian
mold.”

To be sure, significant differences between Duhem
and Campbell remain, notably concerning what kinds
of uses of analogies in science (or, in today’s termi-
nology, of scientific – including theoretical – models)
are appropriate. For Duhem, such uses are limited to
a heuristic role in the discovery of scientific theories. By
contrast, Campbell claims that “in order that a theory
may be valuable [. . . ] it must display analogy” [1.21,
p. 129] – though it should be emphasized again, not
necessarily analogy of the mechanical sort. (As Mel-
lor argues, Duhem and Campbell differ chiefly in their
views of scientific theories and less so in their take
on analogy, with Duhem adopting a more static per-
spective regarding theories and Campbell taking a more
realist perspective [1.18].)

It should be said, though, that Hesse’s Campbellian
and Duhemist are at least partly intended as carica-
tures and serve as a foil for Hesse’s own account of
models as analogies. The account hinges on a three-
part distinction between positive, negative, and neutral
analogies [1.20]. Using the billiard ball model of gases
as her primary example, Hesse notes that some char-
acteristics are shared between the billiard balls and the
gas atoms (or, rather, are ascribed by the billiard ball
model to the gas atoms); these include velocity, mo-
mentum, and collision. Together, these constitute the
positive analogy. Those properties we know to belong
to billiard balls, but not to gas atoms – such as color –
constitute the negative analogy of the model. However,
there will typically be properties of the model (i. e., the
billiard ball system) of which we do not (yet) know
whether they also apply to its target (in this case, the gas
atoms). These form the neutral analogy of the model.
Far from being unimportant, the neutral analogy is cru-
cial to the fruitful use of models in scientific inquiry,
since it holds out the promise of acquiring new knowl-
edge about the target system by studying the model in
its place [1.20, p. 10]:

“If gases are really like collections of billiard balls,
except in regard to the known negative analogy, then
from our knowledge of the mechanics of billiard
balls, wemay be able to make new predictions about
the expected behavior of gases.”
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In dealing with scientific models we may choose to
disregard the negative analogy (which results in what
Hesse calls model1) and consider only the known posi-
tive and neutral analogies – that is, only those properties
that are shared, or for all we know may turn out to be
shared, between the target system and its analog. (On
the terminology discussed in Sect. 1.1, due to Black
and Achinstein, model1 would qualify as a theoretical
model.) This, Hesse argues, typically describes our use
of models for the purpose of explanation: we resolve
to treat model1 as taking the place of the phenom-
ena themselves. Alternatively, we may actively include
the negative analogy in our considerations, resulting in
what Hesse calls model2 or a form of analog model.
Given that, let us assume, the model system (e.g., the
billiard balls) was chosen because it was observable –
or, at any rate, more accessible than the target sys-
tem (e.g., the gas) – model2 allows us to study the
similarities and dissimilarities between the two analo-
gous domains; model2, qua being a model for its target,
thus has a deeper structure than the system of bil-
liard balls considered in isolation – and, like model1,
importantly includes the neutral analogy, which holds
out the promise of novel insights and predictions. As
Hesse puts it, in the voice of her Campbellian interlocu-
tor [1.20, pp. 12–13]:

“My whole argument is going to depend on these
features [of the neutral analogy] and so I want
to make it clear that I am not dealing with static
and formalized theories, corresponding only to the
known positive analogy, but with theories in the pro-
cess of growth.”

Models have been discussed not only in terms of
analogy, but also in terms of metaphor.Metaphor, more
explicitly than analogy, refers to the linguistic realm:

a metaphor is a linguistic expression that involves at
least one part that is being transferred from a domain
of discourse where it is common to another – the tar-
get domain – where it is uncommon. The existence of
an analogy may facilitate such a transfer of linguis-
tic expression; at the same time, it is entirely possible
that “it is the metaphor that prompts the recognition
of analogy” [1.17, p. 114] – both are compatible with
one another and neither is obviously prior to the other.
Metaphorical language is widespread in science, not
just in connection with models: for example, physicists
routinely speak of black holes and quantum tunneling
as important predictions of general relativity theory and
quantum theory, respectively. Yet, as Soskice and Harré
note, there is a special affinity between models and
metaphor [1.22, p. 302]:

“The relationship of model and metaphor is this: if
we use the image of a fluid to explicate the supposed
action of the electrical energy, we say that the fluid
is functioning as a model for our conception of the
nature of electricity. If, however, we then go on to
speak of the rate of flow of an electrical current, we
are using metaphorical language based on the fluid
model.”

In spite of this affinity, it would not be fruitful to
simply equate the two – let alone jump to the conclu-
sion that, in the notion of metaphor, we have found
an answer to the question What is a model?. Mod-
els and metaphors both issue in descriptions, and as
such they may draw on analogies we have identified
between two otherwise distinct domains; more, how-
ever, needs to be said about the nature of the relations
that need to be in place for something to be con-
sidered a (successful) model of its target system or
phenomenon.

1.4 Models Versus the Received View: Sentences and Structures

Much of the philosophical debate about models is in-
debted to model theory as a branch of (first-order)
mathematical logic. Two philosophical frameworks for
thinking about scientific models and theories – the
syntactic view of models and theories and its main com-
petitor, the semantic view – can be traced back to these
origins; they are the topic of this section. (For a more
extensive discussion, see also other chapters in this
handbook.) The syntactic view (Sect. 1.4.2) is closely
aligned with logical positivism, which dominated much
anglophone philosophy of science until the mid-1960s,
and is sometimes referred to as the received view. Given

that less rigid approaches and an overarching movement
toward pluralism have reshaped the philosophy of sci-
ence over the past half-century or so, this expression is
somewhat dated; to make matters worse, other contrib-
utors to the debate have, over time, come to apply the
same label to the syntactic view’s main competitor, the
semantic view of models and theories. Instead of adju-
dicating which position deserves this dubious honor, the
present section will discuss how each view conceives of
models. Before doing so, however, a few preliminaries
are in order concerning the competing views’ joint ori-
gins in logical model theory.
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1.4.1 Models and the Study
of Formal Languages

Model theory originated as the study of formal lan-
guages and their interpretations, starting from a Tarski-
style truth theory based only on notions from syntax
and set theory. On a broader understanding, the re-
striction to formal languages may be dropped, so as
to include scientific languages (which are often closer
to natural language than to logic), or even natural lan-
guages. However, the distinction between the syntax
and the semantics of a language, which is sharpest in
logic, also provides a useful framework for studying
scientific languages and has guided the development
of both the syntactic and the semantic views of theo-
ries and models. The syntax of a language L is made
up of the vocabulary of L, along with the rules that
determine which sequence of symbols counts as a well-
formed expression in L; in turn, the semantics of L
provides interpretations of the symbolic expressions in
L, by mapping them onto another relational structure R,
such that all well-formed expressions in L are rendered
intelligible (e.g., via rules of composition) and can be
assessed in terms of their truth or falsity in R.

The contrast between the syntax and the semantics
of a language allows for two different approaches to the
notion of a theory. A theory T may either be defined
syntactically, as the set of all those sentences that can
be derived, through a proper application of the syntac-
tic rules, from a set of axioms (i. e., statements that are
taken to be fundamental); or it may be defined semanti-
cally, as all those (first-order) sentences that a particular
structure,M, satisfies. An example of the former would
be Euclidean geometry, which consists of five axioms
and all the theorems derivable from them using geo-
metrical rules; an example of the latter would be group
theory, which simply consists of all those first-order
sentences that a set of groups – definable in terms of set-
theoretic entities – satisfies. (This example, and much
of the short summary in this section, is owed to [1.23];
for further discussion, see references therein.) The syn-
tactic and semantic definitions of what a theory is are
closely related: starting from the semantic definition, to
see whether a particular structure M is a model of an
axiomatizable first-order theory T , all that one needs to
show is that M satisfies the axioms.

1.4.2 The Syntactic View of Theories

The syntactic view of theories originated from the com-
bination of the insights – or, to put it a little more
cautiously, fundamental tenets – of two research pro-
grams: the philosophical program, aligned with Pierre
Duhem (Sect. 1.3) and Henri Poincaré, of treating

(physical) theories as systems of hypotheses designed
to save the phenomena, and the mathematical program,
pioneered by David Hilbert, which sought to formalize
(mathematical) theories as axiomatic systems. By com-
bining the two, it seemed possible to identify a theory
with the set of logical consequences that could be de-
rived from its fundamental principles (which were to
be treated as axioms), using only the rules of the lan-
guage in which the theory was formulated. In spite of
its emphasis on syntax, the syntactic view is not en-
tirely divorced from questions of semantics. When it
comes to scientific theories, we are almost always deal-
ing with interpreted sets of sentences, some of which –
the fundamental principles or axioms – are more ba-
sic than others, with the rest derivable using syntactic
rules. The question then arises at which level interpreta-
tion of the various elements of a theory is to take place.
This is where the slogan to save the phenomena points
us in the right direction: on the syntactic view, inter-
pretation only properly enters at the level of matching
singular theoretical predictions, formulated in strictly
observational terms, with the observable phenomena.
Higher level interpretations – for example, pertain-
ing to purely theoretical terms of a theory (such as
posited unobservable entities, causal mechanisms, laws,
etc.) – would be addressed through correspondence
rules, which offered at least a partial interpretation, so
that some of the meaning of such higher level terms
of a theory could be linked up with observational sen-
tences.

As an example, consider the example of classical
mechanics. Similar to how Euclidean geometry can
be fully derived from a set of five axioms, classical
mechanics is fully determined by Newton’s laws of
mechanics. At a purely formal level, it is possible to
provide a fully syntactic axiomatization in terms of the
relevant symbols, variables, and rules for their manipu-
lation – that is, in terms of what Rudolf Carnap calls the
calculus of mechanics. If one takes the latter as one’s
starting point, it requires interpretation of the results
derived from within this formal framework, in order
for the calculus to be recognizable as a theory of me-
chanics, that is, of physical phenomena. In the case
of mechanics, we may have no difficulty stating the
axioms in the form of the (physically interpreted) New-
tonian laws of mechanics, but in other cases – perhaps
in quantum mechanics – making this connection with
observables may not be so straightforward. As Carnap
notes [1.24, p. 57]:

“[t]he relation of this theory [D the physically in-
terpreted theory of mechanics] to the calculus of
mechanics is entirely analogous to the relation of
physical to mathematical geometry. ”
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As in the Euclidean case, the syntactic view iden-
tifies the theory with a formal language or calculus
(including, in the case of scientific theories, relevant
correspondence rules), “whose interpretation – what the
calculus is a theory of – is fixed at the point of applica-
tion” [1.25, p. 125].

On the syntactic view of theories, models play
at best a very marginal role as limiting cases or ap-
proximations. This is for two reasons. First, since the
nonobservational part of the theory – that is, the the-
ory proper, as one might put it – does not admit of
direct interpretation, the route to constructing theoret-
ical models on the basis of our directly interpreting the
core ingredients of the theory is obstructed. Interpreta-
tion at the level of observational statements, while still
available to us, is insufficient to imbuemodels with any-
thing other than a purely one-off auxiliary role. Second,
as Cartwright has pointedly argued in criticism directed
at both the syntactic and the semantic views, there is
a shared – mistaken – assumption that theories are a bit
like vending machines [1.26, p. 247]:

“[Y]ou feed it input in certain prescribed forms for
the desired output; it gurgitates for a while; then it
drops out the sought-for-representation, plonk, on
the tray, fully formed, as Athena from the brain of
Zeus.”

This limits what we can do with models, in that
there are only two stages [1.26, p. 247]:

“First, eyeballing the phenomenon, measuring it up,
trying to see what can be abstracted from it that
has the right form and combination that the vend-
ing machine can take as input; secondly, [. . . ] we
do either tedious deduction or clever approximation
to get a facsimile of the output the vending machine
would produce.”

Even if this caricature seems a little too extreme,
the fact remains that, by modeling theories after first-
order formal languages, the syntactic view limits our
understanding of what theories andmodels are and what
we can do with them.

1.4.3 The Semantic View

One standard criticism of the syntactic view is that
it conflates scientific theories with their linguistic for-
mulations. Proponents of the semantic view argue that
by adding a layer of (nonlinguistic) structures between
the linguistic formulations of theories and our assess-
ment of them, one can side-step many of the problems
faced by the syntactic view. According to the seman-
tic view, a theory should be thought of as the set of
set-theoretic structures that satisfy the different linguis-

tic formulations of the theory. A structure that provides
an interpretation for, and makes true, the set of sen-
tences associated with a specific linguistic formulation
of the theory is called a model of the theory. Hence,
the semantic view is often characterized as conceiving
of theories as collections of models. This not only puts
models – where these are to be understood in the logi-
cal sense outlined earlier – center stage in our account
of scientific theories, but also renders the latter funda-
mentally extra-linguistic entities.

An apt characterization of the semantic view is
given by Suppe as follows [1.27, pp. 82–83]:

“This suggests that theories be construed as pro-
pounded abstract structures serving as models for
sets of interpreted sentences that constitute the lin-
guistic formulations. [. . . ] [W]hat the theory does
is directly describe the behavior of abstract sys-
tems, known as physical systems, whose behaviors
depend only on the selected parameters. However,
physical systems are abstract replicas of actual phe-
nomena, being what the phenomena would have
been if no other parameters exerted an influence.”

According to a much-quoted remark by one of the
main early proponents of the semantic view, Suppes,
“the meaning of the concept of model is the same in
mathematics and in the empirical sciences.” However,
as Suppe’s quote above makes clear, models in sci-
ence have additional roles to play, and it is perhaps
worth noting that Suppes himself immediately contin-
ues: “The difference to be found in these disciplines is
to be found in their use of the concept” [1.28, p. 289].
Supporters of the semantic view often claim that it is
closer to the scientific practices of modeling and theo-
rizing than the syntactic view. On this view, according
to van Fraassen [1.29, p. 64],

“[t]o present a theory is to specify a family of struc-
tures, its models; and secondly, to specify certain
parts of those models (the empirical substructures)
as candidates for the direct representation of observ-
able phenomena.”

Unlike what the syntactic view suggests, scientists
do not typically formulate abstract theoretical axioms
and only interpret them at the point of their applica-
tion to observable phenomena; rather, “scientists build
in their mind’s eye systems of abstract objects whose
properties or behavior satisfy certain constraint (includ-
ing law)” [1.23, p. 154] – that is, they engage in the
construction of theoretical models.

Unlike the syntactic view, then, the semantic view
appears to give a more definite answer to the question
what is a model? In line with the account sketched so
far, a model of a theory is simply a (typically extra-
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linguistic) structure that provides an interpretation for,
and makes true, the set of axioms associated with the
theory (assuming that the theory is axiomatizable). Yet
it is not clear that, in applying their view to actual sci-
entific theories, the semanticists always heed their own
advice to treat models as both giving an interpretation,
and ensuring the truth, of a set of statements. More im-
portantly, the model-theoretic account demands that, in
a manner of speaking, a model should fulfil its truth-
making function in virtue of providing an interpretation
for a set of sentences. Other ways of ensuring truth –
for example by limiting the domain of discourse for
a set of fully interpreted sentences, thereby ensuring
that the latter will happen to be true – should not qual-
ify. Yet, as Thomson-Jones [1.30] has argued, purported
applications of the semantic view often stray from the
original model-theoretic motivation. As an example,
consider Suppes’ axiomatization of Newtonian parti-
cle physics. (The rest of this subsection follows [1.30,
pp. 530–531].) Suppes [1.31] begins with the following
definition (in slightly modified form)

Definition 1.1
A system ˇ D hP;T; s;m; f ; gi is a model of particle
mechanics if and only if the following seven axioms are
satisfied:

Kinematical axioms:

1 The set P is finite and nonempty
2 The set T is an interval of real numbers
3 For p in P, sp is twice differentiable.

Dynamical axioms:

4 For p in P, m.p/ is a positive real number
5 For p and q in P and t in T ,

f .p;q; t/D�f .q;p; t/ :
6 For p and q in P and t in T ,

s.p; t/� f .p;q; t/D�s.q; t/� f .q;p; t/ :
7 For p in P and t in T ,

m.p/D2sp.t/D
X

q2P

f .p;q; t/C g.p; t/ :

At first sight, this presentation adheres to core ideas
that motivate the semantic view. It sets out to define an
extra-linguistic entity, ˇ, in terms of a set-theoretical
predicate; the entities to which the predicate applies are
then to be singled out on the basis of the seven axioms.
But as Thomson-Jones points out, a specific model S
defined in this way “is not a serious interpreter of the

predicate or the axioms that compose it” [1.30, p. 531];
it merely fits a structure to the description provided by
the fully interpreted axioms (1)–(7), and in this way en-
sures that they are satisfied, but it does not make them
come out true in virtue of providing an interpretation
(i. e., by invoking semantic theory). To Thomson-Jones,
this suggests that identifying scientific models with
truth-making structures in the model-theoretic sense
may, at least in the sciences, be an unfulfilled promise of
the semantic view; instead, he argues, we should settle
for a less ambitious (but still informative) definition of
a model as “a mathematical structure used to represent
a (type of) system under study” [1.30, p. 525].

1.4.4 Partial Structures

Part of the motivation for the semantic view was its
perceived greater ability to account for how scientists
actually go about developingmodels and theories. Even
so, critics have claimed that the semantic view is unable
to accommodate the great diversity of scientific mod-
els and faces special challenges from, for example, the
use of inconsistency in many models. In response to
such criticisms, a philosophical research program has
emerged over the past two decades, which seeks to es-
tablish a middle ground between the classical semantic
view of models discussed in the previous section and
those who are sceptical about the prospects of formal
approaches altogether. This research program is often
called the partial structures approach, which was pi-
oneered by Newton da Costa and Steven French and
whose vocal proponents include Otávio Bueno, James
Ladyman, and others; see [1.32] and references therein.

Like many adherents of the semantic view, partial
structures theorists hold that models are to be recon-
structed in set-theoretic terms, as ordered n-tuples of
sets: a set of objects with (sets of) properties, quantities
and relations, and functions defined over the quanti-
ties. A partial structure may then be defined as AD
hD;Riii2I, where D is a nonempty set of n-tuples of just
this kind and each Ri is a n-ary relation. Unlike on the
traditional semantic view, the relations Ri need not be
complete isomorphisms, but crucially are partial rela-
tions: that is, they need not be defined for all n-tuples
of elements of D. More specifically, for each partial re-
lation Ri, in addition to the set of n-tuples for which the
relation holds and the set of n-tuples for which it does
not hold, there is also a third set of n-tuples for which
it is underdetermined whether or not it holds. (There
is a clear parallel here with Hesse’s notion of positive,
negative, and neutral analogies which, as da Costa and
French put it, “finds a natural home in the context of
partial structures” [1.32, p. 48].) A total structure is said
to extend a partial structure, if it subsumes the first two
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sets without change (i. e., includes all those objects and
definite relations that exist in the partial structures) and
renders each extended relation well defined for every
n-tuple of objects in its domain. This gives rise to a hi-
erarchy of structures and substructures, which together
with the notion of partial isomorphism loosens the re-
quirements on representation, since all that is needed
for two partial models A and A0 to be partially isomor-
phic is that a partial substructure of A be isomorphic to
a partial substructure in A0.

Proponents of the partial structures approach claim
that it “widens the framework of the model-theoretic
approach and allows various features of models and the-
ories – such as analogies, iconic models, and so on – to
be represented,” [1.33, p. 306] that it can successfully
contain the difficulties arising from inconsistencies in
models, and that it is able to capture “the existence of
a hierarchy of models stretching from the data up to
the level of theory” [1.33]. Some critics have voiced
criticism about such sweeping claims. One frequent
criticism concerns the proliferation of partial isomor-
phisms, many of which will trivially obtain; however,

if partial relations are so easy to come by, how can one
tell the interesting from the vast majority of irrelevant
ones? (Pincock speaks in this connection of the “danger
of trivializing our representational relationships” [1.34,
p. 1254].) Suárez and Cartwright add further urgency to
this criticism, by noting that the focus on set-theoretical
structures obliterates all those uses of models and as-
pects of scientific practice that do not amount to the
making of claims [1.35, p. 72]:

“So all of scientific practice that does not consist in
the making of claims gets left out. [. . . ] Again, we
maintain that this inevitably leaves out a great deal
of the very scientific practice that we are interested
in.”

It is perhaps an indication of the limitations of the
partial structures approach that, in response to such crit-
icism, its proponents need to again invoke heuristic fac-
tors, which cannot themselves be subsumed under the
proposed formal framework of models as set-theoretic
structures with partial relations.

1.5 The Folk Ontology of Models

If we accept that scientific models are best thought of
as functional entities (Sect. 1.2), perhaps something can
be learnt about the ontology of scientific models from
looking at their functional role in scientific inquiry.
What one finds across a range of different kinds of mod-
els is the practice of taking models as stand-ins for sys-
tems that are not, in fact, instantiated. AsGodfrey-Smith
puts it, “modelers often take themselves to be describ-
ing imaginary biological populations, imaginary neural
networks, or imaginary economies” [1.36, p. 735] –
that is, they are aware that due to idealization and ab-
straction, model systems will differ in their descriptions
from a full account of the actual world. A model, thus
understood, may be thought of as a “description of
a missing system,” and the corresponding research prac-
tice of describing and characterizing model systems as
though they were real instantiated systems (even though
they are not) may be called, following Thomson-Jones,
the “face-value practice” of scientific modeling [1.37,
pp. 285–286].

On the heels of the face-value practice of scien-
tific modeling, it has been argued, comes a common –
though perhaps not universally shared – understanding
of what models are [1.36, p. 735]:

“[. . . ] to use a phrase suggested by Deena Skol-
nick, the treatment of model systems as comprising

imagined concrete things is the folk ontology of at
least many scientific modelers. It is the ontology
embodied in many scientists’ unreflective habits of
talking about the objects of their study-talk about
what a certain kind of population will do, about
whether a certain kind of market will clear. [. . . O]ne
kind of understanding of model-based science re-
quires that we take this folk ontology seriously, as
part of the scientific strategy.”

The ontology of imagined concrete things – that is,
of entities that, if real, would be on a par with con-
crete objects in the actual world – leads quickly into
the thorny territory of fictionalism.Godfrey-Smith is ex-
plicit about this when he likens models to “something
we are all familiar with, the imagined objects of liter-
ary fiction” [1.36] – such as Sherlock Holmes, J.R.R.
Tolkien’s Middle Earth, and so on. Implicit in this sug-
gestion is, of course, a partial answer to our question
What is a model? – namely, that the ontological sta-
tus of scientific models is just like that of literary (or
other) fictions. The advantages and disadvantages of
such a position will be discussed in detail in Sect. 1.6
of this chapter.

There is, however, another direction into which
a closer analysis of the face-value practice can take us.
Instead of focusing on the ontological status of the en-



The Ontology of Models 1.5 The Folk Ontology of Models 17
Part

A
|1.5

tities we are imagining when we contemplate models
as imagined concrete things, we can focus on the con-
scious processes that attend such imaginings (or, if one
prefers a different way of putting it, the phenomenol-
ogy of interacting with models). Foremost among these
is the mental imagery that is conjured up by the de-
scriptions of models. (Indeed, as we shall see in the
next section, on certain versions of the fictionalist view,
a model prescribes imaginings about its target sys-
tem.) How much significance one should attach to the
mental pictures that attend our conscious considera-
tion of models has been a matter of much controversy:
recall Duhem’s dismissal of mechanical imagery as
a way of conceptualizing electromagnetic phenomena
(Sect. 1.3).

Focusing on the mental processes that accompany
the use of scientific models might lead one to propose
an analysis of models in terms of their cognitive foun-
dations. Nancy Nersessian has developed just such an
analysis, which ties the notion of models in science
closely to the cognitive processes involved in mental
modeling.Whereas the traditional approach in psychol-
ogy had been to think of reasoning as consisting of the
mental application of logical rules to propositional rep-
resentations, mounting empirical evidence of the role
of heuristics and biases suggested that much of human
reasoning proceeds via mental models [1.38], that is,
by carrying out thought experiments on internal mod-
els. A mental model, on this account, is “a structural
analog of a real-world or imaginary situation, event, or
process” as constructed by the mind in reasoning (and,
presumably, realized by certain underlying brain pro-
cesses) [1.39, pp. 11–12]:

“What it means for a mental model to be a struc-
tural analog is that it embodies a representation of
the spatial and temporal relations among, and the
causal structures connecting the events and enti-
ties depicted and whatever other information that
is relevant to the problem-solving talks. [. . . ] The
essential points are that a mental model can be non-
linguistic in form and the mental mechanisms are
such that they can satisfy the model-building and
simulative constraints necessary for the activity of
mental modeling.”

While this characterization of mental models may
have an air of circularity, in that it essentially defines
mental models as place-holders for whatever it takes
to support the activity of mental modeling, it nonethe-
less suggests a place to look for the materials from
which models are constructed: the mind itself, with its
various types of content and mental representation. As
Nersessian puts it: “Whatever the format of the model

itself, information in various formats, including linguis-
tic, formulaic, visual, auditory, kinesthetic, can be used
in its construction” [1.39, p. 12].

How does this apply to the case of scientific mod-
els? As an example, Nersessian considers James Clerk
Maxwell’s famous molecular vortex model, which vi-
sualized the lines of magnetic force around a magnet
as though they were vortices within a continuous fluid
(Fig. 1.1).

As Nersessian sees it, Maxwell’s drawing “is a vi-
sual representation of an analogical model that is ac-
companied with instructions for animating it correctly
in thought” [1.39, p. 13]. And indeedMaxwell gives de-
tailed instructions regarding how to interpret, and bring
to life, the model of which the reader is only given a mo-
mentary snapshot [1.40, p. 477]:

“Let the current from left to right commence in AB.
The row of vortices gh above AB will be set in mo-
tion in the opposite direction to a watch [. . . ]. We
shall suppose the two of vortices kl still at rest, then
the layer of particles between these rows will be
acted on by the row gh,”

and so forth. It does seem plausible to say that such
instructions are intended to prescribe certain mental
models on the part of the reader. Convincing though
this example may be, it still begs the question of what,
in general, a mental model is. At the same time, it
illustrates what is involved in conjuring up a mental
model and which materials – in this case, spatial repre-
sentations, along with intuitions about the mechanical
motion of parts in a larger system – are involved in its
constitution.

k l

p q

A B

g h

Fig. 1.1 Maxwell’s drawing of the molecular vortex model
(after [1.40])
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1.6 Models and Fiction

As noted in the previous section, the face-value practice
of scientific modeling and its concomitant folk ontol-
ogy, according to which models are imagined concrete
things, have a natural affinity to the way we think about
fictions. As one proponent of models as fictions puts
it [1.41, p. 253]:

“The view of model systems that I advocate re-
gards them as imagined physical systems, that is,
as hypothetical entities that, as a matter of fact, do
not exist spatiotemporally but are nevertheless not
purely mathematical or structural in that they would
be physical things if they were real.”

Plausible though this may sound, the devil is in the
details. A first – perhaps trivial – caveat concerns the
restriction that model systems would be physical things
if they were real. In order to allow for the notion of
model to be properly applied to the social and cogni-
tive sciences, such as economics and psychology, it is
best to drop this restriction to physical systems. (On this
point, see [1.30, p. 528].) This leaves as the gist of the
folk-ontological view the thought that model systems,
if they were real, would be just as we imagine them (or,
more carefully, just as the model instructs us to imagine
them).

In order to sharpen our intuitions about fictions, let
us introduce an example of a literary fiction, such as
the following statement from Doyle’s The Adventure of
the Three Garridebs (1924) [1.42]: “Holmes had lit his
pipe, and he sat for some time with a curious smile upon
his face.” There is, of course, no actual human being
that this statement represents: no one is sitting smil-
ingly at 221B Baker Street, filling up the room with
smoke from their pipe. (Indeed, until the 1930s, the
address itself had no real-world referent, as the high-
est number on Baker Street then was No. 85.) And yet
there is a sense in which this passage does seem to rep-
resent Sherlock Holmes and, within the context of the
story, tells us something informative about him. In par-
ticular, it seems to lend support to certain statements
about Sherlock Holmes as opposed to others. If we
say Holmes is a pipe smoker, we seem to be asserting
something true about him, whereas if we say Holmes is
a nonsmoker, we appear to be asserting something false.
One goal of the ontology of fictions is to make sense of
this puzzle.

Broadly speaking, there are two kinds of philo-
sophical approaches – realist and antirealist – regarding
fictions. On the realist approach, even though Sher-
lock Holmes is not an actual human being, we must
grant that he does exist in some sense. Following

Meinong [1.43], we might, for example, distinguish
between being and existence and consider Sherlock
Holmes to be an object that has all the requisite prop-
erties we normally attribute to him, except for the
property of existence. Or we might take fictions to
have existence, but only as abstract entities, not as ob-
jects in space and time. By contrast, antirealists about
fictions deny that they have independent being or ex-
istence and instead settle for other ways of making
sense of how we interpret fictional discourse. Following
Bertrand Russell, we might paraphrase the statement
Sherlock Holmes is a pipe smoker and resides at 221B
Baker Street without the use of a singular term (Sher-
lock Holmes), solely in terms of a suitably quantified
existence claim: There exists one and only one x such
that x is a pipe smoker and x resides at 221B Baker
Street. However, while this might allow us to parse the
meaning of further statements about Sherlock Holmes
more effectively, it does not address the puzzle that cer-
tain claims (such as He is a pipe smoker) ring true,
whereas others do not – since it renders each part of
the explicated statement false. This might not seem like
a major worry for the case of literary fictions, but it
casts doubt on whether we can fruitfully think about sci-
entific models in those terms, given the epistemic role
of scientific models as contributors to scientific knowl-
edge.

In recent years, an alternative approach to fic-
tions has garnered the attention of philosophers of
science, which takes Walton’s notion of “games of
make-believe” as its starting point. Walton introduces
this notion in the context of his philosophy of art, where
he characterizes (artistic) representations as “things
possessing the social function of serving as props in
games of make-believe” [1.44, p. 69]. In games of
make-believe, participants engage in behavior akin to
children’s pretend play: when a child uses a banana as
a telephone to call grandpa, this action does not amount
to actually calling her grandfather (and perhaps not even
attempting to call him); rather, it is a move within the
context of play – where the usual standards of realism
are suspended – whereby the child resolves to treat the
situation as if it were one of speaking to her grandfather
on the phone.

The banana is simply a prop in this game of make-
believe. The use of the banana as a make-believe
telephone may be inspired by some physical similarity
between the two objects (e.g., their elongated shape, or
the way that each can be conveniently held to one’s ear
and mouth at the same time), but it is clear that props
can go beyond material objects to include, for example,
linguistic representations (as would be the case with
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the literary figure of Sherlock Holmes). While the rules
governing individual pretend play may be ad hoc, com-
munal games of make-believe are structured by shared
normative principles which authorize certain moves as
legitimate, while excluding other moves as illegitimate.
It is in virtue of such principles that fictional truths can
be generated: for example, a toy model of a bridge at the
scale of 1 W 1000 prescribes that, “if part of the model
has a certain length, then, fictionally, the corresponding
part of the bridge is a thousand times that length” [1.45,
p. 38] – in other words, even though the model itself
is only a meter long, it represents the bridge as a thou-
sand meters long. Note that the scale model could be
a model of a bridge that is yet to be built – in which
case it would still be true that, fictionally, the bridge is
a thousand meters long: props, via the rules that govern
them, create fictional truths.

One issue of contention has been what kinds of
metaphysical commitments such a view of models
entails. Talk of imagined concrete things as the ma-
terial from which models are built has been criticized
for amounting to an indirect account of modeling, by
which [1.46, pp. 308, fn. 14]

“prepared descriptions and equations of motion ask
us to imagine an imagined concrete system which
then bears some other form of representation rela-
tion to the system being modelled.”

A more thoroughgoing direct view of models as
fictions is put forward by Toon, who considers the fol-
lowing sentence from Wells’s The War of the Worlds:
“The dome of St. Paul’s was dark against the sunrise,
and injured, I saw for the first time, by a huge gaping
cavity on its western side” [1.47, p. 229]. As Toon ar-
gues [1.46, p. 307]:

“There is no pressure on us to postulate a fictional,
damaged, St. Paul’s for this passage to represent; the
passage simply represents the actual St. Paul’s. Sim-
ilarly, on my account, our prepared description and
equation of motion do not give rise to a fictional,
idealised bouncing spring since they represent the
actual bouncing spring.”

By treating models as prescribing imaginings about
the actual objects (where these exist and are the model’s
target system), we may resolve to imagine all sorts of

things that are, as a matter of fact, false; however, so
the direct view holds, this is nonetheless preferable to
the alternative option of positing independently exist-
ing fictional entities [1.45, p. 42]. Why might one be
tempted to posit, as the indirect view does, that fictional
objects fitting the model descriptions must exist? An
important motivation has to do with the assertoric force
of our model-based claims. As Giere puts it: “If we in-
sist on regarding principles as genuine statements, we
have to find something that they describe, something
to which they refer” [1.48, p. 745]. In response, pro-
ponents of the direct view have disputed the need “to
regard theoretical principles formulated in modeling as
genuine statements”; instead, as Toon puts it, “they are
prescriptions to imagine” [1.45, p. 44].

One potential criticism the models as fictions view
needs to address is the worry that, by focusing on the
user’s imaginings, what a model is becomes an en-
tirely subjective matter. A similar worry may be raised
with respect to the mental models view discussed in
Sect. 1.5: if a model is merely a place-holder for what-
ever is needed to sustain the activity of mental modeling
(or imagining) on the part of an agent, how can one be
certain that the same kinds of models (or props) reli-
ably give rise to the same kinds of mental modeling
(or imaginings)? In this respect, at least, the models
as fictions view appears to be in a stronger position.
Recall that, unlike in individual pretend play (or uncon-
strained imagining), in games of make-believe certain
imaginations are sanctioned by the prop itself and the –
public, shared – rules of the game. As a result, “some-
one’s imaginings are governed by intersubjective rules,
which guarantee that, as long as the rules are respected,
everybody involved in the game has the same imagin-
ings” [1.41, p. 264] – though it should be added, not
necessarily the same mental images.

In his 1963 book, Models and Metaphors, Black
expressed his hope that an “exercise of the imagina-
tion, with all its promise and its dangers” may help
pave the way for an “understanding of scientific mod-
els and archetypes” as “a reputable part of scientific
culture” [1.4, p. 243]. Even though Black was writing
in general terms (and perhaps for rhetorical effect), his
characterization would surely be considered apt by the
proponents of the models as fictions view, who believe
that models allow us to imagine their targets to be a cer-
tain way, and that, by engaging in such imaginings, we
can gain new scientific insights.
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1.7 Mixed Ontologies: Models as Mediators and Epistemic Artifacts

In Sect. 1.1, a distinction was drawn between informa-
tional views of models, which emphasize the objective,
two-place relation between the model and what it repre-
sents, and pragmatic views, according to which a model
depends at least in part on the user’s beliefs or in-
tentions, thereby rendering model-based representation
a three-place relation between model, target, and user.
Unsurprisingly, which side one comes down on in this
debate will also have an effect on one’s take on the
ontology of scientific models. Hence, structuralist ap-
proaches (e.g., the partial structures approach discussed
in Sect. 1.4.4) are a direct manifestation of the informa-
tional view, whereas the models as fictions approach –
especially insofar as it considers models to be props for
the user’s imagination – would be a good example of
the pragmatic view. The pragmatic dimension of sci-
entific representation has received growing attention in
the philosophical literature, and while this is not the
place for a detailed survey of pragmatic accounts of
model-based representation in particular, the remainder
of this section will be devoted to a discussion of the on-
tological consequences of several alternative pragmatic
accounts of models. Particular emphasis will be placed
on what I shall call mixed ontologies, that is, accounts
of models that emphasize the heterogeneity and diver-
sity of their components.

1.7.1 Models as Mediators

Proponents of pragmatic accounts of models usually
take scientific practice as the starting point of their
analysis. This often directly informs how they think
about models; in particular, it predisposes them to treat
models as the outcome of a process of model con-
struction. On this view, it is not only the function of
models – for example, their capacity to represent tar-
get systems – which depends on the beliefs, intentions,
and cognitive interests of a model user, but also the
very nature of models which is dependent on human
agents in this way. In other words, what models are
is crucially determined by their being the result of
a deliberate process of model construction. Model con-
struction, most pragmatic theorists of models insist, is
marked by “piecemeal borrowing” [1.35, p. 63] from
a range of different domains. Such conjoining of het-
erogeneous components to form a model cannot easily
be accommodated by structuralist accounts, or so it has
been claimed; at the very least, there is considerable
tension between, say, the way that the partial structures
approach allows for a nested hierarchy of models (con-
nected with one another via partial isomorphisms) and
the much more ad hoc manner in which modelers piece

together models from a variety of ingredients. (On this
point, see especially [1.35, p. 76].)

A number of such accounts have coalesced into
what has come to be called the models as mediators
view (see [1.49] for a collection of case studies). Ac-
cording to this view, models are to be regarded neither
as a merely auxiliary intermediate step in applying
or interpreting scientific theories, nor as constructed
purely from data. Rather, they are thought of as me-
diating between our theories and the world in a partly
autonomous manner. As Morrison and Morgan put it,
models “are not situated in the middle of an hierarchical
structure between theory and the world,” but oper-
ate outside the hierarchical “theory-world axis” [1.50,
pp. 17–18]. A central tenet of the models as media-
tors view is the thesis that models “are made up from
a mixture of elements, including those from outside the
domain of investigation”; indeed, it is thought to be pre-
cisely in virtue of this heterogeneity that they are able
to retain “an element of independence from both theory
and data (or phenomena)” [1.50, p. 23].

At one level, the models as mediators view appears
to be making a descriptive point about scientific prac-
tice. AsMorrison andMorgan [1.50] point out, there is
“no logical reason why models should be constructed
to have these qualities of partial independence” [1.50,
p. 17], though in practice they do exhibit them, and
examples that involve the integration of heterogeneous
elements beyond theory and data “are not the exception
but the rule” [1.50, p. 15]. Yet, there is also the fur-
ther claim that models could not fulfil their epistemic
function unless they are partially autonomous entities:
“we can only expect to use models to learn about our
theories or our world if there is at least partial indepen-
dence of the model from both” [1.50, p. 17]. Given that
models are functional entities (in the sense discussed
in Sect. 1.2), this has repercussions for the ontological
question of what kind of entities models are. More often
than not, models will integrate – perhaps imperfectly,
but in irreducible ways – heterogeneous components
from disparate sources, including (but not limited to)
“elements of theories and empirical evidence, as well
as stories and objects which could form the basis for
modeling decisions” [1.50, p. 15]. As proponents of
the models as mediators view are at pains to show,
even in cases where models initially seem to derive
straightforwardly from fundamental theory or empiri-
cal data, closer inspection reveals the presence of other
elements – such as “simplifications and approxima-
tions which have to be decided independently of the
theoretical requirements or of data conditions” [1.50,
p. 16].



The Ontology of Models 1.8 Summary 21
Part

A
|1.8

For the models as mediators approach, any answer
to the question what is a model? must be tailored to
the specific case at hand: models in high-energy physics
will have a very different composition, and will consist
of an admixture of different elements, than, say, models
in psychology. However, as a general rule, no model –
or, at any rate, no interesting model – will ever be fully
reducible to theory and data; attempts to clean up the
ontology of scientific models so as to render them either
purely theoretical or entirely empirical, according to the
models as mediators view, misconstrue the very nature
and function of models in science.

1.7.2 Models as Epistemic Artifacts

A number of recent pragmatic approaches take the mod-
els as mediators view as their starting point, but suggest
that it should be extended in various ways. Thus,Knuut-
tila acknowledges the importance of mediation between
theory and data, but a richer account of models is
needed to account for how this partial independence
comes about. For Knuuttila, materiality is the key en-
abling factor that imbues models with such autonomy:
it is “the material dimension, and not just additional ele-
ments, that makes models able to mediate” [1.51, p. 48].
Materiality is also seen as explaining the various epis-
temic functions that models have in inquiry, not least by
way of analogy with scientific experiments. For exam-
ple, just as in experimentation much effort is devoted to
minimizing unwanted external factors (such as noise),
in scientific models certain methods of approximation
and idealization serve the purpose of neutralizing un-
desirable influences. Models typically draw on variety
of formats and representations, in a way that enables
certain specific uses, but at the same time constrains
them; this breaks with the traditional assumption that
we can “clearly tell apart those features of our scientific
representations that are attributable to the phenom-
ena described from the conventions used to describe
them” [1.52, p. 268].

On the account sketched thus far, attempting to
characterize the nature and function of models in the

language of theories and data would, in the vast ma-
jority of cases, give a misleading impression; instead,
models are seen as epistemic tools [1.52, p. 267]:

“Concrete artifacts, which are built by various rep-
resentational means, and are constrained by their
design in such a way that they enable the study
of certain scientific questions and learning through
constructing and manipulating them.”

This links the philosophical debate about models
to questions in the philosophy of technology, for ex-
ample concerning the ontology of artifacts, which are
likewise construed as both material bodies and func-
tional objects. It also highlights the constitutive role
of design and construction, which applies equally to
models with a salient material dimension – such as
scale models in engineering or ball-and-stick mod-
els in chemistry – and to largely theoretical models.
For example, it has been argued that mathematical
models (e.g., in many-body physics) may be fruit-
fully characterized not only in theoretical terms (say,
as a Hamiltonian) or as mathematical entities (as an
operator equation), but also as the output of a mature
mathematical formalism (in this case, the formalism of
second quantization) – that is, a physically interpreted
set of notational rules that, while embodying various
theoretical assumptions, is not usually reducible to fun-
damental theory [1.53].

As in the case of the models as mediators approach,
the ontological picture that emerges from the artifac-
tual approach to models is decidedly mixed: models
will typically consist of a combination of different
materials, media and formats, and deploy different rep-
resentational means (such as pictorial, symbolic, and
diagrammatic notations) as well as empirical data and
theoretical assumptions. Beyond merely acknowledg-
ing the heterogeneity of such a mixture of elements,
however, the artifactual approach insists that it is in
virtue of their material dimension that the various el-
ements of a model, taken together, enable and constrain
its representational and other epistemic functions.

1.8 Summary

As the survey in this chapter demonstrates, the term
model in science refers to a great variety of things:
physical objects such as scale models in engineering,
descriptions and sets of sentences, set-theoretic struc-
tures, fictional objects, or an assortment of all of the
above. This makes it difficult to arrive at a uniform char-
acterization of models in general. However, by paying

close attention to philosophical accounts of model-
based representation, it is possible to discern certain
clusters of positions. At a general level, it is useful to
think of models as functional entities, as this allows one
to explore how different functional perspectives lead to
different conceptions of the ontology of models. Hence,
with respect to the representational function of mod-
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els, it is possible to distinguish between informational
views, which we found to be closely associated with
structuralist accounts of models, and pragmatic views,
which tend to give rise to more heterogeneous accounts,
according to which models may be thought of as props
for the imagination, as partly autonomous mediators
between theory and data, or as epistemic artifacts con-
sisting of an admixture of heterogeneous elements.

When nineteenth century physicists began to re-
flect systematically on the role of analogy in science,

they did so out of a realization that it may not al-
ways be possible to apply fundamental theory directly
to reality, either because any attempt to do so faces
insurmountable complexities, or because no such fun-
damental theory is as yet available. At the beginning
of the twenty-first century, these challenges have not
diminished, and scientists find themselves turning to
an ever greater diversity of scientific models, a uni-
fied philosophical theory of which is still outstand-
ing.
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2. Models and Theories

Demetris Portides

Both the received view (RV) and the semantic view
(SV) of scientific theories are explained. The argu-
ments against the RV are outlined in an effort to
highlight how focusing on the syntactic character
of theories led to the difficulty in characterizing
theoretical terms, and thus to the difficulty in ex-
plicating how theories relate to experiment. The
absence of the representational function of models
in the picture drawn by the RV becomes evident;
and one does not fail to see that the SV is in part
a reaction to – what its adherents consider to be
an – excessive focus on syntax by its predecessor
and in part a reaction to the complete absence
of models from its predecessor’s philosophical at-
tempt to explain the theory–experiment relation.
The SV is explained in an effort to clarify its main
features but also to elucidate the differences be-
tween its different versions. Finally, two kinds
of criticism are explained that affect all versions
of the SV but which do not affect the view that
models have a warranted degree of importance in
scientific theorizing.
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Scientists use the term model with reference to iconic
or scaled representations, analogies, and mathematical
(or abstract) descriptions. Although all kinds of models
in science may be philosophically interesting, mathe-
matical models stand out. Representation with iconic or
scale models, for instance, mostly applies to a particu-
lar state of a system at a particular time, or it requires
the mediation of a mathematical (or abstract) model in
order to relate to theories. Representation via mathe-
matical models, on the other hand, is of utmost interest
because it applies to types of target systems and it can
be used to draw inferences about the time-evolution of
such systems, but more importantly for our purposes
because of its obvious link to scientific theories.

In the history of philosophy of science, there have
been two systematic attempts to explicate the relation
of such models to theory. The first is what had been
labeled the received view (RV) of scientific theories

that grew out of the logical positivist tradition. Ac-
cording to this view, theories are construed as formal
axiomatic calculi whose logical consequences extend
to observational sentences. Models are thought to have
no representational role; their role is understood meta-
mathematically, as interpretative structures of subsets of
sentences of the formal calculus. Ultimately it became
clear that such a role ascribed to models does not do jus-
tice to how science achieves theoretical representations
of phenomena. This conclusion was reached largely
due to the advent of the second systematic attempt to
explore the relation between theory and models, the se-
mantic view (SV) or model-theoretic view of scientific
theories. The semantic view regards theories as classes
of models that are directly defined without resort to
a formal calculus. Thus, models in this view are inte-
gral parts of theories, but they are also the devices by
which representation of phenomena is achieved.
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Although, the SV recognized the representational
capacity of models and exposed that which was con-
cealed by the logical positivist tradition, namely that
one of the primary functions of scientific models is to
apply the abstract theoretical principles in ways that
actual physical systems can be represented, it also gen-
erated a debate concerning the complexities involved
in scientific representation. This recent debate has sig-
nificantly enhanced our understanding of the represen-
tational role of scientific models. At the same time it
gave rise, among other things, to questions regarding
the relation between models and theory. The adherents
of the SV claim that a scientific theory is identified with
a class of models, hence that models are constitutive
parts of theory and thus they represent by means of
the conceptual apparatus of theory. The critics of the
SV, however, argue that those models that are success-
ful representations of physical systems utilize a much
richer conceptual apparatus than that provided by the-
ory and thus claim that they should be understood as
partially autonomous from theory.

A distinguishing characteristic of this debate is the
notion of representational model, that is, a scientific
entity which possesses the necessary features that ren-
der it representational of a physical system. In the
SV, theoretical models, that is, mathematical models
that are constitutive parts of theory structure, are con-
sidered to be representational of physical systems. Its
critics, however, argue that in order to provide a model
with the capacity to represent actual physical systems,
the theoretical principles from which the model arises

are typically supplemented with ingredients that derive
from background knowledge, from semiempirical re-
sults and from experiment. In order to better understand
the character of successful representational models, ac-
cording to this latter view, we must move away from
a purely theory-driven view of model construction and
also place our emphasis on the idea that representational
models are entities that consist of assortments of the
aforementioned sorts of conceptual ingredients.

In order to attain insight into how models could re-
late to theory and also be able to use that insight in
addressing other issues regarding models, in what fol-
lows, I focus on the RV and the SV of scientific theories.
Each of the two led to a different conception of the na-
ture of theory structure and subsequently to a different
suggestion for what scientific models are, what they are
used for, and how they function. In the process of ex-
plicating these two conceptions of theory structure, I
will also review the main arguments that have been pro-
posed against them. The RV has long been abandoned
for reasons that I shall explore in Sect. 2.1, but the SV
lives on despite certain inadequacies that I shall also
explore in Sect. 2.2. Toward the end of Sect. 2.2, in
Sect. 2.2.4, I shall very briefly touch upon the more re-
cent view that the relation between theory and models
is far more complex than advocates of the RV or the
SV have claimed, and that models in science demon-
strate a certain degree of partial autonomy from the
theory that prompts their construction and because of
this a unitary account of models obscures significant
features of scientific modeling practices.

2.1 The Received View of Scientific Theories

What has come to be called the RV of scientific theo-
ries is a conception of the structure of scientific theories
that is associated with logical positivism, and which
was the predominant view for a large part of the twen-
tieth century. It is nowadays by and large overlooked
hence it is anything but received. Despite its inappro-
priate label, clarifying its major features as well as
understanding the major philosophical arguments that
revealed its inadequacies would not only facilitate ac-
quaintance with the historical background of the debate
about the structure of scientific theories and give the
reader a flavor of the difficulties involved in charac-
terizing theory structure, but it would also be helpful
in understanding some characteristics of contempo-
rary views and how models came to occupy central
stage in current debates on how theories represent and
explain phenomena. With this intention in mind, I pro-
ceed in this section by briefly explaining the major
features of the RV and continue with sketching the

arguments that exposed its weaknesses in Sects. 2.1.1–
2.1.6.

The RV construes scientific theories as Hilbert-style
formal axiomatic calculi, that is, axiomatized sets of
sentences in first-order predicate calculus with iden-
tity. A scientific theory is thus identified with a formal
language, L, having the following features. The nonlog-
ical terms of L are divided into two disjoint classes:
(1) the theoretical terms that constitute the theoretical
vocabulary, VT, of L and (2) the observation terms that
constitute the observation vocabulary, VO, of L. Thus,
L can be thought of as consisting of an observation
language, LO, that is, a language that consists only of
observation terms, a theoretical language, LT, that is,
a language that consists only of theoretical terms, and
a part that consists of mixed sentences that are made
up of both observation and theoretical terms. The the-
oretical postulates or the axioms of the theory, T (i. e.,
what we, commonly, refer to as the high-level scientific
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laws), consist only of terms from VT. This construal of
theories is a syntactic system, which naturally requires
semantics in order to be useful as a model of scientific
theories.

It is further assumed that the terms of VO refer to
directly observable physical objects and directly ob-
servable properties and relations of physical objects.
Thus the semantic interpretation of such terms, and the
sentences belonging to LO, is provided by direct obser-
vation. The terms of VT, and subsequently all the other
sentences of L not belonging to LO, are partially inter-
preted via the theoretical postulates, T , and – a finite set
of postulates that has come to be known as – the corre-
spondence rules, C. The latter are mixed sentences of L,
that is, they are constructed with at least one term from
each of the two classes VT and VO. (The reader could
consult Suppe [2.1] for a detailed exposition of the RV,
but also for a detailed philosophical study of the de-
velopments that the RV underwent under the weight of
several criticisms until it reached, what Suppe calls, the
“final version of the RV”).

We could synopsize how scientific theories are con-
ceived according to the RV as follows: The scientific
laws, which as noted constitute the axioms of the the-
ory, specify relations holding between the theoretical
terms. Via a set of correspondence rules, theoretical
terms are reduced to, or defined by, observation terms.
Observation terms refer to objects and relations of the
physical world and thus are interpreted. Hence, a scien-
tific theory, according to the RV, is a formal axiomatic
system having as point of departure a set of theoret-
ical postulates, which when augmented with a set of
correspondence rules has deductive consequences that
stretch all the way to terms, and sentences consisting of
such terms, that refer to the directly observable physi-
cal objects. Since according to this view, the backbone
of a scientific theory is the set of theoretical postulates,
T , and a partial interpretation of L is given via the set of
correspondence rules, C, let TC (i. e., the union set of T
and C) designate the scientific theory.

From this sketch, it can be inferred that the RV
implies several philosophically interesting things. For
the purposes of this chapter, it suffices to limit the dis-
cussion only to those implications of the RV that are
relevant to the criticisms that have contributed to its
downfall. These implications, which in one way or an-
other relate to the difficulty in characterizing VT terms,
are:

1. It relies on an observational–theoretical distinction
of the terms of L.

2. It embodies an analytic–synthetic distinction of the
sentences of L.

3. It employs the obscure notion of correspondence
rules to account for the interpretation of theoretical
terms and to account for theory application.

4. It does not assign a representational function to
models.

5. It assigns a deductive status to the relation between
empirical theories and experiment.

6. It commits to a theory consistency condition and to
a meaning invariance condition.

2.1.1 The Observation–Theory Distinction

The separation of L into VO and VT terms implies that
the RV requires an observational–theoretical distinction
in the terms of the vocabulary of the theory. This idea
was criticized in two ways. The first kind of objection to
the observation–theory distinction relied on a twofold
argument. On the one hand, the critics claim that an
observation–theory distinction of scientific terms can-
not be drawn; and on the other, that a classification
of terms following such a distinction would give rise
to a distinction of observational–theoretical statements,
which also cannot be drawn for scientific languages.
The second kind of objection to the distinction relies
on attempts to establish accounts of observation that
are incompatible with the observation–theory distinc-
tion and on showing that observation statements are
theory laden.

The Untenability
of the Observation–Theory Distinction

The argument of the first kind that focuses on the un-
tenability of the observation–theory distinction is due
to Achinstein [2.2, 3] and Putnam [2.4]. Achinstein ex-
plores the sense of observation relevant to science, that
is, “the sense in which observing involves visually at-
tending to something,” and he claims that this sense
exhibits the following characteristics:

1. Observation involves attention to the various as-
pects or features of an item depending on the ob-
server’s concerns and knowledge.

2. Observation does not necessarily involve recogni-
tion of the item.

3. Observation does not imply that whatever is ob-
served is in the visual field or in the line of sight
of the observer.

4. Observation could be achieved indirectly.
5. The description of what one observes can be done

in different ways (The reader could refer to Achin-
stein [2.3, pp. 160–165] for an explication of these
characteristics of observation by the use of specific
examples).
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If now one urges an observation–theory distinction
by simply constructing lists of observable and unob-
servable terms (as proponents of the RV according
to Achinstein do), the distinction becomes untenable.
For example, according to typical lists of unobserv-
ables, electron is a theoretical term. But based on points
(3) and (4) above, Achinstein claims, this could be re-
jected. Similarly based on point (5), Achinstein also
rejects the tenability of such a distinction at the level
of statements, because “what scientists as well as oth-
ers observe is describable in many different ways, using
terms from both vocabularies” [2.3, p. 165].

Furthermore, if, as proponents of the RV have of-
ten claimed, (For instance, Hempel [2.5], Carnap [2.6]
and [2.7]), items in the observational list are directly
observable whereas those in the theoretical list are not,
then Achinstein [2.3, pp. 172–177] claims that a close
construal of directly observable reveals that the desired
classification of terms into the two lists fails. He ex-
plains that directly observable could mean that it can be
observed without the use of instruments. If this is what
advocates of the RV require, then it does not warrant
the distinction. First, it is not precise enough to clas-
sify things seen by images and reflections. Second, if
something is not observable without instruments means
that no aspect of it is observable without instruments
then things like temperature and mass would be observ-
ables, since some aspects of them are detected without
instruments. If however directly observable means that
no instruments are required to detect its presence, then
it would be insufficient because one cannot talk about
the presence of temperature. Finally, if it means that
no instruments are required to measure it or its prop-
erties, then such terms as volume, weight, etc. would
have to be classified as theoretical terms. Hence, Achin-
stein concludes that the notion of direct observability is
unclear and thus fails to draw the desired observation–
theory distinction.

Along similar lines, Putnam [2.4] argues that the
distinction is completely broken-backed mainly for
three reasons. First, if an observation term is one that
only refers to observables then there are no observation
terms. For example, the term red is in the observable
class but it was used by Newton to refer to a theoretical
term, namely red corpuscles. Second, many terms that
refer primarily to the class of unobservables are not the-
oretical terms. Third, some theoretical terms, that are of
course the outcome of a scientific theory, refer primarily
to observables. For example, the theory of evolution, as
put forward by Darwin, referred to observables by em-
ploying theoretical terms.

What these arguments accomplish is to highlight
the fact that scientific languages employ terms that can-
not clearly and easily be classified into observational or

theoretical. They do not however show the untenabil-
ity of the observation–theory distinction as employed
by the RV. As Suppe [2.8] correctly observes, what they
show is that the RV needs a sufficiently rich artificial
language for science, no matter how complex it may
turn out to be. Such a language, in which presumably
the observation–theory distinction is tenable, must have
a plethora of terms, such that, to use his example, the
designated term redo will refer to the observable occur-
rences of the predicate red, and the designated term redt
will refer to the unobservable occurrences.

The Theory-Ladenness of Observation
Hanson’s argument is a good example of the second
kind, in which an attempt is made to show that there is
no theory-neutral observation language and that obser-
vation is theory-laden and thus establish an account of
observation that is incompatible with the observation–
theory distinction required by the RV (Hanson [2.9,
pp. 4–30]. Hanson [2.10, pp. 59–198]. Also Suppe [2.1,
pp. 151–166]). He does this by attempting to establish
that an observation language that intersubjectively can
be given a theory-independent semantic interpretation,
as the RV purports, cannot exist.

He begins by asking whether two people see the
same things when holding different theories. We could
follow his argument by reference to asking whether Ke-
pler and Tycho Brahe see the same thing when looking
at the sun rising. Kepler, of course, holds that the earth
revolves around the sun, while Tycho holds that the sun
revolves around the earth. Hanson addresses this ques-
tion by considering ambiguous figures, that is, figures
that sometimes can be seen as one thing and other times
as another. The most familiar example of this kind is the
duck–rabbit figure.

When confronted with such figures, viewers see ei-
ther a duck or a rabbit depending on the perspective
they take, but in both cases they see the same dis-
tal object (i. e., the object that emits the rays of light
that impinge the retina). Hanson uses this fact to de-
velop a sequence of arguments to counter the standard
interpretations of his time. There were two standard
interpretations at the time. The first was that the per-
ceptual system delivers the same visual representation
and then cognition (thought) interprets this either as
a duck or as a rabbit. The other was that the perceptual
system outputs both representations and then cogni-
tion chooses one of the two. Both interpretations are
strongly linked with the idea that the perceptual pro-
cess and the cognitive process function independently
of one another, that is, the perceptual system delivers its
output independent of any cognitive influences. How-
ever, Hanson challenges the assumption that the two
observers see the same thing and via thought they in-
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terpret it differently. He claims that perception does not
deliver either a duck or a rabbit, or an ambiguous figure,
and then via some other independent process thought
chooses one or the other. On the contrary, the switch
from seeing one thing to seeing the other seems to take
place spontaneously and moreover a process of back
and forth seeing without any thinking seems to be in-
volved. He goes on to ask, what could account for the
difference in what is seen? His answer is that what
changes is the organization of the ambiguous figure as
a result of the conceptual background of each viewer.
This entails that what one sees, the percept, depends
on the conceptual background that results from one’s
experience and knowledge, which means that thought
affects the formation of the percept; thus perception
and cognition become intertwined. When Tycho and
Kepler look at the sun, they are confronted with the
same distal object but they see different things because
their conceptual organizations of their experiences are
vastly different. In other words, Hanson’s view is that
the percept depends on background knowledge, which
means that cognition influences perceptual processing.
Consequently, observation is theory laden, namely, ob-
servation is conditional on background knowledge.

By this argument, Hanson undermines the RV’s po-
sition, which entails that Kepler and Brahe see the same
thing but interpret it differently; and also establishes
that conceptual organizations are features of seeing
that are indispensable to scientific observation and thus
that Kepler and Brahe see two different things because
perception inherently involves interpretation, since the
former is conditional on background knowledge. It is,
however, questionable whether Hanson’s arguments are
conclusive. Fodor [2.11–13], Pylyshyn [2.14, 15], and
Raftopoulos [2.16–18], for example, have extensively
argued on empirical grounds that perception, or at least
a part of it, is theory independent and have proposed
explanations of the ambiguous figures that do not in-
voke cognitive effects in explaining the percept and the
switch between the two interpretations of the figure.
This debate, therefore, has not yet reached its conclu-
sion; and many today would argue that fifty or so years
after Hanson the arguments against the theory ladenness
of observation are much more tenable.

2.1.2 The Analytic–Synthetic Distinction

The RV’s dependence on the observation–theory dis-
tinction is intimately linked to the requirement for an
analytic–synthetic distinction. An argument to defend
this claim is given by Suppe [2.1, pp. 68–80]. Here is
a sketch of that argument. The analytic–synthetic dis-
tinction is embodied in the RV, because (as suggested
by Carnap [2.19]) implicit in TC are meaning postu-

lates (or semantical rules) that specify the meanings of
sentences in L. However, if meaning specification were
the only function of TC then TC would be analytic,
and in such case it would not be subject to empirical
investigation. TC must therefore have a factual com-
ponent, and the meaning postulates must separate the
meaning from the factual component. This would im-
ply an analytic–synthetic separation, if those sentences
in L that are logical truths or logical consequences of
the meaning postulates are analytic and all nonanalytic
sentences are understood to be synthetic. Moreover, any
nonanalytic sentence in L taken in conjunction with the
class of meaning postulates would have certain empiri-
cal consequences. If the conjunction is refuted or con-
firmed by directly observable evidence, this will reflect
only on the truth value of the conjunction and not on the
meaning postulates. Hence such conjunctive sentences
can only be synthetic. Thus every nonanalytic sentence
of LO and every sentence of L constituted by a mixed
vocabulary is synthetic. So the observation–theory dis-
tinction supports an analytic–synthetic distinction of
the sentences of L.

The main criticism against the analytic–synthetic
distinction consists of attempts to show its untenabil-
ity. Quine [2.20] points out that there are two kinds
of analytic statements: (a) logical truths, which remain
true under all interpretations, and (b) statements that
are true by virtue of the meaning of their nonlogical
terms, for example, No bachelor is married. He then
argues that the analyticity of statements of the second
kind cannot be established without resort to the notion
of synonymy, and that the latter notion is just as prob-
lematic as the notion of analyticity. The argument runs
roughly as follows. Given that meaning (or intension)
is clearly distinguished from its extension, that is, the
class of entities to which it refers, a theory of meaning
is primarily concerned with cognitive synonymy (i. e.,
the synonymy of linguistic forms). For example, to say
that bachelor and unmarried man are cognitively syn-
onymous is to say that they are interchangeable in all
contexts without change of truth value. If such were
the case then the statement No bachelor is married
would become No unmarried man is married, which
would be a logical truth. In other words, statements
of kind (b) are reduced to statements of kind (a) if
only we could interchange synonyms for synonyms.
But as Quine argues, the notion of interchangeability
salva veritate is an extensional concept and hence does
not help with analyticity. In fact, no analysis of the
interchangeability salva veritate account of synonymy
is possible without recourse to analyticity, thus mak-
ing such an effort circular, unless interchangeability is
“[. . . ] relativized to a language whose extent is spec-
ified in relevant respects” [2.20, p. 30]. That is to say,
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we first need to knowwhat statements are analytic in or-
der to decide which expressions are synonymous; hence
appeal to synonymy does not help with the notion of
analyticity.

Similarly White [2.21] argues that an artificial lan-
guage, L1, can be constructed with appropriate defi-
nitional rules, in which the predicates P1 and Q1 are
synonymous whereas P1 and Q2 are not; hence mak-
ing such sentences as8x .P1.x/! Q1.x// logical truths
and such sentences as 8x .P1.x/! Q2.x// synthetic. In
a different artificial language L2, P1 could be defined
to be synonymous to Q2 and not to Q1, hence mak-
ing the sentence 8x .P1.x/! Q2.x// a logical truth and
the sentence 8x .P1.x/! Q1.x// synthetic. This relies
merely upon convention. However, he asks, in a natural
language what rules are there that dictate what choice
of synonymy can be made such that one formula is
a synthetic truth rather than analytic? The key point of
the argument is therefore that in a natural language or
in a scientific language, which are not artificially con-
structed and which do not contain definitional rules, the
notion of analyticity is unclear.

Nevertheless, it could be argued that such argu-
ments as the above are not entirely conclusive, primar-
ily because the RV is not intended as a description of ac-
tual scientific theories. Rather, the RV is offered as a ra-
tional reconstruction of scientific theories, that is, an
explication of the structure of scientific theories. It does
not aim to describe how actual theories are formulated,
but only to indicate a logical framework (i. e., a canon-
ical linguistic formulation) in which theories can be es-
sentially reformulated. Therefore, all that proponents of
the RV, needed to show was that the analytic–synthetic
distinction is tenable in some artificial language (with
meaning postulates) in which scientific theories could
potentially be reformulated. In view of this, in order
for the RV to overcome the obscurity of the notion of
analyticity, pointed out by Quine and White, it would
require the conclusion of a project that Carnap begun:
To spell out a clear way by which to characterize mean-
ing postulates for a specified theoretical language (This
is clearly Carnap’s intention in his [2.19]).

2.1.3 Correspondence Rules

In order to distinguish the character and function of the-
oretical terms from speculative metaphysical ones (e.g.,
unicorn), logical positivists sought for a connection of
theoretical to observational terms by giving an analysis
of the empirical nature of theoretical terms contrary to
that of metaphysical terms. This connection was formu-
lated in what we can call, following Achinstein [2.22],
the Thesis of Partial Interpretation, which is basically
the following: As indicated above, in the brief sketch of

the main features of the RV, the RV allows that a com-
plete empirical semantic interpretation in terms of di-
rectly observables is given to VO terms and to sentences
that belong to LO. However, no such interpretation is in-
tended for VT terms and consequently for sentences of
L containing them. It is TC as a whole that supplies the
empirical content of VT terms. Such terms receive a par-
tial observational meaning indirectly by being related to
sets of observation terms via correspondence rules. To
use one of Achinstein’s examples [2.22, p. 90]:

“it is in virtue of [a correspondence-rule] which
connects a sentence containing the theoretical term
electron to a sentence containing the observational
term spectral line that the former theoretical term
gains empirical meaning within the Bohr theory of
the atom”

Correspondence rules were initially introduced to
serve three functions in the RV:

1. To define theoretical terms.
2. To guarantee the cognitive significance of theoreti-

cal terms.
3. To specify the empirical procedures for applying

theory to phenomena.

In the initial stages of logical positivism it was
assumed that if observational terms were cognitively
significant, then theoretical terms were cognitively sig-
nificant if and only if they were explicitly defined in
terms of observational terms. The criteria of explicit
definition and cognitive significance were abandoned
once proponents of the RV became convinced that dis-
positional terms, which are cognitively significant, do
not admit of explicit definitions (Carnap [2.23, 24], also
Hempel [2.25, pp. 23–29], andHempel [2.5]). Consider,
for example, the dispositional term tearable (let us as-
sume all the necessary conditions for an object to be
torn apart hold), if we try to explicitly define it in terms
of observables we end up with something like this:

“An object x is tearable if and only if, if it is pulled
sharply apart at time t then it will tear at t (assuming
for simplicity that pulling and tearing occur simul-
taneously).”

The above definition could be rendered as 8x
.T.x/$8t.P.x; t/! Q.x; t///, where, T is the theoret-
ical term tearable, P is the observational term pulled
apart, and Q is the observational term tears. But this
does not correctly define the actual dispositional prop-
erty tearable, because the right-hand side of the bicon-
ditional will be true of objects that are never pulled
apart. As a result, some objects that are not tearable and
have never being pulled apart will by definition have the
property tearable.
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Because of this, Carnap [2.23, 24] proposed to re-
place the construal of correspondence rules as explicit
definitions, by reduction sentences that partially de-
termine the observational content of theoretical terms.
A reduction sentence defined the dispositional property
tearable as follows: 8x8t .P.x; t/! .Q.x; t/$ T.x///.
That is, (Carnap calls such sentences bilateral reduc-
tion sentences [2.23, 24]):

“If an object x is pulled-apart at time t, then it tears
at time t if and only if it is tearable.”

Unlike the explicit definition case, if a is a non-
tearable object that is never pulled apart then it is not
implied that T.a/ is true. What will be implied, in such
case, is that 8t .P.a; t/! .Q.a; t/$ T.a///, is true.
Thus the above shortcoming of explicit definitions is
avoided, because a reduction sentence does not com-
pletely define a disposition term. In fact, this is also
the reason why correspondence rules supply only par-
tial observational content, since many other reduction
sentences can be used to supply other empirical as-
pects of the term tearable, for example, being torn
by excessively strong shaking. Consequently, although
correspondence rules were initially meant to provide
explicit definitions and cognitive significance to VT

terms, these functions were abandoned and substituted
by reduction sentences and partial interpretation (A
detailed explication of the changes in the use of cor-
respondence rules through the development of the RV
can be found in [2.1]).

Therefore, in its most defensible version the RV
could be construed to assign the following functions to
correspondence rules: First, they specify empirical pro-
cedures for the application of theory to phenomena and
second, as a constitutive part of TC, they supply VT and
LT with partial interpretation. Partial interpretation in
the above sense is all the RV needs since, given its goal
of distinguishing theoretical from speculative meta-
physical terms, it only needs a way to link the VT terms
to the VO terms. The version of the RV that employs cor-
respondence rules for these two purposes motivated two
sorts of criticisms. The first concerns the idea that cor-
respondence rules provide partial interpretation to VT

terms, and the second concerns the function of corre-
spondence rules for providing theory application.

The thesis of partial interpretation came under at-
tack from Putnam [2.4] and Achinstein [2.3, 22]. The
structure of their arguments is similar. They both think
that partial interpretation is unclear and they attempt
to clarify the concept. They do so by suggesting plau-
sible explications for partial interpretation. Then they
show that for each plausible explication that each of
them suggests partial interpretation is either an incoher-
ent notion or inadequate for the needs of the RV. Thus,

they both conclude that any attempt to elucidate the
notion of partial interpretation is problematic and that
partial interpretation of VT terms cannot be adequately
explicated. For example, Putnam gives the following
plausible explications for partial interpretation:

1. To partially interpret VT terms is to specify a class
of intended models.

2. To partially interpret a term is to specify a veri-
fication–refutation procedure that applies only to
a proper subset of the extension of the term.

3. To partially interpret a formal language L is to inter-
pret only part of the language.

In similar spirit, Achinstein gives three other plau-
sible explications. One of Putnam’s counterexamples
is that (1) above cannot meet its purpose because the
class of intended models, that is, the semantic struc-
tures or interpretations that satisfy TC and which are
so intended by scientists, is not well defined (A critical
assessment of these arguments can be found in [2.1]).

The other function of correspondence rules, that of
specifying empirical procedures for theory application
to phenomena, also came under criticism. Suppe [2.1,
pp. 102–109] argued that the account of correspondence
rules inherent in the RV is inadequate for understanding
actual science on the following three grounds:

1. They are mistakenly viewed as components of the
theory rather than as auxiliary hypotheses.

2. The sorts of connections (e.g., explanatory causal
chains) that hold between theories and phenomena
are inadequately captured.

3. They oversimplify the ways in which theories are
applied to phenomena.

The first argument is that the RV considers TC as
postulates of the theory. Hence C is assumed to be an
integral part of the theory. But, if a new experimental
procedure is discovered it would have to be incorpo-
rated into C, and the result would be a new set of rules
C0 that subsequently leads to a new theory TC0. But ob-
viously the theory does not undergo any change. When
new experimental procedures are discovered we only
improve our knowledge of how to apply theory to phe-
nomena. So we must think of correspondence rules as
auxiliary hypotheses distinct from theory.

The second argument is based upon Schaffner’s
[2.26] observation that there is a way in which theo-
ries are applied to phenomena, which is not captured
by the RV’s account of correspondence rules. This is
the case when various auxiliary theories (independent
of T) are used to describe a causal sequence, which
obtains between the states described by T and the obser-
vation reports. These causal sequences are descriptions
of the mechanisms involved within physical systems to
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cause the measurement apparatus to behave as it does.
Thus, they supplement theoretical explanations of the
observed behavior of the apparatus by linking the the-
ory to the observation reports via a causal story. For
example, such auxiliary hypotheses are used to estab-
lish a causal link between the motion of an electron (VT

term) and the spectral line (VO term) in a spectrom-
eter photograph. Schaffner’s point is that the relation
between theory and observation reports is frequently
achieved by the use of these auxiliary hypotheses that
establish explanations of the behavior of physical sys-
tems via causal mechanisms. Without recognizing the
use of these auxiliaries the RV may only describe a type
of theory application whereby theoretical states are just
correlated to observational states. If these kinds of aux-
iliaries were to be viewed as part of C then it is best
that C is dissociated from the core theory and is re-
garded as a separate set of auxiliary hypotheses required
for establishing the relation between theory and experi-
ment, because such auxiliaries are obviously not theory
driven, but if they are not to be considered part ofC then
C does not adequately explain the theory–experiment
relation.

Finally, the third argument is based on Sup-
pes’ [2.27, 28] analysis of the complications involved in
relating theoretical predictions to observation reports.
Suppes observes that in order to reach the point where
the two can meaningfully be compared, several episte-
mologically important modifications must take place on
the side of the observation report. For example, Suppes
claims, on the side of theory we typically have pre-
dictions derived from continuous functions, and on the
side of an observation report we have a set of discrete
data. The two can only be compared after the obser-
vation report is modified accordingly. Similarly, the
theory’s predictions may be based on the assumption
that certain idealizing conditions hold, for example, no
friction. Assuming that in the actual experiment these
conditions did not hold, it would mean that to achieve
a reasonable comparison between theory and experi-
ment the observational data will have to be converted
into a corresponding set that reflects the result of an
ideal experiment. In other words, the actual observa-
tional data must be converted into what they would have
been had the idealizing conditions obtained. Accord-
ing to Suppes, these sorts of conversion are obtained by
employing appropriate theories of data. So, frequently,
there will not be a direct comparison between theory
and observation, but a comparison between theory and
observation-altered-by-theory-of-data.

By further developing Suppes’ analysis, Suppe [2.8]
argues that because of its reliance on the observation–
theory distinction, the RV employs correspondence
rules in such a way as to blend together unrelated as-

pects of the scientific enterprise. Such aspects are the
design of experiments, the interpretation of theories, the
various calibration procedures, the employment of re-
sults and procedures of related branches of science, etc.
All these unrelated aspects are compounded into the
correspondence rules. Contrary to the implications of
the RV, Suppe claims, in applying a theory to phenom-
ena we do not have any direct link between theoretical
terms and observational terms. In a scientific experi-
ment we collect data about the phenomena, and often
enough the process of collecting the data involves rather
sophisticated bodies of theory. Experimental design and
control, instrumentation, and reliability checks are nec-
essary for the collection of data. Moreover, sometimes
generally accepted laws or theories are also employed
in collecting these data. All these features of exper-
imentation and data collection are then employed in
ways as to structure the data into forms (which Suppe
calls, hard data) that allow meaningful comparison
to theoretical predictions. In fact, theory application
according to Suppe involves contrasting theoretical pre-
dictions to hard data, and not to something directly
observed [2.8, p. 11]:

“Accordingly, the correspondence rules for a theory
should not correlate direct-observation statements
with theoretical statements, but rather should cor-
relate hard data with theoretical statements.”

In a nutshell, although both Suppes’ and Suppe’s
arguments do not establish with clarity how the theory–
experiment relation is achieved they do make the
following point: Actual scientific practice, and in par-
ticular theory–application, is far more complex than the
description given by the RV’s account of correspon-
dence rules.

2.1.4 The Cosmetic Role
of Models According to the RV

The objection that the RV obscures several epistemo-
logically important features of scientific theories is
implicitly present in all versions of the SV of theories.
Suppe, however, brings this out explicitly in the form
of a criticism (Suppe [2.1, 29, 30]). To clarify the sort
of criticism presented by Suppe, we need to make use
of some elements of the alternative picture of scientific
theories given by the SV, which we shall explore in de-
tail in Sect. 2.2.

The reasoning behind Suppe’s argument is the fol-
lowing. Science, he claims, has managed so far to go
about its business without involving the observation–
theory distinction and all the complexities that it gives
rise to. Since, he suggests, the distinction is not required
by science, it is important to ask not only whether an
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analysis of scientific theories that employs the distinc-
tion is adequate or not, that is, the issue on which (as
we have seen so far) many of the criticisms of the RV
have focused, but whether or not the observation–theory
distinction which leads to the notion of correspondence
rules subsequently steers toward obscuring epistemo-
logical aspects of scientific theorizing.

The sciences, he argues, do not deal with all the
detailed features of phenomena and not with phenom-
ena in all their complexity. Rather they isolate a certain
number of physical parameters by abstraction and ide-
alization and use these parameters to characterize phys-
ical systems (Suppe’s terminology is idiosyncratic, he
uses the term physical system to refer to the abstract
entity that an idealized model of the theory represents
and not to the actual target physical system), which
are highly abstract and idealized replicas of phenom-
ena. A classical mechanical description of the earth–sun
system of our solar system, would not deal with the ac-
tual system, but with a physical system in which some
relevant parameters are abstracted (e.g., mass, displace-
ment, velocity) from the complex features of the actual
system. And in which some other parameters are ig-
nored, for example, the intensity of illumination by the
sun, the presence of electromagnetic fields, the presence
of organic life. In addition, these abstracted parameters
are not used in their full complexity to characterize the
physical system. Indeed, the description would idealize
the physical system by ignoring certain factors or fea-
tures of the actual system that may plausibly be causally
relevant to the actual system. For instance, it may as-
sume that the planets are point masses, or that their
gravitational fields are uniform, or that there are no dis-
turbances to the system by external factors and that the
system is in a vacuum. What scientific theories do is
attempt to characterize the behavior of such physical
systems not the behavior of directly observable phe-
nomena.

Although this is admittedly a rough sketch of
Suppe’s view, it is not hard to see that the aim of the
argument is to lead to the conclusion that the directly
observable phenomena are connected to a scientific
theory via the physical system. That is to say, (if we put
together this idea with the one presented at the end of
Sect. 2.1.3 above) the connection between the theory
and the phenomena, according to Suppe, requires an
analysis of theories and of theory–application that
involves a two-stage move. The first move involves
the connection between raw phenomena and the hard
data about the particular target system in question.
The second move involves the connection between
the physical system that represents the hard data and
the theoretical postulates of the theory. According
to Suppe’s understanding of the theory–experiment

relation, the physical system plays the intermediate role
between phenomena and theory and this role, which
is operative in theory–application, is what needs to be
illuminated. The RV implies that the correspondence
rules “[. . . ] amalgamate together the two sorts of moves
[. . . ] so as to eliminate the physical system” [2.29,
p. 16], thus obscuring this important epistemological
feature of scientific theorizing.

So, according to Suppe, correspondence rules
must give way to this two-stage move, if we are to
identify and elucidate the epistemic features of physical
systems. Suppe’s suggestion is that the only way to
accommodate physical systems into our understanding
of how theories relate to phenomena is to give models
of the theory their representational status. The repre-
sentational means of the RV are linguistic entities, for
example, sentences. Models, within the RV, are denied
any representational function. They are conceived
exclusively as interpretative devices of the formal
calculus, that is, as structures that satisfy subsets of
sentences of the theory. This reduces models to meta-
mathematical entities that are employed in order to
make intelligible the abstract calculus, which amounts
to treating them as more or less cosmetic aspects of sci-
ence. But this understanding of the role of models leads
to the incapacity of the RV to elucidate the epistemic
features of physical systems, and thus obscures – what
Suppe considers to be – epistemologically important
features of scientific theorizing.

2.1.5 Hempel’s Provisos Argument

In one of his last writings, Hempel [2.31] raises
a problem that suggests a flaw in interpreting the link
between empirical theories and experimental reports
as mere deduction. Assuming that a theory is a formal
axiomatic system consisting of T and C, as we did
so far, consider Hempel’s example. If we try to apply
the theory of magnetism for a simple case we are
faced with the following inferential situation. From
the observational sentence b is a metal bar to which
iron filings are clinging (SO1), by means of a suitable
correspondence rule we infer the theoretical sentence
b is a magnet (ST1). Then by using the theoretical
postulates in T , we infer if b is broken into two bars,
then both are magnets and their poles will attract or
repel each other (ST2). Finally using further correspon-
dence rules we derive the observational sentence if b is
broken into two shorter bars and these are suspended,
by long thin threads, close to each other at the same
distance from the ground, they will orient themselves
so as to fall into a straight line (SO2) ([2.31, p. 20]).
If the inferential structure is assumed to be deductive
then the above structure can be read as follows: SO1 in
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combination with the theory deductively implies SO2.
Hempel concludes that this deductivist construal faces
a difficulty, which he calls the problem of provisos.

To clarify the problem of provisos, we must look
into the third inferential step from ST2 to SO2. What is
necessary here is for the theory of magnetism to pro-
vide correspondence rules that would turn this step into
a deductive inference. The theory however, as Hempel
points out, clearly does not do this. In fact, the the-
ory allows for the possibility that the magnets orient
themselves in a way other than a straight line, for ex-
ample, if an external magnetic field of suitable strength
and direction is present. This leads to recognizing that
the third inferential step presupposes the additional as-
sumption that there are no disturbing influences to the
system of concern. Hempel uses the term provisos,
“[. . . ] to refer to assumptions [of this kind] [. . . ], which
are essential, but generally unstated, presuppositions of
theoretical inferences” [2.31, p. 23]. Therefore, provi-
sos are presupposed in the application of a theory to
phenomena (The problem we saw in Sect. 2.1.3 which
Suppes raises, namely that in science theoretical predic-
tions are not confronted with raw observation reports
but with observation-altered-by-theory-of-data reports,
neighbors this problem but it is not the same. Hempel’s
problem of provisos concerns whether it is possible to
deductively link theory to observational statements no
matter how the latter are constructed).

What is the character of provisos? Hempel suggests
we may view provisos as assumptions of completeness.
For example, in a theoretical inference from a sentence
S1 to another S2, a proviso is required that asserts that in
a given case “[. . . ] no factors other than those specified
in S1 are present that could affect the event described by
S2” [2.31, p. 29]. As, for example, is the case in the ap-
plication of the Newtonian theory to a two-body system,
where it is presupposed that their mutual gravitational
attraction are the only forces the system is subjected to.
It is clear that [2.31, p. 26]:

“[. . . ] a proviso as here understood is not a clause
that can be attached to a theory as a whole and
vouchsafe its deductive potency by asserting that
in all particular situations to which the theory is
applied, disturbing factors are absent. Rather, a pro-
viso has to be conceived as a clause that pertains
to some particular application of a given theory and
asserts that in the case at hand, no effective factors
are present other than those explicitly taken into ac-
count.”

Thus, if a theory is conceived as a deductively
closed set of statements and its axioms conceived as
empirical universal generalizations, as the RV purports,
then to apply theory to phenomena, that is, to de-

ductively link theoretical to observational statements,
provisos are required. However, in many theory ap-
plications there would be an indefinitely large number
of provisos, thus trivializing the concept of scientific
laws understood as empirical universal generalizations.
In other cases, some provisos would not even be ex-
pressible in the language of the theory, thus making the
deductive step impossible. Hempel’s challenge is that
theory–applications presuppose provisos and this does
not cohere with the view that theory relates to obser-
vation sentences deductively (For an interesting discus-
sion of Hempel’s problem of provisos, see [2.32–35]).

2.1.6 Theory Consistency
and Meaning Invariance

Feyerabend criticized the logical positivist conception
of scientific theories on the ground that it imposes on
them a meaning invariance condition and a consis-
tency condition. By the consistency condition he meant
that [2.36, p. 164]

“[. . . ] only such theories are [. . . ] admissible in
a given domain which either contain the theories
already used in this domain, or which are at least
consistent with them inside the domain.”

By the condition of meaning invariance he meant
that [2.36, p. 164]:

“[. . . ] meanings will have to be invariant with re-
spect to scientific progress; that is, all future the-
ories will have to be framed in such a manner that
their use in explanations [or reductions] does not af-
fect what is said by the theories, or factual reports
to be explained”

Feyerabend’s criticisms are not aimed directly at the
RV, but rather at two other claims of logical positivism
that are intimately connected to the RV, namely the the-
ses of the development of theories by reduction and the
covering law model of scientific explanation.

A brief digression, in order to look into the afore-
mentioned theses, would be helpful. The development
of theories by reduction involves the reduction of one
theory (secondary) into a second more inclusive theory
(primary). In such developments, the former theorymay
employ [2.37, p. 342]

“[. . . ] in its formulations [. . . ] a number of distinc-
tive descriptive predicates that are not included in
the basic theoretical terms or in the associated rules
of correspondence of the primary [theory] [. . . ].”

That is to say, the VT terms of the secondary the-
ory are not necessarily all included in the theoretical
vocabulary of the primary theory. Nagel builds up his
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case based on the example of the reduction of ther-
modynamics to statistical mechanics. There are several
requirements that have to be satisfied for theory reduc-
tion to take place, two of which are: (1) the VT terms
for both theories involved in the reduction must have
unambiguously fixed meanings by codified rules of us-
age or by established procedures appropriate to each
discipline, for example, theoretical postulates or corre-
spondence rules. (2) for every VT term in the secondary
theory that is absent from the theoretical vocabulary
of the primary theory, assumptions must be introduced
that postulate suitable relations between these terms and
corresponding theoretical terms in the primary theory.
(See Nagel [2.37, pp. 345–358]. In fact Nagel presents
a larger set of conditions that have to hold in order
for reduction to take place [2.37, pp. 336–397], but
these are the only two relevant to Feyerabend’s argu-
ments).

The covering law model of scientific explanation
is, in a nutshell, explanation in terms of a deduc-
tively valid argument. The sentence to be explained
(explanandum) is a logical consequence of a set of law-
premises together with a set of premises consisting of
initial conditions or other particular facts involved (ex-
planans). For the special case when the explanandum
is a scientific theory, T 0, the covering law model can
be formulated as follows: A theory T explains T 0 if and
only if T together with initial conditions constitute a de-
ductively valid inference with consequence T 0. In other
words, if T 0 is derivable from T together with state-
ments of particular facts involved then T 0 is explained
by T . It seems that reduction and explanation of theo-
ries go hand in hand, that is, if T 0 is reduced to T , then
T explains T 0 and conversely.

Feyerabend points out that Nagel’s two assump-
tions – (1) and (2) above – for theory reduction re-
spectively impose a condition of meaning invariance
and a consistency condition to scientific progress. The
thesis of development of theories by reduction con-
demns science to restrict itself to theories that are
mutually consistent. But the consistency condition re-
quires that terms in the admissible theories for a domain
must be used with the same meanings. Similarly, it can
be shown that the covering law model of explanation
also imposes these two conditions. In fact, the con-
sistency condition follows from the requirement that
the explanandum must be a logical consequence of the
explanans, and since the meanings of the terms and
statements in a logically valid argument must remain
constant, an obvious demand for explanation – imposed

by the covering law model – is that meanings must
be invariant. Feyerabend objects to the meaning invari-
ance and the consistency conditions and argues his case
inductively by drawing from historical examples of the-
ory change. For example, the concept of mass does not
have the same meaning in relativity theory as it does
in classical mechanics. Relativistic mass is a relational
concept between an object and its velocity, whereas
in classical mechanics mass is a monadic property of
an object. Similarly, Galileo’s law asserts that acceler-
ation due to gravity is constant, but if Newton’s law
of gravitation is applied to the surface of the earth it
yields a variable acceleration due to gravity. Hence,
Galileo’s law cannot be derived from Newton’s law.
By such examples, he attempts to undermine Nagel’s
assumptions (1) and (2) above and establish that nei-
ther meaning invariance nor the related notion of theory
consistency characterize actual science and scientific
progress (see Feyerabend [2.36, 38–40]. Numerous au-
thors have criticized Feyerabend’s views. For instance,
objections to his views have been raised based on his
idiosyncratic analysis of meaning, on which his argu-
ments rely. His views are hence not presented here as
conclusive criticisms of the RV; but only to highlight
that they cast doubt on the adequacy of the theses of
theory development by reduction and the covering law
model of explanation).

2.1.7 General Remark on the Received View

The RV is intended as an explicative and not a de-
scriptive view of scientific theories. We have seen that
even as such it is vulnerable to a great deal of criti-
cism. One way or another, all these criticisms rely on
one weakness of the RV: Its inability to clearly spell
out the nature of theoretical terms (and how they ac-
quire their meaning) and its inability to specify how
sentences consisting of such terms relate to experimen-
tal reports. This is a weakness that has been understood
by the RV’s critics to stem from the former’s focus on
syntax. By shifting attention away from the representa-
tional function of models and attempting to characterize
theory structure in syntactic terms, the RV makes itself
vulnerable to such objections. Despite all of the above
criticisms pointing to the difficulty in explicating how
theoretical terms relate to observation, I do not think
that any one of them is conclusive in the ultimate sense
of rebutting the RV. Nevertheless, the subsequent result
was that under the weight of all of these criticisms to-
gether the RV eventually made room for its successor.
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2.2 The Semantic View of Scientific Theories

The SV has for the last few decades been the standard-
bearer of the view that theories are families of models.
The slogan theories are families of models was meant
by the philosophers that originally put forward the SV
to stand for the claim that it is more suitable – for
understanding scientific theorizing – that the structure
of theory is identified with, or presented as, classes
of models. A logical consequence of identifying the-
ory structure with classes of models is that models
and modeling are turned into crucial components of
scientific theorizing. Indeed, this has been one of the
major contributions of the SV, since it unquestionably
assisted in putting models and modeling at the fore-
front of philosophical attention. However, identifying
theory structure with classes of models is not a logical
consequence of the thesis that models (and model-
ing) are important components of scientific theorizing.
Some philosophers who came to this conclusion have
since defended the view that although models are cru-
cial to scientific theorizing, the relation between theory
and models is much more complex than that of set-
theoretical inclusion. I shall proceed in this section by
articulating the major features of the SV; in the pro-
cess I shall try to clarify the notion of model inherent
in the view and also explain – what I consider to be –
the main difference among its proponents, and finally I
will briefly discuss the criticisms against it, which, nev-
ertheless, do not undermine the importance of models
in science.

Patrick Suppes was the first to attempt a model-
theoretic account of theory structure. He was one of
the major denouncers of the attempts by the logical
positivists to characterize theories as first-order cal-
culi supplemented by a set of correspondence rules.
(See [2.27, 28, 41–43]; much of the work developed in
these papers is included in [2.44]). His objections to
the RV led him on the one hand to suggest that in sci-
entific practice the theory–experiment relation is more
sophisticated than what is implicit in the RV and that
theories are not confronted with raw experimental data
(as we have seen in Sect. 2.1) but with, what has since
been dubbed, models of data. On the other hand, he
proposed that theories be construed as collections of
models. The models are possible realizations (in the
Tarskian sense) that satisfy sets of statements of theory,
and these models, according to Suppes, are entities of
the appropriate set-theoretical structure. Both of these
insights have been operative in shaping the SV.

Suppes urged against standard formalizations of sci-
entific theories. First, no substantive example of a sci-
entific theory is worked out in a formal calculus, and
second the [2.28, p. 57]

“[. . . ] very sketchiness [of standard formalizations]
makes it possible to omit both important properties
of theories and significant distinctions that may be
introduced between different theories.”

He opts for set-theoretical axiomatization as the
way by which to overcome the shortcomings of stan-
dard formalization. As mentioned by Gelfert, Chap. 1,
Suppe’s example of a set-theoretical axiomatization is
classical particle mechanics (CPM). Three axioms of
kinematics and four axioms of dynamics (explicitly
stated in Chap. 1 of this volume: The Ontology of Mod-
els) are articulated by the use of predicates that are
defined in terms of set theoretical notions. The struc-
ture } D hP;T; s;m; f ;gi can then be understood to
be a model of CPM if and only if it satisfies those
axioms [2.41, p. 294]. Such a structure is what logi-
cians would label a (semantic) model of the theory,
or more accurately a class of models. In general, the
model–theoretic notion of a structure, S, is that of an
entity consisting of a nonempty set of individuals, D,
and a set of relations defined upon the former, R, that
is, SD hD;Ri. The set D specifies the domain of the
structure and the set R specifies the relations that hold
between the individuals in D. (Note that as far as the
notion of a structure is concerned, it only matters how
many individuals are there and not what they are, and it
only matters that the relations in R hold between such
and such individuals of D and not what the relations
are. For more on this point and a detailed analysis of
the notion of structure Frigg and Nguyen, Chap. 3).

Models of data, according to Suppes, are possible
realizations of the experimental data. It is to models of
data that models of the theory are contrasted. The RV
would have it that the theoretical predictions have a di-
rect analogue in the observation statements. This view
however, is, according to Suppes, a distorting simplifi-
cation. As we have seen in Sect. 2.1.3, Suppes defends
the claim that by the use of theories of experimen-
tal design and other auxiliary theories, the raw data
are regimented into a structural form that bears a re-
lation to the models of the theory. To structure the data,
as we saw earlier, various influencing factors that the
theory does not account for, but are known to influ-
ence the experimental data, must be accommodated by
an appropriate conversion of the data into canonical
form. This regimentation results in a finished product
that Suppes dubbed models of data, which are struc-
tures that could reasonably be contrasted to the models
of the theory. Suppes’ picture of science as an enter-
prise of theory construction and empirical testing of
theories involves establishing a hierarchy of models,
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roughly consisting of the general categories of mod-
els of the theory and models of the data. Furthermore,
since the theory–experiment relation is construed as no
more than a comparison (i. e., a mapping) of mathe-
matical structures, he invokes the mathematical notion
of isomorphism of structure to account for the link
between theory and experiment. (An isomorphism be-
tween structures U and V exists, if there is a function
that maps each element of U onto each element of V).
Hence, Suppes can be read as urging the thesis that
defining the models of the theory and checking for
isomorphism with models of data, is a rational recon-
struction that does more justice to actual science than
the RV does.

The backbone of Suppes’ account is the sharp dis-
tinction between models of theory and models of data.
In his view, the traditional syntactic account of the re-
lation between theory and evidence, which could be
captured by the schema: .T&A/! E (where, T stands
for theory, A for auxiliaries, E for empirical evidence),
is replaced by theses (1), (2), and (3) below:

1. MT � TS, where MT stands for model of the theory
TS for the theory structure, and � for the relation of
inclusion

2. .A&E&D/ 7!MD, where MD stands for model of
data, A for auxiliary theories, E for theories of ex-
perimental design etc.,D for raw empirical data, and
7! for . . . used in the construction of . . .

3. MT �MD, where � stands for mapping of the ele-
ments and relations of one structure onto the other.

MT � TS expresses Suppes’ view that by defining
a theory structure a class of models is laid down for the
representation of physical systems. .A&E&D/ 7!MD

is meant to show how Suppes distances himself from
past conceptions of the theory–experiment relation, by
claiming that theories are not directly confronted with
raw experimental data (collected from the target physi-
cal systems) but rather that the latter are used, together
with much of the rest of the scientific inventory, in the
construction of data structures, MD. These data struc-
tures are then contrasted to a theoretical model, and the
theory–experiment relation consists in an isomorphism,
or more generally in a mapping of a data onto a theo-
retical structure, that is, MT �MD. The proponents of
the SV would, I believe, concur to the above three gen-
eral theses. Furthermore, they would concur with two of
the theses’ corollaries: that scientific representation of
phenomena can be explicated exclusively by mapping
of structures, and that all scientific models constructed
within the framework of a particular scientific theory
are united under a common mathematical or relational
structure. We shall look into these two contentions of

the SV toward the end of this section. For now, let me
turn our attention to some putative differences between
the various proponents of the SV.

Despite agreeing about focusing on the mathemat-
ical structure of theories for giving a unitary account
of models, it is not hard to notice in the relevant liter-
ature that different proponents of the SV have spelled
out the details of thesis (1) in different ways. This is
because different proponents of the SV have chosen dif-
ferent mathematical entities with which to characterize
theory structure. As we saw above, Suppes chooses set
theoretical predicates a choice that seems to be shared
by da Costa and French [2.45, 46]. Van Fraassen [2.47]
on the other hand prefers state-spaces, and Suppe [2.30]
uses relational systems.

Let us, by way of example, briefly look into van
Fraassen’s state-space approach. The objects of concern
of scientific theories are physical systems. Typically,
mathematical models represent physical systems that
can generally be conceived as admitting of a certain
set of states. State-spaces are the mathematical spaces
the elements of which can be used to represent the
states of physical systems. It is a generic notion that
refers to what, for example, physicists would label as
phase space in classical mechanics or Hilbert space in
quantum mechanics. A simple example of a state-space
would be that of an n-particle system. In CPM, the state
of each particle at a given time is specified by its po-
sition qD .qx; qy; qz/ and momentum pD .px; py; pz/
vectors. Hence the state-space of an n-particle system
would be a Euclidean 6n-dimensional space, whose
points are the 6n-tuples of real numbers

hq1x; q1y; q1z; : : : ; qnx; qny; qnz;
p1x; p1y; p1z; : : : ; pnx; pny; pnzi :

More generally, a state-space is the collection of mathe-
matical entities such as, vectors, functions, or numbers,
which is used to specify the set of possible states for
a particular physical system. Amodel, in van Fraassen’s
characterization of theory structure, is a particular se-
quence of states of the state-space over time, that is, the
state of the modeled physical system evolves over time
according to the particular sequence of states admitted
by the model. State-spaces unite clusters of models of
a theory, and they can be used to single out the class of
intended models just as set-theoretical predicates would
in Suppes’ approach. The presentation of a scientific
theory, according to van Fraassen, consists of a descrip-
tion of a class of state-space types. As van Fraassen
explains [2.47, p. 44]:

“[w]henever certain parameters are left unspecified
in the description of a structure, it would be more
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accurate to say [. . . ] that we described a structure
type.”

The Bohr model of the atom, for example, does not
refer to a single structure, but to a structure type. Once
the necessary characteristics are specified, it gives rise
to a structure for the hydrogen atom, a structure for the
helium atom, and so forth.

The different choices of different authors on how
theory structure is characterized, however, belong to the
realm of personal preference and do not introduce any
significant differences on the substance of thesis (1)
of the SV, which is that all models of the theory are
united under an all-inclusive theory structure. So, ir-
respective of the particular means used to characterize
theory structure, the SV construes models as structures
(or structure types) and theories as collections of such
structures. Neither have disagreements been voiced re-
garding thesis (2). On the contrary, there seems to be
a consensus among adherents of the SV that models of
theory are confronted with models of data and not the
direct result of an experimental setup (Not much work
has been done to convincingly analyze particular sci-
entific examples and to show the details of the use of
models of data in science; rather, adherents of the SV
repeatedly use the notion with reference to something
very general with unclear applications in actual scien-
tific contexts).

2.2.1 On the Notion of Model in the SV

An obvious objection to thesis (1) would be that a stan-
dard formalization could be used to express the theory
and subsequently define the class of semantic mod-
els metamathematically, as the class of structures that
satisfy the sentences of the theory, despite Suppes sug-
gestion that such a procedure would be unnecessarily
complex and tedious.

In fact, proponents of the SV have often encouraged
this objection. Van Fraassen and Suppe are notable
examples as the following quotations suggest [2.48,
p. 326]:

“There are natural interrelations between the two
approaches [i. e., the RV and the SV]: An axiomatic
theory may be characterized by the class of interpre-
tations which satisfy it, and an interpretation may
be characterized by the set of sentences which it
satisfies; though in neither case is the characteriza-
tion unique. These interrelations [. . . ] would make
implausible any claim of philosophical superiority
for either approach. But the questions asked and
methods used are different, and with respect to fruit-
fulness and insight they may not be on a par with
specific contexts or for special purposes.”

Suppe [2.30, p. 82]:

“This suggests that theories be construed as pro-
pounded abstract structures serving as models for
sets of interpreted sentences that constitute the
linguistic formulations. These structures are meta-
mathematical models of their linguistic formula-
tions, where the same structure may be the model
for a number of different, and possibly nonequiva-
lent, sets of sentences or linguistic formulations of
the theory.”

From such remarks, one is justifiably led to be-
lieve that propounding a theory as a class of models
directly defined, without recourse to its syntax, only
aims at convenience in avoiding the hustle of construct-
ing a standard formalization, and at easier adaptability
of our reconstruction with common scientific practices.
Epigrammatically, the difference – between the SV and
the RV – would then be methodological and heuristic.
Reasons such as this have led some authors to ques-
tion the logical difference between defining the class of
models directly as opposed to metamathematically.

Examples are Friedman and Worrall who in their
separate reviews of van Fraassen [2.47] ask whether
the class of models that constitutes the theory, accord-
ing to the proponents of the SV, is to be identified with
an elementary class, that is, a class that contains all
the models (structures) that satisfy a first-order theory.
They both notice that not only does van Fraassen and
other proponents of the SV offer no reason to oppose
such a supposition, but also they even encourage it (as
in the above quotations). But if that is the case [2.49,
p. 276]:

“[t]hen the completeness theorem immediately
yields the equivalence of van Fraassen’s account
and the traditional syntactic account [i. e., that of the
RV].”

In other words [2.50, p. 71]:

“So far as logic is concerned, syntax and semantics
go hand-in-hand – to every consistent set of first-
order sentences there corresponds a nonempty set
of models, and to every normal (elementary) set of
models there corresponds a consistent set of first-
order sentences.”

If we assume (following Friedman andWorrall) that
the proponents of the SV are referring to the elemen-
tary class of models then the preceding argument is
sound. The SV, in agreement with the logical positivists,
retains formal methods as the primary tool for philo-
sophical analysis of science. The only new elements of
its own would be the suggestions that first it is more
convenient that rather than developing these methods
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using proof–theory we should instead use formal se-
mantics (model-theory), and second we should assign
to models (i. e., the semantic interpretations of sets of
sentences) a representational capacity.

Van Fraassen, however, resists the construal of the
class of models of the SV with an elementary class (See
van Fraassen [2.51, pp. 301–303] and his [2.52]). Let
me rehearse his argument. The SV claims that to present
a theory is to define a class M of models. This is the
class of structures the theory makes available for mod-
eling its domain. For most scientific theories, the real
number continuumwould be included in this class. Now
his argument goes, if we are able to formalize what is
meant to be conveyed by M in some appropriate lan-
guage, then we will be left with a class N of models of
the language, that is, the class of models in which the
axioms and theorems of the language are satisfied. Our
hope is that every structure inM occurs in N. However,
the real number continuum is infinite and [2.52, p. 120]:

“[t]here is no elementary class of models of a denu-
merable first-order language each of which includes
the real numbers. As soon as we go from math-
ematics to metamathematics, we reach a level of
formalization where many mathematical distinc-
tions cannot be captured.”

Furthermore, “[t]he Löwenheim–Skolem theorems
[. . . ] tell us [. . . ] that N contains many structures
not isomorphic to any member of M” [2.51, p. 302].
Van Fraassen relies, here, on the following reasoning:
The Löwenheim–Skolem theorem tells us that all sat-
isfiable first-order theories that admit infinite models
will have models of all different infinite cardinalities.
Now models of different cardinality are nonisomor-
phic. Consequently, every theory that makes use of the
real number continuum will have models that are not
isomorphic to the intended models (i. e., nonstandard
interpretations) but which satisfy the axioms of the the-
ory. So van Fraassen is suggesting thatM is the intended
class of models, and since the limitative meta-theorems
tell us that it cannot be uniquely determined by any set
of first-order sentences we can only define it directly.
Here is his concluding remark [2.51, p. 302]:

“The set N contains [. . . ] [an] image M� of M,
namely, the set of thosemembers ofN which consist
of structures in M accompanied by interpretations
therein of the syntax. But, moreover, [. . . ]M� is not
an elementary class.”

Evidently, van Fraassen’s argument aims to estab-
lish that the directly defined class of models is not an
elementary class. It is hard, however, to see that defin-
ing the models of the theory directly without resort to
formal syntax yields only the intended models of theory

(i. e., excludes all nonstandardmodels), despite the pos-
sibility that one could see the prospect of the SV being
heuristically superior to the RV. (Of course, we must not
forget that this superiority would not necessarily be the
result of thesis (1) of the SV, but it could be the result of
its consequence of putting particular emphasis on the
significance of scientific models that, as noted earlier,
does not logically entail thesis (1)).

Let us, for the sake of argument, ignore the Fried-
man–Worrall argument. Now, according to the SV,
models of theory have a dual role. On the one hand,
they are devices by which phenomena are represented,
and on the other, they are structures that would sat-
isfy a formal calculus were the theory formalized. The
SV requires this dual role. First because the represen-
tational role of models is the way by which the SV
accounts for scientific representation without the use of
language; and second because the role of interpreting
a set of axioms ensures that a unitary account of mod-
els is given. Now, Thompson-Jones [2.53] notices that
the notion of model implicit in the SV is either that of
an interpretation of a set of sentences or a mathemat-
ical structure (the disjunction is of course inclusive).
He analyzes the two possible notions and argues that
the SV becomes more tenable if the notion of model
is only understood as that of a mathematical structure
that functions as a representation device. If that were
the case then the adherents of the SV could possi-
bly claim that defining the class of structures directly
indeed results in something distinct from the metamath-
ematical models of a formal syntax. Thompson-Jones’
suggestion, however, would give rise to new objections.
Here is one. It would give rise to the following ques-
tion: How could a theory be identified with a class of
models (i. e., mathematical structures united under an
all-inclusive theory structure) if the members of such
a class do not attain membership in the class because
they are interpretations of the same set of theory ax-
ioms? In other words, the proponents of the SV would
have to explain what it is that unites the mathematical
models other than the satisfaction relation they have to
the theoretical axioms. To my knowledge, proponents
of the SV have not offered an answer to this question.
If Thompson-Jones’ suggestion did indeed offer a plau-
sible way to overcome the Friedman–Worrall argument
then the SV would have to abandon the quest of giv-
ing a unitary account of models. Given the dual aim
of the SV, namely to give a unitary account of models
and to account for scientific representation by means of
structural relations, it seems that the legitimate notion
of model integral to this view must have these two-hard
to reconcile-roles; namely, to function both as an inter-
pretation of sets of sentences and as a representation of
phenomena. (Notice that this dual function of models is



Part
A
|2.2

40 Part A Theoretical Issues in Models

an aspect of all versions of the SV, independent of how
one chooses to characterize theory structure and of how
one chooses to interpret that structure).

2.2.2 The Difference Between
Various Versions of the SV

The main difference among the various versions of the
SV relates to two intertwined issues that relate to the-
sis (3), namely how the theory structure is construed
and how the theory–experiment mapping relation is
construed. To a first approximation we could divide the
different versions of the SV, from the perspective of
these two issues, into two sorts. Those in which par-
ticular emphasis is given to the presence of abstraction
and idealization in scientific theorizing for explicating
the theory–experiment (or model–experiment) relation,
and those in which the significance of this nature of sci-
entific theorizing is underrated.

Idealization and Abstraction Underrated
Van Fraassen (Suppes most probably could be placed
in this group too), for example, seems to be a clear case
of this sort. Here is how he encapsulates his conception
of scientific theories and of how theory relates to exper-
iment [2.47, p. 64]:

“To present a theory is to specify a family of struc-
tures, its models; and secondly, to specify certain
parts of those models (the empirical substructures)
as candidates for the direct representation of ob-
servable phenomena. The structures which can be
described in experimental and measurement reports
we can call appearances: The theory is empirically
adequate if it has some model such that all appear-
ances are isomorphic to empirical substructures of
that model.”

Appearances (which is van Fraassen’s term formod-
els of data) are relational structures of measurements of
observable aspects of the target physical system, for ex-
ample, relative distances and velocities. For example, in
the Newtonian description of the solar system, as van
Fraassen points out, the relative motions of the planets
“[. . . ] form relational structures defined by measuring
relative distances, time intervals, and angles of sepa-
ration” [2.47, p. 45]. Within the theoretical model for
this physical system, “[. . . ] we can define structures that
are meant to be exact reflections of those appearances
[. . . ]” [2.47, p. 45]. Van Fraassen calls these empirical
substructures. When a theory structure is defined each
of its models, which are candidates for the represen-
tation of phenomena, includes empirical substructures.
So within representational models we could specify
a division between observable/nonobservable features

(albeit this division is not drawn in linguistic terms),
and the empirical substructures of such models are as-
sumed to be isomorphic to the observable aspects of the
physical system. In other words, the theory structure
is interpreted as having distinctly divided observable
and nonobservable features, and the theory–experiment
relation is interpreted as being an isomorphic relation
between the data model and the observable parts of the
theoretical model. Now, the state-space is a class of
models, it thus includes – for CPM – many models in
which the world is a Newtonian mechanical system. In
fact, it seems that the state-space includes (unites) all
logically possible models, as the following dictum sug-
gests ([2.52, p. 111], [2.54, p. 226]):

“In one such model, nothing except the solar system
exists at all; in another the fixed stars also exist, and
in a third, the solar system exists and dolphins are
its only rational inhabitants.”

According to van Fraassen, the theory is empiri-
cally adequate if we can find a model of the theory
in which we can specify empirical substructures that
are isomorphic to the data model. The particular view
of scientific representation that resides within this idea
is this: A model represents its target if and only if it
is isomorphic to a data model constructed from mea-
surements of the target. Not much else seems to matter
for a representation relation to hold but the isomor-
phism condition. Many would argue, however, that such
a condition for the representation relation is too strong
to explicate how actual scientific models relate to ex-
perimental results and would object to this view on
the ground that for isomorphism to occur it would re-
quire that target physical systems occur under highly
idealized conditions or in isolated circumstances. (Ad-
mittedly, it would not be such a strong requirement
for models that would only describe observable as-
pects of the world. In such cases isomorphism could be
achieved, but at the expense of the model’s epistemic
significance. I do not think, for instance, that such mod-
els would be of much value to a science like Physics as,
more often than not, they would be useless in predicting
the future behavior of their targets).

Idealization and Abstraction Highlighted
In the second camp of the SV, we encounter several
varieties. One of these is Suppe [2.30], who interprets
theory structure and the theory–experiment relation
as follows. Theories characterize particular classes of
target systems. However, target systems are not charac-
terized in their full complexity, as already mentioned
in Sect. 2.1.4. Instead, Suppe’s understanding is that
certain parameters are abstracted and employed in this
characterization. In the case of CPM, these are the posi-



Models and Theories 2.2 The Semantic Viewof Scientific Theories 41
Part

A
|2.2

tion and momentum vectors. These two parameters are
abstracted from all other characteristics that target sys-
tems may possess. Furthermore, once the factors, which
are assumed to influence the class of target systems
in the theory’s intended scope, have been abstracted
the characterization of physical systems (as mentioned
in Sect.2.1.4, physical systems in Suppe’s terminology
refer to the abstract entities that models of the the-
ory represent and not to the actual target systems) still
does not fully account for target systems. Physical sys-
tems are not concerned with the actual values of the
parameters the particulars possess, for example, actual
velocities, but with the values of these parameters under
certain conditions that obtain only within the physical
system itself. Thus in CPM, where the behavior of di-
mensionless point-masses are studied in isolation from
outside interactions, physical systems characterize this
behavior only by reference to the positions and mo-
menta of the point-masses at given times.

An example can serve to demonstrate Suppe’s idea
in bit more detail. The linear harmonic oscillator, that
is, a mathematical instrument, is expressed by the fol-
lowing equation of motion RxC .k=m/xD 0 , which is
the result of applying Newton’s second law to a linear
restoring force. The mathematical model is interpreted
(and thus characterizes a physical system) as follows:
Periodic oscillations are assumed to take place with re-
spect to time, x is the displacement of an oscillating
mass-point, and k and m are constant coefficients that
may be replaced by others. When the mathematical pa-
rameters in the above equation are linked to features
of a specific object, the equation can be used to model
for instance the torsion pendulum, that is, an elastic
rod connected to a disk that oscillates about an equi-
librium position. This sort of linking of mathematical
terms to features of objects could be understood to be
a manifestation of what Giere calls identification. Giere
introduces a useful distinction between interpretation
and identification [2.55, p. 75]:

“[. . . ] [Interpretation] is the linking of the mathe-
matical symbols with general terms, or concepts,
such as position[. . . ] [Identification] is the linking
of a mathematical symbol with some feature of
a specific object, such as the position of the moon.”

In the torsion pendulum model, x is identified with
the angle of twist, k with the torsion constant, and m
with the moment of inertia. By linking the mathematical
symbols of a model to features of a target systemwe can
reasonably assume, according to Suppe, that the model
could be associated with an actual system of the world;
the model characterizes, as Suppe would say in his own
jargon, “a causally possible physical system.”

However, even when a certain mathematical product
of theory is identified with a causally possible phys-
ical system, we still know that typically the situation
described by the physical system does not obtain. The
actual torsion pendulum apparatus is subject to a num-
ber of different factors (or may have a number of
different characteristics) that may or may not influence
the process of oscillation. Some influencing factors are
the amplitude of the angle of oscillation, the mass dis-
tribution of the rod and disc, the nonuniformity of the
gravitational field of the earth, the buoyancy of the rod
and disc, the resistance of the air and the stirring up of
the air due to the oscillations. In modeling the torsion
pendulum by means of the linear harmonic oscillator
the physical system is abstracted from factors assumed
to influence the oscillations in the same manner as from
those assumed not to. Therefore, the replicating rela-
tion between the physical system, P, and the target
system, S, which Suppe urges cannot be understood as
one of identity or isomorphism. Suppe is explicit about
this [2.30, p. 94]:

“The attributes in P determine a sequence of states
over time and thus indicate a possible behavior of S
[. . . ] Accordingly, P is a kind of replica of S; how-
ever, it need not replicate S in any straight-forward
manner. For the state of P at t does not indicate what
attributes the particulars in S possess at t; rather, it
indicates what attributes they would have at t were
the abstracted parameters the only ones influencing
the behavior of S and were certain idealized con-
ditions met. In order to see how P replicates S we
need to investigate these abstractive and idealizing
conditions holding between them.”

In summary, the replicating relation is counterfac-
tual: If the conditions assumed to hold for the descrip-
tion of the physical system were to hold for the target
system, then the target system would behave in the way
described by the physical system. The behavior of ac-
tual target systems, however, may be subject to other
unselected parameters or other conditions, for which the
theory does not account.

The divergence of Suppe’s view from that of van
Fraassen is one based primarily on the representation
relation of theory to phenomena. Suppe understands the
theory structure as being a highly abstract and idealized
representation of the complexities of the real world.
Van Fraassen disregards this because he is concerned
with the observable aspects of theories and assumes that
these can, to a high degree of accuracy, be captured by
experiments. Thus van Fraassen regards theories as con-
taining empirical substructures that stand in isomorphic
relations to the observable aspects of the world. Suppe’s
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understanding of theory structure, however, points to
a significant drawback present in van Fraassen’s view:
How can isomorphism obtain between a data model and
an empirical substructure of the model, given that the
model is abstract and idealized? Suppe’s difference with
van Fraassen’s view of the representation relation and
of the epistemic inferences that can be drawn from it is
this, if indeed it is the case that isomorphism obtains be-
tween a data model and an empirical substructure, then
it is so for either of two reasons: (1) the experiment is
highly idealized, or (2) the data model is converted to
what the measurements would have been if the influ-
ences that are not accounted by the theory did not have
any effect on the experimental setup. This is a signif-
icantly different claim from what van Fraassen would
urge, to wit that the world or some part of it is isomor-
phic to the model. According to Suppe’s understanding
of theory structure, no part of the world is or can be iso-
morphic to a model of the theory, because abstraction
and idealization are involved in scientific theorizing.

Geire [2.55] is another example of a version of the
SV that places the emphasis on abstraction and ide-
alization. Following Suppes and van Fraassen, Giere
understands theories as classes of models. He does not
have any special preference about the mathematical en-
tities by which theory structure is characterized, but
he is interested in looking at the characteristics of ac-
tual science and how these could be captured by the
SV. This leads him to a similar claim as Suppe. He
claims that although he does not see any logical rea-
son why a real target system could not be isomorphic
to a model, nevertheless for the examples of models
found in mechanics texts, typically, no claim of isomor-
phism is made, indeed “[. . . ] the texts often explicitly
note respects in which the model fails to be isomor-
phic to the real system” [2.55, p. 80]. He attributes
this to the abstract and idealized nature of models of
the theory. His solution is to substitute the strict crite-
rion of isomorphism, as a way by which to explicate
the theory–experiment relation, with that of similarity
in relevant respects and degrees between the model and
its target.

Finally, there is another example of a version of
the SV that also gives attention to idealization and ab-
straction, namely the version advocated by da Costa
and French in [2.45, 46, 56]. They do this indirectly by
interpreting theories as partial structures, that is, struc-
tures consisting of a domain of individuals and a set of
partial relations defined on the domain, where a partial
relation is one that is not defined for all the n-tuples
of individuals of the domain for which it presumably
holds. If models of theory are interpreted in this man-
ner and if it is assumed that models of data are also
partial structures, then the theory–experiment relation

is explicated by da Costa and French [2.46] as a par-
tial isomorphism. A partial isomorphism between two
partial structures U and V exists when a partial sub-
structure of U is isomorphic to a partial substructure
of V. In other words, partial isomorphism exists when
some elements of the set of relations in U are mapped
onto elements of the set of relations in V. If a model
of theory is partially isomorphic to a data model then,
da Costa and French claim, the model is partially true.
The notion of partial truth is meant to convey a prag-
matic notion of truth, which plausibly could avoid the
problems of correspondence or complete truth, and cap-
ture the commonplace idea that theories (or models) are
incomplete or imperfect or abstract or idealized descrip-
tions of target systems.

In conclusion, if we could speak of different ver-
sions of the SV and not just different formulations of
the same idea, if, in other words, the proposed versions
of the semantic conception of theories can be differen-
tiated in any significant way amongst them, it is on the
basis of how thesis (3) is conceived: There are those
that understand the representation relation, MT �MD,
as a strict isomorphic relation, and those that construe
it more liberally, for example, as a similarity relation.
In particular, van Fraassen prefers an isomorphic re-
lation between theory and experiment, whereas Suppe
and others understand theories as being abstract and
idealized representations of phenomena. It would seem
therefore that particular criticisms would not necessar-
ily target both versions. This has not been the case
however, as we shall examine in the next two subsec-
tions. Critics of the SV have either targeted theses (1)
and (2) and the unitary account of models implicit in the
SV, or thesis (3) and the representation relation however
the latter is conceived. The arguments against the uni-
tary account of scientific models, which obviously aim
indiscriminately at all versions of the SV, will be ex-
plored in Sect.2.2.4. The arguments against the nature
of the representation relation implied by the SV, which
shall be explored in Sect.2.2.3, if properly adapted af-
fect both versions of the SV.

2.2.3 Scientific Representation
Does not Reduce
to a Mapping of Structures

Suarez [2.57] presents five arguments against the idea
that scientific representation can be explicated by ap-
pealing to a structural relation (like isomorphism or
similarity) that may hold between the representational
device and the represented target. (Suarez [2.57] also
develops his arguments for other suggested interpreta-
tions of theses (3), such as partial isomorphism). These
arguments, which are summarized below, imply that
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the representational capacity of scientific models can-
not derive from having a structural relation with its
target. Suarez’s first argument is that in science many
disparate things act as representational devices, for ex-
ample, a mathematical equation, or a Feynman diagram,
or an architect’s model of a building, or the double helix
macro-model of the DNA molecule. Neither isomor-
phism nor similarity can be applied to such disparate
representational devices in order to explicate their rep-
resentational function. A similar point is also made by
Downes [2.58], who by also exploring some examples
of scientific models, argues that models in science re-
late to their target systems in various ways, and that
attempts to explicate this relation by appeal to isomor-
phism or similarity does little to serve the purpose of
understanding the theory–experiment relation.

The second argument concerns the logical proper-
ties of representation vis-a-vis those of isomorphism
and similarity. Suarez explains that representation is
nonsymmetric, nonreflexive and nontransitive. If scien-
tific representation is a type of representation then any
attempt to explicate scientific representation cannot im-
ply different logical features from representation. But
appeal to a structural relation does not accomplish this,
because “[. . . ] similarity is reflexive and symmetric,
and isomorphism is reflexive, symmetric and transitive”
[2.55, p. 233].

His third argument is that any explication of rep-
resentation must allow for misrepresentation or inac-
curate representation. Misrepresentation, he explains,
occurs either when the target of a representation is mis-
taken or when a representation is inaccurate because it
is either incomplete or idealized. Neither isomorphism
nor similarity allows for the first kind of misrepresen-
tation and isomorphism does not allow for the second
kind. Although, similarity does account for the second
kind of representation, Suarez argues, it does so in a re-
strictive sense. That is, if we assume that an incomplete
representation is given according to theory X then sim-
ilarity does account for misrepresentation. However, if
a complete representation were given according to the-
ory X (i. e., if we have similarity in all relevant respects
that X dictates) but the predictions of this representation
still diverge from measurements of the values of the tar-
get’s attributes then similarity does not account for this
kind of misrepresentation.

The fourth argument is that neither isomorphism
nor similarity is necessary for representation. Our in-
tuitions about the notion of representation allow us to
accept the representational device derived from the-
ory X as a representation of its target, even though we
may know that isomorphism or similarity does not ob-
tain because, for example, an alternative theory Y not
only gives us better predictions about the target but

also tells us why X fails to produce representational
devices that are isomorphic or similar to their targets.
A different argument but with the same conclusion is
given by Portides [2.59], who argues that isomorphism,
or other forms of structural mapping, is not necessary
for representation because it is possible to explicate the
representational function of some successful quantum
mechanical models, which are not isomorphic to their
targets. Suarez’s final argument is that neither isomor-
phism nor similarity is sufficient for representation. In
other words, even though there may not be a represen-
tation relation between A and B, A and B may, however,
be isomorphic or similar.

Aiming at the same feature of the SV as Suarez,
Frigg [2.60] reiterates some of the arguments above
and gives further reasons to fortify them, but he also
presents two more arguments that undermine the notion
of representation as dictated by thesis (3) of the SV. Em-
ployed in his first argument is a particular notion of ab-
stractness of concepts advocated by Cartwright [2.61].
A concept is considered abstract in relation to a set
of more concrete concepts if for the former to apply
it is necessary that one of its concrete instances apply.
One of Frigg’s intuitive examples is that the concept of
traveling is more abstract than the concept of sitting in
a moving train. So according to this sense of abstract-
ness the concept of traveling applies whenever one is
sitting in a moving train and that the abstract concept
does not apply if one is not performing some action
that belongs to the set of concrete instances of traveling.
Frigg then claims, “[. . . ] that possessing a structure is
abstract in exactly this sense and it therefore does not
apply without some more concrete concepts applying
as well” [2.60, p. 55]. He defends this claim with the
following argument. Since to have a structure means to
consist of a set of individuals which enter into some
relations, then it follows that whenever the concept of
possessing a structure applies to S the concept of being
an individual applies to members of a set of S and the
concept of being in a relation applies to some parts of
that set. The concepts of being an individual and being
in a relation are abstract in the above sense. For exam-
ple, given the proper context, for being an individual
to apply, occupying a certain space-time region has to
apply. Similarly, given the proper context, for being in
a relation to apply it must be the case that being greater
than applies. Therefore, both being an individual and
being in a relation are abstract. Thus Frigg concludes,
possessing a structure is abstract; hence for it to apply,
it must be the case that a concrete description of the tar-
get applies. Because, the claim that the representation
relation can be construed as an isomorphism (or similar-
ity) of structures presupposes that the target possesses
a structure, Frigg concludes that such a claim “[. . . ] pre-
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supposes that there is a more concrete description that
is true of the [target] system” [2.60, p. 56]. This argu-
ment shows that to reduce the representation relation to
a mapping of structures the proponents of the SV need
to invoke nonstructural elements into their account of
representation, so pure and simple reduction fails.

Frigg’s second argument, as he states, is inductive.
He examines several examples of systems from differ-
ent contexts in order to support the claim that a target
system does not have a unique structure. For a sys-
tem to have a structure it must be made of individuals
and relations, but slicing up the physical systems of
the world into individuals and relations is dependent on
how we conceptualize the world. The world itself does
not provide us with a unique slicing. “Because differ-
ent conceptualizations may result in different structures
there is no such thing as the one and only structure of
a system” [2.60, p. 57]. One way that Frigg’s argument
could be read is this: Thesis (2) of the SV implies that
the measurements of an experiment are structured to
form a data model. But, according to Frigg, this struc-
turing is not unique. So the claim of thesis (3), that there
is, for example, an isomorphism between a theoretical
model and a data model is not epistemically informative
since there may be numerous other structures that could
be constructed from the data that are not isomorphic to
the theoretical model.

2.2.4 A Unitary Account of Models
Does not Illuminate
Scientific Modeling Practices

The second group of criticisms against the SV consists
of several heterogeneous arguments stemming from
different directions and treating a variety of features
and functions of models. Despite this heterogeneity,
they can be grouped together because they all indi-
rectly undermine the idea that the unitary account of
scientific models given by employing a set theoreti-
cal (or other mathematical) characterization of theory
structure is adequate for understanding the notion of
representational model and the model–experiment re-
lation. This challenge to the SV is indirect because the
main purpose of these arguments is to illuminate partic-
ular features of actual scientific models. In highlighting
these features, these arguments illustrate that actual rep-
resentational models in science are constructed in ways
that are incompatible with the SV, they function in ways
that the SV does not adequately account for and they
represent in ways that is incompatible with the SV’s
account of representation; furthermore, they indicate
that models in science are complex entities that can-
not be thoroughly understood by unitary accounts such
as set-theoretical inclusion. In other words, a conse-

quence of most of these arguments is that the unitary
account of models that the SV provides through the-
sis (1) that all models are constitutive parts of theory
structure, obscures the particular features that represen-
tational scientific models demonstrate.

One such example is Morrison [2.62], who ar-
gues that models are partially autonomous from the
theories that may be responsible for instigating their
construction. This partial autonomy is something that
may derive from the way they function but also from
the way they are constructed. She discusses Prandtl’s
hydrodynamic model of the boundary layer in order to
mark out that the inability of theory to provide an expla-
nation of the phenomenon of fluid flow did not hinder
scientific modeling. Prandtl constructed the model with
little reliance on high-level theory and with a concep-
tual apparatus that was partially independent from the
conceptual resources of theory. This partial indepen-
dence in construction, according to Morrison, gives
rise to functional independence and renders the model
partially autonomous from theory. Furthermore,Morri-
son raises another issue (see [2.62], as well as [2.63]);
that theories, and hence theoretical models as direct
conceptual descendants of theory, are highly abstract
and idealized descriptions of phenomena, and therefore
they represent only the general features of phenom-
ena and do not explain the specific mechanisms at
work in physical systems. In contrast, actual repre-
sentational scientific models – that she construes as
partially autonomous mediators between theories and
phenomena – are constructed in ways that allow them
to function as explanations of the specific mechanisms
and thus function as sources of knowledge about corre-
sponding target systems and their constitutive parts. (As
she makes clear in Morrison [2.64], to regard a model
as partially independent from theory does not mean
that theory plays an unimportant role in its construc-
tion). This argument, in which representational capacity
is correlated to the explanatory power of models, is
meant to achieve two goals. Firstly, to offer a way
by which to go beyond the narrow understanding of
scientific representation as a mapping relation of struc-
ture, and second, to offer a general way to understand
the representational function of both kinds of models
that physicists call theory-driven and phenomenologi-
cal (In Portides [2.65] a more detailed contrast between
Morrison’s view of the representation relation and that
of the SV is offered). Cartwright et al. [2.66] and
Portides [2.67] have also argued that by focusing ex-
clusively on theory-driven models and the mapping
relation criterion, the SV obscures the representational
function of phenomenological models and also many
aspects of scientific theorizing that are the result of phe-
nomenological methods.
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It is noteworthy that the unitary account that the
SV offers may be applicable to theory-driven models.
Whether that is helpful or not is debatable. How-
ever, more often than not representation in science is
achieved by the use of phenomenological models or
phenomenological elements incorporated into theory-
driven models. One aspect of Morrison’s argument is
that if we are not to dismiss the representational capac-
ity of such models we should give up unitary accounts
of models. Cartwright makes a similar point but her ap-
proach to the same problem is from another angle.

Cartwright [2.61, 68] claims that theories are highly
abstract and thus do not and cannot represent what
happens in actual situations. Cartwright’s observation
seems similar to versions of the SV such as Suppe’s,
however her approach is much more robust. To claim
that theories represent what happens in actual situa-
tions, she argues, is to overlook that the concepts used in
them – such as, force functions and Hamiltonians – are
abstract. Such abstract concepts could only apply to the
phenomena whenever more concrete descriptions (as
those present in models) can stand-in for them and for
this to happen the bridge principles of theory must me-
diate. Hence the abstract terms of theory apply to actual
situations via bridge principles, and this makes bridge
principles an operative aspect of theory-application to
phenomena. It is only when bridge principles sanc-
tion the use of theoretical models that we are led to
the construction of a model – with a relatively close
relation to theory – that represents the target system.
But Cartwright observes that there are only a small
number of such theoretical models that can be used
successfully to construct representations of physical
systems and this is because there are only a hand-
ful of theory bridge principles. In most other cases,
where no bridge principles exist that enable the use of
a theoretical model, concrete descriptions of phenom-
ena are achieved by constructing phenomenological
models. Phenomenologicalmodels are constructed with
minimal aid from theory, and surely there is no deduc-
tive (or structural) relation between them and theory.
The relation between the two should be sought in the
nature of the abstract–concrete distinction between sci-
entific concepts, according to Cartwright. Models in
science, whether constructed phenomenologically or by
the use of available bridge principles, encompass de-
scriptions that are in someway independent from theory
because they are made up of more concrete concep-
tual ingredients. A weak reading of this argument is
that the SV could be a plausible suggestion for under-
standing the structure of scientific theories for use in
foundational work. But in the context of utilizing the
theory to construct representations of phenomena, fo-
cusing on the structure of theory does not illuminate

much because it is not sufficient as to account for the
abstract–concrete distinction that exists between theory
and models. A stronger reading of the argument is that
the structure of theories is completely irrelevant to how
theories represent the world, because they just do not
represent it at all. Only models represent pieces of the
world and they are partially independent from theory
because they are constituted by concrete concepts that
apply only to particular physical systems.

Other essays in the volume by Morgan and Mor-
rison [2.69] discuss different aspects of partial inde-
pendence of models from theory. Here are two brief
examples that aim to show the partial independence of
model construction from theory. Suarez [2.70] explains
how simplifications and approximations that are intro-
duced into representational models (such as the London
brothers model of superconductivity) are decided in-
dependently of theory and of theoretical requirements.
This process gives rise to a model that mediates in
the sense that the model itself is the means by which
corrections are established that may be incorporated
into theory in order to facilitate its applications. But
even in cases of models that are strongly linked to
theory such as the MIT-bag model of quark confine-
ment, Hartmann [2.71] argues, many parts of the model
are not motivated by theory but by an accompanying
story about quarks. From the empirical fact that quarks
were not observed physicists were eventually led to the
hypothesis that quarks are confined. But confinement
is not something that follows from theory. Neverthe-
less, via the proper amalgam of theory and story about
quarks the MIT-bag model was constructed to account
for quark confinement.

I mentioned earlier in Sect. 2.2.2 that Giere [2.55]
is also an advocate of the SV. However, his later writ-
ings [2.72, 73] suggest that he makes a gradual shift
from his earlier conception of representational models
in science to a view that neighbors that of Morrison
and Cartwright. Even in Giere [2.55] the reader notices
that he, unlike most other advocates of the SV, is less
concerned with the attempt to give a unitary account
of models and more concerned with the importance
of models in actual scientific practices. But in [2.72]
and [2.73] this becomes more explicit. Giere [2.55] es-
pouses the idea that the laws of a theory are definitional
devices of theoretical models. This view is compati-
ble with the use of scientific laws in the SV. However,
in Giere [2.72, p. 94] he suggests that scientific laws
“[. . . ] should be understood as rules devised by humans
to be used in building models to represent specific as-
pects of the natural world.” It is patent that operating as
rules for building models is quite a different thing from
understanding laws to be the means by which models
are defined. The latter view is in line with the three
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theses of the SV; the former however is only in line
with the view that models are important in scientific
theorizing. Moreover, in Giere [2.73] he makes a more
radical step in distinguishing between the abstract mod-
els (which he calls abstract objects) defined by the laws
and those models used by scientists to represent phys-
ical systems (which he calls representational models).
The latter [2.73, p. 63]

“[. . . ] are designed for use in representing aspects of
the world. The abstract objects defined by scientific
principles [i. e., scientific laws] are, on my view, not
intended directly to represent the world.”

Giere points to the important difference between the
SV and its critics. The SV considers the models that
the theory directly delivers representations of target sys-
tems of the world. Its critics do not think that; they argue
that many successful representational models are con-
structed by a variety of conceptual ingredients and thus
have a degree of autonomy from theory. But if each rep-
resentational model is partially autonomous from the
theory that prompted its construction then a unitary ac-
count of representational models does not seem to be
much enlightening in enhancing our understanding of
why models are so important in scientific theorizing.

2.2.5 General Remark
on the Semantic View

Just like its predecessor the SV employs formal meth-
ods for the philosophical analysis of scientific theories.
In the SV, models of the theory are directly defined by
the laws of the theory, and are thus united under a com-
mon mathematical structure. Of course, mathematical
equations satisfy a structure, no one disputes that math-
ematically formulated theories can be presented in
terms of mathematical structures. Nonetheless, keen to
overcome the philosophical problems associated with
the RV and its focus on the syntactic elements of
theories, the proponents of the SV take the idea of
presenting theories structurally one step further. They
claim that the SV not only offers a canonical struc-
tural formulation for theories, into which any theory
can be given an equivalent reformulation (an idea that,
no doubt, is useful for the philosophy of mathematics),
but they also contend that a scientific theory represents
phenomena because this structure can be linked to em-
pirical data. To defend this assertion, the proponents of
the SV assume that in science there is a sharp distinction
between models of theory and models of data and argue

that scientific representation is no more than a mapping
relation between these two kinds of structures. As we
have seen, serious arguments against the idea that rep-
resentation can be reduced to structural mapping have
surfaced; and these arguments counter the SV indepen-
dently of how the details of the mapping relation is
construed.

Furthermore, the SV implies that by defining a the-
ory structure an indefinite number of models that are
thought to be antecedently available for modeling the
theory’s domain are laid down. Neither this position
has gone unnoticed. Critics of the SV claim that this
idea does not do justice to actual science because it
undervalues the complexities involved in actual scien-
tific model construction and the variety of functions that
models have in science, but more importantly because
it obscures the features of representational models that
distinguish them from the models that are direct descen-
dants of theory.

I claimed that the SV employs a notion of model
that has two functions – interpretation and representa-
tion. In addition, it requires models that have this dual
role to be united under a common structure. It is hard
to reconcile these two ideas and do justice to actual
science. The devices by which the theoretical models
are defined, according to the SV, are the laws of the
theory. Hence the laws of the theory provide the con-
straints that determine the structure of these models.
Now, it is not hard to see that models viewed as inter-
pretations are indeed united under a common structure
determined by the laws of the theory. What is prob-
lematic, however, is that the SV assumes that models
that are interpretations also function as representations
and this means that models functioning as represen-
tations can be united under a common structure. The
truth value of the conjunction models are interpreta-
tions and representations is certainly not a trivial issue.
When scientists construct representational models, they
continuously impose constraints that alter their initial
structure. The departure of the resulting constructs from
the initial structure is such that it is no longer easily jus-
tified to think of them all as united under a common
theory structure. Indeed, in many scientific cases this
departure of individual representational models is such
that they end up having features that may be incom-
patible with other models that are also instigated by the
same theory. These observations lead to the thought that
the model-theory and the model–experiment relations
may in the end be too complex for our formal tools to
capture.



Models and Theories References 47
Part

A
|2

References

2.1 F. Suppe: The search for philosophic understanding
of scientific theories. In: The Structure of Scientific
Theories, ed. by F. Suppe (Univ. Illinois Press, Urbana
1974) pp. 1–241

2.2 P. Achinstein: The problem of theoretical terms, Am.
Philos. Q. 2(3), 193–203 (1965)

2.3 P. Achinstein: Concepts of Science: A Philosophical
Analysis (Johns Hopkins, Baltimore 1968)

2.4 H. Putnam: What theories are not. In: Logic,
Methodology and Philosophy of Science, ed. by
E. Nagel, P. Suppes, A. Tarski (Stanford Univ. Press,
Stanford 1962) pp. 240–251

2.5 Theoretician’s dilemma: A study in the logic of the-
ory construction. In: Aspects of Scientific Explanation
and Other Essays in the Philosophy of Science, ed.
by C. Hempel, C. Hempel (Free Press, New York 1958)
pp. 173–226

2.6 R. Carnap: The methodological character of theoreti-
cal concepts. In:Minnesota Studies in the Philosophy
of Science: The Foundations of Science and the Con-
cepts of Psychology and Psychoanalysis, Vol. 1, ed.
by H. Feigl, M. Scriven (Univ. Minnesota Press, Min-
neapolis 1956) pp. 38–76

2.7 R. Carnap: Philosophical Foundations of Physics (Ba-
sic Books, New York 1966)

2.8 F. Suppe: Theories, their formulations, and the op-
erational imperative, Synthese 25, 129–164 (1972)

2.9 N.R. Hanson: Patterns of Discovery: An Inquiry into
the Conceptual Foundations of Science (Cambridge
Univ. Press, Cambridge 1958)

2.10 N.R. Hanson: Perception and Discovery: An Intro-
duction to Scientific Inquiry (Freeman, San Francisco
1969)

2.11 J. Fodor: The Modularity of Mind (MIT, Cambridge
1983)

2.12 J. Fodor: Observation reconsidered, Philos. Sci. 51,
23–43 (1984)

2.13 J. Fodor: The modularity of mind. In: Meaning and
Cognitive Structure, ed. by Z. Pylyshyn,W. Demopou-
los (Ablex, Norwood 1986)

2.14 Z. Pylyshyn: Is vision continuous with cognition?,
Behav. Brain Sci. 22, 341–365 (1999)

2.15 Z. Pylyshyn: Seeing and Visualizing: It’s Not What
You Think (MIT, Cambridge 2003)

2.16 A. Raftopoulos: Is perception informationally en-
capsulated?, The issue of the theory-ladenness of
perception, Cogn. Sci. 25, 423–451 (2001)

2.17 A. Raftopoulos: Reentrant pathways and the the-
ory-ladenness of observation, Phil. Sci. 68, 187–200
(2001)

2.18 A. Raftopoulos: Cognition and Perception (MIT, Cam-
bridge 2009)

2.19 R. Carnap: Meaning postulates, Philos. Stud. 3(5),
65–73 (1952)

2.20 W.V. Quine: Two dogmas of empiricism. In: From
a Logical Point of View, (Harvard Univ. Press, Mas-
sachusetts 1980) pp. 20–46

2.21 M.G. White: The analytic and the synthetic: An un-
tenable dualism. In: Semantics and the Philosophy

of Language, ed. by L. Linsky (Univ. Illinois Press, Ur-
bana 1952) pp. 272–286

2.22 P. Achinstein: Theoretical terms and partial interpre-
tation, Br. J. Philos. Sci. 14, 89–105 (1963)

2.23 R. Carnap: Testability and meaning, Philos. Sci. 3,
420–468 (1936)

2.24 R. Carnap: Testability and meaning, Philos. Sci. 4, 1–
40 (1937)

2.25 C. Hempel: Fundamentals of Concept Formation in
Empirical Science (Univ. Chicago Press, Chicago 1952)

2.26 K.F. Schaffner: Correspondence rules, Philos. Sci. 36,
280–290 (1969)

2.27 P. Suppes: Models of data. In: Logic, Methodology
and Philosophy of Science, ed. by E. Nagel, P. Sup-
pes, A. Tarski (Stanford Univ. Press, Stanford 1962)
pp. 252–261

2.28 P. Suppes: What is a scientific theory? In: Philoso-
phy of Science Today, ed. by S. Morgenbesser (Basic
Books, New York 1967) pp. 55–67

2.29 F. Suppe: What’s wrong with the received view on
the structure of scientific theories?, Philos. Sci. 39,
1–19 (1972)

2.30 F. Suppe: The Semantic Conception of Theories and
Scientific Realism (Univ. Illinois Press, Urbana 1989)

2.31 C. Hempel: Provisos: A problem concerning the
inferential function of scientific theories. In: The
Limitations of Deductivism, ed. by A. Grünbaum,
W.C. Salmon (Univ. California Press, Berkeley 1988)
pp. 19–36

2.32 M. Lange: Natural laws and the problem of provisos,
Erkenntnis 38, 233–248 (1993)

2.33 M. Lange: Who’s afraid of ceteris paribus laws?,
or: How I learned to stop worrying and love them,
Erkenntnis 57, 407–423 (2002)

2.34 J. Earman, J. Roberts: Ceteris paribus, there is no
problem of provisos, Synthese 118, 439–478 (1999)

2.35 J. Earman, J. Roberts, S. Smith: Ceteris paribus lost,
Erkenntnis 57, 281–301 (2002)

2.36 P.K. Feyerabend: Problems of empiricism. In: Beyond
the Edge of Certainty, ed. by R.G. Colodny (Prentice-
Hall, New Jersey 1965) pp. 145–260

2.37 E. Nagel: The Structure of Science (Hackett Publishing,
Indianapolis 1979)

2.38 P.K. Feyerabend: Explanation, reduction and em-
piricism. In: Minnesota Studies in the Philosophy of
Science: Scientific Explanation, Space and Time, Vol.
3, ed. by H. Feigl, G. Maxwell (Univ. Minnesota Press,
Minneapolis 1962) pp. 28–97

2.39 P.K. Feyerabend: How to be a good empiricist –
A plea for tolerance in matters epistemological. In:
Philosophy of Science: The Delaware Seminar, Vol.
2, ed. by B. Baumrin (Interscience, New York 1963)
pp. 3–39

2.40 P.K. Feyerabend: Problems of empiricism, Part II. In:
The Nature and Function of Scientific Theories, ed. by
R.G. Colodny (Univ. Pittsburgh Press, Pittsburgh 1970)
pp. 275–353

2.41 P. Suppes: Introduction to Logic (Van Nostrand, New
York 1957)



Part
A
|2

48 Part A Theoretical Issues in Models

2.42 P. Suppes: A Comparison of the meaning and uses of
models in mathematics and the empirical sciences.
In: The Concept and the Role of the Model in Math-
ematics and the Natural and Social Sciences, ed. by
H. Freudenthal (Reidel, Dordrecht 1961) pp. 163–177

2.43 P. Suppes: Set-Theoretical Structures in Science
(Stanford Univ., Stanford 1967), mimeographed lec-
ture notes

2.44 P. Suppes: Representation and Invariance of Scien-
tific Structures (CSLI Publications, Stanford 2002)

2.45 N.C.A. Da Costa, S. French: The model-theoretic ap-
proach in the philosophy of science, Philos. Sci. 57,
248–265 (1990)

2.46 N.C.A. Da Costa, S. French: Science and Partial Truth,
a Unitary Approach to Models and Scientific Reason-
ing (Oxford Univ. Press, Oxford 2003)

2.47 B.C. Van Fraassen: The Scientific Image (Oxford Univ.
Press, Oxford 1980)

2.48 B.C. Van Fraassen: On the extension of beth’s se-
mantics of physical theories, Philos. Sci. 37, 325–339
(1970)

2.49 M. Friedman: Review of Bas C. van Fraassen: The sci-
entific image, J. Philos. 79, 274–283 (1982)

2.50 J. Worrall: Review article: An unreal image, Br. J. Phi-
los. Sci. 35, 65–80 (1984)

2.51 B.C. Van Fraassen: An Introduction to the Philosophy
of Time and Space, 2nd edn. (Columbia Univ. Press,
New York 1985)

2.52 B.C. Van Fraassen: The semantic approach to sci-
entific theories. In: The Process of Science, ed. by
N.J. Nersessian (Martinus Nijhoff, Dordrecht 1987)
pp. 105–124

2.53 M. Thompson-Jones: Models and the semantic view,
Philos. Sci. 73, 524–535 (2006)

2.54 B.C. Van Fraassen: Laws and Symmetry (Oxford Univ.
Press, Oxford 1989)

2.55 R.N. Giere: Explaining Science: A Cognitive Approach
(The Univ. Chicago Press, Chicago 1988)

2.56 S. French: The structure of theories. In: The Rout-
ledge Companion to the Philosophy of Science, ed.
by S. Psillos, M. Curd (Routledge, London 2008)
pp. 269–280

2.57 M. Suarez: Scientific representation: Against simi-
larity and isomorphism, Int. Stud. Philos. Sci. 17(3),
225–244 (2003)

2.58 S.M. Downes: The importance of models in theoris-
ing: A deflationary semantic view, PSA 1992, Vol. 1,
ed. by D. Hull, M. Forbes, K. Okruhlik (Philosophy of
Science Associaion, Chicago 1992) pp. 142–153

2.59 D. Portides: Scientific models and the semantic view
of scientific theories, Philos. Sci. 72(5), 1287–1298
(2005)

2.60 R. Frigg: Scientific representation and the semantic
view of theories, Theoria 55, 49–65 (2006)

2.61 N.D. Cartwright: The Dappled World: A Study of the
Boundaries of Science (Cambridge Univ. Press, Cam-
bridge 1999)

2.62 M.C. Morrison: Models as autonomous agents. In:
Models as Mediators, ed. by M.S. Morgan, M. Morri-
son (Cambridge Univ. Press, Cambridge 1999) pp. 38–
65

2.63 M.C. Morrison: Modelling nature: Between physics
and the physical world, Philos. Naturalis 35, 65–85
(1998)

2.64 M.C. Morrison: Where have all the theories gone?,
Philos. Sci. 74, 195–228 (2007)

2.65 D. Portides: Models. In: The Routledge Companion to
the Philosophy of Science, ed. by S. Psillos, M. Curd
(Routledge, London 2008) pp. 385–395

2.66 N.D. Cartwright, T. Shomar, M. Suarez: The tool-box
of science. In: Theories and Models In Scientific Pro-
cesses, Poznan Studies, Vol. 44, ed. by E. Herfel,
W. Krajewski, I. Niiniluoto, R. Wojcicki (Rodopi, Am-
sterdam 1995) pp. 137–149

2.67 D. Portides: Seeking representations of phenomena:
Phenomenological models, Stud. Hist. Philos. Sci.
42, 334–341 (2011)

2.68 N.D. Cartwright: Models and the limits of theory:
Quantum hamiltonians and the BCS models of su-
perconductivity. In: Models as Mediators, ed. by
M.S. Morgan, M. Morrison (Cambridge Univ. Press,
Cambridge 1999) pp. 241–281

2.69 M.S. Morgan, M. Morrison (Eds.): Models as Medi-
ators: Perspectives on Natural and Social Science
(Cambridge Univ. Press, Cambridge 1999)

2.70 M. Suarez: The role of models in the application
of scientific theories: Epistemological implications.
In: Models as Mediators: Perspectives on Natural
and Social Science, ed. by M.S. Morgan, M. Morrison
(Cambridge Univ. Press, Cambridge 1999) pp. 168–196

2.71 S. Hartman: Models and stories in hadron physics.
In: Models as Mediators: Perspectives on Natural
and Social Science, ed. by M.S. Morgan, M. Morrison
(Cambridge Univ. Press, Cambridge 1999) pp. 326–
346

2.72 R. Giere: Science Without Laws (Univ. Chicago Press,
Chicago 1999)

2.73 R. Giere: Scientific Perspectivism (Univ. Chicago Press,
Chicago 2006)



Models and R
49

Part
A
|3

3. Models and Representation

Roman Frigg, James Nguyen

Models are of central importance in many scientific
contexts. We study models and thereby discover
features of the phenomena they stand for. For this
to be possible models must be representations:
they can instruct us about the nature of reality only
if they represent the selected parts or aspects of
the world we investigate. This raises an important
question: In virtue of what do scientific models
represent their target systems? In this chapter we
first disentangle five separate questions associ-
ated with scientific representation and offer five
conditions of adequacy that any successful answer
to these questions must meet. We then review the
main contemporary accounts of scientific repre-
sentation – similarity, isomorphism, inferentialist,
and fictionalist accounts – through the lens of
these questions. We discuss each of their attributes
and highlight the problems they face. We finally
outline our own preferred account, and suggest
that it provides the most promising way of ad-
dressing the questions raised at the beginning of
the chapter.
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Models play a central role in contemporary science.
Scientists construct models of atoms, elementary par-
ticles, polymers, populations, genetic trees, economies,
rational decisions, airplanes, earthquakes, forest fires,
irrigation systems, and the world’s climate – there is
hardly a domain of inquiry without models. Models are
essential for the acquisition and organization of scien-
tific knowledge. We often study a model to discover
features of the thing it stands for. How does this work?
The answer is that a model can instruct us about the

nature of its subject matter if it represents the selected
part or aspect of the world that we investigate. So if we
want to understand how models allow us to learn about
the world, we have to come to understand how they rep-
resent.

The problem of representation has generated a siz-
able literature, which has been growing fast in particular
over the last decade. The aim of this chapter is to re-
view this body of work and assess the strengths and
weaknesses of the different proposals. This enterprise



Part
A
|3

50 Part A Theoretical Issues in Models

faces an immediate difficulty: Even a cursory look at
the literature on scientific representation quickly reveals
that there is no such thing as the problem of scientific
representation. In fact, we find a cluster of interrelated
problems. In Sect. 3.1 we try to untangle this web and
get clear on what the problems are and on how they
relate to one another (for a historical introduction to
the issue, see [3.1]). The result of this effort is a list
with five problems and five conditions of adequacy,
which provides the analytical lens through which we
look at the different accounts. In Sect. 3.2 we discuss
Griceanism and stipulative fiat. In Sect. 3.3 we look at
the time-honored similarity approach, and in Sect. 3.4
we examine its modern-day cousin, the structuralist ap-
proach. In Sect. 3.5 we turn to inferentialism, a more
recent family of conceptions. In Sect. 3.6 we discuss
the fiction view of models, and in Sect. 3.7 we consider
the conception of representation-as.

Before delving into the discussion, a number of
caveats are in order. The first is that our discussion
in no way presupposes that models are the sole unit
of scientific representation, or that all scientific repre-
sentation is model-based. Various types of images have
their place in science, and so do graphs, diagrams, and
drawings (Perini [3.2–4] and Elkins [3.5] provide dis-
cussions of visual representation in the sciences). In
some contexts scientists use whatWarmbrōd [3.6] calls
natural forms of representation and what Peirce [3.7]
would have classified as indices: tree rings, fingerprints,
disease symptoms. These are related to thermometer
readings and litmus paper indications, which are com-
monly classified as measurements. Measurements also
provide representations of processes in nature, some-
times together with the subsequent condensation of
measurement results in the form of charts, curves, tables
and the like (Tal [3.8] provides a discussion of measure-
ment). And, last but not least, many would hold that
theories represent too. At this point the vexing problem
of the nature of theories and the relation between theo-
ries and models rears is head again. We refer the reader
to Portides’ contribution to this volume, Chap. 2, for
a discussion of this issue. Whether these other forms of
scientific representation have features in common with
howmodels represent is an interesting question, but this
is a problem for another day. Our aim here is a more
modest one: to understand how models represent. To
make the scope of our investigation explicit we call
the kind of representation we are interested in model-
representation.

The second point to emphasize is that our dis-
cussion is not premised on the claim that all models
are representational; nor does it assume that repre-
sentation is the only (or even primary) function of
models. It has been emphasized variously that models

perform a number of functions other than represen-
tation. To mention but few: Knuuttila [3.9, 10] points
out that the epistemic value of models is not limited
to their representational function and develops an ac-
count that views models as epistemic artifacts that allow
us to gather knowledge in diverse ways; Morgan and
Morrison [3.11] emphasize the role models play in
the mediation between theories and the world; Hart-
mann [3.12] discusses models as tools for theory con-
struction; Peschard [3.13] investigates the way in which
models may be used to construct other models and
generate new target systems; and Bokulich [3.14] and
Kennedy [3.15] present nonrepresentational accounts
of model explanation (Woody [3.16] and Reiss [3.17]
provide general discussions of the relation between rep-
resentation and explanation). Not only do we not see
projects like these as being in conflict with a view that
sees some models as representational; we think that the
approaches are in fact complementary.

Finally, there is a popular myth according to which
a representation is a mirror image, a copy, or an im-
itation of the thing it represents. In this view repre-
sentation is ipso facto realistic representation. This is
a mistake. Representations can be realistic, but they
need not. And representations certainly need not be
copies of the real thing. This, we take it, is the moral
of the satire about the cartographers who produce maps
as large as the country itself only to see them aban-
doned. The story has been told by Lewis Carroll in
Sylvie and Bruno and Jorge Luis Borges in On Exacti-
tude in Science. Throughout this review we encounter
positions that make room for nonrealistic representa-
tion and hence testify to the fact that representation is
a much broader notion than mirroring.

There is, however, a sense in which we presuppose
a minimal form of realism. Throughout the discussion
we assume that target systems exist independently of
human observers, and that they are how they are ir-
respective of what anybody thinks about them. That
is, we assume that the targets of representation exist
independently of the representation. This is a presuppo-
sition not everybody would share. Constructivists (and
other kinds of metaphysical antirealists) assume that
there is no phenomenon independent of its represen-
tation: representations constitute the phenomena they
represent (this view is expounded for instance by Lynch
and Wooglar [3.18]; Giere [3.19] offers a critical dis-
cussion). It goes without saying that an assessment of
the constructivist program is beyond the scope of this
review. It is worth observing, though, that many of the
discussions to follow are by no means pointless from
a constructivist perspective. What in the realist idiom
is conceptualized as the representation of an object in
the world by a model would, from the constructivist
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perspective, turn into the study of the relation between
a model and another representation, or an object con-
stituted by another representation. This is because even
from a constructivist perspective, models and their tar-

gets are not identical, and the fact that targets are
representationally constituted would not obliterate the
differences between a target representation and scien-
tific model.

3.1 Problems Concerning Model-Representation

In this section we say what questions a philosophical
account of model-representation has to answer and re-
flect on what conditions such an answer has to satisfy.
As one would expect, different authors have framed the
problem in different ways. Nevertheless, recent discus-
sions about model-representation have tended to clus-
ter around a relatively well-circumscribed set of issues.
The aim of this section is to make these issues explicit
and formulate five problems that an account of model-
representation has to answer. These problems will help
us in structuring the discussion in later sections and put
views and positions into perspective. In the course of do-
ing so we also articulate five conditions of adequacy that
every account of model-representation has to satisfy.

Models are representations of a selected part or as-
pect of the world. This is the model’s target system.
The first and most fundamental question about a model
therefore is: In virtue of what is a model a represen-
tation of something else? Attention has been drawn
to this issue by Frigg ([3.20, p. 17], [3.21, p. 50]),
Morrison [3.22, p. 70], and Suárez [3.23, p. 230]. To
appreciate the thrust of this question it is instructive to
briefly ponder the same problem in the context of pic-
torial representation. When seeing, say, Soutine’s The
Groom or the Bellboy we immediately realize that it
depicts a man in a red dress. Why is this? Per se the
painting is a plane surface covered with pigments. How
does an arrangement of pigments on a surface represent
something outside the picture frame? Likewise, models,
before being representations of atoms, populations, or
economies, are equations, structures, fictional scenar-
ios, or mannerly physical objects. The problem is: what
turns equations and structures, or fictional scenarios and
physical objects into representations of something be-
yond themselves? It has become customary to phrase
this problem in terms of necessary and sufficient con-
ditions and throughout this review we shall follow suit
(some may balk at this, but it’s worth flagging that the
standard arguments against such an analysis, e.g., those
surveyed in Laurence and Margolis [3.24], lose much
of their bite when attention is restricted to core cases as
we do here). The question then is: What fills the blank
in M is a model-representation of T iff , where M
stands for model and T for target system?

To spare ourselves difficulties further down the
line, this formulation needs to be adjusted in light of

a crucial condition of adequacy that any account of
model-representation has to meet. The condition is that
models represent in a way that allows us to form hy-
potheses about their target systems. We can generate
claims about a target system by investigating a model
that represents it. Many investigations are carried out on
models rather than on reality itself, and this is done with
the aim of discovering features of the things models
stands for. Every acceptable theory of scientific repre-
sentation has to account for how reasoning conducted
on models can yield claims about their target systems.
Let us call this the surrogative reasoning condition.

The term surrogative reasoning was introduced
by Swoyer [3.25, p. 449], and there seems to be
widespread agreement on this point (although Callen-
der and Cohen [3.26], whose views are discussed in
Sect. 3.3, provide a noteworthy exception). To mention
just a few writers on the subject: Bailer-Jones [3.27,
p. 59] emphasizes that models “tell us something
about certain features of the world” (original empha-
sis). Boliskna [3.28] and Contessa [3.29] both call
models epistemic representations; Frigg ([3.21, p. 51],
[3.30, p. 104]) sees the potential for learning as an es-
sential explanandum for any theory of representation;
Liu [3.31, p. 93] emphasizes that the main role for mod-
els in science and technology is epistemic;Morgan and
Morrison [3.11, p. 11] regard models as investigative
tools; Suárez ([3.23, p. 229], [3.32, p. 772]) submits that
models license specific inferences about their targets;
and Weisberg [3.33, p. 150] observes that the “model-
world relation is the relationship in virtue of which
studying a model can tell us something about the na-
ture of a target system”. This distinguishes models from
lexicographical representations such as words. Study-
ing the internal constitution of a model can provide
information about the target. Not so with words. The
properties of a word (consisting of so and so many let-
ters and syllables, occupying this or that position in
a dictionary, etc.) do not matter to its functioning as
a word; and neither do the physical properties of the ink
used to print words on a piece of paper. We can replace
one word by another at will (which is what happens in
translations from one language to another), and we can
print words with other methods than ink on paper. This
is possible because the properties of a word as an object
do not matter to its semantic function.
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This gives rise to a problem for the schema M
is a model-representation of T iff . The prob-
lem is that any account of representation that fills the
blank in a way that satisfies the surrogative reason-
ing condition will almost invariably end up covering
other kinds of representations too. Geographical maps,
graphs, diagrams, charts, drawings, pictures, and pho-
tographs often provide epistemic access to features of
the items they represent, and hence are likely to fall
under an account of representation that explains this
sort of reasoning. This is a problem for an analy-
sis of model-representation in terms of necessary and
sufficient conditions because if something that is not
prima facie a model (for instance a map or a photo-
graph) satisfies the conditions of an account of model-
representation, then one either has to conclude that the
account fails because it does not provide necessary con-
ditions, or that first impressions are wrong and other
representations (such as maps or photographs) are in
fact model-representations.

Neither of these options is appealing. To avoid this
problem we follow a suggestion of Contessa’s [3.29]
and broaden the scope of the investigation. Rather
than analyzing the relatively narrow category of model-
representation, we analyze the broader category of epis-
temic representation. This category comprises model-
representations, but it also includes other representa-
tions that allow for surrogative reasoning. The task then
becomes to fill the blank in M is an epistemic repre-
sentation of T iff . For brevity we use R.M; T/ as
a stand in forM is an epistemic representation of T , and
so the biconditional becomes R.M;T/ iff . We call
the general problem of figuring out in virtue of what
something is an epistemic representation of something
else the epistemic representation problem (ER-problem,
for short), and the above biconditional the ER-scheme.
So one can say that the ER is to fill the blank in the
ER-scheme. Frigg [3.21, p. 50] calls this the “enigma
of representation” and in Suárez’s [3.23, p. 230] termi-
nology this amounts to identifying the constituents of
a representation (although he questions whether both
necessary and sufficient conditions can be given; see
Sect. 3.5 for further discussion on how his views fit into
the ER-framework).

Analyzing the larger category of epistemic rep-
resentation and placing model-representations in that
category can be seen as giving rise to a demarcation
problem for scientific representations: How do scien-
tific model-representations differ from other kinds of
epistemic representations? We refer to this question as
the representational demarcation problem. Callender
and Cohen [3.26, p. 69] formulate this problem, but
then voice skepticism about our ability to solve it [3.26,
p. 83]. The representational demarcation problem has

received little, if any, attention in the recent literature
on scientific representation, which would suggest that
other authors either share Callender and Cohen’s skep-
ticism, or regard it as a nonissue to begin with. The
latter seems to be implicit in approaches that discuss
scientific representation alongside pictorial representa-
tion such as Elgin [3.34], French [3.35], Frigg [3.21],
Suárez [3.32], and van Fraassen [3.36]. But a dismissal
of the problem is in no way a neutral stance. It amounts
to no less than the admission that model-representations
are not fundamentally different from other epistemic
representations, or that we are unable to pin down what
the distinguishing features are. Such a stance should be
made explicit and, ideally, justified.

Two qualifications concerning the ER-scheme need
to be added. The first concerns its flexibility. Some
might worry that posing the problem in this way pre-
judges what answers can be given. The worry comes in
a number of variants. A first variant is that the scheme
presupposes that representation is an intrinsic relation
between M and T (i. e., a relation that only depends on
intrinsic properties of M and T and on how they re-
late to one another rather than on how they relate to
other objects) or even that it is naturalisable (a notion
further discussed in Sect. 3.3). This is not so. In fact,
R might depend on any number of factors other than
M and T themselves, and on ones that do not qual-
ify as natural ones. To make this explicit we write the
ER-scheme in the form R.M;T/ iff C.M;T; x1; : : : ; xn/,
where n is a natural number and C is an (nC2)-ary rela-
tion that grounds representation. The xi can be anything
that is deemed relevant to epistemic representation, for
instance a user’s intentions, standards of accuracy, and
specific purposes. We call C the grounding relation of
an epistemic representation.

Before adding a second qualification, let us in-
troduce the next problem in connection with model-
representation. Even if we restrict our attention to
scientific epistemic representations (if they are found to
be relevantly different to nonscientific epistemic repre-
sentations as per the demarcation problem above), not
all representations are of the same kind. In the case of
visual representations this is so obvious that it hardly
needs mention: An Egyptian mural, a two-point per-
spective ink drawing, a pointillist oil painting, an archi-
tectural plan, and a road map represent their respective
targets in different ways. This pluralism is not limited to
visual representations. Model-representations do not all
seem to be of the same kind either.Woody [3.37] argues
that chemistry as a discipline has its own ways to repre-
sent molecules. But differences in style can also appear
in models from the same discipline.Weizsäcker’s liquid
drop model represents the nucleus of an atom in a man-
ner that seems to be different from the one of the shell
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model. A scale model of the wing of a plane represents
the wing in a way that is different from how a mathe-
matical model of its cross section does. Or Phillips and
Newlyn’s famous hydraulic machine and Hicks’ math-
ematical models both represent a Keynesian economy
but they seem to do so in different ways. This gives
rise to the question: What styles are there and how can
they be characterized? This is the problem of style [3.21,
p. 50]. There is no expectation that a complete list of
styles be provided in response. Indeed, it is unlikely
that such a list can ever be drawn up, and new styles
will be invented as science progresses. For this rea-
son a response to the problem of style will always be
open-ended, providing a taxonomy of what is currently
available while leaving room for later additions.

With this in mind we can now turn to the second
qualification concerning the ER-scheme. The worry is
this: The scheme seems to assume that representation
is a monolithic concept and thereby make it impossible
to distinguish between different kinds of representation.
The impression is engendered by the fact the scheme
asks us to fill a blank, and blank is filled only once. But
if there are different kinds of representations, we should
be able to fill the blank in different ways on different
occasions because a theory of representation should not
force upon us the view that the different styles are all
variations of one overarching concept of representation.

The ER-scheme is more flexible than it appears at
first sight. There are at least three ways in which dif-
ferent styles of representations can be accommodated.
For the sake of illustration, and to add some palpabil-
ity to an abstract discussion, let us assume that we have
identified two styles: analogue representation and ide-
alized representation. The result of an analysis of these
relations is the identification of their respective ground-
ing relations. Let CA.M;T; : : : / and CI.M;T; : : : / be
these relations. The first way of accommodating them
in the ER-scheme is to fill the blank with the disjunction
of the two: R.M;T/ iff CA.M;T; : : : / or CI.M;T; : : : /.
In plain English: M represents T if and only if M is
an analogue representation of T or M is an idealized
representation of T . This move is possible because,
first appearances notwithstanding, nothing hangs on
the grounding relation being homogeneous. The rela-
tion can be as complicated as we like and there is no
prohibition against disjunctions. In the above case we
have CD ŒCA or CI�. Furthermore, the grounding re-
lation could even be an open disjunction. This would
help accommodating the above observation that a list
of styles is potentially open-ended. In that case there
would be a grounding relation for each style and the
scheme could be written as R.M; T/ iff C1.M;T : : : /
or C2.M;T : : : / or C3.M;T : : : / or : : : , where the Ci

are the grounding relations for different styles. This

is not a new scheme; it’s the old scheme where CD
ŒC1 or C2 or C3 or : : : � is spelled out.

Alternatively one could formulate a different
scheme for every kind of representation. This would
amount to changing the scheme slightly in that one does
not analyze epistemic representation per se. Instead one
would analyze different kinds of epistemic representa-
tions. Consider the above example again. Let R1.M;T/
stand for M is an analogue epistemic representation of
T and R2.M;T/ for M is an idealized epistemic repre-
sentation of T. The response to the ER-problem then
consists in presenting the two biconditionals R1.M;T/
iff CA and R2.M;T/ iff CI. This generalizes straight-
forwardly to the case of any number of styles, and the
open-endedness of the list of styles can be reflected in
the fact that an open-ended list of conditionals of the
form Ri.M;T/ iff Ci can be given, where the index
ranges over styles.

In contrast with the second option, which pulls in
the direction of more diversity, the third aims for more
unity. The crucial observation here is that the ground-
ing relation can in principle be an abstract relation that
can be concretized in different ways, or a determinable
that can have different determinates. On the third view,
then, the concept of representation is like the concept
of force (which is abstract in that in a concrete situ-
ation force is gravity or electromagnetic attraction or
some other specific force), or like color (where a col-
ored object must be blue or green or ). This view
would leave R.M;T/ iff C.M;T; x1; : : : ; xn/ unchanged
and take it as understood that C is an abstract relation.

At this point we do not adjudicate between these
options. Each has its own pros and cons, and which
one is the most convenient to work with depends on
one’s other philosophical commitments. What matters
is that the ER-scheme does have the flexibility to ac-
commodate different representational styles, and that it
can in fact accommodate them in at least three different
ways.

The next problem in line for the theory of model-
representation is to specify standards of accuracy.
Some representations are accurate; others aren’t. The
Schrödinger model is an accurate representation of the
hydrogen atom; the Thomson model isn’t. On what
grounds do we make such judgments? In Morrison’s
words: “how do we identify what constitutes a accurate
representation?” [3.22, p. 70]. We call this the prob-
lem of standards of accuracy. Answering this question
might make reference to the purposes of the model and
model user, and thus it is important to note that by accu-
racy we mean something that can come in degrees and
may be context dependent. Providing a response to the
problem of accuracy is a crucial aspect of an account of
epistemic representation.
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This problem goes hand in hand with a second
condition of adequacy: the possibility of misrepresen-
tation. Asking what makes a representation an accurate
representation already presupposes that inaccurate rep-
resentations are representations too. And this is how it
should be. If M does not accurately portray T , then it
is a misrepresentation but not a nonrepresentation. It is
therefore a general constraint on a theory of epistemic
representation that it has to make misrepresentation
possible. This can be motivated by a brief glance at
the history of science, but is plausibly also part of the
concept of representation, and as such is found in dis-
cussions of other kinds of representation (Stitch and
Warfield [3.38, pp. 6–7], for instance, suggest that a the-
ory of mental representation should be able to account
for misrepresentation, as do Sterelny andGriffiths [3.39,
p. 104] in their discussion of genetic representation).
A corollary of this requirement is that representation is
a wider concept than accurate representation and that
representation cannot be analyzed in terms of accurate
representation.

A related condition concerns models that misrepre-
sent in the sense that they lack target systems. Models
of ether, phlogiston, four-sex populations, and so on, are
all deemed scientific models, but ether, phlogiston, and
four-sex populations don’t exist. Such models lack (ac-
tual) target systems, and one hopes that an account of
epistemic representation would allow us to understand
how these models work. We call this the problem of tar-
getless models (or models without targets).

The fourth condition of adequacy for an account
of model-representation is that it must account for
the directionality of representation. Models are about
their targets, but (at least in general) targets are not
about their models. So there is an essential direc-
tionality to representations, and an account of model-
representation has to identify the root of this direction-
ality. We call this the requirement of directionality.

Many scientific models are highly mathematized,
and their mathematical aspects are crucial to their cog-
nitive as well as their representational function. This
forces us to reconsider a time-honored philosophical
puzzle: the applicability of mathematics in the empirical
sciences. Even though the problem can be traced back
at least to Plato’s Timaeus, its canonical modern expres-
sion is due toWigner, who famously remarked that “the
enormous usefulness of mathematics in the natural sci-
ences is something bordering on the mysterious and that
there is no explanation for it” [3.40, p. 2]. One need not
go as far as seeing the applicability of mathematics as
an inexplicable miracle, but the question remains: How
does mathematics hook onto the world?

The recent discussion of this problem has taken
place in a body of literature that grew out of the philos-

ophy of mathematics (see Shapiro [3.41, Chap. 8] for
a review). But, with the exception of Bueno and Coly-
van [3.42], there has been little contact with the liter-
ature on scientific modeling. This is a regrettable state
of affairs. The question of how a mathematized model
represents its target implies the question of how mathe-
matics applies to a physical system. So rather than sep-
arating the question of model-representation from the
problem of the applicability of mathematics and dealing
with them in separate discussions, they should be seen
as the two sides of the same coin and be dealt with in
tandem. For this reason, our fifth and final condition of
adequacy is that an account of representation has to ex-
plain how mathematics is applied to the physical world.
We call this the applicability of mathematics condition.

In answering the above questions one invariably
runs up against a further problem, the problem of on-
tology: What kinds of objects are models? Are they
structures in the sense of set theory, fictional entities,
descriptions, equations or yet something else? Or are
there no models at all? While some authors develop
an ontology of models, others reject an understand-
ing of models as things and push a program that can
be summed up in the slogan modeling without mod-
els [3.43]. There is also no presupposition that all
models be of the same kind. Some models are material
objects, some are things that one holds in one’s head
rather than one’s hands (to use Hacking’s phrase [3.44,
p. 216]). For the most part, the focus in debates about
representation has been on nonmaterial models, and
we will follow this convention. It is worth emphasiz-
ing, however, that also the seemingly straightforward
material models raise interesting philosophical ques-
tions: Rosenblueth and Wiener [3.45] discuss the cri-
teria for choosing an object as a model; Ankeny and
Leonelli [3.46] discuss issues that arise when using
organisms as models; and the contributors to [3.47] dis-
cuss representation in the laboratory.

A theory of representation can recognize different
kinds of models, or indeed no models at all. The re-
quirement only asks us to be clear on our commitments
and provide a list with things, if any, that we recognize
as models and give an account of what they are in case
these entities raise questions (what exactly do we mean
by something that one holds in one’s head rather than
one’s hands?).

In sum, an account of model-representation has to
do the following:

1. Provide an answer to the epistemic representation
problem (filling the blank in ER-scheme: M is an
epistemic representation of T iff . . . ).

2. Take a stand on the representational demarcation
problem (the question of how scientific epistemic
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representations differ from other kinds of epistemic
representations).

3. Respond to the problem of style (what styles are
there and how can they be characterized?).

4. Formulate standards of accuracy (how do we iden-
tify what constitutes an accurate representation?).

5. Address the problem of ontology (what kinds of ob-
jects are models?).

Any satisfactory answer to these five issues will
have to meet the following five conditions of adequacy:

1. Surrogative reasoning condition (models represent
their targets in a way that allows us to generate hy-
potheses about them).

2. Possibility of misrepresentation (if M does not ac-
curately represent T , then it is a misrepresentation
but not a nonrepresentation).

3. Targetless models (what are we to make of scientific
representations that lack targets?).

4. Requirement of directionality (models are about
their targets, but targets are not about their mod-
els).

5. Applicability of mathematics condition (how the
mathematical apparatus used in M latches onto the
physical world).

To frame the problem in this way is not to say that
these are separate and unrelated issues, which can be
dealt with one after the other in roughly the same way
in which we first buy a ticket, walk to the platform and
then take a train. This division is analytical, not factual.
It serves to structure the discussion and to assess pro-
posals; it does not imply that an answer to one of these
questions can be dissociated from what stance we take
on the other issues.

3.2 General Griceanism and Stipulative Fiat

Callender and Cohen [3.26] submit that the entire de-
bate over scientific representation has started on the
wrong foot. They claim that scientific representation
is not different from “artistic, linguistic, and culinary
representation” and in fact “there is no special problem
about scientific representation” [3.26, p. 67]. Underly-
ing this claim is a position Callender and Cohen call
General Griceanism (GG). The core of GG is the reduc-
tive claim that most representations we encounter are
“derivative from the representational status of a privi-
leged core of representations” [3.26, p. 70]. GG then
comes with a practical prescription about how to pro-
ceed with the analysis of a representation [3.26, p. 73]:

“The General Gricean view consists of two stages.
First, it explains the representational powers of
derivative representations in terms of those of fun-
damental representations; second, it offers some
other story to explain representation for the funda-
mental bearers of content.”

Of these stages only the second requires serious
philosophical work, and this work is done in the phi-
losophy of mind because the fundamental form of
representation is mental representation.

Scientific representation is a derivative kind of rep-
resentation [3.26, pp. 71,75] and hence falls under the
first stage of the above recipe. It is reduced to mental
representation by an act of stipulation [3.26, pp. 73–74]:

“Can the salt shaker on the dinner table repre-
sent Madagascar? Of course it can, so long as you
stipulate that the former represents the latter. [. . . ]
Can your left hand represent the Platonic form of

beauty? Of course, so long as you stipulate that the
former represents the latter. [. . . ] On the story we
are telling, then, virtually anything can be stipulated
to be a representational vehicle for the representa-
tion of virtually anything [. . . ]; the representational
powers of mental states are so wide-ranging that
they can bring about other representational relations
between arbitrary relata by dint of mere stipulation.
The upshot is that, once one has paid the admittedly
hefty one-time fee of supplying a metaphysics of
representation for mental states, further instances of
representation become extremely cheap.”

So explaining any form of representation other than
mental representation is a triviality – all it takes is an
act of “stipulative fiat” [3.26, p. 75]. This supplies their
answer to the ER-problem:

Definition 3.1 Stipulative fiat
A scientific model M represents a target system T iff
a model user stipulates that M represents T .

On this view, scientific representations are cheap to
come by. The question therefore arises why scientists
spend a lot of time constructing and studying complex
models if they might just as well take a salt shaker and
turn it into a representation of, say, a Bose–Einstein
condensate by an act of fiat. Callender andCohen admit
that there are useful and not so useful representations,
and that salt shakers belong the latter group. However,
they insist that this has nothing to do with representa-
tion [3.26, p. 75]:
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“The questions about the utility of these representa-
tional vehicles are questions about the pragmatics of
things that are representational vehicles, not ques-
tions about their representational status per se.”

So, in sum, scientific representation [3.26, p. 78]

“is constituted in terms of a stipulation, together
with an underlying theory of representation for
mental states, isomorphism, similarity, and infer-
ence generation are all idle wheels.”

The first question we are faced with when assessing
this account is the relation between GG and stipula-
tive fiat (Definition 3.1). Callender and Cohen do not
comment on this issue, but that they mention both in
the same breath would suggest that they regard them as
one and the same doctrine, or at least as the two sides
of the same coin. This is not so. Stipulative fiat (Def-
inition 3.1) is just one way of fleshing out GG, which
only requires that there be some explanation of how
derivative representations relate to fundamental repre-
sentations; GG does not require that this explanation
be of a particular kind, much less that it consists of
nothing but an act of stipulation ([3.48, pp. 77–78],
[3.49, p. 244]). Even if GG is correct, it doesn’t fol-
low that stipulative fiat is a satisfactory answer to the
ER-problem. Model-representation can, in principle, be
reduced to fundamental representation in many differ-
ent ways (some of which we will encounter later in
this chapter). Conversely, the failure of stipulate fiat
does not entail that we must reject GG: one can up-
hold the idea that an appeal to the intentions of model
users is a crucial element in an account of scientific
representation even if one dismisses stipulative fiat
(Definition 3.1).

Let us now examine stipulative fiat (Definition 3.1).
Callender and Cohen emphasize that anything can be
a representation of anything else [3.26, p. 73]. This is
correct. Things that function as models don’t belong
to a distinctive ontological category, and it would be
a mistake to think that that some objects are, intrin-
sically, representations and other are not. This point
has been made by others too (including Frigg [3.50,
p. 99], Giere [3.51, p. 269], Suárez [3.32, p. 773],
Swoyer [3.25, p. 452], and Teller [3.52, p. 397]) and,
as we shall see, it is a cornerstone of several alternative
accounts of representation.

But just because anything can, in principle, be
a representation of anything else, it doesn’t follow that
a mere act of stipulation suffices to turn M into a rep-
resentation of T . Furthermore, it doesn’t follow that an
object elevated to the status of a representation by an
act of fiat represents its target in a way that can ap-
propriately be characterized as an instance of epistemic

representation. We discuss both concerns in reverse
order.

Stipulative fiat (Definition 3.1) fails to meet the
surrogative reasoning condition: it fails to provide an
account of how claims about Madagascar could be ex-
tracted from reasoning about the salt shaker. Even if
we admit that stipulative fiat (Definition 3.1) estab-
lishes that models denote their targets (and as we will
see soon, there is a question about this), denotation
is not sufficient for epistemic representation. Both the
word Napoleon and Jacques-Louis David’s portrait of
Napoleon serve to denote the French general. But this
does not imply that they represent him in the same
way, as noted by Toon [3.48, pp. 78–79]. Bueno and
French [3.53, pp. 871–874] gesture in the same direc-
tion when they point to Peirce’s distinction between
icon, index and symbol and dismiss Callender and Co-
hen’s views on grounds that they cannot explain the
obvious differences between different kinds of repre-
sentations.

Supporters of stipulative fiat (Definition 3.1) could
try to mitigate the force of this objection in two ways.
First, they could appeal to additional facts about the
object, as well as its relation to other items, in or-
der to account for surrogative reasoning. For instance,
the salt shaker being to the right of the pepper mill
might allow us to infer that Madagascar is to the east
of Mozambique. Moves of this sort, however, invoke
(at least tacitly) a specifiable relation between features
of the model and features of the target (similarity, iso-
morphism, or otherwise), and an invocation of this kind
goes beyond mere stipulation. Second, the last quota-
tion from Callender and Cohen suggests that they might
want to relegate surrogative reasoning into the realm of
pragmatics and deny that it is part of the relation prop-
erly called epistemic representation. This, however, in
effect amounts to a removal of the surrogative reasoning
condition from the desiderata of an account of scientific
representation, and we have argued in Sect. 3.1 that sur-
rogative reasoning is one of the hallmarks of scientific
representation. And even if it were pragmatics, we still
would want an account of how it works.

Let us now turn to our first point, that a mere act
of stipulation is insufficient to turnM into a representa-
tion of T . We take our cue from a parallel discussion in
the philosophy of language, where it has been pointed
out that it is not clear that stipulation is sufficient to
establish a denotational relationship (which is weaker
than epistemic representation). A position similar to
stipulative fiat (Definition 3.1) faces what is known as
the Humpty Dumpty problem, named in reference to
Lewis Carroll’s discussion of Humpty using the word
glory to mean a nice knockdown argument [3.54, 55]
(it’s worth noting that this debate concerns meaning,
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rather than denotation, but it’s plausible that it can be
reconstructed in terms of the latter). If stipulation is all
that matters, then as long as Humpty simply stipulates
that glory means a nice knockdown argument, then it
does so. And this doesn’t seem to be the case. Even if
the utterance glory could mean a nice knockdown argu-
ment – if, for example, Humpty was speaking a different
language – in the case in question it doesn’t, irre-
spective of Humpty’s stipulation. In the contemporary
philosophy of language the discussion of this prob-
lem focuses more on the denotation of demonstratives
rather than proper names, and work in that field focuses
on propping up existing accounts so as to ensure that
a speaker’s intentions successfully establish the deno-
tation of demonstratives uttered by the speaker [3.56].
Whatever the success of these endeavors, their mere ex-
istence shows that successfully establishing denotation
requires moving beyond a bare appeal to stipulation, or
brute intention. But if a brute appeal to intentions fails
in the case of demonstratives – the sorts of terms that
such an account would most readily be applicable to –
then we find it difficult to see how stipulative fiat (Defi-
nition 3.1) will establish a representational relationship
between models and their targets. Moreover, this whole
discussion supposed that an intention-based account of
denotation is the correct one. This is controversial – see
Reimer and Michaelson [3.57] for an overview of dis-
cussions of denotation in the philosophy of language.
If this is not the correct way to think about denotation,

then stipulative fiat (Definition 3.1) will fail to get off
the ground at all.

It now pays that we have separated GG from stipu-
lative fiat (Definition 3.1). Even though stipulative fiat
(Definition 3.1) does not provide an adequate answer
to the ER-problem, one can still uphold GG. As Cal-
lender and Cohen note, all that it requires is that there
is a privileged class of representations (they take them
to be mental states but are open to the suggestion that
they might be something else [3.26, p. 82]), and that
other types of representations owe their representational
capacities to their relationship with the primitive ones.
So philosophers need an account of how members of
this privileged class of representations represent, and
how derivative representations, which includes scien-
tific models, relate to this class.

This is a plausible position, and when stated like
this, many recent contributors to the debate on scientific
representation can be seen as falling under the um-
brella of GG. As we will see below, the more developed
versions of the similarity (Sect. 3.3) and isomorphism
(Sect. 3.4) accounts of scientific representation make
explicit reference to the intentions and purposes of
model users, even if their earlier iterations did not.
And so do the accounts discussed in the latter sections,
where the intentions of model users (in a more com-
plicated manner than that suggested by stipulative fiat
(Definition 3.1)) are invoked to establish epistemic rep-
resentation.

3.3 The Similarity Conception

Moving on from the Gricean account we now turn to
the similarity conception of scientific representation (in
aesthetics the term resemblance is used more com-
monly than similarity, but there does not seem to be
a substantive difference between the notions, and we
use the terms as synonyms throughout). Similarity and
representation initially appear to be two closely related
concepts, and invoking the former to ground the latter
has a philosophical lineage stretching back at least as
far as Plato’s The Republic.

In its most basic guise the similarity conception
of scientific representation asserts that scientific mod-
els represent their targets in virtue of being similar to
them. This conception has universal aspirations in that
it is taken to account for epistemic representation across
a broad range of different domains. Paintings, statues,
and drawings are said to represent by being similar to
their subjects, (see Abell [3.58] and Lopes [3.59] for rel-
atively current discussions of similarity in the context of
visual representation). And recently Giere, one of the

view’s leading contemporary proponents, proclaimed
that it covers scientific models alongside “words, equa-
tions, diagrams, graphs, photographs, and, increas-
ingly, computer-generated images” [3.60, p. 243] (see
also Giere [3.61, p. 272], and for further discussion
Toon [3.49, pp. 249–250]). So the similarity view re-
pudiates the demarcation problem and submits that
the same mechanism, namely similarity, underpins dif-
ferent kinds of representation in a broad variety of
contexts. (Sometimes the similarity view is introduced
by categorizing models as icons in Peirce’s sense, and,
as Kralemann and Lattmann point out, icons represent
“on the basis of a similarity relation between them-
selves and their objects” [3.62, p. 3398].)

The view also offers an elegant account of surroga-
tive reasoning. Similarities between model and target
can be exploited to carry over insights gained in the
model to the target. If the similarity betweenM and T is
based on shared properties, then a property found in M
would also have to be present in T; and if the similar-
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ity holds between properties themselves, then T would
have to instantiate properties similar to M (however, it
is worth noting that this kind of knowledge transfer can
cause difficulties in some contexts, Frigg et al. [3.63]
discuss these difficulties in the context of nonlinear dy-
namic modeling).

However, appeal to similarity in the context of rep-
resentation leaves open whether similarity is offered as
an answer to the ER-problem, the problem of style, or
whether it is meant to set standards of accuracy. Pro-
ponents of the similarity account typically have offered
little guidance on this issue. So we examine each op-
tion in turn and ask whether similarity offers a viable
answer. We then turn to the question of how the simi-
larity view deals with the problem of ontology.

3.3.1 Similarity and ER-Problem

Understood as response to the ER-problem, a similarity
view of representation amounts to the following:

Definition 3.2 Similarity 1
A scientific model M represents a target T iff M and T
are similar.

A well-known objection to this account is that similar-
ity has the wrong logical properties. Goodman [3.64,
pp. 4–5] submits that similarity is symmetric and re-
flexive yet representation isn’t. If object A is similar to
object B, then B is similar to A. But if A represents B,
then B need not (and in fact in most cases does not)
represent A: the Newtonian model represents the so-
lar system, but the solar system does not represent the
Newtonian model. And everything is similar to itself,
but most things do not represent themselves. So this
account does not meet our third condition of adequacy
for an account of scientific representation insofar as it
does not provide a direction to representation. (Simi-
lar problems also arise in connection with other logical
properties, e.g., transitivity; see Frigg [3.30, p. 31] and
Suárez [3.23, pp. 232–233].)

Yaghmaie [3.65] argues that this conclusion – along
with the third condition itself – is wrong: epistemic rep-
resentation is symmetric and reflexive (he discusses this
in the context of the isomorphism view of represen-
tation, which we turn to in the next section, but the
point applies here as well). His examples are drawn
from mathematical physics, and he presents a detailed
case study of a symmetric representation relation be-
tween quantum field theory and statistical mechanics.
His case raises interesting questions, but even if one
grants that Yaghmaie has identified a case where repre-
sentation is reflexive and symmetrical it does not follow
that representation in general is. The photograph in

Jane’s passport represents Jane; but Jane does not rep-
resent her passport photograph; and the same holds true
for myriads of other representations. Goodman is cor-
rect in pointing out that typically representation is not
symmetrical and reflexive: a target T does not represent
modelM just becauseM represents T .

A reply diametrically opposed to Yaghmaie’s
emerges from the writings of Tversky and Weisberg.
They accept that representation is not symmetric, but
dispute that similarity fails on this count. Using a grad-
ual notion of similarity (i. e., one that allows for state-
ments like A is similar to B to degree d), Tversky found
that subjects in empirical studies judged that North Ko-
rea was more similar to China than China was to North
Korea [3.66]; similarly Poznic [3.67, Sect. 4.2] points
out with reference to the characters in a Polanski movie
that the similarity relation between a baby and the father
need not be symmetric.

So allowing degrees into ones notion of similarity
makes room for an asymmetry (although degrees by
themselves are not sufficient for asymmetry; metric-
based notions are still symmetric). This raises the ques-
tion of how to analyze similarity. We discuss this thorny
issue in some detail in the next subsection. For now
we concede the point and grant that similarity need not
always be symmetrical. However, this does not solve
Goodman’s problem with reflexivity (as we will see on
Weisberg’s notion of similarity everything is maximally
similar to itself); nor does it, as will see now, solve other
problems of the similarity account.

However the issue of logical properties is resolved,
there is another serious problem: similarity is too inclu-
sive a concept to account for representation. In many
cases neither one of a pair of similar objects repre-
sents the other. Two copies of the same book are similar
but neither represents the other. Similarity between
two items is not enough to establish the requisite re-
lationship of representation; there are many cases of
similarity where no representation is involved. And this
won’t go away even if similarity turns out to be non-
symmetric. That North Korea is similar to China (to
some degree) does not imply that North Korea rep-
resents China, and that China is not similar to North
Korea to the same degree does not alter this conclusion.

This point has been brought home in a now-classical
thought experiment due to Putnam [3.68, pp. 1–3] (but
see also Black [3.69, p. 104]). An ant is crawling on
a patch of sand and leaves a trace that happens to resem-
ble Winston Churchill. Has the ant produced a picture
of Churchill? Putnam’s answer is that it didn’t because
the ant has never seen Churchill and had no intention to
produce an image of him. Although someone elsemight
see the trace as a depiction of Churchill, the trace itself
does not represent Churchill. This, Putnam concludes,
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shows that “[s]imilarity [. . . ] to the features of Winston
Churchill is not sufficient to make something represent
or refer to Churchill” [3.68, p. 1]. And what is true of
the trace and Churchill is true of every other pair of
similar items: similarity on its own does not establish
representation.

There is also a more general issue concerning simi-
larity: it is too easy to come by. Without constraints on
what counts as similar, any two things can be consid-
ered similar to any degree [3.70, p. 21]. This, however,
has the unfortunate consequence that anything repre-
sents anything else because any two objects are similar
in some respect. Similarity is just too inclusive to ac-
count for representation. An obvious response to this
problem is to delineate a set of relevant respects and
degrees to which M and T have to be similar. This sug-
gestion has been made explicitly by Giere [3.71, p. 81]
who suggests that models come equipped with what he
calls theoretical hypotheses, statements asserting that
model and target are similar in relevant respects and to
certain degrees. This idea can be molded into the fol-
lowing definition:

Definition 3.3 Similarity 2
A scientific model M represents a target T iff M and T
are similar in relevant respects and to the relevant de-
grees.

On this definition one is free to choose one’s respects
and degrees so that unwanted similarities drop out
of the picture. While this solves the last problem, it
leaves the others untouched: similarity in relevant re-
spects and to the relevant degrees is reflexive (and
symmetrical, depending on one’s notion of similar-
ity); and presumably the ant’s trace in the sand is still
similar to Churchill in the relevant respects and de-
grees but without representing Churchill. Moreover,
similarity 2 (Definition 3.3) introduces three new prob-
lems.

First, a misrepresentation is one that portrays its
target as having properties that are not similar in the
relevant respects and to the relevant degrees to the
true properties of the target. But then, on similar-
ity 2 (Definition 3.3), M is not a representation at
all. Ducheyne [3.72] embraces this conclusion when
he offers a variant of a similarity account that explic-
itly takes the success of the hypothesized similarity
between a model and its target to be a necessary con-
dition on the model representing the target. In Sect. 3.2
we argued that the possibility of misrepresentation is
a condition of adequacy for any acceptable account of
representation and so we submit that misrepresentation
should not be conflated with nonrepresentation ([3.20,
p. 16], [3.23, p. 235]).

Second, similarity in relevant respects and to the rel-
evant degrees does not guarantee that M represents the
right target. As Suárez points out [3.23, pp. 233–234],
even a regimented similarity can obtain with no cor-
responding representation. If John dresses up as Pope
Innocent X (and he does so perfectly), then he resem-
bles Velázquez’s portrait of the pope (at least in as far
as the pope himself resembled the portrait). In cases like
these, which Suárez calls mistargeting, a model repre-
sents one target rather than another, despite the fact that
both targets are relevantly similar to the model. Like in
the case of Putnam’s ant, the root cause of the prob-
lem is that the similarity is accidental. In the case of
the ant, the accident occurs at the representation end of
the relation, whereas in the case of John’s dressing up
the accidental similarity occurs at the target end. Both
cases demonstrate that similarity 2 (Definition 3.3) can-
not rule out accidental representation.

Third, there may simply be nothing to be similar to
because some representations represent no actual ob-
ject [3.64, p. 26]. Some paintings represent elves and
dragons, and some models represent phlogiston and the
ether. None of these exist. As Toon points out, this is
a problem in particular for the similarity view [3.49,
pp. 246–247]: models without objects cannot represent
what they seem to represent because in order for two
things to be similar to each other both have to exist. If
there is no ether, then an ether model cannot be similar
to the ether.

It would seem that at least the second problem could
be solved by adding the requirement that M denote T
(as considered, but not endorsed, by Goodman [3.64,
pp. 5–6]). Amending the previous definition accord-
ingly yields:

Definition 3.4 Similarity 3
A scientific model M represents a target T iff M and T
are similar in relevant respects and to the relevant de-
grees andM denotes T .

This account would also solve the problem with reflex-
ivity (and symmetry), because denotation is directional
in a way similarity is not. Unfortunately similarity 3
(Definition 3.4) still suffers from the first and the third
problems. It would still lead to the conflation of mis-
representatios with nonrepresentations because the first
conjunct (similar in the relevant respects) would still
be false. And a nonexistent system cannot be denoted
and so we have to conclude that models of, say, the
ether and phlogiston represent nothing. This seems an
unfortunate consequence because there is a clear sense
in which models without targets are about something.
Maxwell’s writings on the ether provide a detailed and
intelligible account of a number of properties of the
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ether, and these properties are highlighted in the model.
If ether existed then similarity 3 (Definition 3.4) could
explain why these were important by appealing to them
as being relevant for the similarity between an ether
model and its target. But since ether does not, no such
explanation is offered.

A different version of the similarity view sets aside
the moves made in similarity 3 (Definition 3.4) and tries
to improve on similarity 2 (Definition 3.3). The crucial
move is to take the very act of asserting a specific sim-
ilarity between a model and a target as constitutive of
the scientific representation.

Definition 3.5 Similarity 4
A scientific modelM represents a target system T if and
only if a theoretical hypotheses H asserts that M and T
are similar in certain respects and to certain degrees.

This comes close to the view Giere advocated in Ex-
plaining Science [3.71, p. 81] (something like this is
also found in Cartwright ([3.73, pp. 192–193], [3.74,
pp. 261–262]) who appeals to a “loose notion of resem-
blance”; her account of modeling is discussed in more
detail in Sect. 3.6.3). This version of the similarity view
avoids problems with misrepresentation because, being
hypotheses, there is no expectation that the assertions
made in H are true. If they are, then the representa-
tion is accurate (or the representation is accurate to the
extent that they hold). If they are not, then the repre-
sentation is a misrepresentation. It resolves the problem
of mistargeting because hypotheses identify targets be-
fore asserting similarities with M (that is, the task of
picking the right target is now placed in the court of
the hypothesis and is no longer expected to be deter-
mined by the similarity relation). Finally it also resolves
the issue with directionality because H can be under-
stood as introducing a directionality that is not present
in the similarity relation. However, it fails to resolve
the problem with representation without a target. If
there is no ether, no hypotheses can be asserted about
it.

Let us set the issue of nonexistent targets aside for
the moment and have a closer look at the notion of
representation proposed in similarity 4 (Definition 3.5).
A crucial point remains understated in similarity 4
(Definition 3.5). Hypotheses don’t assert themselves;
hypotheses are put forward by those who work with
representations, in the case of models, scientists. So the
crucial ingredient – users – is left implicit in similarity 4
(Definition 3.5).

In a string of recent publications Giere made ex-
plicit the fact that “scientists are intentional agents with
goals and purposes” [3.60, p. 743] and proposed to
build this insight explicitly into an account of epistemic

representation. This involves adopting an agent-based
notion of representation that focuses on “the activity of
representing” [3.60, p. 743]. Analyzing epistemic repre-
sentation in these terms amounts to analyzing schemes
like “S uses X to represent W for purposes P” [3.60,
p. 743], or in more detail [3.51, p. 274]:

“Agents (1) intend; (2) to use model, M; (3) to rep-
resent a part of the world W; (4) for purposes, P. So
agents specify which similarities are intended and
for what purpose.”

This conception of representation had already been
proposed half a century earlier byApostelwhen he urged
the following analysis of model-representation [3.75,
p. 4]:

“Let then R.S;P;M; T/ indicate the main variables
of the modeling relationship. The subject S takes, in
view of the purpose P, the entity M as a model for
the prototype T .”

Including the intentions of model agents in the
definition of scientific representation is now widely
accepted, as we discuss in more detail in Sect. 3.4
(although Rusanen and Lappi disagree with this, and
claim that “the semantics of models as scientific rep-
resentations should be based on the mind-independent
model-world relation” [3.76, p. 317]).

Giere’s proposal, in our own terminology comes
down to:

Definition 3.6 Similarity 5
A scientific model M represents a target system T iff
there is an agent A who uses M to represent a target
system T by proposing a theoretical hypothesisH spec-
ifying a similarity (in certain respects and to certain
degrees) between M and T for purpose P.

This definition inherits from similarity 4 (Defini-
tion 3.5) the resolutions of the problems of direction-
ality, misrepresentation, and mistargeting; and for the
sake of argument we assume that the problem with
nonexistent targets can be resolved in one way or other.

A crucial thing to note about similarity 5 (Defi-
nition 3.6) is that, by invoking an active role for the
purposes and actions of scientists in constituting epis-
temic representation, it marks a significant change in
emphasis for similarity-based accounts. Suárez [3.23,
pp. 226–227], drawing on van Fraassen [3.77] and
Putnam [3.78], defines naturalistic accounts of repre-
sentation as ones where “whether or not representation
obtains depends on facts about the world and does not
in any way answer to the personal purposes, views or in-
terests of enquirers”. By building the purposes of model
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users directly into an answer to the ER-problem, simi-
larity 5 (Definition 3.6) is explicitly not a naturalistic
account (in contrast, for example, to similarity 1 (Def-
inition 3.2)). As noted in Sect. 3.2 we do not demand
a naturalistic account of model-representation (and as
we will see later, many of the more developed answers
to the ER-problem are also not naturalistic accounts).

Does this suggest that similarity 5 (Definition 3.6)
is a successful similarity-based solution to the ER-
problem? Unfortunately not. A closer look at similar-
ity 5 (Definition 3.6) reveals that the role of similarity
has shifted. As far as offering a solution to the ER-
problem is concerned, all the heavy lifting in similar-
ity 5 (Definition 3.6) is done by the appeal to agents
and similarity has in fact become an idle wheel. Giere
implicitly admits this when he writes [3.60, p. 747]:

“How do scientists use models to represent aspects
of the world? What is it about models that makes it
possible to use them in this way? One way, perhaps
the most important way, but probably not the only
way, is by exploiting similarities between a model
and that aspect of the world it is being used to repre-
sent. Note that I am not saying that the model itself
represents an aspect of the world because it is simi-
lar to that aspect. There is no such representational
relationship. [footnote omitted] Anything is similar
to anything else in countless respects, but not any-
thing represents anything else. It is not the model
that is doing the representing; it is the scientist us-
ing the model who is doing the representing.”

But if similarity is not the only way in which
a model can be used as a representation, and if it is the
use by a scientist that turns a model into a representa-
tion (rather than any mind-independent relationship the
model bears to the target), then similarity has become
otiose in a reply to the ER-problem. A scientist could
invoke any relation betweenM and T andM would still
represent T . Being similar in the relevant respects to the
relevant degrees now plays the role either of a represen-
tational style, or of a normative criterion for accurate
representation, rather than of a grounding of represen-
tation. We assess in the next section whether similarity
offers a cogent reply to the issues of style and accuracy.

A further problem is that there seems to be a hidden
circularity in the analysis. As Toon [3.49, pp. 251–252]
points out, having a scientist form a theoretical hypoth-
esis about the similarity relation between two objects A
and B and exploit this similarity for a certain purpose
P is not sufficient for representation. A and B could be
two cars in a showroom and an engineer inspects car A
and then use her knowledge about similarities to make
assertions about B (for instance if both cars are of the
same brand she can infer something about B’s quality

of manufacturing). This, Toon submits, is not a case of
representation: neither car is representational. Yet, if we
delete the expression to represent on the right hand side
of the biconditional in similarity 5 (Definition 3.6), the
resulting condition provides an accurate description of
what happens in the showroom. So the only difference
between the nonrepresentational activity of comparing
cars and representing B by A is that in one case A is
used to represent and in the other it’s only used. So rep-
resentation is explained in terms of to represent, which
is circular. So similarity 5 (Definition 3.6) does not pro-
vide nontrivial conditions for something to be used as
a representation.

One way around the problem would be to replace
to represent by to denote. This, however, would bring
the account close to similarity 3 (Definition 3.4), and it
would suffer from the same problems.

Mäki [3.79] suggested an extension of similarity 5
(Definition 3.6), which he explicitly brands as “a (more
or less explicit) version” of Giere’s.Mäki adds two con-
ditions to Giere’s: the agent uses the model to address
an audience E and adds a commentary C [3.79, p. 57].
The role of the commentary is to specify the nature of
the similarity. This is needed because [3.79, p. 57]:

“representation does not require that all parts of
the model resemble the target in all or just any ar-
bitrary respects, or that the issue of resemblance
legitimately arises in regard to all parts. The relevant
model parts and the relevant respects and degrees of
resemblance must be delimited.”

What these relevant respects and degrees of resem-
blance are depends on the purposes of the scientific
representation in question. These are not determined in
the model as it were, but are pragmatic elements. From
this it transpires that in effect C plays the same role
as that played by theoretical hypotheses in Giere’s ac-
count. Certain aspects ofM are chosen as those relevant
to the representational relationship between M and T .

The addition of an audience, however, is problem-
atic. While models are often shared publicly, this does
not seem to be a necessary condition for the representa-
tional use of a model. There is nothing that precludes
a lone scientist from coining a model M and using
it representationally. That some models are easier to
grasp, and therefore serve as more effective tools to
drive home a point in certain public settings, is an indis-
putable fact, but one that has no bearing on a model’s
status as a representation. The pragmatics of commu-
nication and the semantics of modeling are separate
issues.

The conclusion we draw from this discussion is that
similarity does not offer a viable answer to the ER-
problem.
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3.3.2 Accuracy and Style

Accounting for the possibility of misrepresentation re-
sulted in a shift of the division of labor for the more
developed similarity-based accounts. Rather than be-
ing the relation that grounds representation, similarity
should be considered as setting a standard of accuracy
or as providing an answer to the question of style (or
both). The former is motivated by the observation that
a proposed similarity betweenM and T could be wrong,
and hence if the model user’s proposal does in fact hold
(and M and T are in fact similar in the specified way)
then M is an accurate representation of T . The latter
transpires from the simple observation that a judgment
of accuracy in fact presupposes a choice of respects
in which M and T are claimed to be similar. Simply
proposing that they are similar in some unspecified re-
spect is vacuous. But delineating relevant properties
could potentially provide an answer to the problem of
style. For example, ifM and T are proposed to be simi-
lar with respect to their causal structure, then we might
have a style of causal modeling; if M and T are pro-
posed to be similar with respect to structural properties,
then we might have a style of structural modeling; and
so on and so forth. So the idea is that if M representing
T involves the claim that M and T are similar in a cer-
tain respect, the respect chosen specifies the style of the
representation; and ifM and T are in fact similar in that
respect (and to the specified degree), thenM accurately
represents T within that style.

In this section we investigate both options. But be-
fore delving into the details, let us briefly step back and
reflect on possible constraints on viable answers. Tak-
ing his cue from Lopes’ [3.59] discussion of pictures,
Downes [3.80, pp. 421–422] proposes two constraints
on allowable notions of similarity. The first, which he
calls the independence challenge, requires that a user
must be able to specify the relevant representation-
grounding similarity before engaging in a comparison
between M and T . Similarities that are recognizable
only with hindsight are an unsound foundation of a rep-
resentation. We agree with this requirement, which in
fact is also a consequence of the surrogative reasoning
condition: a model can generate novel hypotheses only
if (at least some of the) similarity claims are not known
only ex post facto.

Downes’ second constraint, the diversity constraint,
is the requirement that the relevant notion of similar-
ity has to be identical in all kinds of representation
and across all representational styles. So all models
must bear the same similarity relations to their targets.
Whatever its merits in the case of pictorial representa-
tion, this observation does not hold water in the case

of scientific representation. Both Giere and Teller have
insisted – rightly, in our view – that there need not be
a substantive sense of similarity uniting all representa-
tions (see also Callender and Cohen [3.26, p. 77] for
a discussion). A proponent of the similarity view is free
to propose different kinds of similarity for different rep-
resentations and is under no obligation to also show that
they are special cases of some overarching conception
of similarity.

We now turn to the issue of style. A first step in the
direction of an understanding of styles is the explicit
analysis of the notion of similarity. Unfortunately the
philosophical literature contains surprisingly little ex-
plicit discussion about what it means for something to
be similar to something else. In many cases similarity
is taken to be primitive, possible worlds semantics be-
ing a prime example. The problem is then compounded
by the fact that the focus is on comparative overall sim-
ilarity instead rather than on similarity in respect and
degrees; for a critical discussion see [3.81]. Where the
issue is discussed explicitly, the standard way of cash-
ing out what it means for an object to be similar to
another object is to require that they co-instantiate prop-
erties. This is the idea that Quine [3.82, pp. 117–118]
and Goodman [3.83, p. 443] had in mind in their influ-
ential critiques of the notion. They note that if all that
is required for two things to be similar is that they co-
instantiate some property, then everything is similar to
everything else, since any pair of objects have at least
one property in common.

The issue of similarity seems to have attracted more
attention in psychology. In fact, the psychological lit-
erature provides formal accounts to capture it directly
in more fully worked out accounts. The two most
prominent suggestions are the geometric and contrast
accounts (see [3.84] for an up-to-date discussion). The
former, associated with Shepard [3.85], assigns objects
a place in a multidimensional space based on values as-
signed to their properties. This space is then equipped
with a metric and the degree of similarity between two
objects is a function of the distance between the points
representing the two objects in that space.

This account is based on the strong assumptions that
values can be assigned to all features relevant to similar-
ity judgments, which is deemed unrealistic. This prob-
lem is supposed to be overcome in Tversky’s contrast
account [3.86]. This account defines a gradated notion
of similarity based on a weighted comparison of prop-
erties. Weisberg ([3.33, Chap. 8], [3.87]) has recently
introduced this account into the philosophy of science
where it serves as the starting point for his so-called
weighted feature matching account of model world-
relations. This account is our primary interest here.
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The account introduces a set � of relevant proper-
ties. Let then �M �� be the set of properties from �
that are instantiated by the modelM; likewise �T is the
set of properties from � instantiated by the target sys-
tem. Furthermore let f be a ranking function assigning
a real number to every subset of �. The simplest ver-
sion of a ranking function is one that assigns to each set
the number of properties in the set, but rankings can be
more complex, for instance by giving important proper-
ties more weight. The level of similarity betweenM and
T is then given by the following equation [3.87, p. 788]
(the notation is slightly amended)

S.M;T/D � f .�M \�T/�˛f .�M��T/

�ˇf .�T��M/ ;

where ˛, ˇ and � are weights, which can in princi-
ple take any value. This equation provides “a similarity
score that can be used in comparative judgments of
similarity” [3.87, p. 788]. The score is determined by
weighing the properties the model and target have in
common against those they do not. (Thus we note that
this account could be seen as a quantitative version of
Hesse’s [3.88] theory of analogy in which properties
that M and T share are the positive analogy and ones
they don’t share are the negative analogy.) In the above
formulation the similarity score S can in principle vary
between any two values (depending on the choice of
the ranking function and the value of the weights). One
can then use standard mathematical techniques to renor-
malize S so that it takes values in the unit interval Œ0; 1�
(these technical moves need not occupy us here and we
refer the reader toWeisberg for details [3.33, Chap. 8]).

The obvious question at this point is how the var-
ious blanks in the account can be filled. First in line
is the specification of a property set �. Weisberg is
explicit that there are no general rules to rely on and
that “the elements of � come from a combination of
context, conceptualization of the target, and theoreti-
cal goals of the scientist” [3.33, p. 149]. Likewise, the
ranking function as well as the values of weighting pa-
rameters depend on the goals of the investigation, the
context, and the theoretical framework in which the sci-
entists operate. Weisberg further divides the elements
of � into attributes and mechanisms. The former are
the “the properties and patterns of a system” while
the latter are the “underlying mechanism[s] that gen-
erates these properties” [3.33, p. 145]. This distinction
is helpful in the application to concrete cases, but for
the purpose of our conceptual discussion it can be set
aside.

Irrespective of these choices, the similarity score
S has a number of interesting features. First, it is
asymmetrical for ˛ ¤ ˇ, which makes room for the pos-

sibility ofM being similar to T to a different degree than
T is similar toM. So S provides the asymmetrical notion
of similarity mentioned in Sect. 3.3.1. Second, S has
a property called maximality: everything is maximally
similar to itself and every other nonidentical object is
equally or less similar. Formally: S.A;A/ � S.A;B/ for
all objects A and B as long as A¤ B [3.33, p. 154].

What does this account contribute to a response to
the question of style? The answer, we think, is that
it has heuristic value but does not provide substantive
account. In fact, stylistic questions stand outside the
proposed framework. The framework can be useful in
bringing questions into focus, but eventually the sub-
stantive stylistic questions concern inclusion criteria for
� (what properties do we focus on?), the weight given
by f to properties (what is the relative importance of
properties?) and the value of the parameters (how sig-
nificant are disagreements between the properties of M
and T?). These questions have to be answered outside
the account. The account is a framework in which ques-
tions can be asked but which does not itself provide
answers, and hence no classification of representational
styles emerges from it.

Some will say that this is old news. Goodman
denounced similarity as “a pretender, an impostor,
a quack” [3.83, p. 437] not least because he thought that
it merely put a label to something unknown without an-
alyzing it. And even some proponents of the similarity
view have insisted that no general characterization of
similarity was possible. Thus Teller submits that [3.52,
p. 402]:

“[t]here can be no general account of similarity, but
there is also no need for a general account because
the details of any case will provide the information
which will establish just what should count as rele-
vant similarity in that case.”

This amounts to nothing less than the admission that
no analysis of similarity (or even different kinds of sim-
ilarity) is possible and that we have to deal with each
case in its own right.

Assume now, for the sake of argument, that the
stylistic issues have been resolved and full specifica-
tions of relevant properties and their relative weights
are available. It would then seem plausible to say that
S.M;T/ provides a degree of accuracy. This reading is
supported by the fact thatWeisberg paraphrases the role
of S.M;T/ as providing “standards of fidelity” [3.33,
p. 147]. Indeed, in response to Parker [3.89], Weisberg
claims that his weighted feature matching account is
supposed to answer the ER-problem and provide stan-
dards of accuracy.

As we have seen above, S.M;T/ is maximal if M
is a perfect replica of T (with respect to the properties
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in �), and the fewer properties M and T share, the less
accurate the representation becomes. This lack of accu-
racy is then reflected in a lower similarity score. This is
plausible and Weisberg’s account is indeed a step for-
ward in the direction of quantifying accuracy.

Weisberg’s account is an elaborate version of the co-
instantiation account of similarity. It improves signifi-
cantly on simple versions, but it cannot overcome that
account’s basic limitations. Niiniluoto distinguishes be-
tween two different kinds of similarities [3.90, pp. 272–
274]: partial identity and likeness (which also feature in
Hesse’s discussion of analogies, see, for instance [3.88,
pp. 66–67]). AssumeM instantiates the relevant proper-
ties P1; : : : ;Pn and T instantiates the relevant properties
Q1; : : : ;Qn. If these properties are identical, i. e., if
Pi D Qi for all iD 1; : : : ; n, then M and T are similar
in the sense of being partially identical. Partial iden-
tity contrasts with what Niiniluoto calls likeness.M and
T are similar in the sense of likeness if the properties
are not identical but similar themselves: Pi is similar
to Qi for all iD 1; : : : ; n. So in likeness the similarity is
located at the level of the properties themselves. For ex-
ample, a red post box and a red London bus are similar
with respect to their color, even if they do not instanti-
ate the exact same shade of red. As Parker [3.89, p. 273]
notes, Weisberg’s account (like all co-instantiation ac-
counts) deals well with partial identity, but has no
systematic place for likeness. To deal with likeness
Weisberg would in effect have to reduce likeness to par-
tial identity by introducing imprecise properties which
encompass the Pi and theQi. Parker [3.89] suggests that
this can be done by introducing intervals in the feature
set, for instance of the form “the value of feature X lies
in the interval Œx�"; xC"�” where " is a parameter spec-
ifying the precision of overlap. To illustrate she uses
Weisberg’s example of the San Francisco bay model
and claims that in order to account for the similarity
between the model and the actual bay with respect to
their Froude number Weisberg has to claim something
like [3.89, p. 273]:

“The Bay model and the real Bay share the prop-
erty of having a Froude number that is within 0:1 of
the real Bay’s number. It is more natural to say that
the Bay model and the real Bay have similar Froude
numbers – similar in the sense that their values dif-
fer by at most 0:1.”

In his response Weisberg accepts this and argues
that he is trying to provide a reductive account of sim-
ilarity that bottoms out in properties shared and those
not shared [3.91, p. 302]. But such interval-valued prop-
erties have to be part of � in order for the formal
account to capture them. This means that another im-
portant decision regarding whether or not M and T are

similar occurs outside of the formal account itself. The
inclusion criteria on what goes into � now not only
has to delineate relevant properties, but, at least for
the quantitative ones, also has to provide an interval
defining when they qualify as similar. Furthermore, it
remains unclear how to account forM and T to be alike
with respect to their qualitative properties. The similar-
ity between genuinely qualitative properties cannot be
accounted for in terms of numerical intervals. This is
a particularly pressing problem for Weisberg, because
he takes the ability to compare models and their targets
with respect to their qualitative properties as a central
desideratum for any account of similarity between the
two [3.33, p. 136].

3.3.3 Problems of Ontology

Another problem facing similarity-based approaches
concerns their treatment of the ontology of models. If
models are supposed to be similar to their targets in the
ways specified by theoretical hypotheses or commen-
taries, then they must be the kind of things that can be
so similar.

Some models are homely physical objects. The
Army Corps of Engineers’ model of the San Francisco
bay is a water basin equipped with pumps to simulate
the action of tidal flows [3.33]; ball and stick models
of molecules are made of metal or wood [3.92]; the
Phillips–Newlyn model of an economy is system of
pipes and reservoirs [3.93]; and model organisms in bi-
ology are animals like worms and mice [3.46]. For mod-
els of this kind similarity is straightforward (at least in
principle) because they are of the same ontological kind
as their respective targets: they are material objects.

But many interesting scientific models are not like
this. Two perfect spheres with a homogeneousmass dis-
tribution that interact only with each other (the Newto-
nian model of the Sun-Earth system) or a single-species
population isolated from its environment and reproduc-
ing at fixed rate at equidistant time steps (the logistic
growth model of a population) are what Hacking aptly
describes as “something you hold in your head rather
than your hands” [3.44, p. 216]. Following Thomson-
Jones [3.94] we call such models nonconcrete models.
The question then is what kind of objects nonconcrete
models are. Giere submits that they are abstract objects
([3.60, p. 747], cf. [3.51, p. 270], [3.71, p. 81]):

“Models in advanced sciences such as physics and
biology should be abstract objects constructed in
conformity with appropriate general principles and
specific conditions.”

The appeal to abstract entities brings a number of
difficulties with it. The first is that the class of abstract



Models and Representation 3.3 The Similarity Conception 65
Part

A
|3.3

objects is rather large. Numbers and other objects of
pure mathematics, classes, propositions, concepts, the
letter A, and Dante’s Inferno are abstract objects [3.95],
and Hale [3.96, pp. 86–87] lists no less than 12 differ-
ent possible characterizations of abstract objects. At the
very least this list shows that there is great variety in
abstract objects and classifying models as abstract ob-
jects adds little specificity to an account of what models
are. Giere could counter that he limits attention to those
abstract objects that possess “all and only the character-
istics specified in the principles” [3.60, p. 745], where
principles are general rules like Newton’s laws of mo-
tion. He further specifies that he takes “abstract entities
to be human constructions” and that “abstract models
are definitely not to be identified with linguistic entities
such as words or equations” [3.60, p. 747]. While this
narrows down the choices somehow, it still leaves many
options and ultimately the ontological status of models
in a similarity account remains unclear.

Giere fails to expand on this ontological issue for
a reason: he dismisses the problem as one that philoso-
phers of science can set aside without loss. He voices
skepticism about the view that philosophers of science
“need a deeper understanding of imaginative processes
and of the objects produced by these process” [3.97,
p. 250] or that “we need say much more [. . . ] to get on
with the job of investigating the functions of models in
science” [3.97].

We remain unconvinced about this skepticism, not
least because there is an obvious yet fundamental issue
with abstract objects. No matter how the above issues
are resolved (and irrespective of whether they are re-
solved at all), at the minimum it is clear that models
are abstract in the sense that they have no spatiotem-
poral location. Teller [3.52, p. 399] and Thomson-
Jones [3.98] supply arguments suggesting that this
alone causes serious problems for the similarity ac-
count. The similarity account demands that models can
instantiate properties and relations, since this is a nec-
essary condition on them being similar to their targets.
In particular, it requires that models can instantiate
the properties and relations mentioned in theoretical
hypotheses or commentaries. But such properties and
relations are typically physical. And if models have no
spatiotemporal location, then they do not instantiate any
such properties or relations. Thomson-Jones’ example
of the idealized pendulum model makes this clear. If
the idealized pendulum is abstract then it is difficult to
see how to make sense of the idea that it has a length, or
a mass, or an oscillation period of any particular time.

An alternative suggestion due to Teller [3.52] is
that we should instead say that whilst “concrete ob-
jects HAVE properties [. . . ] properties are PARTS of
models” [3.52, p. 399] (original capitalization). It is not

entirely clear what Teller means by this, but our guess
is that he would regard models as bundles of proper-
ties. Target systems, as concrete objects, are the sorts
of things that can instantiate properties delineated by
theoretical hypotheses. Models, since they are abstract,
cannot. But rather than being objects instantiating prop-
erties, a model can be seen as a bundle of properties.
A collection of properties is an abstract entity that is
the sort of thing that can contain the properties speci-
fied by theoretical hypotheses as parts. The similarity
relation between models and their targets shifts from
the co-instantiation of properties, to the idea that tar-
gets instantiate (relevant) properties that are parts of the
model. With respect to what it means for a model to be
a bundle of properties Teller claims that the “[d]etails
will vary with ones account of instantiation, of proper-
ties and other abstract objects, and of the way properties
enter into models” [3.52].

But as Thompson-Jones [3.98, pp. 294–295] notes,
it is not obvious that this suggestion is an improve-
ment on Giere’s abstract objects. A bundle view incurs
certain metaphysical commitments, chiefly the exis-
tence of properties and their abstractness, and a bundle
view of objects, concrete or abstract, faces a number of
serious problems [3.99]. One might speculate that ad-
dressing these issues would push Teller either towards
the kind of more robust account of abstract objects that
he endeavored to avoid, or towards a fictionalist under-
standing of models.

The latter option has been discussed by Giere,
who points out that a natural response to Teller’s and
Thomson-Jones’ problem is to regard models as akin to
imaginary or fictional systems of the sort presented in
novels and films. It seems true to say that Sherlock is
a smoker, despite the fact that Sherlock an imaginary
detective, and smoking is a physical property. At times,
Giere seems sympathetic to this view. He says [3.97,
p. 249]:

“it is widely assumed that a work of fiction is a cre-
ation of human imagination [. . . ] the same is true of
scientific models. So, ontologically, scientific mod-
els and works of fiction are on a par. They are both
imaginary constructs.”

And he observes that [3.51, p. 278]:

“novels are commonly regarded as works of imagi-
nation. That, ontologically, is how we should think
of abstract scientific models. They are creations of
scientists imaginations. They have no ontological
status beyond that.”

However, these seem to be occasional slips and he
recently positioned himself as an outspoken opponent
of any approach to models that likens them to literary
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fiction. We discuss these approaches as well as Giere’s
criticisms of them in Sect. 3.6.

In sum, the similarity view is yet to be equipped
with a satisfactory account of the ontology of models.

3.4 The Structuralist Conception

The structuralist conception of model-representation
originated in the so-called semantic view of theories
that came to prominence in the second half of the 20th
century (Suppes [3.100], van Fraassen [3.101], and Da
Costa and French [3.102] provide classical statements
of the view; Byerly [3.103], Chakravartty [3.104],
Klein [3.105] and Portides [3.106, 107] provide critical
discussions). The semantic view was originally pro-
posed as an account of theory structure rather than
model-representation. The driving idea behind the po-
sition is that scientific theories are best thought of
as collections of models. This invites the questions:
What are these models, and how do they represent
their target systems? Defenders of the semantic view of
theories take models to be structures, which represent
their target systems in virtue of there being some kind
of mapping (isomorphism, partial isomorphism, homo-
morphism, . . . ) between the two. (It is worth noting
that Giere, whose account of scientific representation
we discussed in the previous section, is also associated
with the semantic view, despite not subscribing to either
of these positions.)

This conception has two prima facie advantages.
The first advantage is that it offers a straightforward
answer to the ER-problem, and one that accounts for
surrogative reasoning: the mappings between the model
and the target allow scientists to convert truths found
in the model into claims about the target system. The
second advantage concerns the applicability of math-
ematics. There is time-honored position in the phi-
losophy of mathematics that sees mathematics as the
study of structures; see, for instance, Resnik [3.108] and
Shapiro [3.109]. It is a natural move for the scientific
structuralist to adopt this point of view, which, without
further ado, provides a neat explanation of how mathe-
matics is used in scientific modeling.

3.4.1 Structures and the Problem
of Ontology

Almost anything from a concert hall to a kinship sys-
tem can be referred to as a structure. So the first task
for a structuralist account of representation is to artic-
ulate what notion of structure it employs. A number of
different notions of structure have been discussed in the
literature (for a review see Thomson-Jones [3.110]), but
by far the most common and widely used is the notion

of structure one finds in set theory and mathematical
logic. A structure S in that sense (sometimes mathemat-
ical structure or set-theoretic structure) is a composite
entity consisting of the following: a nonempty set U
of objects called the domain (or universe) of the struc-
ture and a nonempty indexed set R of relations on
U. With the exception of the caveat below regarding
interpretation functions, this definition of structure is
widely used in mathematics and logic; see for instance
Machover [3.111, p. 149], Hodges [3.112, p. 2], and
Rickart [3.113, p. 17]. It is convenient to write these
as SD hU;Ri, where h ; i denotes an ordered tuple.
Sometimes operations are also included in the definition
of a structure. While convenient in some applications,
operations are redundant because operations reduce
to relations (see Boolos and Jeffrey [3.114, pp. 98–
99]).

It is important to be clear on what we mean by ob-
ject and relation in this context.AsRussell [3.115, p. 60]
points out, in defining the domain of a structure it is
irrelevant what the objects are. All that matters from
a structuralist point of view is that there are so and so
many of them. Whether the object is a desk or a planet
is irrelevant. All we need are dummies or placehold-
ers whose only property is objecthood. Similarly, when
defining relations one disregards completely what the
relation is in itself. Whether we talk about being the
mother of or standing to the left of is of no concern
in the context of a structure; all that matters is between
which objects it holds. For this reason, a relation is spec-
ified purely extensionally: as a class of ordered n-tuples.
The relation literally is nothing over and above this
class. So a structure consists of dummy objects between
which purely extensionally defined relations hold.

Let us illustrate this with an example. Consider the
structure with the domain U D fa; b; cg and the fol-
lowing two relations: r1 D fag and r2 D fha; bi; hb; ci;
ha; cig. Hence R consists of r1 and r2, and the structure
itself is SD hU;Ri. This is a structure with a three-
object domain endowed with a monadic property and
a transitive relation. Whether the objects are books or
iron rods is of no relevance to the structure; they could
be literally anything one can think of. Likewise r1 could
be literally any monadic property (being green, being
waterproof, etc.) and r2 could be any (irreflexive) tran-
sitive relation (larger than, hotter than, more expensive
than, etc.).
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It is worth pointing out that this use of structure dif-
fers from the use one sometimes finds in logic, where
linguistic elements are considered part of the model as
well. Specifically, over and above SD hU;Ri, a struc-
ture is also taken to include a language (sometimes
called a signature) L, and an interpretation function
([3.112, Chap. 1] and [3.116, pp. 80–81]). But in the
context of the accounts discussed in this section, a struc-
ture is the ordered pair SD hU;Ri as introduced above
and so we disregard this alternative use of structure.

The first basic posit of the structuralist theory of
representation is that models are structures in the above
sense (the second is that models represent their targets
by being suitably morphic to them; we discuss mor-
phisms in the next subsection). Suppes has articulated
this stance clearly when he declared that “the meaning
of the concept of model is the same in mathematics
and the empirical sciences” [3.117, p. 12]. Likewise,
van Fraassen posits that a “scientific theory gives us
a family of models to represent the phenomena”, that
“[t]hese models are mathematical entities, so all they
have is structure [. . . ]” [3.118, pp. 528–529] and that
therefore [3.118, p. 516]

“[s]cience is [. . . ] interpreted as saying that the enti-
ties stand in relations which are transitive, reflexive,
etc. but as giving no further clue as to what those
relations are.”

Redhead submits that “it is this abstract structure as-
sociated with physical reality that science aims, and to
some extent succeeds, to uncover [. . . ]” [3.119, p. 75].
Finally, French and Ladyman affirm that “the specific
material of the models is irrelevant; rather it is the struc-
tural representation [. . . ] which is important” [3.120,
p. 109]. Further explicit statements of this view are of-
fered by: Da Costa and French [3.121, p. 249], Suppes
([3.122, p. 24], [3.123, Chap. 2]) and van Fraassen
([3.101, pp. 43, 64], [3.118, pp. 516, 522], [3.124,
p. 483], [3.125, p. 6]).

These structuralist accounts have typically been
proposed in the framework of the so-called seman-
tic view of theories. There are differences between
them, and formulations vary from author to author.
However, as Da Costa and French [3.126] point out,
all these accounts share a commitment to analyz-
ing models as structures. So we are presented with
a clear answer to the problem of ontology: models
are structures. The remaining issue is what structures
themselves are. Are they platonic entities, equivalence
classes, modal constructs, or yet something else? This
is a hotly debated issue in the philosophy of logic
and mathematics; for different positions see for in-
stance Dummett [3.127, 295ff.], Hellman [3.128, 129],
Redhead [3.119], Resnik [3.108], and Shapiro [3.109].

But philosophers of science need not resolve this issue
and can pass off the burden of explanation to philoso-
phers of mathematics. This is what usually happens, and
hence we don’t pursue this matter further.

An extension of the standard conception of struc-
ture is the so-called partial structures approach (for
instance, Da Costa and French [3.102] and Bueno
et al. [3.130]). Above we defined relations by specify-
ing between which tuples it holds. This naturally allows
a sorting of all tuples into two classes: ones that belong
to the relation and ones that don’t. The leading idea
of partial structures is to introduce a third option: for
some tuples it is indeterminate whether or not they be-
long to the relation. Such a relation is a partial relation.
A structure with a set R containing partial relations is
a partial structure (formal definitions can be found in
references given above). Partial structures make room
for a process of scientific investigation where one be-
gins not knowingwhether a tuple falls under the relation
and then learns whether or not it does.

Proponents of that approach are more guarded as
regards the ontology of models. Bueno and French em-
phasize that “advocates of the semantic account need
not be committed to the ontological claim that mod-
els are structures” [3.53, p. 890] (original emphasis).
This claim is motivated by the idea that the task for
philosophers of science is to represent scientific the-
ories and models, rather than to reason about them
directly. French [3.131] makes it explicit that accord-
ing to his account of the semantic view of theories,
a scientific theory is represented as a class of models,
but should not be identified with that class. Moreover,
a class of models is just one way of representing a the-
ory; we can also use an intrinsic characterization and
represent the same theory as a set of sentences in order
to account for how they can be objects of our epistemic
attitudes [3.132].

He therefore adopts a quietist position with respect
to what a theory or a model is, declining to answer the
question [3.131, 133]. There are thus two important no-
tions of representation at play: representation of targets
by models, which is the job of scientists, and represen-
tation of theories and models by structures, which is
the job of philosophers of science. The question for this
approach then becomes whether or not the structuralist
representation of models and epistemic representation –
as partial structures and morphisms that hold between
them – is an accurate or useful one. And the concerns
raised below remain when translated into this context as
well.

There is an additional question regarding the cor-
rect formal framework for thinking about models in
the structuralist position. Landry [3.134] argues that in
certain contexts group, rather than set, theory should
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be used when talking about structures and morphisms
between them, and Halvorson [3.135, 136] argues that
theories should be identified with categories rather than
classes or sets. Although these discussions highlight
important questions regarding the nature of scientific
theories, the question of how individual models repre-
sent remains unchanged. Halvorson still takes individ-
ual models to be set-theoretic structures. And Landry’s
paper is not an attempt to reframe the representa-
tional relationship between models and their targets
(see [3.137] for her skepticism regarding how struc-
turalism deals with this question). Thus, for reasons of
simplicity we will focus on the structuralist view that
identifies models with set-theoretic structures through-
out the rest of this section.

3.4.2 Structuralism and the ER-Problem

Themost basic structuralist conception of scientific rep-
resentation asserts that scientific models, understood as
structures, represent their target systems in virtue of be-
ing isomorphic to them. Two structures Sa D hUa;Rai
and Sb D hUb;Rbi are isomorphic iff there is a map-
ping f WUa! Ub such that (i) f is one-to-one (bijective)
and (ii) f preserves the system of relations in the fol-
lowing sense: The members a1; : : : ; an of Ua satisfy
the relation ra of Ra iff the corresponding members
b1 D f .a1/ ; : : : ; bn D f .an/ ofUb satisfy the relation rb
of Rb, where rb is the relation corresponding to ra (for
difficulties in how to cash out this notion of correspon-
dence without reference to an interpretation function
see Halvorson [3.135] and Glymour [3.138]).

Assume now that the target system T exhibits the
structure ST D hUT;RTi and the model is the structure
SM D hUM;RMi. Then the model represents the target
iff it is isomorphic to the target:

Definition 3.7 Structuralism 1
A scientific model M represents its target T iff SM is
isomorphic to ST.

This view is articulated explicitly by Ubbink, who
posits that [3.139, p. 302]

“a model represents an object or matter of fact in
virtue of this structure; so an object is a model [. . . ]
of matters of fact if, and only if, their structures are
isomorphic.”

Views similar to Ubbink’s seem operable in many
versions of the semantic view. In fairness to propo-
nents of the semantic view it ought to be pointed out,
though, that for a long time representation was not the
focus of attention in the view and the attribution of
(something like) structuralism 1 (Definition 3.7) to the

semantic view is an extrapolation. Representation be-
came a much-debated topic in the first decade of the
21st century, and many proponents of the semantic view
then either moved away from structuralism 1 (Defi-
nition 3.7), or pointed out that they never held such
a view. We turn to more advanced positions shortly, but
to understand what motivates such positions it is helpful
to understand why structuralism 1 (Definition 3.7) fails.

An immediate question concerns the target end
structure ST. At least prima facie target systems
aren’t structures; they are physical objects like planets,
molecules, bacteria, tectonic plates, and populations of
organisms. An early recognition that the relation be-
tween targets and structures is not straightforward can
be found in Byerly, who emphasizes that structures are
abstracted from objects [3.103, pp. 135–138]. The re-
lation between structures and physical targets is indeed
a serious question and we will return to it in Sect. 3.4.4.
In this subsection we grant the structuralist the assump-
tion that target systems are (or at least have) structures.

The first and most obvious problem is the same as
with the similarity view: isomorphism is symmetrical,
reflexive, and transitive, but epistemic representation
isn’t. This problem could be addressed by replacing iso-
morphism with an alternative mapping. Bartels [3.140],
Lloyd [3.141], and Mundy [3.142] suggest homomor-
phism; van Fraassen [3.36, 101, 118] and Redhead iso-
morphic embeddings [3.119]; advocates of the partial
structures approach prefer partial isomophisms [3.102,
120, 121, 143–145]; and Swoyer [3.25] introduces what
he calls �=�� morphisms. We refer to these collec-
tively as morphisms.

This solves some, but not all problems. While many
of these mappings are asymmetrical, they are all still
reflexive, and at least some of them are also transitive.
But even if these formal issues could be resolved in
one way or another, a view based on structural map-
pings would still face other serious problems. For ease
of presentation we discuss these problems in the con-
text of the isomorphism view; mutatis mutandis other
formal mappings suffer from the same difficulties (For
detailed discussions of homomorphism and partial iso-
morphism see Suárez [3.23, pp. 239-241] and Pero and
Suárez [3.146]; Mundy [3.142] discusses general con-
straints one may want to impose on morphisms.)

Like similarity, isomorphism is too inclusive: not
all things that are isomorphic represent each other. In
the case of similarity this case was brought home by
Putnam’s thought experiment with the ant crawling on
the beach; in the case of isomorphism a look at the
history of science will do the job. Many mathemati-
cal structures have been discovered and discussed long
before they have been used in science. Non-Euclidean
geometries were studied by mathematicians long before
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Einstein used them in the context of spacetime theo-
ries, and Hilbert spaces were studied by mathematicians
prior to their use in quantum theory. If representa-
tion was nothing over and above isomorphism, then
we would have to conclude that Riemann discovered
general relativity or that that Hilbert invented quantum
mechanics. This is obviously wrong. Isomorphism on
its own does not establish representation [3.20, p. 10].

Isomorphism is more restrictive than similarity:
not everything is isomorphic to everything else. But
isomorphism is still too abundant to correctly identify
the extension of a representation (i. e., the class of
systems it represents), which gives rise to a version of
the mistargeting problem. The root of the difficulties is
that the same structures can be instantiated in different
target systems. The 1=r2 law of Newtonian gravity is
also the mathematical skeleton of Coulomb’s law of
electrostatic attraction and the weakening of sound
or light as a function of the distance to the source.
The mathematical structure of the pendulum is also
the structure of an electric circuit with condenser
and solenoid (a detailed discussion of this case is
provided by Kroes [3.147]). Linear equations are
ubiquitous in physics, economics and psychology.
Certain geometrical structures are instantiated by many
different systems; just think about how many spherical
things we find in the world. This shows that the same
structure can be exhibited by more than one target
system. Borrowing a term from the philosophy of mind,
one can say that structures are multiply realizable. If
representation is explicated solely in terms of isomor-
phism, then we have to conclude that, say, a model of
a pendulum also represents an electric circuit. But this
seems wrong. Hence isomorphism is too inclusive to
correctly identify a representation’s extension.

One might try to dismiss this point as an artifact of
a misidentification of the target. Van Fraassen [3.101,
p. 66], mentions a similar problem under the heading
of “unintended realizations” and then expresses confi-
dence that it will “disappear when we look at larger
observable parts of the world”. Even if there are mul-
tiply realizable structures to begin with, they vanish as
science progresses and considers more complex sys-
tems because these systems are unlikely to have the
same structure. Once we focus on a sufficiently large
part of the world, no two phenomena will have the same
structure. There is a problem with this counter, how-
ever. To appeal to future science to explain how models
work today seems unconvincing. It is a matter of fact
that we currently have models that represent electric
circuits and sound waves, and we do not have to await
future science providing us with more detailed accounts
of a phenomenon to make our models represent what
they actually already do represent.

As we have seen in the last section, a misrepresen-
tation is one that portrays its target as having features
it doesn’t have. In the case of an isomorphism account
of representation this presumably means that the model
portrays the target as having structural properties that
it doesn’t have. However, isomorphism demands iden-
tity of structure: the structural properties of the model
and the target must correspond to one another exactly.
A misrepresentation won’t be isomorphic to the tar-
get. By the lights of structuralism 1 (Definition 3.7)
it is therefore is not a representation at all. Like sim-
ple similarity accounts, structuralism 1 (Definition 3.7)
conflates misrepresentation with nonrepresentation.

Muller [3.148, p. 112] suggests that this problem
can be overcome in a two-stage process: one first
identifies a submodel of the model, which in fact is iso-
morphic to at least a part of the target. This reduced
isomorphism establishes representation. One then con-
structs “a tailor-made morphism on a case by case
basis” [3.148, p. 112] to account for accurate represen-
tation. Muller is explicit that this suggestion presup-
poses that there is “at least one resemblance” [3.148,
p. 112] between model and target because “other-
wise one would never be called a representation of
the other” [3.148, p. 112]. While this may work in
some cases, it is not a general solution. It is not clear
whether all misrepresentations have isomorphic sub-
models.Models that are gross distortions of their targets
(such as the liquid drop model of the nucleus or the lo-
gistic model of a population) may well not have such
submodels. More generally, as Muller admits, his solu-
tion “precludes total misrepresentation” [3.148, p. 112].
So in effect it just limits the view that representation
coincides with correct representation to a submodel.
However, this is too restrictive a view of representation.
Total misrepresentations may be useless, but they are
representations nevertheless.

Another response refers to the partial structures ap-
proach and emphasizes that partial structures are in
fact constructed to accommodate a mismatch between
model and target and are therefore not open to this ob-
jection [3.53, p. 888]. It is true that the partial structures
framework has a degree of flexibility that the standard
view does not. However, we doubt that this flexibil-
ity stretches far enough. While the partial structure
approach deals successfully with incomplete represen-
tations, it does not seem to deal well with distortive
representations (we come back to this point in the next
subsection). So the partial structures approach, while
enjoying an advantage over the standard approach, is
nevertheless not yet home and dry.

Like the similarity account, structuralism 1 (Defini-
tion 3.7) has a problem with nonexistent targets because
no model can be isomorphic to something that doesn’t
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exist. If there is no ether, a model can’t be isomorphic to
it. Hence models without target cannot represent what
they seem to represent.

Most of these problems can be resolved by making
moves similar to the ones that lead to similarity 5 (Defi-
nition 3.6): introduce agents and hypothetical reasoning
into the account of representation. Going through the
motions one finds:

Definition 3.8 Structuralism 2
A scientific model M represents a target system T iff
there is an agent A who uses M to represent a target
system T by proposing a theoretical hypothesisH spec-
ifying an isomorphism between SM and ST.

Something similar to this was suggested by Adams
[3.149, p. 259] who appeals to the idea that physical
systems are the intended models of a theory in order
to differentiate them from purely mathematical models
of a theory. This suggestion is also in line with van
Fraassen’s recent pronouncements on representation.
He offers the following as the Hauptstatz of a theory
of representation: “there is no representation except in
the sense that some things are used, made, or taken, to
represent things as thus and so” [3.36, p. 23]. Likewise,
Bueno submits that “representation is an intentional act
relating two objects” [3.150, p. 94] (original emphasis),
and Bueno and French point out that using one thing to
represent another thing is not only a function of (partial)
isomorphism but also depends on pragmatic factors
“having to do with the use to which we put the relevant
models” [3.53, p. 885]. This, of course, gives up on the
idea of an account that reduces representation to intrin-
sic features of models and their targets. At least one
extra element, the model user, also features in whatever
relation is supposed to constitute the representational
relationship between M and T . In a world with no
agents, there would be no scientific representation.

This seems to be the right move. Like similarity 5
(Definition 3.6), structuralism 2 (Definition 3.8) ac-
counts for the directionality of representation and has
no problem with misrepresentation. But, again as in the
case of similarity 5 (Definition 3.6), this is a Pyrrhic
victory as the role of isomorphism has shifted. The cru-
cial ingredient is the agent’s intention and isomorphism
has in fact become either a representational style or
normative criterion for accurate representation. Let us
now assess how well isomorphism fares as a response
to these problems.

3.4.3 Accuracy, Style and Demarcation

The problem of style is to identify representational
styles and characterize them. Isomorphism offers an

obvious response to this challenge: one can represent
a system by coming up with a model that is structurally
isomorphic to it. We call this the isomorphism-style.
This style also offers a clear-cut condition of accuracy:
the representation is accurate if the hypothesized iso-
morphism holds; it is inaccurate if it doesn’t.

This is a neat answer. The question is what status it
has vis-à-vis the problem of style. Is the isomorphism-
style merely one style among many other styles which
are yet to be identified, or is it in some sense privileged?
The former is uncontentious. However, the emphasis
many structuralists place on isomorphism suggests that
they do not regard isomorphism as merely one way
among others to represent something. What they seem
to have in mind is the stronger claim that a representa-
tion must be of that sort, or that the isomorphism-style
is the only acceptable style.

This claim seems to conflict with scientific practice.
Many representations are inaccurate in someway. Aswe
have seen above, partial structures are well equipped to
deal with incomplete representations. However, not all
inaccuracies are due to something being left out. Some
models distort, deform and twist properties of the target
in ways that seem to undercut isomorphism. Somemod-
els in statistical mechanics have an infinite number of
particles and the Newtonian model of the solar system
represents the sun as perfect sphere where it in reality is
fiery ball with no well-defined surface at all. It is at best
unclear how isomorphism, partial or otherwise, can ac-
count for these kinds of idealizations. From an isomor-
phism perspective all one can say about such idealiza-
tions is that they are failed isomorphism representations
(or isomorphism misrepresentations). This is rather un-
informative. One might try to characterize these ideal-
izations by looking at how they fail to be isomorphic to
their targets, but we doubt that this is going very far. Un-
derstanding how distortive idealizations work requires
a positive characterization of them, and we cannot see
how such a characterization could be given within the
isomorphism framework. So one has to recognize styles
of representation other than isomorphism.

This raises that question of whether other mappings
such as homomorphisms or embeddings would fit the
bill. They would, we think, make valuable additions to
the list of styles, but they would not fill all gaps. Like
isomorophism, these mappings are not designed to ac-
commodate distortive idealizations, and hence a list of
styles that includes them still remains incomplete.

Structuralism’s stand on the demarcation problem is
by and large an open question. Unlike similarity, which
has been widely discussed across different domains,
isomorphism is tied closely to the formal framework of
set theory, and it has been discussed only sparingly out-
side the context of the mathematized sciences. An ex-
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ception is French, who discusses isomorphism accounts
in the context of pictorial representation [3.35]. He
discusses in detail Budd’s [3.151] account of pictorial
representation and points out that it is based on the no-
tion of a structural isomorphism between the structure
of the surface of the painting and the structure of the
relevant visual field. Therefore representation is the per-
ceived isomorphism of structure [3.35, pp. 1475–1476]
(this point is reaffirmed by Bueno and French [3.53,
pp. 864–865]; see Downes [3.80, pp. 423–425] for
a critical discussion). In a similar vein, Bueno claims
that the partial structures approach offers a framework
in which different representations – among them “out-
puts of various instruments, micrographs, templates,
diagrams, and a variety of other items” [3.150, p. 94] –
can be accommodated. This would suggest that an iso-
morphism account of representation at least has a claim
to being a universal account covering representations
across different domains.

This approach faces a number of questions. First,
neither a visual field nor a painting is a structure, and
the notion of there being an isomorphism in the set the-
oretic sense between the two at the very least needs
unpacking. The theory is committed to the claim that
paintings and visual fields have structures, but, as we
will see in the next subsection, this claim faces serious
issues. Second, Budd’s theory is only one among many
theories of pictorial representation, and most alterna-
tives do not invoke isomorphism. So there is question
whether a universal claim can be built on Budd’s theory.
In fact, there is even a question about isomorphism’s
universality within scientific representation. Nonmath-
ematized sciences work with models that aren’t struc-
tures. Godfrey-Smith [3.152], for instance, argues that
models in many parts of biology are imagined concrete
objects. There is a question whether isomorphism can
explain how models of that kind represent.

This points to a larger issue. The structuralist view is
a rational reconstruction of scientific modeling, and as
such it has some distance from the actual practice. Some
philosophers have worried that this distance is too large
and that the view is too far removed from the actual
practice of science to be able to capture what matters
to the practice of modeling (this is the thrust of many
contributions to [3.11]; see also [3.73]). Although some
models used by scientists may be best thought of as set
theoretic structures, there are many where this seems to
contradict how scientists actually talk about, and reason
with, their models. Obvious examples include physical
models like the San Francisco bay model [3.33], but
also systems such as the idealized pendulum or imagi-
nary populations of interbreeding animals. Such models
have the strange property of being concrete-if-real and
scientists talk about them as if they were real systems,

despite the fact that they are obviously not. Thomson-
Jones [3.98] dubs this face value practice, and there is
a question whether structuralism can account for that
practice.

3.4.4 The Structure of Target Systems

Target systems are physical objects: atoms, planets,
populations of rabbits, economic agents, etc. Isomor-
phism is a relation that holds between two structures
and claiming that a set theoretic structure is isomorphic
to a piece of the physical world is prima facie a category
mistake. By definition, all of the mappings suggested –
isomorphism, partial isomorphism, homomorphism, or
isomorphic embedding – only hold between two struc-
tures. If we are to make sense of the claim that the
model is isomorphic to its target we have to assume that
the target somehow exhibits a certain structure ST D
hUT;RTi. But what does it mean for a target system –
a part of the physical world – to possess a structure, and
where in the target system is the structure located?

The two prominent suggestions in the literature are
that data models are the target end structures repre-
sented by models, and that structures are, in some sense,
instantiated in target systems. The latter option comes
in three versions. The first version is that a structure is
ascribed to a system; the second version is that systems
instantiate structural universals; and the third version
claims that target systems simply are structures. We
consider all suggestions in turn.

What are data models? Data are what we gather in
experiments. When observing the motion of the moon,
for instance, we choose a coordinate system and ob-
serve the position of the moon in this coordinate system
at consecutive instants of time. We then write down
these observations. The data thus gathered are called
the raw data. The raw data then undergo a process of
cleansing, rectification and regimentation: we throw
away data points that are obviously faulty, take into
consideration what the measurement errors are, take
averages, and usually idealize the data, for instance by
replacing discrete data points by a continuous function.
Often, although not always, the result is a smooth curve
through the data points that satisfies certain theoretical
desiderata (Harris [3.153] and van Fraassen [3.36,
pp. 166–168] elaborate on this process). These resulting
data models can be treated as set theoretic structures.
In many cases the data points are numeric and the data
model is a smooth curve through these points. Such
a curve is a relation over Rn (for some n), or subsets
thereof, and hence it is structure in the requisite sense.

Suppes [3.122] was the first to suggested that data
models are the targets of scientific models: models
don’t represent parts of the world; they represent data
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structures. This approach has then been adopted by van
Fraassen, when he declares that “[t]he whole point of
having theoretical models is that they should fit the
phenomena, that is, fit the models of data” [3.154,
p. 667]. He has defended this position numerous times
over the years ([3.77, p. 164], [3.101, p. 64], [3.118,
p. 524], [3.155, p. 229] and [3.156, p. 271]) including
in his most recent book on representation [3.36,
pp. 246, 252]. So models don’t represent planets, atoms
or populations; they represent data that are gathered
when performing measurements on planets, atoms or
populations.

This revisionary point of view has met with stiff
resistance. Muller articulates the unease about this po-
sition as follows [3.148, p. 98]:

“the best one could say is that a data structure D
seems to act as simulacrum of the concrete actual
being B [. . . ] But this is not good enough. We don’t
want simulacra. We want the real thing. Come on.”

Muller’s point is that science aims (or at least has
to aim) to represent real systems in the world and not
data structures. Van Fraassen calls this the “loss of
reality objection” [3.36, p. 258] and accepts that the
structuralist must ensure that models represent target
systems, rather than finishing the story at the level of
data. In his [3.36] he addresses this issue in detail and
offers a solution. We discuss his solution below, but
before doing so we want to articulate the objection in
more detail. To this end we briefly revisit the discussion
about phenomena and data which took place in the
1980s and 1990s.

Bogen and Woodward [3.157], Woodward [3.158],
and more recently (and in a somewhat different guise)
Teller [3.159], introduced the distinction between phe-
nomena and data and argue that models represent phe-
nomena, not data. The difference is best introduced
with an example: the discovery of weak neutral cur-
rents [3.157, pp. 315–318]. What the model at stake
consists of is particles: neutrinos, nucleons, and the Z0

particle, along with the reactions that take place be-
tween them. (The model we are talking about here is
not the so-called standard model of elementary parti-
cles as a whole. Rather, what we have in mind is one
specific model about the interaction of certain particles
of the kind one would find in a theoretical paper on this
experiment.) Nothing of that, however, shows in the rel-
evant data. CERN (Conseil Européen pour la Recherche
Nucléaire) in Geneva produced 290 000 bubble cham-
ber photographs of which roughly 100 were considered
to provide evidence for the existence of neutral cur-
rents. The notable point in this story is that there is no
part of the model (provided by quantum field theory)
that could be claimed to be isomorphic to these pho-

tographs. Weak neutral currents are the phenomenon
under investigation; the photographs taken at CERN
are the raw data, and any summary one might con-
struct of the content of these photographs would be
a data model. But it’s weak neutral currents that oc-
cur in the model; not any sort of data we gather in an
experiment.

This is not to say that these data have nothing to do
with the model. The model posits a certain number of
particles and informs us about the way in which they in-
teract both with each other and with their environment.
Using this knowledge we can place them in a certain
experimental context. The data we then gather in an ex-
periment are the product of the elements of the model
and of the way in which they operate in that context.
Characteristically this context is one that we are able
to control and about which we have reliable knowledge
(knowledge about detectors, accelerators, photographic
plates and so on). Using this and the model we can de-
rive predictions about what the outcomes of an experi-
ment will be. But, and this is the salient point, these pre-
dictions involve the entire experimental setup and not
only the model and there is nothing in the model itself
with which one could compare the data. Hence, data are
highly contextual and there is a big gap between observ-
able outcomes of experiments and anything one might
call a substructure of a model of neutral currents.

To underwrite this claim Bogen and Woodward
notice that parallel to the research at CERN, the
National Accelerator Laboratory (NAL) in Chicago
also performed an experiment to detect weak neutral
currents, but the data obtained in that experiment were
quite different. They consisted of records of patterns of
discharge in electronic particle detectors. Though the
experiments at CERN and at NAL were totally different
and as a consequence the data gathered had nothing in
common, they were meant to provide evidence for the
same theoretical model. But the model, to reiterate the
point, does not contain any of these contextual factors.
It posits certain particles and their interaction with
other particles, not how detectors work or what read-
ings they show. That is, the model is not idiosyncratic
to a special experimental context in the way the data
are and therefore it is not surprising that they do not
contain a substructure that is isomorphic to the data.
For this reason, models represent phenomena, not data.

It is difficult to give a general characterization of
phenomena because they do not belong to one of the tra-
ditional ontological categories [3.157, p. 321]. In fact,
phenomena fall into many different established cat-
egories, including particular objects, features, events,
processes, states, states of affairs, or they defy classi-
fication in these terms altogether. This, however, does
not detract from the usefulness of the concept of a phe-
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nomenon because specifying one particular ontological
category to which all phenomena belong is inessen-
tial to the purpose of this section. What matters to the
problem at hand is the distinctive role they play in con-
nection with representation.

What then is the significance of data, if they are not
the kind of things that models represent? The answer to
this question is that data perform an evidential function.
That is, data play the role of evidence for the presence
of certain phenomena. The fact that we find a certain
pattern in a bubble chamber photograph is evidence for
the existence of neutral currents. Thus construed, we do
not denigrate the importance of data in science, but we
do not have to require that data have to be embeddable
into the model at stake.

Those who want to establish data models as targets
can reply to this in three ways. The first reply is an
appeal to radical empiricism. By postulating phenom-
ena over and above data we leave the firm ground of
observable things and started engaging in transempir-
ical speculation. But science has to restrict its claims
to observables and remain silent (or at least agnos-
tic) about the rest. Therefore, so the objection goes,
phenomena are chimeras that cannot be part of any se-
rious account of science. It is, however, doubtful that
this helps the data model theorist. Firstly, note that it
even rules out representing observable phenomena. To
borrow van Fraassen’s example on this story, a popula-
tion model of deer reproduction would represent data,
rather than deer [3.36, pp. 254–260]. Traditionally, em-
piricists would readily accept that deer, and the rates
at which they reproduce, are observable phenomena.
Denying that they are represented, by replacing them
with data models, seems to be an implausible move.
Secondly, irrespective of whether one understands phe-
nomena realistically [3.157] or antirealistically [3.160],
it is phenomena that models portray and not data. To
deny the reality of phenomena just won’t make a theo-
retical model represent data. Whether we regard neutral
currents as real or not, it is neutral currents that are por-
trayed in a field-theoretical model, not bubble chamber
photographs. Of course, one can suspend belief about
the reality of these currents, but that is a different mat-
ter.

The second reply is to invoke a chain of representa-
tional relationships. Brading and Landry [3.137] point
out that the connection between a model and the world
can be broken down in two parts: the connection be-
tween a model and a data model, and the connection
between a data model and the world [3.137, p. 575].
So the structuralist could claim that scientific models
represent data models in virtue of an isomorphism be-
tween the two and additionally claim that data models
in turn represent phenomena. But the key questions that

need to be addressed here are: (a) What establishes the
representational relationship between data models and
phenomena? and (b) Why if a scientific model rep-
resented some data model, which in turn represented
some phenomenon, would that establish a represen-
tational relationship between the model and the phe-
nomenon itself? With respect to the first question,Brad-
ing and Landry argue that it cannot be captured within
the structuralist framework [3.137, p. 575]. The ques-
tion has just been pushed back: rather than asking how
a scientific model qua mathematical structure repre-
sents a phenomenon, we now ask how a data model qua
mathematical structure represents a phenomenon. With
respect to the second question, although representation
is not intransitive, it is not transitive [3.20, pp. 11–12].
So more needs to be said regarding how a scientific
model representing a data model, which in turn repre-
sents the phenomenon from which data are gathered,
establishes a representational relationship between the
first and last element in the representational chain.

The third reply is due to van Fraassen [3.36]. His
Wittgensteinian solution is to diffuse the loss of reality
objection. Once we pay sufficient attention to the prag-
matic features of the contexts in which scientific and
data models are used, van Fraassen claims, there ac-
tually is no difference between representing data and
representing a target (or a phenomenon in Bogen and
Woodward’s sense) [3.36, p. 259]:

“in a context in which a given [data] model is
someone’s representation of a phenomenon, there is
for that person no difference between the question
whether a theory [theoretical model] fits that repre-
sentation and the question whether that theory fits
the phenomenon.”

Van Frasseen’s argument for this claim is long and
difficult and we cannot fully investigate it here; we re-
strict attention to one crucial ingredient and refer the
reader to Nguyen [3.161] for a detailed discussion of
the argument.

Moore’s paradox is that we cannot assert sentences
of the form p and I don’t believe that p, where p is an ar-
bitrary proposition. For instance, someone cannot assert
that Napoleon was defeated in the battle of Waterloo
and assert, at the same time, that she doesn’t believe that
Napoleon was defeated in the battle of Waterloo. Van
Fraassen’s treatment of Moore’s paradox is that speak-
ers cannot assert such sentences because the pragmatic
commitments incurred by asserting the first conjunct in-
clude that the speaker believe that p. This commitment
is then contradicted by the assertion of the second con-
junct. So instances of Moore’s paradox are pragmatic
contradictions. Van Fraassen then draws an analogy be-
tween this paradox and the scientific representation. He
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submits that a user simply cannot, on pain of pragmatic
contradiction, assert that a data model of a target sys-
tem be embeddable within a theoretical model without
thereby accepting that the theoretical model represents
the target.

However, Nguyen [3.161] argues that in the case
of using a data model as a representation of a phe-
nomenon, no such pragmatic commitment is incurred,
and therefore no such contradiction follows when ac-
companied by doubt that the theoretical model also
represents the phenomenon. To see why this is the case,
consider a more mundane example of representation:
a caricaturist can represent Margaret Thatcher as draco-
nian without thereby committing himself to the belief
that Margaret Thatcher really is draconian. Pragmati-
cally speaking, acts of representation are weaker than
acts of assertion: they do not incur the doxastic com-
mitments required for van Fraassen’s analogy to go
through. So it seems van Fraassen doesn’t succeed in
dispelling the loss of reality objection. How target sys-
tems enter the picture in the structuralist account of
scientific representation remains therefore a question
that structuralists who invoke data models as provid-
ing the target-end structures must address. Without such
an account the structuralist account of representation
remains at the level of data, a position that seems im-
plausible, and contrary to actual scientific practice.

We now turn to the second response: that a structure
is instantiated in the system. As mentioned above, this
response comes in three versions. The first is metaphys-
ically more parsimonious and builds on the systems’
constituents. Although target systems are not structures,
they are composed of parts that instantiate physical
properties and relations. The parts can be used to de-
fine the domain of individuals, and by considering the
physical properties and relations purely extensionally,
we arrive at a class of extensional relations defined
over that domain (see for instance Suppes’ discussion
of the solar system [3.100, p. 22]). This supplies the
required notion of structure. We might then say that
physical systems instantiate a certain structure, and it
is this structure that models are isomorphic to.

As an example consider the methane molecule.
The molecule consists of a carbon atom and four
hydrogen atoms grouped around it, forming a tetra-
hedron. Between each hydrogen atom and the carbon
atom there is a covalent bond. One can then regard
the atoms as objects and the bonds are relations.
Denoting the carbon atom by a, and the four hydrogen
atoms by b, c, d, and e, we obtain a structure S with
the domain U D fa; b; c; d; eg and the relation rD
fha; bi; hb; ai; ha; ci; hc; ai; ha; di; hd; ai; ha; ei; he; aig,
which can be interpreted as being connected by
a covalent bond.

The main problem facing this approach is the
underdetermination of target-end structure. Under-
determination threatens in two distinct ways. Firstly,
in order to identify the structure determined by
a target system, a domain of objects is required.
What counts as an object in a given target system is
a substantial question [3.21]. One could just as well
choose bonds as objects and consider the relation
sharing a node with another bond. Denoting the
bonds by a0; b0; c0 and d0, we obtain a structure S0

with the domain U0 D fa0; b0; c0; d0g and the relation
r D fha0; b0i; hb0; a0i; ha0; c0i; hc0; a0i; ha0; d0i; hd0; a0i;
hb0; c0i; hc0; b0i; hb0; d0i; hd0; b0i; hc0; d0i; hd0; c0ig. Ob-
viously S and S0 are not isomorphic. So which structure
is picked out depends on how the system is described.
Depending on which parts one regards as individuals
and what relation one chooses, very different structures
can emerge. And it takes little ingenuity to come up
with further descriptions of the methane molecule,
which lead to yet other structures.

There is nothing special about the methane
molecule, and any target system can be presented under
alternative descriptions, which ground different struc-
tures. So the lesson learned generalizes: there is no such
thing as the structure of a target system. Systems only
have a structure under a particular description, and there
are many nonequivalent descriptions. This renders talk
about a model being isomorphic to target system sim-
pliciter meaningless. Structural claims do not stand on
their own in that their truth rests on the truth of a more
concrete description of the target system. As a conse-
quence, descriptions are an integral part of an analysis
of scientific representation.

In passing we note that Frigg [3.21, pp. 55–56]
also provides another argument that pulls in the same
direction: structural claims are abstract and are true
only relative to a more concrete nonstructural descrip-
tion. For a critical discussion of this argument see
Frisch [3.162, pp. 289–294] and Portides, Chap. 2.

Howmuch of a problem this is depends on how aus-
tere one’s conception ofmodels is. The semantic view of
theories was in many ways the result of an antilinguis-
tic turn in the philosophy of science. Many proponents
of the view aimed to exorcise language from an anal-
ysis of theories, and they emphasized that the model-
world relationship ought to be understood as a purely
structural relation. Van Fraassen, for instance, submits
that “no concept which is essentially language depen-
dent has any philosophical importance at all” [3.101,
p. 56] and observes that “[t]he semantic view of theo-
ries makes language largely irrelevant” [3.155, p. 222].
And other proponents of the view, while less vocal about
the irrelevance of language, have not assigned language
a systematic place in their analysis of theories.
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For someone of that provenance the above argument
is bad news. However, a more attenuated position could
integrate descriptions in the package of modeling, but
this would involve abandoning the idea that representa-
tion can be cashed out solely in structural terms. Bueno
and French have recently endorsed such a position.
They accept the point that different descriptions lead
to different structures and explain that such descrip-
tions would involve “at the very least some minimal
mathematics and certain physical assumptions” [3.53,
p. 887]. Likewise, Munich structuralists explicitly ac-
knowledge the need for a concrete description of the
target system [3.163, pp. 37–38], and they consider
these informal descriptions to be internal to the theory.
This is a plausible move, but those endorsing this so-
lution have to concede that there is more to epistemic
representation than structures and morphisms.

The second way in which structural indeterminacy
can surface is via Newman’s theorem. The theorem
essentially says that any system instantiates any struc-
ture, the only constraint being cardinality (a practically
identical conclusion is reached in Putnam’s so called
model-theoretic argument; see Demopoulos [3.164] for
a discussion). Hence, any structure of cardinality C
is isomorphic to a target of cardinality C because
the target instantiates any structure of cardinality C
(see Ketland [3.165] and Frigg and Votsis [3.166] for
discussions). This problem is not unsolvable, but all
solutions require that among all structures formally
instantiated by a target system one is singled out as
being the true or natural structure of the system. How
to do this in the structuralist tradition remains unclear
(Ainsworth [3.167] provides as useful summary of the
different solutions).

Newman’s theorem is both stronger and weaker
than the argument from multiple descriptions. It’s
stronger in that it provides more alternative structures
than multiple descriptions. It’s weaker in that many of
the structures it provides are unphysical because they
are purely set theoretical combinations of elements. By
contrast, descriptions pick out structures that a system
can reasonably be seen as possessing.

The second version of the second response emerges
from the literature on the applicability of mathe-
matics. Structural platonists like Resnik [3.108] and
Shapiro [3.41, 109, 168] take structures to be ante rem
universals. In this view, structures exist independently
of physical systems, yet they can be instantiated in
physical systems. In this view systems instantiate struc-
tures and models are isomorphic to these instantiated
structures.

This view raises all kind of metaphysical issues
about the ontology of structures and the instantiation re-
lation. Let us set aside these issues and assume that they

can be resolved in one way or another. This would still
leave us with serious epistemic and semantic questions.
How do we know a certain structure is instantiated in
a system and how do we refer to it? Objects do not come
with labels on their sleeves specifying which structures
they instantiate, and proponents of structural universals
face a serious problem in providing an account of how
we access the structures instantiated by target systems.
Even if – as a brute metaphysical fact – target systems
only instantiate a small number of structures, and there-
fore there is a substantial question regarding whether
or not scientific models represent them, this does not
help us understand how we could ever come to know
whether or not the isomorphism holds. It seems that
individuating a domain of objects and identifying re-
lations between them is the only way for us to access
a structure. But then we are back to the first version of
the response, and we are again faced with all the prob-
lems that it raises.

The third version of the second response is more
radical. One might take target systems themselves to be
structures. If this is the case then there is no problem
with the idea that they can be isomorphic to a scien-
tific model. One might expect ontic structural realists to
take this position. If the world fundamentally is a struc-
ture, then there is nothing mysterious about the notion
of an isomorphism between a model and the world. Sur-
prisingly, some ontic structuralists have been hesitant
to adopt such a view (see French and Ladyman [3.120,
p. 113] and French [3.169, p. 195]). Others, however,
seem to endorse it. Tegmark [3.170], for instance, offers
an explicit defense of the idea that the world simply is
a mathematical structure. He defines a seemingly mod-
erate form of realism – what he calls the external reality
hypothesis (ERH) – as the claim that “there exists an
external physical reality completely independent of us
humans” [3.170, p. 102] and argues that this entails that
the world is a mathematical structure (his “mathemati-
cal universe hypothesis”) [3.170, p. 102]. His argument
for this is based on the idea that a so-called theory of
everything must be expressible in a form that is devoid
of human-centric baggage (by the ERH), and the only
theories that are devoid of such baggage are mathemat-
ical, which, strictly speaking, describe mathematical
structures. Thus, since a complete theory of everything
describes an external reality independent of humans,
and since it describes a mathematical structure, the ex-
ternal reality itself is a mathematical structure.

This approach stands or falls on the strengths of its
premise that a complete theory of everything will be
formulated purely mathematically, without any human
baggage, which in turn relies on a strict reductionist
account of scientific knowledge [3.170, pp. 103–104].
Discussing this in any detail goes beyond our current
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purposes. But it is worth noting that Tegmark’s dis-
cussion is focused on the claim that fundamentally the
world is a mathematical structure. Even if this were the
case, it seems irrelevant for many of our current sci-
entific models, whose targets aren’t at this level. When
modeling an airplane wing we don’t refer to the funda-

mental super-string structure of the bits of matter that
make up the wing, and we don’t construct wing mod-
els that are isomorphic to such fundamental structures.
So Tegmark’s account offers no answer to the question
about where structures are to be found at the level of
nonfundamental target systems.

3.5 The Inferential Conception

In this section we discuss accounts of scientific rep-
resentation that analyze representation in terms of the
inferential role of scientific models. On the previ-
ous accounts discussed, a model’s inferential capacity
dropped out of whatever it was that was supposed to
answer the ER-problem: proposed morphisms or sim-
ilarity relations between models and their targets for
example. The accounts discussed in this section build
the notion of surrogative reasoning directly into the
conditions on epistemic representation.

3.5.1 Deflationary Inferentialism

Suárez argues that we should adopt a “deflationary or
minimalist attitude and strategy” [3.32, p. 770] when
addressing the problem of epistemic representation. We
will discuss deflationism in some detail below, but in
order to formulate and discuss Suárez’s theory of rep-
resentation we need at least a preliminary idea of what
is meant by a deflationary attitude. In fact two different
notions of deflationism are in operation in his account.
The first is [3.32, p. 771]:

“abandoning the aim of a substantive theory to seek
universal necessary and sufficient conditions that
are met in each and every concrete real instance of
scientific representation [. . . ] necessary conditions
will certainly be good enough.”

We call the view that a theory of representa-
tion should provide only necessary conditions n-
deflationism (n for necessary). The second notion is
that we should seek “no deeper features to representa-
tion other than its surface features” [3.32, p. 771] or
“platitudes” [3.171, p. 40], and that we should deny
that an analysis of a concept “is the kind of analysis
that will shed explanatory light on our use of the con-
cept” [3.172, p. 39]. We call this position s-deflationism
(s for surface feature). As far as we can tell, Suárez in-
tends his account of representation to be deflationary in
both senses.

Suárez dubs the account that satisfies these criteria
inferentialism [3.32, p. 773]:

Definition 3.9 Inferentialism 1
A scientific modelM represents a target T only if (i) the
representational force ofM points towards T , and (ii)M
allows competent and informed agents to draw specific
inferences regarding T .

Notice that this condition is not an instantiation of the
ER-scheme: in keeping with n-deflationism it features
a material conditional rather than a biconditional and
hence provides necessary (but not sufficient) conditions
for M to represent T . We now discuss each condition
in turn, trying to explicate in what way they satisfy s-
deflationism.

The first condition is designed to make sure that M
and T indeed enter into a representational relationship,
and Suárez stresses that representational force is “nec-
essary for any kind of representation” [3.32, p. 776].
But explaining representation in terms of representa-
tional force seems to shed little light on the matter
as long as no analysis of representational force is of-
fered. Suárez addresses this point by submitting that
the first condition can be “satisfied by mere stipula-
tion of a target for any source” [3.32, p. 771]. This
might look like denotation as in Sect. 3.2. But Suárez
stresses that this is not what he intends for two rea-
sons. Firstly, he takes denotation to be a substantive
relation between a model and its target, and the intro-
duction of such a relation would violate the requirement
of s-deflationism [3.172, p. 41]. Secondly, M can de-
note T only if T exists. Thus including denotation
as a necessary condition on scientific representation
“would rule out fictional representation, that is, repre-
sentation of nonexisting entities” [3.32, p. 772], and
“any adequate account of scientific representation must
accommodate representations with fictional or imagi-
nary targets” [3.172, p. 44].

The second issue is one that besets other accounts of
representation too, in particular similarity and isomor-
phism accounts. The first reason, however, goes right
to the heart of Suárez’s account: it makes good on the
s-deflationary condition that nothing other than surface
features can be included in an account of representation.
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At a surface level one cannot explicate representational
force at all and any attempt to specify what representa-
tional force consists in is a violation of s-deflationism.

The second necessary condition, that models allow
competent and informed agents to draw specific infer-
ences about their targets, is in fact just the surrogative
reasoning condition we introduced in Sect. 3.1, now
taken as a necessary condition on epistemic represen-
tation. The sorts of inferences that models allow are
not constrained. Suárez points out that the condition
“does not require that [M] allow deductive reasoning
and inference; any type of reasoning inductive, analog-
ical, abductive – is in principle allowed” [3.32, p. 773].
(The insistence on inference makes Suárez’s account an
instance of what Chakravartty [3.173] calls a functional
conception of representation.)

A problem for this approach is that we are left with
no account of how these inferential rules are generated:
what is it about models that allows them to license infer-
ences about their targets, or what leads them to license
some inferences and not others? Contessa makes this
point most stridently when he argues that [3.29, p. 61]:

“On the inferential conception, the user’s ability
to perform inferences from a vehicle [model] to
a target seems to be a brute fact, which has no
deeper explanation. This makes the connection be-
tween epistemic representation and valid surroga-
tive reasoning needlessly obscure and the perfor-
mance of valid surrogative inferences an activity
as mysterious and unfathomable as soothsaying or
divination.”

This seems correct, but Suárez can dismiss this
complaint by appeal to s-deflationism. Since inferen-
tial capacity is supposed to be a surface-level feature of
scientific representation, we are not supposed to ask for
any elucidation about what makes an agent competent
and well informed and how inferences are drawn.

For these reasons Suárez’s account is deflation-
ary both in the sense of n-deflationism and of s-
deflationism. His position provides us with a concept
of epistemic representation that is cashed out in terms
of an inexplicable notion of representational force and
of an inexplicable capacity to ground inferences. This
is very little indeed. It is the adoption of a deflationary
attitude that allows him to block any attempt to further
unpack these conditions and so the crucial question is:
why should one adopt deflationism?

We turn to this question shortly. Before doing so we
want to briefly outline how the above account fares with
respect to the other problems introduced in Sect. 3.1.
The account provides a neat explanation of the possi-
bility of misrepresentation [3.32, p. 776]:

“part (ii) of this conception accounts for inaccuracy
since it demands that we correctly draw inferences
from the source about the target, but it does not de-
mand that the conclusions of these inferences be all
true, nor that all truths about the target may be in-
ferred.”

Models represent their targets only if they license
inferences about them. They represent them accurately
to the extent that the conclusions of these inferences are
true.

With respect to the representational demarcation
problem, Suárez illustrates his account with a large
range of representations, including diagrams, equa-
tions, scientific models, and nonscientific representa-
tions such as artistic portraits. He explicitly states that
“if the inferential conception is right, scientific rep-
resentation is in several respects very close to iconic
modes of representation like painting” [3.32, p. 777]
and he mentions the example of Velázquez’s portrait of
Innocent X [3.32]. It is clear that the conditions of infer-
entialism 1 (Definition 3.9) are met by nonscientific as
well as scientific epistemic representations. So, at least
without sufficient conditions, there is no clear way of
demarcating between the different kinds of epistemic
representation.

Given the wide variety of types of representation
that this account applies to, it’s unsurprising that Suárez
has little to say about the ontological problem. The only
constraint that inferentialism 1 (Definition 3.9) places
on the ontology of models is that “[i]t requires [M] to
have the internal structure that allows informed agents
to correctly draw inferences about [T]” [3.32, p. 774].
And relatedly, since the account is supposed to apply
to a wide variety of entities, including equations and
mathematical structures, the account implies that math-
ematics is successfully applied in the sciences, but in
keeping with the spirit of deflationism no explanation is
offered about how this is possible.

Suárez does not directly address the problem of
style, but a minimalist answer emerges from what he
says about representation. On the one hand he explicitly
acknowledges that many different kinds of inferences
are allowed by the second condition in inferentialism 1
(Definition 3.9). In the passage quoted above he men-
tions inductive, analogical and abductive inferences.
This could be interpreted as the beginning of classi-
fication of representational styles. On the other hand,
Suárez remains silent about what these kinds are and
about how they can be analyzed. This is unsurpris-
ing because spelling out what these inferences are, and
what features of the model ground them, would amount
to giving a substantial account, which is something
Suárez wants to avoid.
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Let us now return to the question about the mo-
tivation for deflationism. As we have seen, a com-
mitment to deflationism about the concept is central
to Suárez’s approach to scientific representation. But
deflationism comes in different guises, which Suárez il-
lustrates by analogy with deflationism with respect to
truth. Suárez [3.172] distinguishes between the redun-
dancy theory (associated with Frank Ramsey and also
referred to as the no theory view), abstract minimalism
(associated with Crispin Wright) and the use theory (as-
sociated with Paul Horwich). What all three are claimed
to have in common is that they accept the disquotational
schema – i. e., instances of the form: P is true iff P.
Moreover they [3.172, p. 37]

“either do not provide an analysis in terms of neces-
sary and sufficient conditions, or if they do provide
such conditions, they claim them to have no ex-
planatory purchase.”

He claims that the redundancy theory of truth is
characterized by the idea that [3.172, p. 39]:

“the terms truth and falsity do not admit a theo-
retical elucidation or analysis. But that, since they
can be eliminated in principle – if not in practice –
by disquotation, they do not in fact require such an
analysis.”

So, as Suárez characterizes the position, the redun-
dancy theory denies that any necessary and sufficient
conditions for application of the truth predicate case be
given. He argues that [3.172]:

“the generalization of this no-theory theory for any
given putative concept X is the thought that X nei-
ther possesses nor requires necessary and sufficient
conditions because it is not in fact a genuine, ex-
planatory or substantive concept.”

This motivates n-deflationism (although one might
ask why such a position would allow even necessary
conditions. Suárez doesn’t discuss this).

This approach faces a number of challenges. First,
the argument is based on the premise that if deflation-
ism is good for truth it must be good for representation.
This premise is assumed tacitly. There is, however,
a question whether the analogy between truth and repre-
sentation is sufficiently robust to justify subjecting them
to the same theoretical treatment. Surprisingly, Suárez
offers little by way of explicit argument in favor of any
sort of deflationary account of epistemic representation.
In fact, the natural analogue of the linguistic notion of
truth is accurate epistemic representation, rather than
epistemic representation itself, which may be more ap-
propriately compared with linguistic meaning. Second,
the argument insinuates that deflationism is the cor-

rect analysis of truth. This, however, is far from an
established fact. Different positions are available in the
debate and whether deflationism (or any specific ver-
sion of it) is superior to other proposals remains a matter
of controversy (see, for instance, Künne [3.174]). But
as long as it’s not clear that deflationism about truth
is a superior position, it’s hard to see how one can
muster support for deflationism about representation by
appealing to deflationism about truth.

Moreover, a position that allows only necessary
conditions on epistemic representation faces a serious
problem. While such an account allows us to rule out
certain scenarios as instances of epistemic represen-
tation (for example a proper name doesn’t allow for
a competent and well informed language user to draw
any specific inferences about its bearer and Callender
and Cohen’s salt shaker doesn’t allow a user to draw any
specific inferences about Madagascar), the lack of suffi-
cient conditions doesn’t allow us to rule in any scenario
as an instance of epistemic representation. So on the
basis of inferentialism 1 (Definition 3.9) we are never
in position to assert that a particular model actually is
a representation, which is an unsatisfactory situation.

The other two deflationary positions in the debate
over truth are abstract minimalism and the use theory.
Suárez characterizes the use theory as being based on
the idea that “truth is nominally a property, although
not a substantive or explanatory one, which is essen-
tially defined by the platitudes of its use of the predicate
in practice” [3.172, p. 40]. Abstract minimalism is pre-
sented as the view that while truth is [3.172, p. 40]:

“legitimately a property, which is abstractly charac-
terized by the platitudes, it is a property that cannot
explain anything, in particular it fails to explain the
norms that govern its very use in practice.”

Both positions imply that necessary and sufficient
conditions for truth can be given [3.172]. But on either
account, such conditions only capture nonexplanatory
surface features. This motivates s-deflationism.

Since s-deflationism explicitly allows for neces-
sary and sufficient conditions, inferentialism 1 (Def-
inition 3.9) can be extended to an instance of the
ER-scheme, providing necessary and sufficient condi-
tions (which also seems to be in line with Suárez and
Solé [3.171, p. 41] who provide a formulation of infer-
entialism with a biconditional):

Definition 3.10 Inferentialism 2
A scientific model M represents a target T iff (i) the
representational force ofM points towards T , and (ii)M
allows competent and informed agents to draw specific
inferences regarding T .



Models and Representation 3.5 The Inferential Conception 79
Part

A
|3.5

If one takes conditions (i) and (ii) to refer to “features
of activates within a normative practice, [that] do not
stand for relations between sources and targets” [3.172,
p. 46], then we arrive at a use-based account of epis-
temic representation. In order to understand a particular
instance of a model M representing a target T we have
to understand how scientists go about establishing that
M’s representational force points towards T , and the in-
ferential rules, and particular inferences from M to T ,
they use and make.

Plausibly, such a focus on practice amounts to look-
ing at the inferential rules employed in each instance,
or type of instance, of epistemic representation. This,
however, raises a question about the status of any such
analysis vis-à-vis the general theory of representation as
given in inferentialism 2 (Definition 3.10). There seem
to be two options. The first is to affirm inferentialism 2’s
(Definition 3.10) status as an exhaustive theory of repre-
sentation. This, however, would imply that any analysis
of the workings of a particular model would fall out-
side the scope of a theory of representation because
any attempt to address Contessa’s objection would push
the investigation outside the territory delineated by s-
deflationism. Such an approach seems to be overly
purist. The second option is to understand inferential-
ism 2 (Definition 3.10) as providing abstract conditions
that require concretization in each instance of epistemic
representation (abstraction can here be understood, for
instance, in Cartwright’s [3.74] sense). Studying the
concrete realizations of the abstract conditions is then
an integral part of the theory. This approach seems
plausible, but it renders deflationism obsolete. Thus
understood, the view becomes indistinguishable from
a theory that accepts the surrogative reasoning condi-
tion and the requirement of directionality as conditions
of adequacy and analyzes them in pluralist spirit, that is,
under the assumption that these conditions can have dif-
ferent concrete realizers in different contexts. But this
program can be carried out without ever mentioning de-
flationism.

One might reply that the first option unfairly stacks
the deck against inferentialism and point out that dif-
ferent inferential practices can be studied within the
inferentialist framework. One way of making good on
this idea would be to submit that the inferences from
models to their targets should be taken as conceptually
basic, denying that they need to be explained; in par-
ticular, denying that they need to be grounded by any
(possibly varying) relation(s) that might hold between
models and their targets. Such an approach is inspired
by Brandom’s inferentialism in the philosophy of lan-
guage where the central idea is to reverse the order of
explanation from representational notions – like truth
and reference – to inferential notions – such as the va-

lidity of argument [3.175, 176]. Instead, we are urged to
begin from the inferential role of sentences (or propo-
sitions, or concepts, and so on) – that is the role that
they play in providing reasons for other sentences (or
propositions etc.), and having such reasons provided for
them – and from this reconstruct their representational
aspects.

Such an approach is developed by de Donato Ro-
dríguez and Zamora Bonilla [3.177] and seems like
a fruitful route for future research, but for want of space
we will not discuss it in detail here. There is no evidence
that Suárez would endorse such an approach. And,
more worrying for inferentialism 2 (Definition 3.10),
it is not clear whether such an approach would satisfy
s-deflationism. Each investigation into the inferential
rules utilized in each instance, or type of instance of
epistemic representation will likely be a substantial
(possibly sociological or anthropological) project. Thus
the s-deflationary credentials of the approach – at least
if they are taken to require that nothing substantial can
be said about scientific representation in each instance,
as well as in general – are called into question.

Finally, if the conditions in inferentialism 2 (Defi-
nition 3.10) are taken to be abstract platitudes then we
arrive at an abstract minimalism. Although inferential-
ism 2 (Definition 3.10) defines the concept of epistemic
representation, the definition does not suffice to explain
the use of any particular instance of epistemic represen-
tation for ([3.172, p. 48], cf. [3.171]):

“on the abstract minimalism here considered, to
apply this notion to any given concrete case of rep-
resentation requires that some additional relation
obtains between [M] and [T], or a property of [M]
or [T], or some other application condition.”

Hence, according to this approach representational
force and inferential capacity are taken to be abstract
platitudes that suffice to define the concept of scien-
tific representation. However, because of their level of
generality, they fail to explain any particular instance
of it. To do this requires reference to additional fea-
tures that vary from case to case. These other conditions
can be “isomorphism or similarity” and they “would
need to obtain in each concrete case of representa-
tion” ([3.171, p. 45], [3.32, p. 773], [3.172, p. 43]).
These extra conditions are called the means of repre-
sentation, the relations that scientists exploit in order
to draw inferences about targets from their models,
and are to be distinguished from conditions (i) and
(ii), the constituents of representation, that define the
concept ([3.23, p. 230], [3.171, p. 43], [3.172, p. 46],
[3.178, pp. 93–94]). We are told that the means cannot
be reduced to the constituents but that [3.171, p. 43]:
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“all representational means (such as isomorphism
and similarity) are concrete instantiations, or real-
izations, of one of the basic platitudes that constitute
representation”

and that “there can be no application of represen-
tation without the simultaneous instantiation of a par-
ticular set of properties of [M] and [T], and their
relation” [3.171, p. 44].

Such an approach amounts to using conditions (i)
and (ii) to answer the ER-problem, but again with the
caveat that they are abstract conditions that require con-
cretization in each instance of epistemic representation.
In this sense it is immune to Contessa’s objection about
the mysterious capacity that models have to license
about their targets. They do so in virtue of more concrete
relations that hold between models and their targets, al-
beit relations that vary from case to case. The key ques-
tion facing this account is to fill in the details about what
sort of relations concretize the abstract conditions. But
we are now facing a similar problem as the above. Even
if s-deflationism applies to epistemic representation in
general, an investigation into each specific instance of
will involve uncovering substantial relations that hold
between models and their targets, which again conflicts
with Suárez’s adherence to a deflationist approach.

3.5.2 Inflating Inferentialism:
Interpretation

In response to difficulties like the above Contessa
claims that “it is not clear why we should adopt a de-
flationary attitude from the start” [3.29, p. 50] and
provides a “interpretational account” of scientific repre-
sentation that is still, at least to some extent, inspired by
Suárez’s account, but without being deflationary. Con-
tessa claims [3.29, p. 48]:

“[t]he main difference between the interpretational
conception [. . . ] and Suárez’s inferential conception
is that the interpretational account is a substantial
account – interpretation is not just a ’symptom’ of
representation; it is what makes something an epis-
temic representation of a something else.”

To explain in virtue of what the inferences can
be drawn, Contessa introduces the notion of an inter-
pretation of a model, in terms of its target system as
a necessary and sufficient condition on epistemic repre-
sentation ([3.29, p. 57], [3.179, pp. 126–127]):

Definition 3.11 Interpretation
A scientific model M is an epistemic representation of
a certain target T (for a certain user) if and only if the
user adopts an interpretation ofM in terms of T .

Contessa offers a detailed formal characterization of an
interpretation, which we cannot repeat here for want of
space (see [3.29, pp. 57–62] for details). The leading
idea is that the model user first identifies a set of rel-
evant objects in the model, and a set of properties and
relations these objects instantiate, along with a set of
relevant objects in the target and a set of properties and
relations these objects instantiate. The user then:

1. TakesM to denote T .
2. Takes every identified object in the model to denote

exactly one object in the target (and every relevant
object in the target has to be so denoted and as a re-
sult there is a one-to-one correspondence between
relevant objects in the model and relevant objects in
the target).

3. Takes every property and relation in the model to
denote a property or relation of the same arity in the
target (and, again, and every property and relation in
the target has to be so denoted and as a result there
will be one-to-one correspondence between relevant
properties and relations in the model and target).

A formal rendering of these conditions is what Con-
tessa calls an analytic interpretation (he also includes
an additional condition pertaining to functions in the
model and target, which we suppress for brevity). The
relationship between interpretations and the surrogative
reasoning mentioned above is that it is in virtue of the
user adopting an analytic interpretation that a model li-
censes inferences about its target.

At first sight Contessa’s interpretation may appear
to be equivalent to setting up an isomorphism between
model and target. This impression is correct in as far
as an interpretation requires that there be a one-to-one
correspondence between relevant elements and rela-
tions in the model and the target. However, unlike the
isomorphism view, Contessa’s interpretations are not
committed to models being structures, and relations
can be interpreted as full-fledged relations rather than
purely extensionally specified sets of tuples.

Interpretation (Definition 3.11) is a nondeflationary
account of scientific representation: most (if not all)
instances of scientific representation involve a model
user adopting an analytic interpretation towards a target.
The capacity for surrogative reasoning is then seen as
a symptom of the more fundamental notion of a model
user adopting an interpretation of a model in terms of
its target. For this reason the adoption of an analyti-
cal interpretation is a substantial sufficient condition on
establishing the representational relationship. Contessa
focuses on the sufficiency of analytic interpretations
rather than their necessity and adds that he does [3.29,
p. 58]
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“not mean to imply that all interpretation of vehi-
cles [models] in terms of the target are necessarily
analytic. Epistemic representations whose standard
interpretations are not analytic are at least conceiv-
able.”

Even with this in mind, it is clear that he intends that
some interpretation is a necessary condition on epis-
temic representation.

Let’s now turn to how interpretation fares with
respect to our questions for an account of epistemic rep-
resentation as set out in Sect. 3.2. Modulo the caveat
about nonanalytical interpretations, interpretation (Def-
inition 3.11) provides necessary and sufficient condi-
tions on epistemic representation and hence answers the
ER-problem. Furthermore, it does so in a way that ex-
plains the directionality of representation: interpreting
a model in terms of a target does not entail interpreting
a target in terms of a model.

Contessa does not comment on the applicability of
mathematics but since his account shares with the struc-
turalist account an emphasis on relations and one-to-
one model-target correspondence, Contessa can appeal
to the same account of the applicability of mathematics
as structuralist.

With respect to the demarcation problem, Contessa
is explicit that “[p]ortraits, photographs, maps, graphs,
and a large number of other representational devices”
perform inferential functions [3.29, p. 54]. Since noth-
ing in the notion of an interpretation seems restricted
to scientific models, it is plausible to regard interpreta-
tion (Definition 3.11) as a universal theory of epistemic
representation (a conclusion that is also supported by
the fact that Contessa [3.29] uses the example of the
London Underground map to motivate his account; see
also [3.179]). As such, interpretation (Definition 3.11)
seems to deny the existence of a substantial distinction
between scientific and nonscientific epistemic repre-
sentations (at least in terms of their representational
properties). It remains unclear how interpretation (Defi-
nition 3.11) addresses the problem of style. As we have
seen earlier, in particular visual representations fall into
different categories. It is a question for future research
how these can be classified within the interpretational
framework.

With respect to the question of ontology, interpre-
tation (Definition 3.11) itself places few constraints on
what scientific models are, ontologically speaking. All
it requires is that they consist of objects, properties, re-
lations, and functions. For this reason our discussion in
Sect. 3.3.3 above rears its head again here. As before,
how to apply interpretation (Definition 3.11) to physical
models can be understood relatively easily. But how to
apply it to nonphysical models is less straightforward.

Contessa [3.180] distinguishes between mathematical
models and fictional models, where fictional models are
taken to be fictional objects. We briefly return to his on-
tological views in Sect. 3.6.

In order to deal with the possibly of misrepresen-
tation, Contessa notes that “a user does not need to
believe that every object in the model denotes some
object in the system in order to interpret the model in
terms of the system” [3.29, p. 59]. He illustrates this
claim with an example of contemporary scientists us-
ing the Aristotelian model of the cosmos to represent
the universe, pointing out that “in order to interpret the
model in terms of the universe, we do not need to as-
sume that the sphere of fixed stars itself [. . . ] denotes
anything in the universe” [3.29].

From this example it is clear that the relevant sets
of objects, properties and functions isolated in the con-
struction of the analytic interpretation do not need to
exhaust the objects, properties, relations, and functions
of either the model or the target. The model user can
identify a relevant proper subset in each instance. This
allows interpretation (Definition 3.11) to capture the
common practice of abstraction in scientific models:
a model need only represent some features of its target,
and moreover, the model may have the sort of surplus
features are not taken to represent anything in the tar-
get, i. e., that not all of a model’s features need to play
a direct representational role.

This suggestion bears some resemblance to par-
tial structures, and it suffers from the same problem
too. In particular distortive idealisations are a source of
problems for interpretation (Definition 3.11), as several
commentators have observed (see Shech [3.181] and
Bolinska [3.28]). Contessa is aware of this problem and
illustrates it with the example of a massless string. His
response to the problem is to appeal to a user’s correc-
tive abilities [3.29, p. 60]:

“since models often misrepresent some aspect of the
system or other, it is usually up to the user’s compe-
tence, judgment, and background knowledge to use
the model successfully in spite of the fact that the
model misrepresents certain aspects of the system.”

This is undoubtedly true, but it is unclear how such
a view relates, or even derives from, interpretation (Def-
inition 3.11). An appeal to the competence of users
seems to be an ad hoc move that has no systematic
grounding in the idea of an interpretation, and it is an
open question how the notion of an interpretation could
be amended to give distortive idealizations a systematic
place.

Ducheyne [3.182] provides a variant of interpreta-
tion (Definition 3.11) that onemight think could be used
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to accommodate these distortive idealizations. The de-
tails of the account, which we won’t state precisely here
for want of space, can be found in [3.182, pp. 83–86].
The central idea is that each relevant relation specified
in the interpretation holds precisely in the model, and
corresponds to the same relation that holds only ap-
proximately (with respect to a given purpose) in the
target. For example, the low mass of an actual pen-
dulum’s string approximates the masslessness of the
string in the model. The one-to-one correspondence
between (relevant) objects and relations in the model
and target is retained, but the notion of a user tak-
ing relations in the model to denote relations in the
target is replaced with the idea that the relations in
the target are approximations of the ones they corre-
spond to. Ducheyne calls this the pragmatic limiting
case account of scientific representation (the pragmatic
element comes from the fact that the level of approx-
imation required is determined by the purpose of the
model user).

However, if this account is to succeed in explaining
how distortive idealizations are scientific representa-
tions, then more needs to be said about how a target
relation can approximate a model relation. Ducheyne
implicitly relies on the fact that relations are such that
“we can determine the extent to which [they hold]
empirically” [3.182, p. 83] (emphasis added). This sug-
gests that he has quantifiable relations in mind, and
that what it means for a relation r in the target to
approximate a relation r’ in the model is a matter
of comparing numerical values, where a model user’s
purpose determines how close they must be if the for-
mer is to count as an approximation of the latter. But
whether this exhausts the ways in which relations can
be approximations remains unclear. Hendry [3.183],
Laymon [3.184], Liu [3.185], Norton [3.186], and Ram-
sey [3.187], among others, offer discussions of dif-
ferent kinds of idealizations and approximations, and
Ducheyne would have to make it plausible that all these
can be accommodated in his account.

More importantly, Ducheyne’s account has prob-
lems dealing with misrepresentations. Although it is
designed to capture models that misrepresent by being
approximations of their targets, it remains unclear how
it deals with models that are outright mistaken. For ex-
ample, it seems a stretch to say that Thomson’s model
of the atom (now derogatively referred to as the plum
pudding model) is an approximation of what the quan-
tum mechanical shell model tells us about atoms, and
it seems unlikely that there is a useful sense in which
the relations that hold between electrons in Thomson’s
model approximate those that hold in reality. But this
does not mean that it is not a scientific representation of
the atom; it’s just an incorrect one. It does not seem to

be the case that all cases of scientific misrepresentation
are instances where the model is an approximation of
the target (or even conversely, it is not clear whether all
instances of approximation need to be considered cases
of misrepresentation in the sense that they license false-
hoods about their targets).

3.5.3 The Denotation, Demonstration,
and Interpretation Account

Our final account is Hughes’ denotation, demonstra-
tion, and interpretation (DDI) account of scientific
representation [3.188] and [3.189, Chap. 5]. This ac-
count has inspired both the inferential (see Suárez [3.32,
p. 770] and [3.172]) and the interpretational account
(see Contessa [3.179, p. 126]) discussed in this section.

Quoting directly from Goodman [3.64, p. 5],
Hughes takes a model of a physical system to “be
a symbol for it, stand for it, refer to it” [3.188, p. 330].
Presumably the idea is that a model denotes its target
it the same way that a proper name denotes its bearer,
or, stretching the notion of denotation slightly, a pred-
icate denote elements in its extension. (Hughes [3.188,
p. 330] notes that there is an additional complication
when the model has multiple targets but this is not spe-
cific to the DDI account and is discussed in more detail
in Sect. 3.8). This is the first D in DDI. What makes
models epistemic representations and thereby distin-
guishes them from proper names, are the demonstration
and interpretation conditions.

The demonstration condition, the second D in DDI,
relies on a model being “a secondary subject that has,
so to speak, a life of its own. In other words, [a] rep-
resentation has an internal dynamic whose effects we
can examine” [3.188, p. 331] (that models have an in-
ternal dynamic is all that Hughes has to say about the
problem of ontology). The two examples offered by
Hughes are both models of what happens when light is
passed through two nearby slits. One model is math-
ematical where the internal dynamics are “supplied
by the deductive, resources of the mathematics they
employ” [3.188], the other is a physical ripple cham-
ber where they are supplied by “the natural processes
involved in the propagation of water waves” [3.188,
p. 332].

Such demonstrations, on either mathematical mod-
els or physical models are still primarily about the
models themselves. The final aspect of Hughes’ ac-
count – the I in DDI – is interpretation of what has
been demonstrated in the model in terms of the target
system. This yields the predictions of the model [3.188,
p. 333]. Unfortunately Hughes has little to say about
what it means to interpret a result of a demonstration
on a model in terms of its target system, and so one has
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to retreat to an intuitive (and unanalyzed) notion of car-
rying over results from models to targets.

Now Hughes is explicit that he is not attempting
to answer the ER-problem, and that he does not even
offer denotation, demonstration and interpretation as
individually necessary and jointly sufficient conditions
for scientific representation. He prefers the more [3.188,
p. 339]

“modest suggestion that, if we examine a theoretical
model with these three activities in mind, we shall
achieve some insight into the kind of representation
that it provides.”

We are not sure how to interpret Hughes’ position
in light of this. On one reading, he can be seen as de-
scribing how we usemodels. As such,DDI functions as
a diachronic account of what a model user does when
using a model in an attempt to learn about a target sys-
tem. We first stipulate that the model stands for the
target, then prove what we want to know, and finally
transfer the results obtained in the model back to the
target. Details aside, this picture seems by and large
correct. The problem with the DDI account is that it
does not explain why and how this is possible. Under
what conditions is it true that the model denotes the tar-
get? What kinds of things are models that they allow
for demonstrations? How does interpretation work; that
is, how can results obtained in the model be transferred
to the target? These are questions an account of epis-
temic representation has to address, but which are left
unanswered by the DDI account thus interpreted. Ac-
cordingly, DDI provides an answer to a question distinct
from the ER-problem. Although a valuable answer to
the question of how models are used, it does not help us
too much here, since it presupposes the very representa-
tional relationship we are interested in between models
and their targets.

An alternative reading of Hughes’ account emerges
when we consider the developments of the structural-
ist and similarity conceptions discussed previously, and
the discussion of deflationism in Sect. 3.5.1: perhaps the
very act of using a model, with all the user intentions
and practices that brings with it, constitutes the epis-
temic representation relationship itself. And as such,
perhaps the DDI conditions could be taken as an answer
to the ER-problem:

Definition 3.12 DDI-ER
A scientific model M represents a target T iff M de-
notes T , an agent (or collection of thereof) S exploits
the internal dynamic of M to make demonstrations D,
which in turn are interpreted by the agent (or collection
of thereof) to be about T .

This account comes very close to interpretation (Defi-
nition 3.11) as discussed in Sect. 3.5.2. And as such it
serves to answer the questions we set out in Sect. 3.1
above in the same way. But in this instance, the no-
tion of what it means to exploit an internal dynamic
and interpret the results of this to be about T need fur-
ther explication. If the notion of an interpretation is
cashed out in the same way as Contessa’s analytic in-
terpretation, then the account will be vulnerable to the
same issues as those discussed previously. In another
place Hughes endorses Giere’s semantic view of theo-
ries, which he characterizes as connecting models to the
target with a theoretical hypothesis [3.190, p. 121]. This
suggests that an interpretation is a theoretical hypothe-
sis in this sense. If so, then Hughes’s account collapses
into a version of Giere’s.

Given that Hughes describes his account as “de-
signedly skeletal [and in need] to be supplemented
on a case-by-case basis” [3.188, p. 335], one option
available is to take the demonstration and interpreta-
tion conditions to be abstract (in the sense of abstract
minimalism discussed above), which require filling in
each instance, or type of instance, of epistemic repre-
sentation. As Hughes notes, his examples of the internal
dynamics of mathematical and physical models are rad-
ically different with the demonstrations of the former
utilizing mathematics, and the latter physical proper-
ties such as the propagation of water waves. Similar
remarks apply to the interpretation of these demonstra-
tions, as well as to denotation. But as with Suárez’s
account, the definition sheds little light on the prob-
lem at hand as long as no concrete realizations of
the abstract conditions are discussed. Despite Hughes’
claims to the contrary, such an account could prove
a viable answer the ER-problem, and it seems to cap-
ture much of what is valuable about both the abstract
minimalist version of inferentialism 2 (Definition 3.10)
as well as interpretation (Definition 3.11) discussed
above.

3.6 The Fiction View of Models

In this section we discuss a number of recent attempts
to analyze scientific modeling by drawing an analogy
with literary fiction. We begin by introducing the lead-
ing ideas and differentiating between different strands

of argument. We then examine a number of accounts
that analyze epistemic representation against the back-
drop of literary fiction. We finally discuss criticisms of
the fiction view.
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3.6.1 Models and Fiction

Scientific discourse is rife with passages that appear
to be descriptions of systems in a particular discipline,
and the pages of textbooks and journals are filled with
discussions of the properties and the behavior of those
systems. Students of mechanics investigate at length the
dynamical properties of a system consisting of two or
three spinning spheres with homogeneous mass distri-
butions gravitationally interacting only with each other.
Population biologists study the evolution of one species
that reproduces at a constant rate in an unchanging en-
vironment. And when studying the exchange of goods,
economists consider a situation in which there are only
two goods, two perfectly rational agents, no restric-
tions on available information, no transaction costs, no
money, and dealings are done immediately. Their sur-
face structure notwithstanding, no one would mistake
descriptions of such systems as descriptions of an ac-
tual system: we know very well that there are no such
systems (of course some models are actual systems –
a scale model of a car in a wind tunnel for example –
but in this section we focus on models that are not of
this kind). Scientists sometimes express this fact by say-
ing that they talk aboutmodel land (for instance [3.191,
p.135]).

Thomson-Jones [3.98, p. 284] refers to such a de-
scription as a “description of a missing system”. These
descriptions are embedded in what he calls the “face
value practice” [3.98, p. 285]: the practice of talking
and thinking about these systems as if they were real.
We observe that the amplitude of an ideal pendulum
remains constant over time in much the same way in
which we say that the Moon’s mass is approximately
7:34�1022 kg. Yet the former statement is about a point
mass suspended from a massless string – and there is no
such thing in the world.

The face value practice raises a number of ques-
tions. What account should be given of these descrip-
tions and what sort of objects, if any, do they describe?
How should we analyze the face value practice? Are
we putting forward truth-evaluable claims when putting
forward descriptions of missing systems? An answer to
these questions emerges from the following passage by
Peter Godfrey-Smith [3.152, p. 735]:

“[. . . ] I take at face value the fact that modelers
often take themselves to be describing imaginary bi-
ological populations, imaginary neural networks, or
imaginary economies. [. . . ] Although these imag-
ined entities are puzzling, I suggest that at least
much of the time they might be treated as simi-
lar to something that we are all familiar with, the
imagined objects of literary fiction. Here I have in

mind entities like Sherlock Holmes’ London, and
Tolkein’s Middle Earth. [. . . ] the model systems of
science often work similarly to these familiar fic-
tions.”

This is the core of the fiction view of models:
models are akin to places and characters in literary
fiction. When modeling the solar system as consist-
ing of ten perfectly spherical spinning tops physicists
describe (and take themselves to describe) an imagi-
nary physical system; when considering an ecosystem
with only one species biologists describe an imaginary
population; and when investigating an economy with-
out money and transaction costs economists describe
an imaginary economy. These imaginary scenarios are
tellingly like the places and characters in works of fic-
tion like Madame Bovary and Sherlock Holmes.

Although hardly at the center of attention, the par-
allels between certain aspects of science and literary
fiction have not gone unnoticed. Maxwell discussed in
great detail the motion of “a purely imaginary fluid”
in order to understand the electromagnetic field [3.192,
pp. 159–160]. The parallel between science and fiction
occupied center stage in Vaihinger’s [3.193] philoso-
phy of the as if. More recently, the parallel has also
been drawn specifically between models and fiction.
Cartwright observes that “a model is a work of fic-
tion” [3.194, p. 153] and later suggests an analysis of
models as fables [3.73, Chap. 2]. McCloskey [3.195]
emphasises the importance of narratives and stories
in economics. Fine notes that modeling natural phe-
nomena in every area of science involves fictions in
Vaihinger’s sense [3.196, p. 16], and Sklar highlights
that describing systems as if they were systems of
some other kind is a royal route to success [3.197,
p. 71]. Elgin [3.198, Chap. 6] argues that science shares
important epistemic practices with artistic fiction.Hart-
mann [3.199] and Morgan [3.200] emphasize that sto-
ries and narratives play an important role in models,
and Morgan [3.201] stresses the importance of imag-
ination in model building. Sugden [3.202] points out
that economic models describe “counterfactual worlds”
constructed by the modeler. Frigg [3.30, 203] suggests
that models are imaginary objects, and Grüne-Yanoff
and Schweinzer [3.204] emphasize the importance of
stories in the application of game theory. Toon [3.48,
205] has formulated an account of representation based
on a theory of literary fiction.Contessa [3.180] provides
a fictional ontology of models and Levy [3.43, 206] dis-
cusses models as fictions.

But simply likening modeling to fiction does not
solve philosophical problems. Fictional discourse and
fictional entities face well-known philosophical ques-
tions, and hence explaining models in terms of fictional
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characters seems to amount to little more than to ex-
plain obscurum per obscurius. The challenge for pro-
ponents of the fiction view is to show that drawing
an analogy between models and fiction has heuristic
value.

A first step towards making the analogy productive
is to get clear on what the problem is that the appeal
to fiction is supposed to solve. This issue divides pro-
ponents of the fiction view into two groups. Authors
belonging to the first camp see the analogy with fic-
tion as providing an answer to the problem of ontology.
Models, in that view, are ontologically on par with liter-
ary fiction while there is no productive parallel between
models and fiction as far as the ER-problem (or in-
deed any other problem of representation) is concerned.
Authors belonging to the second group hold the oppo-
site view. They see the analogy with fiction first and
foremost as providing an answer to the ER-problem (al-
though, as we have seen, this may place restrictions on
the ontology of models). Scientific representation, in
this view, has to be understood along the lines of how
literary fiction relates to reality. Positions on ontology
vary. Some authors in this group also adopt a fiction
view of ontology; some remain agnostic about the anal-
ogy’s contribution to the matters of ontology; and some
reject the problem of ontology altogether.

This being a review of models and representa-
tion, we refer the reader to Gelfert’s contribution to
this book for an in-depth discussion of the ontology
of models, Chap. 1, and focus on the fiction view’s
contribution to semantics. Let us just note that those
who see fiction as providing an ontology of models
are spoiled for choice. In principle every option avail-
able in the extensive literature on fiction is a candidate
for an ontology of models; for reviews of these op-
tions see Friend [3.207] and Salis [3.208]. Different
authors have made different choices, with proposals
being offered by Contessa [3.180], Ducheyne [3.72],
Frigg [3.203], Godfrey-Smith [3.209], Levy [3.43], and
Sugden [3.210]. Cat [3.211], Liu [3.212, 213], Pin-
cock [3.214, Chap. 12], Thomson-Jones [3.98] and
Toon [3.205] offer critical discussions of some of these
approaches.

Even if these ontological problems were settled in
a satisfactory manner, we would not be home and dry
yet. Vorms [3.215, 216] argues that what’s more im-
portant than the entity itself is the format in which
the entity is presented. A fiction view that predomi-
nantly focuses on understanding the fictional entities
themselves (and, once this task is out of the way, their
relation to the real-world targets), misses an impor-
tant aspect, namely how agents draw inferences from
models. This, Vorms submits, crucially depends on the
format under which they are presented to scientists, and

different formats allow scientists to draw different in-
ferences. This ties in with Knuuttila’s insistence that we
ought to pay more attention to the “medium of represen-
tation” when studying models [3.9, 217].

One last point stands in need of clarification: the
meaning of the term fiction. Setting aside subtleties that
are irrelevant to the current discussion, the different
uses of fiction fall into two groups: fiction as falsity and
fiction as imagination [3.218]. Even though not mutu-
ally exclusive, the senses should be kept separate. The
first use of fiction characterizes something as deviating
from reality. We brand Peter’s account of events a fic-
tion if he does not report truthfully how things have
happened. In the second use, fiction refers to a kind of
literature, literary fiction. Rife prejudice notwithstand-
ing, the defining feature of literary fiction is not falsity.
Neither is everything that is said in, say, a novel untrue
(novels like War and Peace contain correct historical
information); nor does every text containing false re-
ports qualify as fiction (a wrong news report or a faulty
documentary do not by that token turn into fiction –
they remain what they are, namely wrong factual state-
ments). What makes a text fictional is the attitude that
the reader is expected to adopt towards it. When reading
a novel we are not meant to take the sentences we read
as reports of fact; rather we are supposed to imagine the
events described.

It is obvious from what has been said so far that
the fiction view of models invokes the second sense
of fiction. Authors in this tradition do not primarily
intend to brand models as false; they aim to empha-
size that models are presented as something to ponder.
This is not to say the first sense of fiction is irrele-
vant in science. Traditionally fictions in that sense have
been used as calculational devices for generating pre-
dictions, and recently Bokulich [3.14] emphasized the
explanatory function of fictions. The first sense of fic-
tion is also at work in philosophy where antirealist
positions are described as fictionalism. For instance,
someone is a fictionalist about numbers if she thinks
that numbers don’t exist (see Kalderon [3.219] for a dis-
cussion of several fictionalisms of this kind). Scientific
antirealists are fictionalists about many aspects of scien-
tific theories, and hence Fine characterizes fictionalism
as an “antirealist position in the debate over scientific
realism” [3.196, 220, 221], a position echoed in Wins-
berg [3.222] and Suárez [3.223]. Morrison [3.224] and
Purves [3.225] and offer critical discussions of this ap-
proach, which the latter calls fiction as “truth conducive
falsehood” [3.225, p. 236]; Woods [3.226] offers a crit-
ical assessment of fictionalism in general. Although
there are interesting discussions to be had about the role
that this kind of fictions play in the philosophy of sci-
ence, it is not our interest here.
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3.6.2 Direct Representation

In this subsection and the next we discuss proposals that
have used the analogy between models and fiction to
elucidate representation.

Most theories of representation we have encoun-
tered so far posit that there are model systems and con-
strue epistemic representation as a relation between two
entities, the model system and the target system. Toon
calls this the indirect view of representation [3.205,
p. 43]; Levy, speaking specifically about the fiction
view of models, refers to it as the whole-cloth fiction
view [3.206, p. 741]. Indeed, Weisberg views this in-
directness as the defining feature of modeling [3.227].
This view faces the problem of ontology because it has
to say what kind of things model systems are. This view
contrasts with what Toon [3.205, p. 43] and Levy [3.43,
p. 790] call a direct view of representation (Levy [3.206,
p. 741] earlier also referred to it as the worldly fic-
tion view). This view does not recognize model systems
and aims instead to explain epistemic representation as
a form of direct description. Model descriptions (like
the description of an ideal pendulum) provide an “imag-
inative description of real things” [3.206, p. 741] such
as actual pendula, and there is no such thing as a model
system of which the pendulum description is literally
true [3.205, pp. 43–44]. In what follows we use Toon’s
terminology and refer to this approach as direct repre-
sentation.

Toon and Levy both reject the indirect approach be-
cause of metaphysical worries about fictional entities,
and they both argue that the direct view has the con-
siderable advantage that it does not have to deal with
the vexed problem of the ontology of model systems
and their comparison with real things at all. Levy [3.43,
p. 790] sees his approach as “largely complimentary to
Toon’s”. So we first discuss Toon’s approach and then
turn to Levy’s.

Toon [3.48, 205, 228] takes as his point of departure
Walton’s [3.229] theory of representation in the arts. At
the heart of this theory is the notion of a game of make
believe. The simplest examples of these games are chil-
dren’s plays [3.229, p. 11]. In one such play we imagine
that stumps are bears and if we spot a stumpwe imagine
that we spot a bear. In Walton’s terminology the stumps
are props, and the rule that we imagine a bear when
we see a stump is a principle of generation. Together
a prop and a principle of generation prescribe what is
to be imagined. If a proposition is so prescribed to be
imagined, then the proposition is fictional in the rele-
vant game. The term fictional has nothing to do with
falsity; on the contrary, it indicates that the proposition
is true in the game. The set of propositions actually
imagined by someone need not coincide with the set

of all fictional propositions in game. It could be the
case that there is a stump somewhere that no one has
seen and hence no one imagines that it’s a bear. Yet the
proposition that the unseen stump is a bear is fictional
in the game.

Walton considers a vast variety of different props. In
the current context two kinds of props are particularly
important. The first are objects like statues. Consider
a statue showing Napoleon on horseback [3.205, p. 37].
The statue is the prop, and the games of make believe
for it are governed by certain principles of generation
that apply to statues of this kind. So when seeing the
statue we are mandated to imagine, for instance, that
Napoleon has a certain physiognomy and certain fa-
cial expressions. We are not mandated to imagine that
Napoleon was made of bronze, or that he hasn’t moved
for more than 100 years.

The second important kind of props are works of
literary fiction. In this case the text is the prop, which to-
gether with principles of generation appropriate for lit-
erary fictions of a certain kind, generates fictional truths
by prescribing readers to imagine certain things. For
instance, when reading The War of the Worlds [3.205,
p. 39] we are prescribed to imagine that the dome of St
Paul’s Cathedral has been attacked by aliens and now
has a gaping hole on its western side.

In Walton’s theory something is a representation
if it has the social function of serving as a prop in
a game of make believe, and something is an object of
a representation if the representation prescribes us to
imagine something about the object [3.229, pp. 35,39].
In the above examples the statue and the written text
are the props, and Napoleon and St Paul’s Cathe-
dral, respectively, are the objects of the representa-
tions.

The crucial move now is to say that models are
props in games of make believe. Specifically, material
models – such as an architectural model of the Forth
Road Bridge – are like the statue of Napoleon [3.205,
p. 37]: the model is the prop and the bridge is the ob-
ject of the representation. The same observation applies
to theoretical models, such as a mechanical model of
a bob bouncing on a spring. The model portrays the
bob as a point mass and the spring as perfectly elas-
tic. The model description represents the real ball and
spring system in the same way in which a literary text
represents its objects [3.205, pp. 39–40]: the model de-
scription prescribes imaginings about the real system –
we are supposed to imagine the real spring as perfectly
elastic and the bob as a point mass.

We now see why Toon’s account is a direct view
of modeling. Theoretical model descriptions represent
actual concrete objects: the Forth Road Bridge and
the bob on a spring. There is no intermediary en-
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tity of which model descriptions are literally true and
which are doing the representing. Models prescribe
imaginings about a real world target, and that is what
representation consists in.

This is an elegant account of representation, but it
is not without problems. The first issue is that it does
not offer an answer to the ER-problem. Imagining that
the target has a certain feature does not tell us how
the imagined feature relates to the properties the target
actually has, and so there is no mechanism to trans-
fer model results to the target. Imagining the pendulum
bob to be a point mass tells us nothing about which, if
any, claims about point masses are also true of the real
bob. Toon mentions this problem briefly. His response
is that [3.205, pp. 68–69]:

“Principles of generation often link properties of
models to properties of the system they represent in
a rather direct way. If the model has a certain prop-
erty then we are to imagine that system does too. If
the model is accurate, then the model and the sys-
tem will be similar in this respect. [. . . ] [But] not
all principles of generation are so straightforward.
[. . . ] In some cases similarity seems to play no role
at all.”

In as far as the transfer mechanism is similarity, the
view moves close to the similarity view, which brings
with it both some of the benefits and the problems we
have discussed in Sect. 3.3. The cases in which simi-
larity plays no role are left unresolved and it remains
unclear how surrogative reasoning with such models is
supposed to happen.

The next issue is that not all models have a target
system, which is a serious problem for a view that an-
alyzes representation in terms of imagining something
about a target. Toon is well aware of this issue and calls
them models without objects [3.205, p. 76]. Some of
these are models of discredited entities like the ether
and phlogiston, which were initially thought to have
a target but then turned out not to have one [3.205,
p. 76]. But not all models without objects are errors:
architectural plans of buildings that are never built or
models of experiments that are never carried out fall
into the same category [3.205, p. 76].

Toon addresses this problem by drawing another
analogy with fiction. He points out that not all novels
are like The War of the Worlds, which has an object.
Passages from Dracula, for instance, “do not repre-
sent any actual, concrete object but are instead about
fictional characters” [3.205, p. 54]. Models without
a target are like passages from Dracula. So the solu-
tion to the problem is to separate the two cases neatly.
When a model has target then it represents that target

by prescribing imaginings about the target; if a model
has no target it prescribes imaginings about a fictional
character [3.205, p. 54].

Toon immediately admits that models without tar-
gets “give rise to all the usual problems with fictional
characters” [3.205, p. 54]. However, he seems to think
that this is a problem we can live with because the
more important case is the one where models do have
a target, and his account offers a neat solution there.
He offers the following summative statement of his ac-
count [3.205, p. 62]:

Definition 3.13 Direct Representation
A scientific modelM represents a target system T iffM
functions as prop in game of make believe.

This definition takes it to be understood that the imagin-
ings prescribed are about the target T if there is a target,
and about a fictional character if there isn’t because
there need not be any object that the model prescribes
imaginings about [3.205, p. 81].

This bifurcation of imaginative activities raises
questions. The first is whether the bifurcation squares
with the face value practice. Toon’s presentation would
suggest that the imaginative practices involved in mod-
els with targets are very different from the ones involved
in models without them. Moreover, they require a dif-
ferent analysis because imagining something about an
existing object is different from imagining something
about a fictional entity. This, however, does not seem
to sit well with scientific practice. In some cases we are
mistaken: we think that the target exists but then find out
that it doesn’t (as in the case of phlogiston). But does
that make a difference to the imaginative engagement
with a phlogiston model of combustion? Even today we
can understand and use such models in much the same
way as its original protagonists did, and knowing that
there is no target seems to make little, if any, differ-
ence to our imaginative engagement with the model. Of
course the presence or absence of a target matters to
many other issues, most notably surrogative reasoning
(there is nothing to reason about if there is no target!),
but it seems to have little importance for how we imag-
inatively engage with the scenario presented to us in
a model.

In other cases it is simply left open whether there
is target when the model is developed. In elementary
particle physics, for instance, a scenario is often pro-
posed simply as a suggestion worth considering and
only later, when all the details are worked out, the ques-
tion is asked whether this scenario bears an interesting
relation to what happens in nature, and if so what the
relation is. So, again, the question of whether there is
or isn’t a target seems to have little, if any, influence
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on the imaginative engagement of physicists with sce-
narios in the research process. This does not preclude
different philosophical analyzes being given of mod-
eling with and without a target, but any such analysis
will have to make clear the commonalities between the
two.

Let us now turn to a few other aspects of direct
representation (Definition 3.13). The view successfully
solves the problem of asymmetry. Even if it uses sim-
ilarity in response to the ER-problem, the imaginative
process is clearly directed towards the target. An appeal
to imagination also solves the problem of misrepresen-
tation because there is no expectation that our imagina-
tions are correct when interpreted as statements about
the target. Given its roots in a theory of representation
in art, it’s natural to renounce any attempts to demarcate
scientific representation from other kinds of representa-
tion [3.205, p. 62]. The problem of ontology is dispelled
for representations with an object, but it remains unre-
solved for representations without one. However, direct
representation (Definition 3.13) offers at best a partial
answer to the ER-problem, and nothing is said about ei-
ther the problem of style and/or standards of accuracy.
Similarly, Toon remains silent about the applicability of
mathematics.

Levy also rejects an indirect view primarily because
of the unwieldiness of its ontology and endorses a di-
rect view of representation ([3.43, pp. 780–790], [3.206,
pp. 744–747]). Like Toon, he develops his version of
the direct view by appeal to Walton’s notion of prop-
oriented make believe. When, for instance, we’re asked
where in Italy the town of Crotone lies, we can be told
that it’s in the arch of the Italian boot. In doing so we
are asked to imagine something about the shape of Italy
and this imagination is used to convey geographical in-
formation. Levy then submits that “we treat models as
games of prop-oriented make believe” [3.206, p. 791].
Hence modeling consists in imagining something di-
rectly about the target.

Levy pays careful attention to the ER-problem.
In his [3.206, p. 744] he proposed that the prob-
lem be conceptualized in analogy with metaphors, but
immediately added that this was only a beginning
which requires substantial elaboration. In his [3.43,
pp. 792–796] he takes a different route and appeals to
Yablo’s [3.230] theory of partial truth. The core idea
of this view is that a statement is partially true “if it
is true when evaluated only relative to a subset of the
circumstances that make up its subject matter – the sub-
set corresponding to the relevant content-part” [3.43,
p. 792]. Levy submits that this will also work for
a number of cases of modeling, but immediately adds
that there are other sorts of cases that don’t fit the
mold [3.43, p. 794]. Such cases often are ones in which

distortive idealizations are crucial and cannot be set
aside. These require a different treatment and it’s an
open question what this treatment would be.

Levy offers a radical solution to the problem of mod-
els without targets: there aren’t any! He first broadens
the notion of a target system, allowing for models that
are only loosely connected to targets [3.43, pp. 796–
797]. To this end he appeals to Godfrey-Smith’s notion
of hub-and-spoke cases: families of models where only
some have a target (which makes them the hub mod-
els) and the others are connected to them via conceptual
links (spokes) but don’t have a specific target. Levy
points out that such cases should be understood as hav-
ing a generalized target. If something that looks like
a model doesn’t meet the requirement of having even
a generalized target, then it’s not a model at all. Levy
mentions structures like the game of life and observes
that they are “bits of mathematics” rather than mod-
els [3.43, p. 797]. This eliminates the need for fictional
characters in the case of targetless models.

This is a heroic act of liberation, but questions
about it remain. The direct view renders fictional enti-
ties otiose by positing that a model is nothing but an act
of imagining something about a concrete actual thing.
But generalized targets are not concrete actual things,
and often not even classes of such things. There is a se-
rious question whether one can still reap the (alleged)
benefits of a view that analyzes modeling as imagin-
ings about concrete things, if the things about which
we imagine something are no longer concrete. Popula-
tion growth or complex behavior are not concrete things
like rabbits and stumps, and this would seems to pull
the rug from underneath a direct approach to represen-
tation. Likewise, the claim that models without target
are just mathematics stands in need of further elucida-
tion. Looking back at Toon’s examples of such models,
a view that considers them just mathematics does not
come out looking very natural.

3.6.3 Parables and Fables

Cartwright [3.231] focuses on highly idealized models
such as Schelling’s model of social segregation [3.232]
and Pissarides’ model of the labor market [3.233].The
problem with these models is that the objects and sit-
uations we find in such models are not at all like the
things in the world that we are interested in. Cities
aren’t organized as checkerboards and people don’t
move according to simple algorithmic rules (as they do
in Schelling’s model), and there are no laborers who
are solely interested in leisure and income (as is the
case in Pissarides’ model). Yet we are supposed to learn
something about the real world from these models. The
question is how.
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Cartwright submits that an answer to this question
emerges from a comparison of models with narratives,
in particular fables and parables. An example of a fable
is the following: “A marten eats the grouse; a fox throt-
tles the marten; the tooth of the wolf, the fox. Moral: the
weaker are always prey to the stronger” [3.231, p. 20].
The characters in the fable are highly idiosyncratic, and
typically we aren’t interested in them per se – we don’t
read fables to learn about foxes and martens. What we
are interested in is the fable’s general and more abstract
conclusion, in the above example that the weaker are
always prey to the stronger. In the case of the fable
the moral is typically built in the story and explicitly
stated [3.231].

Cartwright then invites us to consider the parable
of the laborers in the vineyard told in the Gospel of
Matthew [3.231]. A man goes to the market to hire day
laborers. He hires the first group early in the morning,
and then returns several times during the day to hire
more laborers, and he hires the last group shortly before
dusk. Some worked all day, while some hardly started
when the day ended. Yet he pays the same amount to
all of them. Like in a fable, when engaging with a para-
ble the reader takes no intrinsic interest in the actors
and instead tries to extract a more general moral. But
unlike in fables, in parables no moral appears as part of
the parable itself [3.231, p. 29]. Hence parables need in-
terpretation, and alternative interpretations are possible.
The above fable is often interpreted as being about the
entry to God’s kingdom, but, as Cartwright observes,
it can just as well be interpreted as making the market-
based capitalist point that you get what you contract for,
and should not appeal to higher forms of justice [3.231,
p. 21].

These are features models share with fables and
parables: “like the characters in the fable, the objects
in the model are highly special and do not in general re-
semble the ones we want to learn about” [3.231, p. 20]
and the “lesson of the model is, properly, more abstract
than what is seen to happen in the model” [3.231, p. 28].
This leaves the question whether models are fables or
parables. Some models are like fables in that they have
the conclusion explicitly stated in them. But most mod-
els are like parables [3.231, p. 29]: their lesson is not
written in the models themselves [3.231, p. 21], and
worse: “a variety of morals can be attributed to the
models” [3.231, p. 21]. A model, just like a parable,
is interpreted against a rich background of theory and
observation, and the conclusion we draw depends to
a large extent on the background [3.231, p. 30].

So far the focus was on deriving a conclusion about
the model itself. Cartwright is clear that one more step
is needed: “In many cases we want to use the re-
sults of these models to inform our conclusions about

a range of actually occurring (so-called target) sit-
uations” [3.231, p. 22] (original emphasis). In fact,
making this transfer of model results to the real world is
the ER-problem. Unfortunately she does not offer much
by way of explaining this step and merely observes that
“a description of what happens in the model that does
not fit the target gets recast as one that can” [3.231,
p. 20]. This gestures in the right direction, but more
would have to be said about how exactly a model
description is recast to allow for transfer of model
results to target systems. In earlier work Cartwright
observed that what underlies the relationship between
models and their targets is a “loose notion of resem-
blance” [3.73, pp. 192–193] and [3.74, pp. 261–262].
This could be read as suggesting that she would en-
dorse some kind of similarity view of representation.
Such a view, however, is independent of an appeal to
fables and parables.

In passing we would like to mention that the same
kind of models is also discussed in Sugden [3.202, 210].
However, his interest is in induction rather than repre-
sentation, and if reframed in representational terms then
his account becomes a similarity account like Giere’s.
See Grüne-Yanoff [3.234] and Knuuttila [3.235] for
a discussion.

3.6.4 Against Fiction

The criticisms we have encountered above were intrin-
sic criticisms of particular versions of the fiction view,
and as such they presuppose a constructive engage-
ment with the view’s point of departure. Some critics
think that any such engagement is misplaced because
the view got started on the wrong foot entirely. There
are five different lines of attack. The first criticism is
driven by philosophical worries about fiction. Fictions,
so the argument goes, are intrinsically dubious and are
beset with so many serious problems that one should
steer away from them whenever possible. So it could
be claimed that assigning them a central role in sci-
ence is a manifestation of philosophical masochism.
This, however, overstates the problems with fictions.
Sure enough, there is controversy about fictions. But the
problems pertaining to fictions aren’t more devastating
than those surrounding other items on the philosophi-
cal curriculum, and these problems surely don’t render
fictions off limits.

The second criticism, offered for example by
Giere [3.97, p. 257], is that the fiction view – in-
voluntarily – plays into the hands of irrationalists.
Creationists and other science skeptics will find great
comfort, if not powerful rhetorical ammunition, in the
fact that philosophers of science say that scientists pro-
duce fiction. This, so the argument goes, will be seen



Part
A
|3.6

90 Part A Theoretical Issues in Models

as a justification of the view that religious dogma is
on par with, or even superior to, scientific knowledge.
Hence the fiction view of models undermines the au-
thority of science and fosters the cause of those who
wish to replace science with religious or other unscien-
tific worldviews.

Needless to say, we share Giere’s concerns about
creationism. In order not to misidentify the problem it
is important to point out that Giere’s claim is not that the
view itself – or its proponents – support creationism; his
worry is that the view is a dangerous tool when it falls
into the wrong hands. What follows from this, however,
is not that the fiction view itself should be abandoned;
but rather that some care is needed when dealing with
the press office. As long as the fiction view of models is
discussed in informed circles, and, when popularized,
is presented carefully and with the necessary qualifica-
tions, it is no more dangerous than other ideas, which,
when taken out of context, can be put to uses that would
(probably) send shivers down the spines of their pro-
genitors (think, for instance, of the use of Darwinism to
justify eugenics).

The third objection, also due to Giere, has it that
the fiction view misidentifies the aims of models. Giere
agrees that from an ontological point of view scientific
models and works of fictions are on par, but empha-
sizes that “[i]t is their differing function in practice that
makes it inappropriate to regard scientific models as
works of fiction” [3.97, p. 249]. Giere identifies three
functional differences [3.97, pp. 249–252]. First, while
fictions are the product of a single author’s individual
endeavors, scientific models are the result of a pub-
lic effort because scientists discuss their creations with
their colleagues and subject them to public scrutiny.
Second, there is a clear distinction between fiction
and nonfiction books, and even when a book classi-
fied as nonfiction is found to contain false claims, it
is not reclassified as fiction. Third, unlike works of
fiction, whose prime purpose is to entertain (although
some works can also give insight into certain aspects
of human life), scientific models are representations of
certain aspects of the world.

These observations, although correct in themselves,
have no force against the fiction view of models. First,
whether a fiction is the product of an individual or a col-
lective effort has no impact on its status as a fiction;
a collectively produced fiction is just a different kind
of fiction. Even if War and Peace (to take Giere’s ex-
ample) had been written in a collective effort by all
established Russian writers of Tolstoy’s time, it would
still be a fiction. Vice versa, even if Newton had never
discussed his model of the solar system with anybody
before publishing it, it would still be science. The his-
tory of production is immaterial to the fictional status

of a work. Second, as we have seen in Sect. 3.6.1, fal-
sity is not a defining feature of fiction. We agree with
Giere that there is a clear distinction between texts of
fiction and nonfiction, but we deny that this distinction
is defined by truth or falsity; it is the attitude that we are
supposed to adopt towards the text’s content that makes
the difference. Once this is realized, the problem fades
away. Third, many proponents of the fiction view (those
belonging to the first group mentioned in Sect. 3.6.1)
are clear that problems of ontology should be kept sep-
arate from function and agree that it is one of the prime
function of models to represent. This point has been
stressed by Godfrey-Smith [3.209, pp. 108–111] and it
is explicit in other views such as Frigg’s [3.203].

The fourth objection is due to Magnani, who dis-
misses the fiction view for misconstruing the role of
models in the process of scientific discovery. The fun-
damental role played by models, he emphasizes [3.236,
p. 3]:

“is the one we find in the core conceptual discov-
ery processes, and that these kinds of models cannot
be indicated as fictional at all, because they are
constitutive of new scientific frameworks and new
empirical domains.”

This criticism seems to be based on an understand-
ing of fiction as falsity because falsities can’t play
a constitutive role in the constitution of new empirical
domains. We reiterate that the fiction view is not com-
mitted to the fiction as falsity account and hence is not
open to this objection.

The fifth objection is that fictions are superfluous
and hence should not be regarded as forming part of
(let alone being) scientific models because we can give
a systematic account of how scientific models work
without invoking fictions. This point has been made
in different ways by Pincock [3.214, Chap. 12] and
Weisberg [3.33, Chap. 4] (for a discussion of Weis-
berg’s arguments see Odenbaugh [3.237]). We cannot
do justice to the details of their sophisticated arguments
here, and will concern ourselves only with their main
conclusion. They argue that scientific models are math-
ematical objects and that they relate to the world due to
the fact that there is a relationship between the mathe-
matical properties of the model and the properties found
in the target system (in Weisberg’s version similarity
relations to a parametrized version of the target). In
other words, models are mathematical structures and
they represent due to there being certain mathematical
relations between these structures and a mathematical
rendering of the target system. (Weisberg includes fic-
tions as convenient folk ontology that may serve as
a crutch when thinking about the model, but takes them
to be ultimately dispensable when it comes to explain-
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ing how models relate to the world.) This, however,
brings us back to a structuralist theory of representa-
tion, and this theory, as we have seen in Sect. 3.4, is

far from unproblematic. So it is at best an open ques-
tion whether getting rid of fiction provides an obvious
advantage.

3.7 Representation-as

In this section we discuss approaches that depart from
Goodman’s notion of representation-as [3.64]. In his
account of aesthetic representation the idea is that
a work of art does not just denote its subject, but more-
over it represents it as being thus or so. Elgin [3.34]
further developed this account and, crucially, suggested
that it also applies to scientific representations. This is
a vital insight and it provides the entry point to what
we think of as the most promising account of epistemic
representation.

In this section we present Goodman and Elgin’s
notion of representation-as, and outline how it is a com-
plex type of reference involving a mixture of denotation
and what they call exemplification. We introduce the
term of art representation-as to indicate that we are
talking about the specific concept that emerges from
Goodman’s and Elgin’s writings. We then discuss how
the account needs to be developed in the context of sci-
entific representation. And finally we present our own
answer to the ER-problem, and demonstrate how it an-
swers the questions laid out in Sect. 3.1.

3.7.1 Exemplification
and Representation-as

Many instances of epistemic representation are in-
stances of representation-as. Caricatures are paradig-
matic examples: Churchill is represented as a bulldog,
Thatcher is represented as a boxer, and the Olympic
Stadium is represented as a UFO. Using these carica-
tures we can attempt to learn about their targets: attempt
to learn about a politician’s personality or a building’s
appearance. The notion applies beyond caricatures.
Holbein’s Portrait of Henry VIII represents Henry as
imposing and powerful and Stoddart’s statue of David
Hume represents him as thoughtful and wise. The lead-
ing idea is that scientific representation works in much
the same way. A model of the solar system represents
the sun as perfect sphere; the logistic model of growth
represents the population as reproducing at fixed inter-
vals of time; and so on. In each instance, models can
be used to attempt to learn about their targets by de-
termining what the former represent the latter as being.
So representation-as relates, in a way to be made more
specific below, to the surrogative reasoning condition
discussed in Sect. 3.1.

The locution of representation-as functions in the
following way: An object X (e.g., a picture, statue, or
model) represents a subject Y (e.g., a person or target
system) as being thus or so (Z). The question then is
what establishes this sort of representational relation-
ship? The answer requires presenting some of the tools
Goodman and Elgin use to develop their account of
representation-as.

One of the central posits of Goodman’s account is
that denotation is “the core of representation” [3.64,
p. 5]. Stoddart’s statue of David Hume denotes Hume
and a model of the solar system denotes the solar sys-
tem. In that sense the statue and the model are represen-
tations of their respective targets. To distinguish repre-
sentation of something from other notions of represen-
tation we introduce the technical term representation-
of. Denotation is what establishes representation-of.
(For a number of qualifications and caveats about de-
notation see our [3.238, Sect. 2]).

Not all representations are a representation-of.
A picture showing a unicorn is not a representation-of
a unicorn because things that don’t exist can’t be de-
noted. Yet there is a clear sense in which such a picture
is a representation. Goodman and Elgin’s solution to
this is to distinguish between being a representation-of
something and being a something-representation ([3.34,
pp. 1–2], [3.64, pp. 21–26]). What makes a picture
a something-representation (despite the fact it may fail
to denote anything) is that it is the sort of symbol that
denotes. Elgin argues [3.34, pp. 1–2]:

“A picture that portrays a griffin, a map that maps
the route to Mordor [. . . ] are all representations,
although they do not represent anything. To be
a representation, a symbol need not itself denote,
but it needs to be the sort of symbol that denotes.
Griffin pictures are representations then because
they are animal pictures, and some animal pictures
denote animals. Middle Earth maps are representa-
tions because they are maps and some maps denote
real locations. [. . . ] So whether a symbol is a rep-
resentation is a question of what kind of symbol it
is.”

These representations can be classified into gen-
res, in a way that does not depend on what they are
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representations-of (since some may fail to denote), but
instead on what they portray. In the case of pictures,
this is fairly intuitive (how this is to be developed in
the case of scientific models is discussed below). If
a picture portrays a man, it is a man-representation,
if it portrays a griffin it is a griffin-representation and
so on. In general, a picture X is Z-representation if it
portrays Z. The crucial point is that this does not pre-
suppose that X be a representation-of Z; indeed X can be
Z-representation without denoting anything. A picture
must denote a man to be a representation-of a man. But
it need not denote anything to be a man-representation.

The next notion we need to introduce is exempli-
fication. An item exemplifies a property if it at once
instantiates the property and refers to it [3.64, p. 53]:

“Exemplification is possession plus reference. To
have without symbolizing is merely to possess,
while to symbolize without having is to refer in
some other way than by exemplifying.”

Exemplification is a mode of reference that holds
between items and properties. In the current context
properties are to be understood in the widest pos-
sible sense. An item can exemplify one-place prop-
erties, multi-place properties (i. e., relations), higher
order properties, structural properties, etc. Paradigmatic
examples of exemplification are samples. A chip of
paint on a manufacturer’s sample card both instanti-
ates a certain color, and at the same time refers to that
color [3.239, p. 71].

But although exemplification requires instantiation,
not every property instantiated by an object is exem-
plified by it. The chip of paint does not, for example,
exemplify its shape or its location on the card. In order
to exemplify a property, an object must both instantiate
the property and the property itself must be made epis-
temically salient. How saliency is established will be
determined on a case-by-case basis, and we say more
about this below.

We can now turn to the conditions under which X
represents Y as Z. A first stab would be to say that X
represents Y as Z if X is a Z-representation and denotes
Y . This however, is not yet good enough. It is important
that properties of Z are transferred to Y . Elgin makes
this explicit [3.34, p. 10]:

“[X] does not merely denote [Y] and happen to
be a [Z]-representation. Rather in being a [Z]-
representation, [X] exemplifies certain properties
and imputes those properties or related ones to
[Y]. [. . . ] The properties exemplified in the [Z]-
representation thus serve as a bridge that connects
[X] to [Y].”

This gives a name to the crucial step: imputation.
This step can be analyzed in terms of stipulation by
a user of a representation. When someone uses X as
a representation-as, she has to stipulate that certain
properties that are exemplified in X be imputed to Y .
We emphasize that imputation does not imply truth: Y
may or may not have the properties imputed to it by X.
So the representation can be seen as generating a claim
about Y that can be true or false; it should not be under-
stood as producing truisms.

Applied to scientific models, the account of epis-
temic representation that emerges from Goodman and
Elgin’s discussion of representation can then be sum-
marized as follows:

Definition 3.14 Representation-As
A scientific modelM represents a target system T iff:

1. M denotes T
2. M is a Z-representation exemplifying properties

P1; : : : ;Pn

3. P1; : : : ;Pn, or related properties, are imputed to T .

It should be added that the first condition can easily
be extended to include part-part denotation. In a fam-
ily portrait the entire portrait denotes the family; at the
same time a part of the portrait can denote the mother
and another part the father. This is obvious and unprob-
lematic.

We think that this account is on the right track, but
all three conditions need to be further developed to fur-
nish a full-fledged account of epistemic representation
(at least as applied to scientific models). The develop-
ments needed are of different kinds, though. The first
condition needs more specificity. How is denotation
characterized? What different ways of establishing de-
notation are there? And how is denotation established
in particular cases? These are but some of the questions
that a complete account of epistemic representation will
have answer. In many cases epistemic representation
seems to borrow denotation from linguistic descrip-
tions in which they are embellished and denotation is
in effect borrowed from language. So the philosopher
of science can turn to the philosophy of language to
get a deeper understanding of denotation. This is an
interesting project, but it is not one we can pursue
here.

In contrast with denotation the other two conditions
need to be reformulated because an account molded on
visual representations is only an imperfect match for
scientific representations. This is the task for the next
section.
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3.7.2 From Pictures to Models:
The Denotation, Exemplification,
Keying-up and Imputation Account

According to Goodman and Elgin, for a picture to
be a Z-representation it has to be the kind of symbol
that denotes. On the face of it, there is a mismatch
between pictures and scientific models in this regard.
The Schelling model represents social segregation with
a checkerboard; billiard balls are used to represent
molecules; the Phillips–Newlyn model uses a system
of pipes and reservoirs to represent the flow of money
through an economy; and the worm Caenorhabditis ele-
gans is used as a model of other organisms. But neither
checkerboards, billiard balls, pipes, or worms seem to
belong to classes of objects that typically denote. The
same observation applies to scientific fictions (friction-
less planes, utility maximizing agents, and so on) and
the mathematical objects used in science. In fact, ma-
trices, curvilinear geometries, Hilbert spaces etc. were
all studied as mathematical objects before they became
important in the empirical sciences.

Rather than relying on the idea that scientific mod-
els belong to classes of objects that typically denote
we propose directly introducing an agent and ground
representation in this agent’s actions. Specific checker-
boards, systems of pipes, frictionless places and math-
ematical structures, are epistemic representations be-
cause they are used by an agent to represent a system.
When an agent uses an object as a representation, we
call it a base.

What allows us to classify bases into Z-representa-
tions is also less clear in the case of scientific represen-
tation. We approach this issue in two steps. The first is
to recognize the importance of the intrinsic constitution
of the base. Pictures are typically canvases covered with
paint. They are classified as Z-representations because
under appropriate circumstances the canvas is recog-
nized as portraying a Z. Much can be said about the
canvas’ material constitution (the thickness or chemical
constitution of the paint, etc.), but these are generally
of little interest to understanding what the picture por-
trays. By contrast, the properties of a scientific model –
qua material object – do matter. How water flows
through the pipes in the Phillips–Newlyn model is cru-
cial to how it represents the movement of money in
an economy. That Caenorhabditis elegans is a biolog-
ical organism is of vital importance for how it is used
representationally. In fact, models are frequently clas-
sified according to what their material base is. We talk
about a pipe model of the economy or worm model of
cell division because their bases are pipes and worms.
Here we introduce a term of art to recognize that scien-
tific models are generally categorized according to their

material constitution. An O-object specifies the kind of
object something is, qua physical object.

O-objects become representations when they are
used as such. But how are they classified as Z-
representations? How does the Phillips–Newyln ma-
chine become an economy-representation, or how
does a collection of billiard balls become a gas-
representation? (Again, recall that this is not because
they denote economies or gases.) We suggest, and this
is the second step, that this requires an act of inter-
pretation (notice that we do not use interpretation in
the same sense as Contessa). In the case of pictures,
the nature of this interpretation has been the center of
attention for a good while: how one sees a canvas cov-
ered with paint as showing a cathedral is regarded by
many as one of the important problems of aesthetics.
Schier [3.240, p. 1] dubbed it the “enigma of depic-
tion”, and an entire body of literature is been concerned
with it (Kulvicki [3.241] provides a useful review). In
the case of scientific models we don’t think a simple and
universal account of how models are interpreted as Z-
representations can be given. Interpreting an O-object
as a Z-representation requires attributing properties of
Zs to the object. How this is done will depend on disci-
plinary traditions, research interests, background theory
and much more. In fact, interpretation is a blank to
be filled, and it will be filled differently in different
cases.

Some examples should help elucidate what we
mean by this. In the case of scale models the interpre-
tation is close to the O-object in that it interprets the
object in its own terms. The small car is interpreted as
a car-representation and the small ship is interpreted as
a ship-representation. Likewise, in the case of the Army
Corps’ model of the San Francisco bay [3.33], parts of
the model bay are interpreted in terms of the real bay.
In cases like these, the same predicates that apply to
the base (qua O-object) are applied to the object in or-
der to make it into a Z-representation (here OD Z). But
this is not always the case. For example, the Phillips–
Newlyn machine is a system of pipes and reservoirs, but
it becomes an economy-representation only when the
quantity and flow of water throughout the system are
interpreted as the quantity and flow of money through-
out an economy. The system is interpreted in terms of
predicates that do not apply to the object (quaO-object),
but turn it into a Z-representation (here O and Z come
apart). In sum, an O-object that has been chosen as the
base of a representation becomes a Z-representation if
O is interpreted in terms of Z.

Next in line is exemplification. Much can be said
about exemplification in general, but the points by and
large carry over from the general discussion to the case
of models without much ado. There is one difference,
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though, in cases like the Phillips–Newlyn machine. Re-
call that exemplification was defined as the instantiation
of a property P by an object in such a way that the object
thereby refers to P. How can the Phillips–Newlyn ma-
chine exemplify economic properties when it does not,
strictly speaking, instantiate them? The crucial point is
that nothing in the current account depends on instan-
tiation being literal instantiation. On this point we are
in agreement with Goodman and Elgin, whose account
relies on nonliteral instantiation. The portrait of Henry
cannot, strictly speaking, instantiate the property of be-
ing male, even if it represents him as such. Goodman
and Elgin call this metaphorical instantiation ([3.64,
pp. 50–51], [3.239, p. 81]).

What matters is that properties are epistemically
accessible and salient, and this can be achieved with
what we call instantiation-under-an-interpretation I,
I-instantiation for short. An economic interpretation
of the Phillips–Newlyn machine interprets amounts
of water as amounts of money. It does so by in-
troducing a clearly circumscribed rule of proportion-
ality: x liters of water correspond to y millions of
the model-economy’s currency. This rule is applied
without exception when the machine is interpreted as
an economy-representation. So we say that under the
economic interpretation Ie the machine Ie-instantiates
money properties. With the notion of I-instantiation at
hand, exemplification poses no problem.

The final issue to clear is the imputation of the
model’s exemplified properties to the target system.
In particular, which properties are so imputed? Elgin
describes this as the imputation of the properties ex-
emplified by M or related ones. The observation that
the properties exemplified by a scientific model and the
properties imputed to its target system need not be iden-
tical is correct. In fact, few, if any, models in science
portray their targets as exhibiting exactly the same fea-
tures as the model itself. The problem with invoking
related properties is not its correctness, but its lack of
specificity. Any property can be related to any other
property in someway or other, and as long as no specific
relation is specified it remains unclear which properties
are imputed onto the system.

In the context of science, the relation between the
properties exemplified and the ones ascribed to the
system is sometimes described as one of simplifica-
tion [3.198, p. 184], idealization [3.198, p. 184] and
approximation [3.34, p. 11]. This could suggest that re-
lated ones means idealized, at least in the context of
science (we are not attributing this claim to Elgin; we
are merely considering the option), perhaps similar to
the way in which Ducheyne’s account discussed above
took target properties to be approximations of model
properties. But shifting from related to idealized or

approximated (or any of their cognates) makes things
worse, not better. For one, idealization can mean very
different things in different contexts and hence describ-
ing the relation between two properties as idealization
adds little specificity (see Jones [3.242] for a discussion
of different kinds of idealization). For another, while the
relationship between some representation-target prop-
erties may be characterized in terms of idealization,
many cannot. A map of the world exemplifies a distance
of 29 cm between the two points labeled Paris and New
York; the distance between the two cities is 5800km;
but 29 cm is not an idealization of 5800km. A scale
model of a ship being towed through water is not an
idealization of an actual ship, at least not in any obvious
way. Or in standard representations of Mandelbrod sets
the color of a point indicates the speed of divergence of
an iterative function for certain parameter value associ-
ated with that point, but color is not an idealization of
divergence speed.

For this reason it is preferable, in our view, to build
a specification of the relationship between model prop-
erties and target properties directly into an account of
epistemic representation. Let P1; : : : ;Pn be the proper-
ties exemplified byM, and letQ1; : : : ;Qm be the related
properties thatM imputes to Y (where n and m are pos-
itive natural numbers that can but need not be equal).
Then the representation M must come with a key K
that specifies how exactly P1; : : : ;Pn are converted into
Q1; : : : ;Qm [3.50]. Borrowing notation from algebra
(somewhat loosely) we can write K.hP1; : : : ;Pni/D
hQ1; : : : ;Qmi. K can, but need not be, the identity func-
tion; any rule that associates a unique set Q1; : : : ;Qm

with P1; : : : ;Pn is admissible. The relevant clause in
the definition of representation-as then becomes: M
exemplifies P1; : : : ;Pn and the representation imputes
properties Q1; : : : ;Qm to T where the two sets of prop-
erties are connected to each other by a key K.

The above examples help illustrate what we have
in mind. Let us begin with the example of the map (in
fact the idea of a key is motivated by a study of maps;
for a discussion of maps see Galton [3.243] and Sis-
mondo and Chrisman [3.244]). P is a measured distance
on the map between the point labeled New York and
the point labeled Paris; Q is the distance between New
York and Paris in the world; and K is the scale of the
map (in the above case, 1 W 20000000). So the key al-
lows us to translate a property of the map (the 29 cm
distance) into a property of the world (that New York
and Paris are 5800km apart). But the key involved in
the scale model of the ship is more complicated. One of
the Ps in this instance is the resistance the model ship
faces when moved through the water in a tank. But this
doesn’t translate into the resistance faced by the actual
ship in the same way in which distances in a map trans-
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late into distances in reality. In fact, the relation between
the resistance of the model and the resistance of the
real ship stand in a complicated nonlinear relationship
because smaller models encounter disproportionate ef-
fects due to the viscosity of the fluid. The exact form
of the key is often highly nontrivial and emerges as
the result of a thoroughgoing study of the situation;
see Sterrett [3.245] for a discussion of fluid mechan-
ics. In the representation of the Madelbrod set in [3.246,
p. 660] a key is used that translates color into divergence
speed [3.246, p. 695]. The square shown is a segment of
the complex plane and each point represents a complex
number. This number is used as parameter value for an
iterative function. If the function converges for number
c, then the point in the plane representing c is colored
black. If the function diverges, then a shading from yel-
low over green to blue is used to indicate the speed of
divergence, where yellow is slow, green is in the middle
and blue is fast.

Neither of these keys is obvious or trivial. Deter-
mining how to move from properties exemplified by
models to properties of their target systems can be
a significant task, and should not go unrecognized in
an account of scientific representation. In general K is
a blank to be filled, and it depends on a number of fac-
tors: the scientific discipline, the context, the aims and
purposes for which M is used, the theoretical backdrop
against whichM operates, etc. Building K into the defi-
nition of representation-as does not prejudge the nature
of K, much less single out a particular key as the correct
one. The requirement merely is that there must be some
key forM to qualify as a representation-as.

With these modifications in place we can now for-
mulate our own account of representation [3.238, 247].
Consider an agent who chooses an O-object as the base
of representation and turns it into Z-representation by
adopting an interpretation I. Let M refer to the package
of the O-object together with the interpretation I that
turns it into a Z-representation. Then:

Definition 3.15 DEKI
A scientific modelM represents a target T iff:

1. M denotes T (and, possibly, parts ofM denote parts
of T)

2. M is a Z-representation exemplifying properties
P1; : : : ;Pn

3. M comes with a key, K, specifying how P1; : : : ;Pn

are translated into a set of features Q1; : : : ;Qm:
K.hP1; : : : ;Pni/D hQ1; : : : ;Qmi

4. The model imputes at least one of the properties
Q1; : : : ;Qm onto T .

We call this the DEKI account of representation to
highlight its key features: denotation, exemplification,
keying-up and imputation.

Before highlighting some issues with this account,
let us clarify how the account answers the questions
we laid out in Sect. 3.1. Firstly, as an answer to the
ER-problem, DEKI (Definition 3.15) provides an ab-
stract framework in which to think about epistemic
representation. In general, what concretizes each of the
conditions needs to be investigated on a case-by-case
basis. But far from being a defect, this degree of ab-
stractness is an advantage. Epistemic representation,
and even the narrower model-representation, are um-
brella terms covering a vast array of different activities
in different fields, and a view that sees representations
in fields as diverse as elementary particle physics, evo-
lutionary biology, hydrology and rational choice theory
work in exactly the same way is either mistaken or too
coarse to make important features visible. DEKI (Def-
inition 3.15) occupies the right middle ground: it is
general enough to cover a large array of cases and yet it
highlights what all instances of scientific representation
have in common. At the same time the account offers an
elegant solution to the problem of models without tar-
gets: a model that apparently represents Z while there is
no Z is a Z-representation but not representation of a Z.

It should be clear how we can use models to per-
form surrogative reasoning about their targets according
to DEKI (Definition 3.15). The account requires that
we investigate the properties that are exhibited by the
model. These are then translated into a set of properties
that are imputed onto the target. This act of imputation
supplies a hypothesis about the target system: does it,
or does it not, have those properties? This hypothesis
does not have to be true, and as such DEKI (Defini-
tion 3.15) allows for the possibility of misrepresentation
in a straightforward manner.

DEKI’s (Definition 3.15) abstract character also al-
lows us to talk about different styles of representation.
Style, on the DEKI (Definition 3.15) account, is not
a monolithic concept; instead it has several dimensions.
Firstly, different O-objects can be chosen. In this way
we may speak, say, of the checkerboard style and of the
cellular automaton style. In each case a specific kind of
object has been chosen for various modeling purposes.
Secondly, the notion of an interpretation allows us to
talk about how closely connected the properties of the
model are to those that the object I-instantiates. Thirdly,
different types of keys could be used to characterize dif-
ferent styles. In some instances the key might be the
identity key, which would amount to a style of model-
ing that aims to construct replicas of target systems; in
other cases the key incorporates different kinds of ideal-
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izations or abstractions, which gives rise to idealization
and abstraction keys. But different keys may be associ-
ated with entirely different representational styles.

Similarly, DEKI (Definition 3.15) suggests that
there is no significant difference between scientific
representations and other kinds of epistemic representa-
tion, at least at the general level. However, this is not to
say that the two cannot be demarcated whatsoever. The
sorts of interpretations under which pictures portray Zs
seem to be different to the sorts of interpretations that
are adopted in the scientific framework. Whether or not
this can be cashed of more specifically is an interesting
question that we cannot investigate here.

Many details in DEKI (Definition 3.15) still need to
be spelled out. But the most significant difficulty, per-
haps, arises in connection with the problem of ontology.
It is not by accident that we have illustrated the account
with a physical model, the Phillips–Newlyn machine.
Exemplification requires instantiation, which is easily
understood for material models, but is highly problem-
atic in the context of nonconcrete models. One option
is to view models as fictional entities as discussed in
Sect. 3.6. But whether, and if so how, fictional entities
instantiate properties is controversially discussed and
more philosophical work is needed to make sense of
such a notion. It is therefore an open question how this
account works for nonconcrete models; for a discussion
and a proposal see Frigg and Nguyen [3.248].

Finally, the account provides us with resources with
which to think about the applicability of mathematics.

Like the problem of style, various options are avail-
able. Firstly, mathematical structures themselves can be
taken to be O-objects and feature as bases of repre-
sentation. They can be interpreted on their own terms
and therefore exemplify strictly mathematical proper-
ties. If one were of a structuralist bent, then the ap-
propriate mathematical properties could be structural,
which could then be imputed onto the target system
(although notice that this approach faces a similar prob-
lem to the question of target-end structure discussed
in Sect. 3.4.4). Alternatively, the key could provide
a translation of these mathematical properties into ones
more readily applicable to physical systems. A third
alternative would be to take scientific models to be fic-
tional objects, and then adopt an interpretation towards
them under which they exemplify mathematical prop-
erties. Again, these could be imputed directly onto the
target system, or translated into an alternative set of
properties. Finally, these fictional models could them-
selves exemplify physical properties, but in doing so
exemplify structural ones as well. Whenever a physi-
cal property is exemplified, this provides an extensional
relation defined over the objects that instantiate it. The
pros and cons of each of these approaches demands fur-
ther research, but for the purposes of this chapter we
simply note that DEKI (Definition 3.15) puts all of these
options on the table. Using the framework of O-objects,
interpretations, exemplification, keys, and imputation
provides a novel way in which to think about the ap-
plicability of mathematics.

3.8 Envoi
We reviewed theories of epistemic representation. That
each approach faces a number of challenges and that
there is no consensus on the matter will not have come
as a surprise to anybody. We hope, however, that we
managed to map the lay of the land and to uncover the
fault lines, and thereby aid future discussions.
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4. Models and Explanation

Alisa Bokulich

Detailed examinations of scientific practice have
revealed that the use of idealized models in the
sciences is pervasive. These models play a central
role in not only the investigation and prediction
of phenomena, but also in their received scien-
tific explanations. This has led philosophers of
science to begin revising the traditional philo-
sophical accounts of scientific explanation in order
to make sense of this practice. These new model-
based accounts of scientific explanation, however,
raise a number of key questions: Can the fictions
and falsehoods inherent in the modeling prac-
tice do real explanatory work? Do some highly
abstract and mathematical models exhibit a non-
causal form of scientific explanation? How can one
distinguish an exploratory how-possibly model
explanation from a genuine how-actually model
explanation? Do modelers face tradeoffs such that
a model that is optimized for yielding explana-
tory insight, for example, might fail to be the most
predictively accurate, and vice versa? This chapter
explores the various answers that have been given
to these questions.
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Explanation is one of the central aims of science, and
the attempt to understand the nature of scientific ex-
planation is at the heart of the philosophy of science.
An explanation can be analyzed as consisting of two
parts, a phenomenon or event to be explained, known
as the explanandum, and that which does the job of ex-
plaining, the explanans. On the traditional approach, to
explain a phenomenon is either to deduce the explanan-
dum phenomenon from the relevant laws of nature and
initial conditions, such as on the deductive-nomological
(DN) account [4.1], or to trace the detailed causal
chain leading up to that event, such as on the causal–
mechanical account [4.2]. Underlying this traditional
approach are the assumptions that, in order to genuinely
explain, the explanansmust be entirely true, and that the
more complete and detailed the explanans is, the better
the scientific explanation.

As philosophers of science have turned to more
careful examinations of actual scientific practice, how-
ever, there have been three key observations that have
challenged this traditional approach: first, many of
the phenomena scientists seek to explain are incred-
ibly complex; second, the laws of nature supposedly
needed for explanation are either few and far between
or entirely absent in many of the sciences; and third,
a detailed causal description of the chain of events and
interactions leading up to a phenomenon are often either
beyond our grasp or not in fact what is most important
for a scientific understanding of the phenomenon.

More generally, there has been a growing recog-
nition that much of science is a model-based activity.
(For an overview of many different types of models in
science, and some of the philosophical issues regard-
ing the nature and use of such models, refer to [4.3]).
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Models are by definition incomplete and idealized de-
scriptions of the systems they describe. This practice
raises all sorts of epistemological questions, such as
how can it be that false models lead to true insights?

And most relevant to our discussion here, how might
the extensive use of models in science lead us to
revise our philosophical account of scientific explana-
tion?

4.1 The Explanatory Function of Models

Model-based explanations (or model explanations, for
short) are explanations in which the explanans appeal to
certain properties or behaviors observed in an idealized
model or computer simulation as part of an explanation
for why the (typically real-world) explanandum phe-
nomenon exhibits the features that it does. For example,
one might explain why sparrows of a certain species
vary in their feather coloration from pale to dark by
appealing to a particular game theory model: although
coloration is unrelated to fitness, such a polymorphism
can be a badge of status that allows the sparrows to
avoid unnecessary conflicts over resources; dark birds
are dominant and displace the pale birds from food
sources. The model demonstrates that such a strategy
is stable and successful, and hence can be used as part
of the explanation for why we find this polymorphism
among sparrows (see [4.4, 5] for further discussion).

There are, of course, many perils in assuming that
just because we see a phenomenon or pattern exhibited
in a model that it therefore explains why we see it in the
real world: the same pattern or phenomenon could be
produced in multiple, very different ways, and hence it
might be only a phenomenological model at best, useful
for prediction, but not a genuine explanation. Explana-
tion and the concomitant notion of understanding are
what we call success terms: if the purported explana-
tion is not, in fact, right (right in some sense that will
need to be spelled out) and the understanding is only
illusory, then it is not, in fact, a genuine explanation.
Determining what the success conditions are for a gen-
uine explanation is the central philosophical problem in
scientific explanation.

Those who have defended the explanatory power
of models have typically argued that further condi-
tions must be met in order for a model’s exhibiting
of a salient pattern or phenomenon to count as part of
a genuine explanation of its real-world counterpart. Not
all models are explanatory, and an adequate account of
model explanation must provide grounds for making
such discriminations. As we will see, however, differ-
ent approaches have filled in these further requirements
in different ways.

One of the earliest defenses of the view that models
can explain is McMullin’s [4.6] hypothetico-structural
HS account of model explanations. In an HS expla-
nation, one explains a complex phenomenon by pos-

tulating an underlying structural model whose features
are causally responsible for the phenomenon to be ex-
plained. McMullin notes that such models are often
tentative or metaphorical, but that a good model expla-
nation will lay out a research program for the further
refinement of the model. On his account, the justifi-
cation of the model as genuinely explanatory involves
a process known as de-idealization, where features that
were left out are added back or a more realistic repre-
sentation of those processes is given. More specifically
he requires that one be able to give a theoretical justi-
fication for this de-idealization process, so that it is not
merely an ad hoc fitting of the model to the data. He
writes [4.7, p. 261]:

“If techniques for which no theoretical justification
can be given have to be utilized to correct a formal
idealization, this is taken to count against the ex-
planatory propriety of that idealization. The model
itself in such a case is suspect, no matter how good
the predictive results it may produce.”

He further notes that a theoretical justification for
the de-idealization process will only succeed if the orig-
inal model has successfully captured the real structure
of the phenomenon of interest.

As an example,McMullin [4.8] describes the fertil-
ity of the continental drift model in explaining why the
continents seem to fit together like pieces of a puzzle
and why similar fossils are found at distant locations.
The continental drift model involved all sorts of ideal-
izations and gaps: most notably, the chief proponent of
this approach, Alfred Wegener, could offer no account
of the forces or mechanisms by which the massive con-
tinents could move. Strictly speaking, we now know
that the continental drift model is false, and has been
supplanted by plate tectonics. But as McMullin notes,
the continental drift model nonetheless captures key
features of the real structure of the phenomenon of
interest, and, hence, succeeds in giving genuine ex-
planatory insight.

While McMullin’s account of HS model explana-
tions fits in many cases, there are other examples of
model explanations in the sciences that do not seem
to fit his account. First, there seem to be examples
of model explanations where the idealizations are in-
eliminable, and, hence, they cannot be justified through
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anything like the de-idealization analysis that McMullin
describes [4.9]. Second, not all models are related to
their target phenomena via an idealization: some mod-
els represent through a fictionalization [4.10]. Third,
insofar asMcMullin’s HSmodel explanations are a sub-
species of causal explanations, they do not account for
noncausal model explanations. These sort of cases will
be discussed more fully in subsequent sections.

Another early account of the explanatory power
of models is Cartwright’s [4.11] simulacrum account
of explanation, which she introduces as an alternative
to the DN account of explanation and elaborates in
her book How the Laws of Physics Lie. Drawing on
Duhem’s [4.12] theory of explanation, she argues [4.11,
p. 152]:

“To explain a phenomenon is to find a model that
fits it into the basic framework of the theory and that
thus allows us to derive analogues for the messy and
complicated phenomenological laws which are true
of it.”

According to Cartwright, the laws of physics do
not describe our real messy world, only the idealized
world we construct in our models. She gives the exam-
ple of the harmonic oscillator model, which is used in
quantum mechanics to describe a wide variety of sys-
tems. One describes a real-world helium-neon laser as
if it were a van der Pol oscillator; this is how the phe-
nomenon becomes tractable and we are able to make
use of the mathematical framework of our theory. The
laws of quantum mechanics are true in this model, but
this model is just a simulacrum of the real-world phe-
nomenon. By model, Cartwright means “an especially
prepared, usually fictional description of the system un-
der study” [4.11, p. 158]. She notes that while some of
the properties ascribed to the objects in the models are
idealizations, there are other properties that are pure fic-
tions; hence, one should not think of models in terms of
idealizations alone.

Although Cartwright’s simulacrum account is
highly suggestive, it leaves unanswered many key ques-
tions, such as when a model should or should not
be counted as explanatory. Elgin and Sober [4.13] of-
fer a possible emendation to Cartwright’s account that
they argue discriminates which sorts of idealized causal
models can explain. The key, according to their ap-
proach, is to determine whether or not the idealizations
in the model are what they call harmless. A harmless
idealization is one that if corrected “wouldn’t make
much difference in the predicted value of the effect
variable” [4.13, p. 448]. They illustrate this approach
using the example of optimality models in evolutionary
biology. Optimality models are models that determine
what value of a trait maximizes fitness (is optimal) for

an organism given certain constraints (e.g., the opti-
mal length of a bear’s fur, given the benefits of longer
fur and the costs of growing it, or the optimal height
at which crows should drop walnuts in order to crack
open the shells, given the costs of flying higher, etc.).
If organisms are indeed fitter the closer a trait is to
the optimal value, and if natural selection is the only
force operating, then the optimal value for that trait will
evolve in the population. Thus, optimality models are
used to explain why organisms have trait values at or
near the optimal value (e.g., why crows drop walnuts
from an average of 3m high [4.14]).

As Elgin and Sober note, optimality models contain
all sorts of idealizations: “they describe evolutionary
trajectories of populations that are infinitely large in
which reproduction is asexual with offspring always
resembling their parents, etc.” [4.13, p. 447]. Nonethe-
less, they argue that these models are genuinely ex-
planatory when it can be shown that the value described
in the explanandum is close to the value predicted by the
idealized model; when this happens we can conclude
that the idealizations in the model are harmless [4.13,
p. 448]. Apart from this concession about harmless ide-
alizations, Elgin and Sober’s account of explanation
remains close to the traditional DN account in that they
further require:

1. The explanans must cite the cause of the explanan-
dum

2. The explanans must cite a law
3. All of the explanans propositionsmust be true [4.13,

p. 446]

though their condition 3 might better be stated as all
the explanans propositions are either true or harmlessly
false.

As a general account of model explanations, how-
ever, one might argue that the approaches of Cartwright,
Elgin, and Sober are too restrictive. As noted before,
this approach still depends on there being laws of nature
from which the phenomenon is to be derived, and such
laws just might not be available. Moreover, it is not clear
that explanatory models will contain only harmless ide-
alizations. There may very well be cases in which the
idealizations make a difference (are not harmless) and
yet are essential to the explanation (e.g., [4.15, 16]).

While the simulacrum approach of Cartwright,
especially as further developed by Elgin and Sober,
largely draws its inspiration from the traditional DN
approach to explanation, there are other approaches
to model explanation that are tied more closely to the
traditional causal–mechanical approach to explanation.
Craver [4.17], for example, has argued that models are
explanatory when they describe mechanisms. He writes
“[. . . ] the distinction between explanatory and nonex-
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planatorymodels is that the [former], and not the [latter]
describe mechanisms” [4.17, p. 367]. The central notion
of mechanism, here, can be understood as consisting
of the various components or parts of the phenomenon
of interest, the activities of those components, and how
they are organized in relation to each other.

Craver imposes rather strict conditions on when
such mechanistic models can be counted as explana-
tory; he writes, “To characterize the phenomenon cor-
rectly and completely is the first restrictive step in
turning a model into an acceptable mechanistic expla-
nation” [4.17, p. 369]. (Some have argued that if one
has a complete and accurate description of the sys-
tem or phenomenon of interest, then it is not clear that
one has a model [4.18]). Craver analyzes the example
of the Hodgkin–Huxley mathematical model of the ac-
tion potential in an axon (nerve fiber). Despite the fact
that this model allowed Hodgkin and Huxley to derive
many electrical features of neurons, and the fact that it
was based on a number of fundamental laws of physics
and chemistry, Craver argues that it was not in fact an
explanatory model. He describes it instead as merely
a phenomenological model because it failed to accu-
rately describe the details of the underlying mechanism.

A similar mechanistic approach to model explana-
tion has been developed by Kaplan [4.19], who intro-
duces what he calls the mechanism–model–mapping
(or 3M) constraint. He defines the 3M constraint as fol-
lows [4.19, p. 347]:

“A model of a target phenomenon explains that
phenomenon to the extent that (a) the variables in
the model correspond to identifiable components,
activities, and organizational features of the target
mechanism that produces, maintains, or underlies
the phenomenon, and (b) the (perhaps mathemat-
ical) variables in the model correspond to causal
relations among the components of the target mech-
anism.”

Kaplan takes this 3M constraint to provide a demar-
cation line between explanatory and nonexplanatory
models. He further notes that [4.19, p. 347]

“3M aligns with the highly plausible assumption
that the more accurate and detailed the model is for
a target system or phenomenon the better it explains
that phenomenon.”

Models that do not comply with 3M are rejected as
nonexplanatory, being at best phenomenological mod-
els, useful for prediction, but giving no explanatory
insight. In requiring that, explanatory models describe
the real components and activities in the mechanism

that are in fact responsible for producing the phe-
nomenon ([4.17, p. 361], [4.19, p. 353]). Craver and
Kaplan rule out the possibility that fictional, metaphor-
ical, or strongly idealized models can be explanatory.

One of the most comprehensive defenses of the ex-
planatory power of models is given by Bokulich [4.18,
20–22], who argues that model explanations such as
the three discussed previously (McMullin, Cartwright–
Elgin–Sober, and Craver–Kaplan), can be seen as spe-
cial cases of a more general account of the explana-
tory power of models. Bokulich’s approach draws on
Woodward’s counterfactual account of explanation, in
which [4.23, p. 11]

“the explanation must enable us to see what sort of
difference it would have made for the explanandum
if the factors cited in the explanans had been differ-
ent in various possible ways.”

She argues that model explanations typically share
the following three features: first, the explanans makes
essential reference to a scientific model, which, as is the
case with all models, will be an idealized, abstracted, or
fictionalized representation of the target system. Sec-
ond, the model explains the explanandum by showing
how the elements of the model correctly capture the pat-
terns of counterfactual dependence in the target system,
enabling one to answer a wide range of what Wood-
ward calls what-if-things-had-been-different questions.
Finally, there must be what Bokulich calls a justifi-
catory step, specifying the domain of applicability of
the model and showing where and to what extent the
model can be trusted as an adequate representation of
the target for the purpose(s) in question [4.18, p. 39];
see also [4.22, p. 730]. She notes that this justifica-
tory step can proceed bottom-up through something
like a de-idealization analysis (as McMullin, Elgin, and
Sober describe), top-down through an overarching the-
ory (such as in the semiclassical mechanics examples
Bokulich [4.20, 21] discusses), or through some combi-
nation.

Arguably one of the advantages of Bokulich’s ap-
proach is that it is not tied to one particular conception
of scientific explanation, such as the DN or mechanis-
tic accounts. By relaxing Woodward’s manipulationist
construal of the counterfactual condition, Bokulich’s
approach can even be extended to highly abstract, struc-
tural, or mathematical model explanations. She argues
that the various subspecies of model explanation can
be distinguished by noting what she calls the origin or
ground of the counterfactual dependence. She explains,
it could be either [4.18, p. 40]

“the elements represented in the model causally
producing the explanandum (in the case of causal
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model explanations), the elements of the model
being the mechanistic parts which make up the
explanandum-system whole (in the case of mech-
anistic model explanations), or the explanandum
being a consequence of the laws cited in the model
(in the case of covering law model explanations).”

She goes on to identify a fourth type of model ex-
planation, which she calls structural model explanation,
in which the counterfactual dependence is grounded
in the typically mathematical structure of the theory,
which limits the sorts of objects, properties, states, or
behaviors that are admissible within the framework
of that theory [4.18, p. 40]. Bokulich’s approach can
be thought of as one way to flesh out Morrison’s
suggestive, but unelaborated, remark that “the reason
models are explanatory is that in representing these
systems, they exhibit certain kinds of structural depen-
dencies” [4.24, p. 63].

More recently, Rice [4.25] has drawn on Bokulich’s
account to develop a similar approach to the explana-
tory power of models that likewise uses Woodward’s
counterfactual approach without the manipulation con-
dition. He writes [4.25, p. 20]:

“The requirement that these counterfactuals must
enable one to, in principle, intervene in the system
restricts Woodward’s account to specifically causal
explanations. However, I think it is a mistake to re-
quire that all scientific explanations must be causal.
Indeed, if one looks at many of the explanations
offered by scientific modelers, causes are not men-
tioned.”

Compare this to Bokulich’s statement [4.18, p. 39]:

“I think it is a mistake to construe all scientific ex-
planation as a species of causal explanation, and
more to the point here, it is certainly not the case
that all model explanations should be understood as
causal explanations. Thus while I shall adoptWood-
ward’s account of explanation as the exhibiting of
a pattern of counterfactual dependence, I will not
construe this dependence narrowly in terms of the
possible causal manipulations of the system”

Rice rightly notes that the question of causation
is conceptually distinct from the question of what ex-
plains. He further requires on this approach that model
explanations provide two kinds of counterfactual infor-
mation, namely both what the phenomenon depends on
and what sorts of changes are irrelevant to that phe-
nomenon. Following Batterman [4.9, 15, 26], he notes
that for explanations of phenomena that exhibit a kind
of universality, an important part of the explanation is
understanding that the particular causal details or pro-
cesses are irrelevant – the same phenomenon would
have been reproduced even if the causal details had been
different in certain ways.

As an illustration, Rice discusses the case of opti-
mality modeling in biology. He notes that optimality
models are not only highly idealized, but also can be
understood as a type of equilibrium explanation, where
“most of the explanatory work in these models is done
by synchronic mathematical representations of struc-
tural features of the system” [4.25, p. 8]. He connects
this to the counterfactual account of model explanation
as follows [4.25, p. 17]:

“Optimality models primarily focus on noncausal
counterfactual relations between structural features
and the system’s equilibrium point. Moreover, these
features can sometimes explain the target phe-
nomenon without requiring any additional causal
claims about the relationships represented in the
model.”

These causal details are irrelevant because the struc-
tural features cited in the model are multiply realizable;
indeed, this is what allows optimality models to be used
in explaining a wide variety of features across a diver-
sity of biological systems.

In the approaches to model explanations discussed
here, two controversial issues have arisen that merit
closer scrutiny: first, whether the fictions or false-
hoods in models can themselves do real explanatory
work (i. e., even when they are neither harmless, de-
idealizable, nor eliminable), and second, whether many
model explanations illustrate an important, but often
overlooked, noncausal form of explanation. These is-
sues will be taken up in turn in the next two sections.
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4.2 Explanatory Fictions: Can Falsehoods Explain?

Models contain all sorts of falsehoods, from omissions,
abstractions, and idealizations to outright fictions. One
of the most controversial issues in model explanations
is whether these falsehoods, which are inherent in the
modeling practice, are compatible with the explanatory
aims of science. Reiss in the context of explanatory
models in economics has called this tension the expla-
nation paradox: he writes [4.27, p. 43]:

“Three mutually inconsistent hypotheses concern-
ing models and explanation are widely held: (1)
economic models are false; (2) economic mod-
els are nevertheless explanatory; and (3) only true
accounts explain. Commentators have typically re-
solved the paradox by rejecting either one of these
hypotheses. I will argue that none of the proposed
resolutions work and conclude that therefore the
paradox is genuine and likely to stay.”

(This paradox, and some criticisms to Reiss’s ap-
proach (such as [4.28] are explored in a special issue
of the Journal of Economic Methodology (volume 20,
issue 3).)

The field has largely split into two camps on this
issue: those who think it is only the true parts of mod-
els that do explanatory work and those who think the
falsehoods play an essential role in the model expla-
nation. Those in the former camp rely on things like
de-idealization and harmless analyses to show that the
falsehoods do not get in the way of the true parts of the
model that do the real explanatory work. Those in the
latter camp have the challenging task of showing that
some idealizations are essential and some fictions yield
true insights.

The received view is that the false parts of models
only concern those things that are explanatorily irrele-
vant. Defenders of the received view include Strevens,
who in his book detailing his kairetic account of scien-
tific explanation (Strevens takes the term kairetic from
the ancient Greek word kairos, meaning crucial mo-
ment [4.29, p. 477].)), writes, “No causal account of
explanation – certainly not the kairetic account – al-
lows nonveridical models to explain” [4.29, p. 297]. He
spells out more carefully how such a view is to be rec-
onciled with the widespread use of idealized models to
explain phenomena in nature, by drawing the following
distinction [4.29, p. 318]:

“The content of an idealized model, then, can be
divided into two parts. The first part contains the
difference-makers for the explanatory target. [. . . ]
The second part is all idealization; its overt claims
are false but its role is to point to parts of the actual

world that do not make a difference to the explana-
tory target.”

In other words, it is only the true parts of the model
that do any explanatory work. The false parts are harm-
less, and hence should be able to be de-idealized away
without affecting the explanation.

On the other side, a number of scholars have argued
for the counterintuitive conclusion that sometimes it is
in part because of their falsehoods – not despite them –
that models explain. Batterman [4.9, 15, 26], for exam-
ple, has argued that some idealizations are explanatorily
ineliminable, that is, the idealizations or falsehoods
themselves do real explanatory work. Batterman con-
siders continuum model explanations of phenomena
such shocks (e.g., compressions traveling through a gas
in a tube) and breaking drops (e.g., the shape of water as
it drips from a faucet). In order to explain such phenom-
ena, scientists make the idealization that the gas or fluid
is a continuum (rather than describing it veridically as
a collection of discrete gas or water molecules). These
false continuum assumptions are essential for obtain-
ing the desired explanation. In the breaking drop case,
it turns out that different fluids of different viscosities
dripping from faucets of different widths will all exhibit
the same shape upon breakup. The explanation depends
on a singularity that exists only in the (false) contin-
uum model; such an explanation does not exist on the
de-idealized molecular dynamics approach [4.15, pp.
442–443]). Hence, he concludes [4.15, p. 427],

“continuum idealizations are explanatorily inelim-
inable and [. . . ] a full understanding of certain
physical phenomena cannot be obtained through
completely detailed, nonidealized representations.”

If such analyses are right, then they show that not all
idealizations can be de-idealized, and, moreover, those
falsehoods can play an essential role in the explanation.

Bokulich [4.10, 20–22] has similarly defended the
view that it is not just the true parts of models that can
do explanatory work, arguing that in some cases even
fictions can be explanatory. She writes, “some fictions
can give us genuine insight into the way the world is,
and hence be genuinely explanatory and yield real un-
derstanding” [4.10, p. 94]. She argues that some fictions
are able to do this by capturing in their fictional rep-
resentation real patterns of structural dependencies in
the world. As an example, she discusses semiclassical
models whereby fictional electron orbits are used to ex-
plain peculiar features of quantum spectra. Although,
according to quantum mechanics, electrons do not fol-
low definite trajectories or orbits (i. e., such orbits are
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fictions), physicists recognized that puzzling peaks in
the recurrence spectrum of atoms in strong magnetic
fields have a one-to-one correspondence with particular
closed classical orbits [4.30, pp. 2789–2790] (quoted
in [4.10, p. 99]):

“The resonances [. . . ] form a series of strikingly
simple and regular organization, not previously an-
ticipated or predicted. [. . . ] The regular type reso-
nances can be physically rationalized and explained
by classical periodic orbits of the electron on closed
trajectories starting at and returning to the proton as
origin.”

As she explains, at no point are these physicists
challenging the status of quantum mechanics as the
true, fundamental ontological theory; rather, they are
deploying the fiction with the express recognition that
it is indeed a literally false representation (interestingly
this was one of the Vaihinger’s criteria for a scientific
fiction [4.31, p. 98]). Nonetheless, it is a represen-
tation that is able to yield true physical insight and
understanding by carefully capturing in its fictional rep-
resentation the appropriate patterns of counterfactual
dependence of the target phenomenon.

Bokulich [4.10, 20–22] offers several such exam-
ples of explanatory fictional models from semiclassical
mechanics, where the received explanation of quantum
phenomena appeals to classical structures, such as the
Lyapunov (stability) exponents of classical trajectories,
that have no clear quantum counterpart. Moreover, she
notes that these semiclassical models with their fic-
tional assumption of classical trajectories are valued not
primarily as calculation tools (often they require cal-
culations that are just as complicated), but rather are
valued as models that provide an unparalleled level of
physical insight into the structure of the quantum phe-
nomena. Bokulich is careful to note that not just any
fiction can do this kind of explanatory work; indeed,
most fictions cannot. She shows more specifically how
these semiclassical examples meet the three criteria of
her account of model-based explanation, discussed ear-
lier (e.g., [4.10, p. 106]).

A more pedestrian example of an explanatory fic-
tion, and one that brings out some of the objections to
such claims, is the case of light rays postulated by the
ray (or geometrical) theory of optics. Strictly speaking,
light rays are a fiction. The currently accepted funda-
mental theory of wave optics denies that they exist. Yet,
light rays seem to play a central role in the scientific
explanation of lots of phenomena, such as shadows and
rainbows. The physicists Kleppner and Delos, for ex-
ample, note [4.32, p. 610]:

“When one sees the sharp shadows of buildings in
a city, it seems difficult to insist that light-rays are
merely calculational tools that provide approxima-
tions to the full solution of the wave equation.”

Similarly, Batterman, argues [4.33, pp. 154–155]:

“One cannot explain various features of the rainbow
(in particular, the universal patterns of intensities
and fringe spacings) without ultimately having to
appeal to the structural stability of ray theoretic
structures called caustics – focal properties of fami-
lies of rays.”

Batterman is quite explicit that he does not think
that an explanatory appeal to these ray-theoretic struc-
tures requires reifying the rays; they are indeed fictions.

Some, such as Belot, want to dismiss ray-optics
models as nothing but a mathematical device devoid of
any physical content outside of the fundamental (wave)
theory. He writes [4.34, p. 151]:

“The mathematics of the less fundamental theory is
definable in terms of that of the more fundamental
theory; so the requisite mathematical results can be
proved by someone whose repertoire of interpreted
physical theories included only the latter.”

The point is roughly this: it looks like in Batter-
man’s examples that one is making an explanatory ap-
peal to fictional entities from a less fundamental theory
that has been superseded (e.g., ray optics or classical
mechanics). However, all one needs from that super-
seded theory is the mathematics – one does not need to
give those bits of mathematics a physical interpretation
in terms of the fictional entities or structures. Moreover,
that mathematics appears to be definable in terms of
the mathematics of the true fundamental theory. Hence,
those fictional entities are not, in fact, playing an ex-
planatory role.

Batterman has responded to these objections, ar-
guing that in order to have an explanation, one does,
in fact, need the fictional physical interpretation of
that mathematics, and hence the explanatory resources
of the nonfundamental theory. He explains [4.33, p.
159]:

“Without the physical interpretation to begin with,
we would not know what boundary conditions to
join to the differential equation. Neither, would we
know how to join those boundary conditions to the
equation. Put another way, we must examine the
physical details of the boundaries (the shape, reflec-
tive and refractive details of the drops, etc.) in order
to set up the boundary conditions required for the
mathematical solution to the equation.”
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In other words, without appealing to the fictional
rays, we would not have the relevant information we
need to appropriately set up and solve the mathematical
model that is needed for the explanation.

In a paper with Jansson, Belot has raised similar
objections against Bokulich’s arguments that classical
structures can play a role in explaining quantum phe-
nomena. They write [4.35, p. 82]:

“Bokulich and others see explanations that draw on
semiclassical considerations as involving elements
of classical physics as well as of quantum physics.
[. . . ] But there is an alternative way of thinking of
semiclassical mechanics: [. . . ] starting with the for-
malism of quantummechanics one proves theorems
about approximate solutions – theorems that hap-
pen to involve some of the mathematical apparatus
of classical mechanics. But this need not tempt us to
think that there is [classical] physics in our explana-
tions.”

Once again, we see the objection that it is just the
bare mathematics, not the mathematics with its phys-
ical interpretation that is involved in the explanation.
On Bokulich’s view, however, it is precisely by con-
necting that mathematical apparatus to its physical
interpretation in terms of classical mechanics, that one
gains a deeper physical insight into the system one is
studying. On her view, explanation is importantly about
advancing understanding, and for this the physical in-
terpretation is important. (Potochnik [4.5, Chap. 5] has
also argued for a tight connection between explanation
and understanding, responding to some of the tradi-
tional objections against this association. More broadly,
she emphasizes the communicative function of expla-
nation over the ontological approach to explanation,
which makes more room for nonveridical model ex-
planations than the traditional approach.) Even though
classical mechanics is not the true fundamental theory,
there are important respects in which it gets things right,
and hence reasoning with fictional classical structures
within the well-established confines of semiclassical
mechanics, can yield explanatory insight and deepen
our understanding.

As we have seen, these claims that fictions can ex-
plain (in special cases such as ray optics and classical
structures) remain controversial and involve subtle is-
sues. These debates are not entirely new, however, and
they have some interesting historical antecedents, for
example, in the works of Niels Bohr and James Clerk
Maxwell. More specifically, when Bohr is articulating
his widely misunderstood correspondence principle,
(for an accessible discussion see [4.36]) he argues that
one can explain why only certain quantum transitions
between stationary states in atoms are allowed by ap-

pealing to which harmonic components appear in the
Fourier decomposition of the electron’s classical or-
bit (see [4.20, Sect. 4.2] and references therein). He
does this even long after he has conceded to the new
quantum theory that classical electron trajectories in the
atom are impossible (i. e., they are a fiction). Although
Heisenberg used this formulation of the correspondence
principle to construct his matrix mechanics, he argued
that “it must be emphasized that this correspondence
is a purely formal result” [4.37, p. 83], and should not
be thought of as involving any physical content from
the other theory. Bohr, by contrast, was dissatisfied
with this interpretation of the correspondence princi-
ple as pure mathematics, arguing instead that it revealed
a deep physical connection between classical and quan-
tum mechanics. Even earlier, we can see some of these
issues arising in the work of Maxwell, who, in exploit-
ing the utility of fictional models and physical analogies
between disparate fields, argued ([4.38, p. 187]; for
a discussion, see [4.39]):

“My aim has been to present the mathematical ideas
to the mind in an embodied form [. . . ] not as mere
symbols, which convey neither the same ideas, nor
readily adapt themselves to the phenomena to be ex-
plained.”

Three other challenges have been raised against
the explanatory power of fictional models. First, there
is a kind of slippery-slope worry that, once we ad-
mit some fictional models as explanatory, we will not
have any grounds on which to dismiss other fictional
models as nonexplanatory. Bokulich [4.22] introduces
a framework for addressing this problem. Second,
Schindler [4.40] has raised what he sees as a tension
in Bokulich’s account. He claims that on one hand
she says semiclassical explanations of quantum phe-
nomena are autonomous in the sense that they provide
more insight than the quantum mechanical ones. Yet,
on the other hand, she notes that semiclassical mod-
els are justified through semiclassical theory, which
connects these representations as a kind of approxima-
tion to the full quantum mechanics. Hence, they cannot
be autonomous. This objection seems to trade on an
equivocation of the term autonomous: in the first case,
autonomous is used to mean “a representation of the
phenomenon that yields more physical insight” and in
the second case autonomous is used to mean “cannot be
mathematical justified through various approximation
methods”. These seem to be two entirely different con-
cepts, and, hence, not really in tension with each other.
Moreover, Bokulich never uses the term autonomous to
describe either, so this seems to be a misleading reading
of her view.
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Schindler also rehearses the objection, raised by
Belot and Jansson [4.35], that by eliminating the
interventionist condition in Woodward’s counterfactual
approach to explanation she loses what he calls “the
asymmetry-individuating function”, by which he
means her account seems susceptible to the traditional
problem of asymmetry that plagued the DN account
of explanation (e.g., that falling barometers could be
used to explain impending storms or shadows could
used to explain the height of flag poles, to recall
Sylvain Bromberger’s well-known examples). This
problem was taken to be solved by the causal approach
to explanation, whereby one secures the explanatory
asymmetry simply by appealing to the asymmetry of
causation. It is important to note, however, that this is
not an objection specifically to Bokulich’s account of
structural model explanation, but rather is a challenge
for any noncausal account of explanation (Bokulich
outlines a solution to the problem of asymmetry for her
account in [4.22]). Since many examples of explanatory
models purport to be noncausal explanations, we will
examine this topic more fully in the next section.

Another context in which this issue about the ex-
planatory power of fictional models arises is in con-
nection with cognitive models in psychology and cog-
nitive neuroscience. Weiskopf, for example, discusses
how psychological capacities are often understood in
terms of cognitive models that functionally abstract
from the underlying real system. More specifically, he
notes [4.41, p. 328]:

“In attempting to understand the high level dynam-
ics of complex systems like brains, modelers have
recourse to many techniques for constructing such
indirect accounts [. . . ] reification, functional ab-
straction, and fictionalization.”

By reification, he means “positing something with
the characteristics of a more or less stable and endur-
ing object, where in fact no such thing exists” [4.41, p.
328]. He gives as an example the positing of symbolic
representations in classical computational systems, even
though he notes that nothing in the brain seems to stand
still or be manipulable in the way symbols do. Func-
tional abstraction, he argues occurs when we [4.41, p.
329]

“decompose a modeled system into subsystems and
other components on the basis of what they do,
rather than their correspondence with organizations
and groupings in the target system.”

He notes that this occurs when there are cross-
cutting functional groupings that do not map onto the
structural or anatomical divisions of the brain. He notes
that this strategy emphasizes networks, not locations in

relating cognition to neural structures. Finally, there is
also fictionalization, which, as he describes [4.41, p.
331],

“involves putting components into a model that are
known not to correspond to any element of the mod-
eled system, but which serve an essential role in
getting the models to operate correctly.”

He gives as an example of a fiction in cognitive
modeling what are called fast enabling links (FELs),
which are independent of the channels by which cells
actually communicate and are assumed to have func-
tionally infinite propagation speeds, allowing two cells
to fire in synchrony [4.41, p. 331]. Despite being false
in these ways, some modelers take these fictions to be
essential to the operation of the model and not likely to
be eliminated in future versions.

Weiskopf concludes that models involving reifica-
tions, functional abstractions, and fictions, can nonethe-
less in some cases succeed in “meeting the general
normative constraints on explanatory models perfectly
well” [4.41, p. 332], and hence such models can be
counted as genuinely explanatory. Although Weiskopf
recognizes the many great successes of mechanistic ex-
planations in biological and neural systems, he wants to
resist an imperialism that attempts to reduce all cases of
model explanations in these fields to mechanistic model
explanations.

More recently, Buckner [4.42] has criticized
Weiskopf’s arguments that functionalist models involv-
ing fictions, abstractions, and reification can be ex-
planatory and defended the mechanist’s maxim (e.g., as
articulated by Craver and Kaplan) that only mechanis-
tic models can genuinely explain. Buckner employs two
strategies in arguing against Weiskopf: first, in cases
where the models do explain, he argues that they are
really just mechanism sketches, and where they cannot
be reconstructed mechanistically, he dismisses them as
impoverished explanations. He writes [4.42, p. 3]:

“Concerning fictionalization and reification, I con-
cede that models featuring such components cannot
be interpreted as mechanism sketches, but argue that
interpreting their nonlocalizable components as nat-
ural kinds comes with clear costs in terms of those
models’ counterfactual power. [. . . ] Functional ab-
straction, on the other hand, can be considered a le-
gitimate source of kinds, but only on the condition
that the functionally abstract models be interpreted
as sketches that could be elaborated into a more
complete mechanistic model.”

An essential feature of mechanistic models seems
to be that their components are localizable. Weiskopf
argues, however, that his functional kinds are multi-
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ply realizable, that is, they apply to many different
kinds of underlying mechanisms, and that in some
cases, they are distributed in the sense that they as-
cribe to a given model component capacities that are
distributed amongst distinct parts of the physical sys-
tem. Hence, without localization, such models cannot
be reconstructed as mechanistic models.

What of Buckner’s claim that fictional models will
be impoverished with regard to their counterfactual
power? Consider again Weiskopf’s example of the fic-
tional FELs, which are posited in the model to allow
the cells to achieve synchrony. Buckner argues expla-
nations involving models with FELs are impoverished
in that if one had a true account of synchrony, that
model explanation would support more counterfactual
knowledge. It is not clear, however, that this objection
undermines the explanatory power of models involv-
ing FELs per se; rather it seems only to suggest that
if we knew more and had the true account of syn-

chrony we might have a deeper explanation (at least
on the assumption that this true account of synchrony
would allow us to answer a wider range of what-if-
things-had-been-different questions) (For an account
of explanatory depth, see [4.43]). However, the ex-
planation involving the fiction might still be perfectly
adequate for the purpose for which it is being deployed,
and hence it need not even be counted as impoverished.
For example, there might be some explananda (ones
other than the explanadum of how do cells achieve syn-
chrony) for which it simply does not matter how cells
achieve synchrony; the fact that they do achieve syn-
chrony might be all that is required for some purposes.

Weiskopf is not alone in trying to make room for
nonmechanistic model explanations; Irvine [4.44] and
Ross [4.45] have also recently defended nonmechanis-
tic model explanations in cognitive science and biology.
Their approaches argue for noncausal forms of model
explanation, which we will turn to next.

4.3 Explanatory Models and Noncausal Explanations

Recently, there has been a growing interest in noncausal
forms of explanation. Similar to Bokulich’s [4.20, 21]
approach, many of these seek to understand noncausal
explanations within the context of Woodward’s [4.23]
counterfactual approach to explanation without the in-
terventionist criterion that restricts his account specifi-
cally to causal explanation [4.25, 46]. Noncausal expla-
nations are usually defined negatively as explaining by
some means other than citing causes, though this is pre-
sumably a heterogeneous group. We have already seen
one type of noncausal model-based explanation: [4.20,
21] structural model explanations in physics. More re-
cently, examples have been given in fields ranging
from biology to cognitive science. Highly mathemati-
cal model explanations are another type of noncausal
explanation, though not all mathematical models are
noncausal. A few recent examples are considered here.

In the context of biology and cognitive science,
Irvine [4.44] has argued for the need to go beyond the
causal-mechanical account of model explanation and
defends what she calls a noncausal structural form of
model explanation. She focuses specifically on rein-
forcement learning (RL) models in cognitive science
and optimality models in biology. She notes that al-
though RL and optimality models can be construed as
providing causal explanations in some contexts, there
are other contexts in which causal explanations miss the
mark. She writes [4.44, p. 11]:

“In the account developed here, it is not the pres-
ence of idealisation or abstraction in models that

is important, nor the lack of description of causal
dynamics or use of robustness analyses to test the
models. Instead, it is the bare fact that some mod-
els and target systems have equilibrium points [that]
are highly O-robust with respect to initial conditions
and perturbations. [. . . ] This alone can drive a claim
about noncausal structural explanations.”

By O-robustness, Irvine means a robust conver-
gence to an optimal state across a range of interven-
tions, whether it be an optimization of fitness or an
optimization of decision-making strategies. Her argu-
ment is that since interventions (in the sense of Wood-
ward) do not make a difference to the convergence on
the optimal state, that convergence cannot be explained
causally, and is instead due to structural features of the
model and target system it explains.

Another recent approach to noncausal model expla-
nation is Batterman and Rice’s [4.47] minimal model
explanations. Minimal models are models that explain
patterns of macroscopic behavior for systems that are
heterogeneous at smaller scales. Batterman and Rice
discuss two examples of minimal models in depth: the
Lattice Gas Automaton model, which is used to explain
large-scale patterns in fluid flow, and Fisher’s Sex Ratio
model, which is used to explain why one typically finds
a 1 W 1 ratio of males to females, across diverse popula-
tions of species. In both cases, they argue [4.47, p. 373]:

“these minimal models are explanatory because
there is a detailed story about why the myriad de-
tails that distinguish a class of systems are irrelevant
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to their large-scale behavior. This story demon-
strates, rather than assumes, a kind of stability or
robustness of the large-scale behavior we want to
explain under drastic changes in the various details
of the system.”

They make two further claims about these minimal
model explanations. First, they argue that these expla-
nations are “distinct from various causal, mechanical,
difference making, and so on, strategies prominent in
the philosophical literature” [4.47, p. 349]. Second, they
argue that the explanatory power of minimal models
cannot be accounted for by any kind of mirroring or
mapping between the model and target system (what
they call the common features account). Instead, these
noncausal explanations work by showing that the min-
imal model and diverse real-world systems fall into the
same universality class. This latter claim has been chal-
lenged by Lange [4.48] who, though sympathetic to
their claim that minimal models are a noncausal form of
model explanation, argues that their explanatory power
does in fact derive from the model sharing features in
common with the diverse systems it describes (i. e., the
common features account Batterman and Rice reject).

Ross [4.45] has applied the minimal models account
to dynamical model explanations in the neurosciences.
More specifically, she considers as an explanandum
phenomenon the fact that a diverse set of neural sys-
tems (e.g., rat hippocampal neurons, crustacean motor
neurons, and human cortical neurons Ross [4.45, p.
48]), which are quite different at the molecular level,
nonetheless all exhibit the same type I excitability be-
havior. She shows that the explanation for this involves
applying mathematical abstraction techniques to the
various detailed models of each particular type of neural
system and then showing that all these diverse systems
converge on one and the same canonical model (known
as the Ermentrout–Kopell model). After defending the
explanatory power of these canonical models, Ross then
contrasts this kind of noncausal model explanation with
the causal–mechanical model approach [4.45, p. 46]:

“The canonical model approach contrasts with Ka-
plan and Craver’s claims because it is used to
explain the shared behavior of neural systems with-
out revealing their underlying causal–mechanical
structure. As the neural systems that share this be-
havior consist of differing causal mechanisms [. . . ]
a mechanistic model that represented the causal
structure of any single neural system would no
longer represent the entire class of systems.”

Her point is that a noncausal explanation is called
for in this case because the particular causal details are

irrelevant to the explanation of the universal behavior of
class I neurons. The minimal models approach, as we
saw above, is designed precisely to capture these sort
explanations involving universality.

More generally, many highly abstract or highly
mathematical model explanations also seem to fall into
this general category of noncausal model explanations.
Pincock, for example, identifies a type of explanation
that he calls abstract explanation, which could be ex-
tended to model-based explanations. He writes “the best
recent work on causal explanation is not able to natu-
rally accommodate these abstract explanations” [4.49,
p. 11]. Although some of the explanations Pincock
cites, such as the topological (graph theory) explana-
tion for why one cannot cross the seven bridges of
Königsberg exactly once in a nonbacktracking circuit,
seem to be genuinely noncausal explanations, it is not
clear that all abstract explanations are necessarily non-
causal. Reutlinger and Andersen [4.50] have recently
raised this objection against Pincock’s account, arguing
that an explanation’s being abstract is not a sufficient
condition for it being noncausal. They argue that many
causal explanations can be abstract too and so more
work needs to be done identifying what makes an ex-
planation truly noncausal. This is a particularly pressing
issue in model-based explanations, since many scien-
tific models are abstract in this sense of leaving out
microphysical or concrete causal details about the ex-
planandum phenomenon.

Lange [4.51] has also identified a kind of noncausal
explanation that he calls a distinctively mathematical
explanation. Lange considers a number of candidate
mathematical explanations, such as why one cannot
divide 23 strawberries evenly among three children,
why cicadas have life-cycle periods that are prime, and
why honeybees build their combs on a hexagonal grid.
Lange notes that whether these are to count as distinc-
tively mathematical explanations depends on precisely
how one construes the explanandum phenomenon. If
we ask why honeybees divide the honeycomb into
hexagons, rather than other polygons, and we cite
that it is selectively advantageous for them to min-
imize the wax used, together with the mathematical
fact that a hexagonal grid has the least total perime-
ter, then it is an ordinary causal explanation (it works
by citing selection pressures). If, however [4.50, p.
500]:

“we narrow the explanandum to the fact that in any
scheme to divide their combs into regions of equal
area, honeybees would use at least the amount of
wax they would use in dividing their combs into
hexagons. [. . . ] this fact has a distinctively mathe-
matical explanation.”
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As Lange explains more generally [4.51, p. 485]:

“These explanations are noncausal, but this does
not mean that they fail to cite the explanandum’s
causes, that they abstract away from detailed causal
histories, or that they cite no natural laws. Rather,
in these explanations, the facts doing the explaining
are modally stronger than ordinary causal laws. ”

The key issue is not whether the explanans cite
the explanandum’s causes, but whether the explana-

tion works by virtue of citing those causes. Dis-
tinctively mathematical (noncausal) explanations show
the explanandum to be necessary to a stronger de-
gree than would result from the causal powers
alone.

As this literature makes clear, distinguishing causal
from noncausal explanations is a subtle and open prob-
lem, but one crucial for understanding the wide-spread
use of abstract mathematical models in many scientific
explanations.

4.4 How-Possibly versus How-Actually Model Explanations

Models and computer simulations can often generate
patterns or behaviors that are strikingly similar to the
phenomenon to be explained. As we have seen, how-
ever, that is typically not enough to conclude that the
model thereby explains the phenomenon. An important
distinction here is that between a how-possibly model
explanation and a how-actuallymodel explanation.

The notion of a how-possibly explanation was first
introduced in the 1950s by Dray in the context of ex-
planations in history. Dray conceived of how-possibly
explanations as a rival to the DN approach, which he
labeled why-necessarily explanations [4.52, p. 161].
Dray interpreted how-possibly explanations as ones
that merely aim to show why a particular phenomenon
or event “need not have caused surprise” [4.52, p. 157];
hence, they are answers to a different kind of question
and can be considered complete explanations in them-
selves. Although Dray’s approach was influential, sub-
sequent authors have interpreted this distinction in dif-
ferent ways. Brandon, in the context of explanations in
evolutionary biology, for example, writes [4.53, p. 184]:

“A how-possibly explanation is one where one or
more of the explanatory conditions are speculatively
postulated. But if we gather more and more evi-
dence for the postulated conditions, we can move
the how-possibly explanation along the continuum
until finally we count it as a how-actually explana-
tion. ”

On this view, the distinction is a matter of the degree
of confirmation, not a difference of kind: as we get more
evidence that the processes cited in the model are the
processes operating in nature, we move from a how-
possibly to how-actually explanation.

Forber [4.54], however, rejects this interpretation of
the distinction as marking a degree of empirical sup-
port, and instead defends Dray’s original contention that
they mark different kinds of explanations. More specif-
ically, Forber distinguishes two kinds of how-possibly

explanations that he labels global how-possibly and lo-
cal how possibly explanations [4.54, p. 35]:

“The global how-possibly explanations have theory,
mathematics, simulations, and analytical techniques
as the resources for fashioning such explanations.
[. . . ] The local how-possibly explanations draw
upon the models of evolutionary processes and go
one step further. They speculate about the biological
possibilities relative to an information set enriched
by the specific biology of a target system. [. . . ]
How-actually explanations, carefully confirmed by
empirical tests, aim to identify the correct evolu-
tionary processes that did, in fact, produce the target
outcome.”

Although Forber’s distinction is conceptually help-
ful, it is not clear whether global versus local how-
possibly explanations should, in fact, be seen as two
distinct categories, rather than simply two poles of
a spectrum.

Craver draws a distinction between how-possibly
models and how-actually models that is supposed to
track the corresponding two kinds of explanations.
He notes that how-possibly models purport to explain
(unlike phenomenological models, which do not pur-
port to explain), but they are only loosely constrained
conjectures about the mechanism. How-actually mod-
els, by contrast, describe the detailed components and
activities that, in fact, produce the phenomenon. He
writes [4.17, p. 361]:

“How-possibly models are [. . . ] not adequate expla-
nations. In saying this I am saying not merely that
the descriptionmust be true (or true enough) but fur-
ther, that the model must correctly characterize the
details of the mechanism.”

Craver seems to see the distinction resting not just
on the degree of confirmation (truth) but also on the de-
gree of detail.
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Bokulich [4.55] defends another construal of the
how-possibly/how-actually distinction and applies it to
model-based explanations more specifically. She con-
siders, as an example, model-based explanations of
a puzzling ecological phenomenon known as tiger bush.
Tiger bush is a striking periodic banding of vegetation in
semi-arid regions, such as southwestNiger. A surprising
feature of tiger bush is that it can occur for a wide vari-
ety of plants and soils, and it is not induced by any local
heterogeneities or variations in topography. By tracing
how scientists use various idealizedmodels (e.g., Turing
models or differential flow models) to explain phenom-
ena such as this, Bokulich argues a new insight into the
how-possibly/how-actually distinction can be gained.

The first lesson she draws is that there are different
levels of abstraction at which the explanandum phe-
nomenon can be framed, which correspond to different
explanatory contexts [4.55, p. 33]. These different ex-
planatory contexts can be clarified by considering the
relevant contrast class of explanations (for a discussion
of contrast classes and their importance in scientific ex-
planation, see [4.56, Chap. 5]). Second, she argues pace
Craver that the how-possibly/how-actually distinction

does not track how detailed the explanation is. She ex-
plains [4.55, p. 334]:

“It is not the amount of detail that is relevant, but
rather whether the mechanism represented in the
model is the mechanism operating in nature. Indeed
as we saw in the tiger bush case, the more abstractly
the explanatory mechanism is specified, the easier
it is to establish it as a how-actually explanation;
whereas the more finely the explanatory mechanism
is specified, the less confident scientists typically
are that their particular detailed characterization of
the mechanism is the actual one.”

Hence, somewhat counterintuitively, model expla-
nations at a more fine-grained level are more likely to
be how-possibly model explanations, even when they
are nested within a higher level how-actually model
explanation of a more abstract characterization of the
phenomenon. She concludes that when assessing model
explanations, it is important to pay attention to what
might be called the scale of resolution at which the ex-
planandum phenomenon is being framed in a particular
explanatory context.

4.5 Tradeoffs in Modeling:
Explanation versus Other Functions for Models

Different scientists will often create different models of
a given phenomenon, depending on their particular in-
terests and aims. Following Giere, we might note that
“there is no best scientific model of anything; there
are only models more or less good for different pur-
poses” [4.57, p. 1060]. If this is right, then it raises the
following questions: What are the features that make
a model particularly good for the purpose of explana-
tion? Are there tradeoffs between different modeling
aims, such that if one optimizes a model for expla-
nation, for example, then that model will fail to be
optimized for some other purpose, such as prediction?

One of the earliest papers to explore this theme
of tradeoffs in modeling is Levins’ paper The Strat-
egy of Model Building in Population Biology. Levins
writes [4.58, p. 422]:

“It is of course desirable to work with manageable
models which maximize generality, realism, and
precision toward the overlapping but not identical
goals of understanding, predicting, and modifying
nature. But this cannot be done.”

Levins then goes on to describe various modeling
strategies that have evolved among modelers, such as
sacrificing realism to generality and precision, or sac-

rificing precision to realism and generality. Levins in
his own work on models in ecology favored this lat-
ter strategy, where he notes his concern was primarily
qualitative not quantitative results, and he emphasizes
the importance of robustness analyses in assessing these
models.

Although Levins’s arguments have not gone un-
challenged, Matthewson and Weisberg have recently
defended the view that some tradeoffs in modeling are
genuine. They focus on precision and generality, given
the relevance of this tradeoff to the aim of explana-
tory power. After a technical demonstration of different
kinds of tradeoffs between two different notions of gen-
erality and precision, they conclude [4.59, p. 189]:

“These accounts all suggest that increases in gener-
ality are, ceteris paribus, associated with an increase
in explanatory power. The existence of tradeoffs be-
tween precision and generality indicates that one
way to increase an explanatorily valuable desidera-
tum is by sacrificing precision. Conversely, increas-
ing precision may lead to a decrease in explanatory
power via its effect on generality.”

Mapping out various tensions and tradeoffs mod-
elers may face in developing models for vari-
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ous aims, such as scientific explanation, remains
a methodologically important, though underexplored
topic.

More recently, Bokulich [4.60] has explored such
tradeoffs in the context of modeling in geomorphology,
which is the study of how landscapes and coastlines
change over time. Even when it comes to a single phe-
nomenon, such as braided rivers (i. e., rivers in which
there is a number of interwoven channels and bars that
dynamically shift over time), one finds that scientists
use different kinds of models depending on whether
their primary aim is explanation or prediction. When
they are interested explaining why rivers braid geo-
morphologists tend to use what are known as reduced
complexity models, which are typically very simple
cellular automata models with a highly idealized repre-
sentation of the fluvial dynamics [4.61]. The goal is to
try to abstract away and isolate the key mechanisms re-
sponsible for the production of the braided pattern. This
approach is contrasted with an alternative approach
to modeling in geomorphology known as reductionist
modeling. Here one tries to simulate the braided river
in as much accurate detail and with as many differ-
ent processes included as is computationally feasible,
and then tries to solve the relevant Navier–Stokes equa-
tions in three dimensions. These reductionist models
are the best available tools for predicting the features
of braided rivers [4.61, p. 159], but they are so complex
that they yield very little insight into why the patterns
emerge as they do.

Bokulich uses cases such as these to argue for what
she calls a division of cognitive labor among mod-
els [4.60, p. 121]:

“If one’s goal is explanation, then reduced complex-
ity models will be more likely to yield explanatory
insight than simulation models; whereas if one’s
goal is quantitative predictions for concrete sys-
tems, then simulation models are more likely to be
successful. I shall refer to this as the division of cog-
nitive labor among models.”

As Bokulich notes, however, one consequence of
this division of cognitive labor is that a model that
was designed to optimize explanatory insight might fail
to make quantitatively accurate predictions (a different
cognitive goal). She continues [4.60, p. 121]:

“This failure in predictive accuracy need not mean
that the basic mechanism hypothesized in the ex-
planatory model is incorrect. Nonetheless, explana-
tory models need to be tested to determine whether
the explanatorymechanism represented in themodel
is in fact the real mechanism operating in nature.”

She argues for the importance of robustness analy-
ses in assessing these explanatory models, noting that
while robustness analyses cannot themselves function
as a nonempirical mode of confirmation, they can be
used to identify those qualitative predictions or trends
in the model that can appropriately be compared with
observations.

4.6 Conclusion

There is a growing realization that the use of idealized
models to explain phenomena is pervasive across the
sciences. The appreciation of this fact has led philoso-
phers of science to begin to introduce model-based
accounts of explanation in order to bring the philo-
sophical literature on scientific explanation into closer
agreement with actual scientific practice.

A key question here has been whether the idealiza-
tions and falsehoods inherent in modeling are harmless
in the sense of doing no real explanatory work, or
whether they have an essential – maybe even inelim-
inable – role to play in some scientific explanations.
Are such fictions compatible with the explanatory aims
of science, and if so, under what circumstances? While
some inroads have been made on this question, it re-
mains an ongoing area of research. As we saw, yet
another controversial issue concerns the fact that many
highly abstract and mathematical models seem to ex-
emplify a noncausal form of explanation, contrary to
the current orthodoxy in scientific explanation. Deter-

mining what is or is not to count as a causal explanation
turns out to be a subtle issue.

Finally, just because a model or computer sim-
ulation can reproduce a pattern or behavior that is
strikingly like the phenomenon to be explained, does
not mean that it thereby explains that phenomenon.
An important distinction here is that between a how-
possibly model explanation and a how-actually model
explanation. Despite the wide agreement that such
a distinction is important, there has been less agree-
ment concerning how precisely these lines should be
drawn.

Although significant progress has been made in
recent years in understanding the role of models in sci-
entific explanation, there remains muchwork to be done
in further clarifying many of these issues. However, as
the articles reviewed here reveal, exploring just how and
when models can explain is a rich and fruitful area of
philosophical investigation and one essential for under-
standing the nature of scientific practice.
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5. Models and Simulations

Nancy J. Nersessian, Miles MacLeod

In this chapter we present some of the cen-
tral philosophical issues emerging from the
increasingly expansive and sophisticated roles
computational modeling is playing in the natural
and social sciences. Many of these issues concern
the adequacy of more traditional philosophical
descriptions of scientific practice and accounts of
justification for handling computational science,
particularly the role of theory in the generation
and justification of physical models. However, cer-
tain novel issues are also becoming increasingly
prominent as a result of the spread of compu-
tational approaches, such as nontheory-driven
simulations, computational methods of infer-
ence, and the important, but often ignored, role
of cognitive processes in computational model
building.

Most of the philosophical literature on models
and simulations focuses on computational simu-
lation, and this is the focus of our review. However,
we wish to note that the chief distinguishing
characteristic between a model and a simula-
tion (model) is that the latter is dynamic. They can
be run either as constructed or under a range of
experimental conditions. Thus, the broad class of
simulation models should be understood as com-
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prising dynamic physical models andmental mod-
els, topics considered elsewhere in this volume.

This chapter is organized as follows. First in
Sect. 5.1 we discuss simulation in the context
of well-developed theory (usually physics-based
simulations). Then in Sect. 5.2 we discuss simula-
tion in contexts where there are no over-arching
theories of the phenomena, notably agent-based
simulations and those in systems biology. We then
turn to issues of whether and how simulation
modeling introduces novel concerns for the phi-
losophy of science in Sect. 5.3. Finally, we conclude
in Sect. 5.4 by addressing the question of the rela-
tion between human cognition and computational
simulation, including the relationship between
the latter and thought experimenting.

5.1 Theory-Based Simulation

A salient aspect of computational simulation, and the
one which has attracted the most substantial philo-
sophical interest so far, is its ability to extend the
power and reach of theories in modern science beyond
what could be achieved by pencil and paper alone.
Work on simulations has concentrated on simulations
built from established background theories or theoreti-
cal models and the relations between these simulations
and theory. Examples have been sourced mainly from
the physical sciences, including simulations in astro-
physics, fluid dynamics, nanophysics, climate science
and meteorology.Winsberg has been foremost in study-

ing theory-driven forms of simulation and promoting
the importance of philosophical investigation of it by
arguing that such simulations set a new agenda for
philosophy of science [5.1–5]. He uses the case of simu-
lation to challenge the longstanding focus of philosophy
of science on theories, particularly on how they are jus-
tified [5.1, 3, 5]. Simulations, he argues, cannot simply
be understood as novel ways to test theories. They are
in fact rarely used to help justify theories, rather simula-
tions apply existing theories in order to explore, explain
and understand real and possible phenomena, or make
predictions about how such phenomena will evolve in
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time. Simulations open up a whole new set of philo-
sophical issues concerning the practices and reliability
of much modern science.

Winsberg’s analysis of theory-based simulation
shares much with Cartwright’s [5.6] and Morgan and
Morrison’s [5.7] challenges to the role of theories. Like
them, he starts by strongly disputing the presupposition
that simulations are somehow deductive derivations
from theory. Simulations are applied principally in
the physical sciences when the equations generated
from a theory to represent a particular phenomenon
are not analytically solvable. The path from a theory
to a simulation requires processes of computerization,
which transform equations into tractable computable
structures by relying on practices of discretization
and idealization [5.8]. These practices employ specific
transformations and simplifications in combination
with those used to make tractable the application of
theoretical equations to a specific phenomenon such
as boundary conditions and symmetry assumptions.
As such simulations are, according to Winsberg [5.1],
better construed as particular articulations of a theory
rather than derivations from theory. They make use of
theoretical information and the credibility, explanatory
scope and depth, of well-established theories, to pro-
vide warrant to simulations of particular phenomena.
Inferences drawn by computational simulations have
several features in this regard; they are downward,
motley and autonomous [5.9]. Inferences are downward
because they move from theory to the real world (rather
than from the real world to theory). They are motley
because they depend not just on theory but on a large
range of extra-theoretical techniques and resources
in order to derive inferences, such as approximation
and simplification techniques, numerical methods,
algorithmic methods, computer languages and hard-
ware, and much trial and error. Finally, simulations
are autonomous, in the sense of being autonomous
from both theory and data. Simulations, according to
Winsberg, are principally used to study phenomena
where data is sparse and unavailable. These three con-
ditions on inference from simulation require a specific
philosophical evaluation of their reliability.

Such evaluation is complicated by the fact that re-
lations between theory and inferences drawn from the
simulation model are unclear and difficult to untangle.
As Winsberg [5.1, 9] suggests it is a complex task to
unpack what role theories play in the final result given
all these intervening steps. The fact that much valida-
tion of simulations is done throughmatching simulation
outputs to the data, muddies the water further (see
also [5.10]). A well-matched simulation constructed
through a downward, motley and autonomous process
from a nonetheless well-established theory raises the

question of the extent to which the confirmation af-
forded to the theory flows down to the simulation [5.2].
For instance, although fitting a certain data set might
well be the dominant mode of validation of a simu-
lation model, the model could be considered to hold
outside the range of that data because the model applies
a well-accepted theory of the phenomenon thought to
hold under very general conditions.

There is widespread agreement that untangling the
relations between theories and simulations, and the re-
liability of simulations built from theories will require
more in depth investigation of the actual practices sci-
entists use to justify the steps they make when building
a simulation model. In the absence of such investiga-
tions discussions of justification are limited to consider-
ations about whether a simulation fits the observational
data or not. Among other things, this limitation hides
from view important issues about the warrant of the
various background steps that transform theoretical in-
formation into simulations [5.10]. In general, what is
required is an epistemology of simulationwhich can dis-
cover rigorous grounds upon which scientists can and
do sanction their results, and more properly the role of
theory in modern science.

The concern with practices of simulation has
opened up a new angle on the older discussion about
the structure of theories. Humphreys [5.11] has used
the entanglement of theory and simulation in modern
scientific practice to reflect more explicitly upon the
proper philosophical characterization of the structure
of physical theories. Simulations, as with other mod-
els, are not logical derivations from theory which is
a central, but incorrect, feature of the syntactic view.
Humphreys also argues, however, that the now dom-
inant semantic view of theories, which treats theories
as nonlinguistic entities, is not adequate either. On the
semantic view a syntactical formulation of a theory,
and whether different formulations might be solvable
or not, is not important for philosophical assessment
of relations of representations to the world. Relations
of representation are only in fact sensibly held by
models not theories. Both Humphreys and Winsberg
construe the semantic view as dismissing the role of
theories in both normative and descriptive accounts of
science, in place of models. But as Humphreys [5.12,
p. 620] puts it, “the specific syntactic representation
used is often crucial to the solvability of a theory’s
equations”, and thus, the solvability of models derived
from it. Computational tractability, as well as choices of
approximation and simplification techniques, will de-
pend on the particular syntax of a theory. Hence both
the semantic and syntactic views are inadequate for
describing theory in ways that capture their role in sci-
ence.
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5.2 Simulation not Driven by Theory

Investigations, such as those by Winsberg and oth-
ers discussed in the previous section, have illustrated
the importance of close attention to scientific practice
and discovery when studying simulations. Simulation
manifests application-intensive, rather than theoretical,
processes of scientific investigation. As Winsberg [5.1]
suggests choices about how to model a phenomenon re-
liably are developed often in the course of the to and
fro blood, sweat and tears of the model-building pro-
cess itself. Abstract armchair points of view, distant
from an understanding of the contingent, but also tech-
nical and technological nature of these practices and
their affordances, will not put philosophers in a posi-
tion to create relevant normative assessments of good
simulation practices. What has thus far been established
by the accounts of theory-based simulation is that even
in the case where there is an established theory of the
phenomena, simulation model-building has a degree of
independence from theory and theory-building.

However, though the initial focus on theory-based
simulation in the study of simulation is not unsurpris-
ing given the historical preference in philosophy of
science for treating theory as the principal unit of philo-
sophical investigation, simulations are not just a tool
of theory-driven science alone. Pushing philosophical
investigation into model-building practices outside the
domain of theory-driven science reveals whole new
practices of scientific model production using compu-
tational simulations that are not in fact theory-based,
in the sense of traditional physical sciences. Some of
the most compelling and innovative fields in science
today, including, for instance, big-data biology, sys-
tems biology and neuroscience, and much modeling
in the social sciences, are not theory-driven. As Wins-
berg [5.5] admits (in response to Parker [5.13]), his
description of simulation modeling is theory-centric,
and neither necessarily applicable to understanding the
processes by which simulation models are built in the
absence of theory, nor an appropriate framework for
assessing the reliability and informativeness of mod-
els built that way. This is not to say that characteristics
of theory-based simulation are irrelevant to simulations
that are not. Both theory and nontheory-based simu-
lations share an independence of theory and there are
likely to be similarities between them, but there are also
profound differences.

One kind of simulation that is important in this re-
gard is agent-based modeling. Keller [5.14] has labeled
much agent-based modeling as modeling from above
in the sense that such models are not constructed us-
ing a mathematical theory that governs the motions of
agents. Agents follow local interactions rules. In many

fields in the social sciences and biology differential
equations cannot be used to aggregate accurately agent
or population behavior, but it is nonetheless possible
to hypothesize or observe the structure of individ-
ual interactions. An agent-based model can be used
to run those interactions over a large population to
test whether the local structures can reproduce aggre-
gate behavior [5.15]. As noted by Grüne-Yanoff and
Weirich [5.16] agent-based modeling facilitates con-
structing remarkably complex models within computa-
tionally tractable constraints that often go well beyond
what is possible with equation-based representations.

Agent-based models provide one exemplar of sim-
ulations that are not theory-driven. From an episte-
mological perspective, these simulations exhibit weak
emergence [5.17]. The underlying mechanisms are
thoroughly opaque to the users, and the way in which
emergent properties come about can simply not be
reassembled by studying the simulation processes.
This opacity raises questions about the purpose and
value of agent-based modeling. What kind of expla-
nation and understanding does an agent-based simu-
lation provide if the multiscale mechanisms produced
in a simulation are cognitively inaccessible? Further,
how is one to evaluate predictions and explanations
from agent-based simulations which, in fields like ecol-
ogy and economics, commonly simplify very com-
plex interactions in order to create computationally
tractable simulations. If a simplistic model captures
a known behavior, can we trust its predictions? To
address questions such as these we need an episte-
mology that can evaluate proposed techniques for es-
tablishing the robustness of agent-based models. One
alternative is to argue that agent-based models re-
quire a novel epistemology that is able to rationalize
their function as types of fictions rather than as rep-
resentations [5.18, 19]. Another alternative, presented
by Grüne-Yanoff and Weirich [5.16], is to argue that
agent-based models provide in many cases functional
rather than causal explanations of the phenomena they
simulate [5.20]. Agent-based model simulations rarely
control for all the potential explanatory factors that
might be relevant to a given phenomenon, and any
choice of particular interaction mechanism is usually
thoroughly underdetermined. In practice, all possible
mechanisms cannot be explored. But agent-based mod-
els can show reliably how particular lower-level ca-
pacities behave in certain ways, when modeled by
suitably general interactions rules, and can constitute
higher-level capacities no matter how multiply real-
ized those interactions might be. Hence, such mod-
els, even though greatly simplified, can extract useful
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information despite a large space of potential ex-
plananda.

Nontheory-driven forms of simulation such as
agent-based models provide a basis for reflecting more
broadly on the role theory plays in the production of
simulations, and the warrant a theory brings to simu-
lations based on it. Comparative studies of the kinds of
arguments used to justify relying on a simulation should
expose the roles well-established theories play. Our in-
vestigations of integrative systems biology (ISB) have
revealed that not all equation-based modeling is theory-
driven, if theory is construed in terms of theory in the
physical sciences. The canonical meaning based on the
physical sciences is something like a background body
of laws and principles of a domain.

In the case of systems biology, researchers gener-
ally do not have access to such theory and in fact the
kinds of theory they do make use of have a function dif-
ferent from what is usually meant by theory in fields
like physics [5.21]. There are certain canonical theories
in systems biology of how to mathematically represent
interactions among, for instance, metabolites, in the
form of sets of ordinary differential equations. These
posit particular canonical mathematical forms for repre-
senting a large variety of interactions (see Biochemical
Systems Theory [5.22]). In principle, for any particular
metabolic network, if all the interactions and reactants
are known, the only work for the modeler is to write
down the equations for a particular network and calcu-
late the parameters. The mathematics will take care of
the rest since the mathematical formulations of inter-
actions are general enough that any potential nonlinear
behaviors should be represented if parameters are cor-
rectly fixed.

For the most part, however, these canonical frame-
works do not provide the basic ontological information
from which a representation of a system is ultimately
drawn, in the way say that the Navier-Stokes equations
of fluid dynamics describe fluids and their component
interactions in a particular way. In practice, modelers
in systems biology need to assemble that information
themselves in the form of pathway diagrams which
more or less list the molecules involved and then make
their own decisions about how to represent molecular
interactions. A canonical framework is better inter-
preted as a theory of how to approximate and simplify
the information that the systems biologist has assem-
bled about a pathway in order to reliably simulate the
dominant dynamics of a network given sparse data and
complex nonlinear dynamics. Hence, there is no real
theory articulation in Winsberg’s terms. Researchers do
not articulate a general theory for a particular applica-
tion. The challenge for systems biologists is to build
a higher level or system level representation out of the

lower level information they possess. We have found
that canonical templates mediate this process by pro-
viding a possible structure for gluing together this lower
level information in a tractable way [5.21]. These theo-
ries do not offer any direct explanatory value by virtue
of their use.

Theory can in fact be used not just to describe
a body of laws and theoretical principles, but also to
describe principles that instruct scientists on how to re-
liably build models of given classes of phenomena from
a background theory. As Peck puts it [5.18, p. 393]:

“In traditional mathematical modeling, there is
a long established research program in which stan-
dard methods, such as those used for differential
equation modeling, are used to bring about certain
ends. Once the variables and parameters and their
relationships are chosen for the representation of the
model, standard formulations are used to complete
the modeling venture.”

If one talks about what physical scientists often
start with it is not just the raw theory itself but well-
established rules for formulating the theory and ap-
plying it with respect to a particular phenomenon. We
might refer to this latter sense of theory as a theory of
how to apply a background theory to reliably represent
a phenomenon. The two senses of theory are exclusive.
In the case of the canonical frameworks, what is meant
by theory is something closer to this latter rather than
former sense.

Additionally, the modelers we have studied are
never in a position to rely on these frameworks un-
critically and in fact no theory exists that specifies
which representations to use that will reliably lead to
a good representation in all data situations. In integra-
tive systems biology the variety of data situations are
very complex, and the data are often sparse and are
rarely adequate for applying a set mathematical frame-
work. This forces researchers in practice into much
more intensive and adaptive model-building processes
that certainly share much in common with the back and
forth processes Winsberg talks about in the context of
theory application. But these processes have the added
and serious difficulty that the starting points for even
composing the mathematical framework out of which
a model should be built are open-ended and need to be
decided based on thorough investigation of the possibil-
ities with the specific data available.

Canonical frameworks are just an option for mod-
elers and do not drive the model-building process in
the way physical theories do. Currently, systems bi-
ology generally lacks effective theory of either kind.
Modelers have many different choices about how to
confront a particular problem that do not necessarily
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involve picking up a canonical framework or sticking
to it. MacLeod and Nersessian [5.21] have documented
how the nontheory-derived model-building processes
work in these contexts. Models are strategic adaptations
to a complex set of constraints system biologists are
working under [5.23]. Among these constraints are:

� Constraints of the biological problem: A model
must address the constraints of the biological prob-
lem, such as how the redox environment is main-
tained in a healthy cell. The system involved is often
of considerable complexity.� Informational/data constraints: There are con-
straints on the accessibility and availability of ex-
perimental data and molecular and system parame-
ters for constructing models.� Cost constraints: ISB is data-intensive and relies
on data that often go beyond what are collected
by molecular biologists in small scale experiments.
However, data are very costly to obtain.� Collaboration constraints: Constraints on the abil-
ity to communicate effectively with experimental
collaborators with different backgrounds or in dif-
ferent fields in order to obtain expert advice or new
data. Molecular biologists largely do not understand
the nature of simulation modeling, do not under-
stand the data needs of modeling, and do not see the
cost-benefit of producing the particular data systems
biologists ask from them.� Time-scale constraints: Different time scales op-
erate with respect to generating molecular experi-
mental data versus computational model testing and
construction.� Infrastructure constraints: There is little in the way
of standardized databases of experimental informa-
tion or standardized modeling software available for
systems biologists to rely upon.� Knowledge constraints: Modelers’ lack knowledge
of biological systems and experimental methods
limits their understanding of what is biologically
plausible and what reliable extrapolations can be
made from the data sets available.� Cognitive constraints: Constraints on the ability to
process and manipulate models because of their
complexity, and thus constraints on the ability to
comprehend biological systems through modeling.

Working with these constraints requires them to be
adaptive problem-solvers. Given the complexity of the
systems, lack of data, and the ever-present problem of
computational tractability, researchers have to exper-
iment with different mathematical formulations, dif-
ferent parameter-fixing algorithms and approximation
techniques in highly intensive trial and error processes.

They build models in nest-like fashion in which bits of
biological information and data and mathematical and
computational techniques, get combined to create stable
models. These processes transform not only the shape
of the solutions, but also the problems, as researchers
figure out what actual problem can be solved with the
data at hand. Simulation plays a central exploratory role
in the process. This point goes further than Lenhard’s
idea of an explorative cooperation between experimen-
tal simulation and models [5.8]. Simulation in systems
biology is not just for experimenting on systems in or-
der to sound out the consequences of a model [5.8,
p. 181], but plays a fundamental role in incrementally
building the model and learning the relevant known and
sometimes unknown features of a system and gaining
an understanding of its dynamics. Simulation’s roles as
a cognitive resource make the construction of represen-
tations of complex systems without a theoretical basis
possible (see also [5.24, 25]).

Similar conclusions have been drawn by Peck for
ecology which shares with systems biology the com-
plexity in its problems and a lack of generalizable
theory. As Peck [5.18, p. 393] points out:

“there are no formal methodological procedures for
building these types of models suggesting that con-
structing an ecological simulation can legitimately
be described as an art.”

This situation promotes methodological pluralism
and creative methodological exploration by modelers.
Modelers in these contexts thus focus our attention on
the deeper roles (sometimes called heuristic roles [5.5])
that simulation plays in the ability of researchers to
explore potential solutions in order to solve complex
problems.

These roles have added epistemological importance
when it is realized that the downward character of sim-
ulation can be fact reversed in both senses we have
mentioned above. This is a potentially significant dif-
ference between cases of theory and nontheory-driven
simulation. Consider again systems biology. Firstly, the
methodological exploration we witness amongst the
researchers we have studied can be rationalized as pre-
cisely an attempt by the field to establish a good theory
of how to build models of biological systems that work
well given a variety of data situations. Since the com-
plexities of these systems and computational constraints
make this difficult to know at the outset, the field needs
its freedom to explore the possibilities. Lab directors do
encourage exploration, and part of the reason they do is
to try to glean which practices work well and which do
not given a lack of knowledge of what will work well
for a given problem.
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Secondly, systems biology aspires to a theory of bi-
ological systems which will detail general system-level
characteristics of biological systems but also the de-
sign principles underlying biological networks [5.26,
27]. What is interesting about this theory, if it does
emerge, is that it will in fact be theory generated by
simulation rather than the other way around. Simula-
tion makes possible the exploration of quite complex
systems for generalities that can form the basis of
a theory of systems biology. As such the use of sim-
ulations can also be upwards, not just downwards, to
perhaps an unprecedented extent. Upward uses of sim-
ulation requires analysis that appears to fit better with

more traditional philosophical analysis of how theories
are in fact justified, only in this case robust simu-
lation models will possibly be the more significant
source of evidence rather than traditional experiment
and observation. How this affects the nature and re-
liability of our inferences to theory, and what kind
of resemblance such theory might have to theory in
physics, is something that will need investigation. Thus,
further exploration of nontheory-driven modeling prac-
tices stand to provide a rich ground for investigation
of novel practices that are emerging with simula-
tion, but also for exploring the roles and meanings of
theory.

5.3 What is Philosophically Novel About Simulation?

The question of whether or not simulation introduces
new issues into the philosophy of science has emerged
as a substantial debate in discussions of computational
simulation. Winsberg [5.1, 3–5] and Humphreys [5.11,
12] are the major proponents of the view that simulation
requires its own epistemology. Winsberg, for instance,
takes the view that simulations exhibit “distinct epis-
temological characteristics . . . novel to the philosophy
of science” [5.9, p. 443]. Winsberg and Humphreys
make this assertion on the basis of the points we out-
lined in Sec. 5.2; namely, 1) the traditional limited
concern of philosophy of science with the justification
of theory, and 2) the relative autonomy of simula-
tions and simulation-building from the theory. The steps
involved in generating simulations, such as applying
approximation methods designed to generate compu-
tational tractability, are novel to science. These steps
do not gain their legitimacy from a theory but are “au-
tonomously sanctioned” [5.1, p. 837]. Winsberg argues,
for instance, that while idealization and approxima-
tion methods have been discussed in the literature it
has mostly been from a representational perspective in
terms of how idealized and approximate models rep-
resent or resemble the world and in turn justify the
theories on which they are based. But since simulations
are often employed where data are sparse, they cannot
usually be justified by being compared with the world
alone. Simulations must be assessed according to the
reliability of the processes used to construct them, and
these often distinct and novel techniques require sep-
arate philosophical evaluation. Mainstream philosophy
of science with its focus on theoretical justification does
not have the conceptual resources for accounting for
applications using computational methods. Even where
theory is concerned, both Humphreys and Winsberg
maintain that neither of the established semantic and
syntactic conception of theories, conceptions which fo-

cus on justification and representation, can account for
how theories are applied or justified in simulation mod-
eling.

However, Frigg and Reiss [5.28] have countered
that these claims were overblown and in fact simulation
raises no new questions or problems that are specific to
simulation alone. Part of the disagreement might sim-
ply come down to whether one construes philosophy of
science narrowly or broadly by limiting philosophical
questions to in-principle and normative issues, while
avoiding practical methodological ones. Another part of
the disagreement is over how one construes new issues
or new questions for philosophy, since certainly at some
level the basic philosophical questions about how rep-
resentations represent and what makes them reliably do
so, are still the same questions.

To some extent, part of the debate might be con-
strued as a disagreement over the relevance of contexts
of discovery to philosophy of science. Classically con-
texts of discovery, the scientific contexts in which
model-building takes place, are considered irrelevant
to normative philosophical assessments of whether
those models are justified or not. Winsberg [5.3] and
Humphreys [5.12] seem willing to assert that one of
the lessons for philosophy of science from simulation is
that practical constraints on scientific discovery matter
for constructing relevant normative principles – both in
terms of evaluating current practice, which in the case
of simulation-building is driven by all kinds of practical
constraints, and in terms of normatively directing prac-
tice sensitively within those constraints.

Part of the motivation for using the discov-
ery/justification distinction to define philosophical in-
terest and relevance is the belief that there is a clear
distinction between the two contexts. Arguably Frigg
and Reiss are reinforcing the idea of a clear dis-
tinction by relying on widespread presupposition that
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validation and verification are distinct independent pro-
cesses [5.4]. Validation is the process of establishing
that a simulation is a good representation, a quintessen-
tial concept of justification. Verification is the process
of ensuring that a computational simulation adequately
captures the equations fromwhich it is constructed. Ver-
ification, according to Frigg and Reiss, represents the
only novel aspects of modeling that simulation intro-
duces. Yet it is a purely mathematical exercise that is of
no relevance to questions of validation. As such, sim-
ulations involve no new issues of justification beyond
those of ordinary models. Winsberg [5.3, 4], however,
counters that there is, in practice, no clear division
between processes of verification and validation. The
equations chosen to represent a system are not simply
selected on the basis of how valid they are, but also
on the basis of decisions about computational tractabil-
ity. Much of what validates a representation in practice
occurs at the end stage, after all the necessary tech-
niques of numerical approximation and discretization
have been applied, by comparing the results of simula-
tions with the data. As such, [5.5]:

“If we want to understand why simulation results
are taken to be credible, we have to look at the epis-
temology of simulation as an integrated whole, not
as clearly divided into verification and validation –
each of which would look inadequate to the task.”

Hence what would otherwise seem to be distinct
discovery and justification processes are in the context
computational simulation interwoven.

Frigg and Reiss are right at some level that simu-
lations do not change basic epistemological questions
connected to the justification of models. They are also
right that Winsberg in his downward, motley and au-
tonomous description of simulation, does not reveal any
fundamentally new observations on model-building that
have not already been identified as issues by philoso-
phers discussing traditional modeling. However, what
appears to be really new in the case of simulation
is: 1) the complexity of the philosophical problems
of representation and reliability, and 2) the different
methodological and epistemological strategies that have
become available to modelers as a result of simulation.

Winsberg, in reply to Frigg and Reiss, has clarified
what he thinks as novel about theory-based simulation
as the simultaneous confluence of downward, motley
and autonomous features of model-building [5.4]. It is
the reliability and validity of the complexmodeling pro-
cesses instantiated by these three features that must be
accounted for by an epistemology of simulation, and
no current philosophical approaches are adequate to do
so, particularly not those within traditional philosophi-
cal boundaries of analysis.

As a first step in helping with this task of assess-
ing reliability and validity of simulation, philosophers
such as Winsberg [5.29] have drawn lessons from com-
parison with experimentation, which they argue shares
much with simulation in both function (enabling, for in-
stance, in silico experiments) and also in terms of how
the reliability of simulations is generated. Scientific re-
searchers try to control for error in their simulations,
and fix parameters, in ways that seem analogous to how
experimenters calibrate their devices. Simulations build
up credibility over long time scales and may have lives
of their own independent of developments in other parts
of science. These observations suggest a potentially rich
analogy between simulations and Hacking’s account of
experimentation [5.29]. In a normative step, based on
these links, Parker [5.10] has suggested that in fact
Mayo’s [5.30] rigorous error-statistical approach for ex-
perimentation should be an appropriate starting point
for more thorough evaluation of the results of simula-
tions. Simulations need to be evaluated by the degree to
which they avoid false positives when it comes to test-
ing hypotheses by successfully controlling for potential
sources of error that creep in during the simulation
process. At the same time a rather vigorous debate
has emerged concerning the clarification of the precise
epistemological dissimilarities or disanalogies between
simulation and traditional experimentation (see for in-
stance [5.31–36]). This question is in itself of inde-
pendent philosophical interest for assessing the benefits
and value of each as alternatives, but should also help
define the limits of the relevance of experimentation
as a model for understanding and assessing simulation
practices.

From our perspective, however, the new method-
ological and epistemological strategies that modelers
are introducing in order to construct and guarantee the
reliability of simulation models could prove to be the
most interesting and novel aspect of simulation with
which philosophers will have to grapple. Indeed, while
much attention has focused on the contrasts and similar-
ities between simulations, experiments and simulation
experiments, no one has called attention to the fact
that real-world experiments and simulations are also
being used in concert to enhance the ability of re-
searchers to handle uncertain complex systems. One
of the labs we have studied conducts bimodal model-
ing, where the modelers conduct their own experiments
in the service of building their models. We have an-
alyzed the case of one modeler’s behavior in which
model-building, simulation and experimentation were
tightly interwoven [5.37]. She used a conjunction of
experiment and simulation to triangulate on errors and
uncertainties in her model, thus demonstrating that the
two can be combined in practice in sophisticated ways.
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Her model-building would not have been possible with-
out the affordances of both simulation and her ability
to perform experimentation precisely adapted to test
questions about the model as she was in the process of
formulating it. Simulation and experiment closely cou-
pled in this fashion offers the possibility of extending
the capacity to produce reliable models of complex phe-
nomena.

Bimodal modeling is relatively easy to character-
ize epistemologically since experimentation is used to
validate and check the simulations as the model is
being constructed. Simulations are not relied on inde-
pendent of experimental verification. Often, however,
experimental or any kind of observational data are
hard to come by for practical or theoretical reasons.
More philosophically challenging will be to evaluate
the new epistemological strategies researchers are in
fact developing for drawing inferences in these often
deeply uncertain and complex contexts with the aid
of computation. Parker [5.38, 39], for instance, iden-
tifies the practice in climate science and meteorology
of ensemble modeling. No theory of model-building
exists that tells climate and weather modelers how to
go from physical theory to reliable models. Different
formulations using different initial conditions, models
structures and different parameterizations of those mod-
els that fit the observational data can be developed from
the physical theory. In this situation modelers average
over results from large collections of models, using dif-
ferent weighting schemas, and argue for the validity of
these results on the basis that these models collectively
represent the possibility space. However, considerable
philosophical questions emerge as to the underlying
justifiability of these ensemble practices and the proba-
bility weightings being relied upon. Background theory
can provide little guidance in this context and in the
case of climate modeling there is little chance for pre-
dictively testing performance. Further, the robustness of
particular ensemble choices is often very low and justi-
fications for picking out particular ensembles are rarely
carefully formulated.

The ability to generate and compare large num-
bers of complex models in this way is a development
of modern computational power. In our studies we
have also come across novel argumentation, particu-
larly connected with parameter-fixing [5.40]. Because
the parameter spaces these modelers have to deal with
are so complex, there is almost no chance of getting
a best fit solution. Instead modelers produce multiple
models often using Monte Carlo techniques that con-
verge on similar behavior and output. These models
have different parameterizations and ultimately repre-
sent the underlying mechanisms of the systems differ-
ently. However, modelers can nonethelessmake specific

arguments about network structure and dynamic rela-
tionships among specific variables. There is not usually
any well-established theory that licenses these argu-
ments. The fact that the models converge on the same
relevant results is motivation for inferring that these
models are right at least about those aspects of the
system for which they are designed to account. Unfor-
tunately, because access to real-world experimentation
is quite difficult, it is hard to judge how reliable this
technique is in producing robust models. What is novel
about this kind of strategy is that it implicitly treats
parameter-fixing as an opportunity, not just a problem,
for modelers. If instead of trying to capture the dy-
namics of whole systems modelers just fix their goals
on capturing robust properties and relations of a sys-
tem, the potential of finding results that work within
these constraints in large parameter-spaces increases,
and from the multiple models obtained modelers can
pare down to those that converge. The more complex
problem thus seems to allow a pathway for solving
a simpler one. Nonetheless, whether we should accept
these kinds of strategies as reliable and the models pro-
duced as robust remains the fundamental question, and
an overarching question for the field itself. It is a rea-
sonable reaction to suspect that something important is
being given up in the process, which will affect how
well scientists can assess the reliability and importance
of the models they produce. Whether the power com-
putational processes can adequately compensate for the
potential distortions or errors introduced is one of the
most critical and novel epistemological questions for
philosophy today.

The kinds of epistemological innovations we have
been considering raise deeper questions about the pur-
poses of simulation, particularly in terms of traditional
epistemic categories like understanding, explanation
and so on. Of course at one extreme some simulations of
the purely data-driven kind is purely phenomenological.
Theory plays no role in its generation, and is not sought
as its outcome. However in other cases some form of
understanding at least is sought. In many cases though,
where theory might be thought the essential agent of
understanding, the complexity of the equations and re-
sulting complexity of the computational processes that
instantiate them, simply block any way of decomposing
the theory or theoretical model in order to understand
how the theory might explain a phenomena and thus
assess the accuracy and plausibility of the underlying
mechanisms it might prescribe. Humphreys labels this
epistemic opacity [5.11]. Lenhard [5.41] in turn identi-
fies a form of pragmatic understanding that can replace
theoretical understanding when a simulation model is
epistemically opaque. This form of understanding is
pragmatic in the sense of being an understanding of how
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to control and manipulate phenomena, rather explain
them using background theoretical principles and laws.
Settling for this form of understanding is a choice made
by researchers in order to handle more complex prob-
lems and systems using simulations. But it is a novel
one in the context of physics and chemistry. In sys-
tems biology we recognize something similar [5.40].
Researchers give up accurate mechanistic understand-
ing of their systems for more pragmatic goals of gaining
network control, at least over specific variables. To do
so they use simplification and parameter-fitting tech-
niques that obscure the extent to which their models
capture the underlying mechanisms. Mechanistic ex-

planation is thus given up, for some weaker form of
understanding.

Finally, computational modeling and simulation in
the situations we have been considering in this section
are driving a profound shift in the nature and level of hu-
man cognitive engagement in scientific production pro-
cesses and their outputs [5.12, 24, 25, 42, 43]. So much
of philosophy of science has been based on intuitive
notions of human cognitive abilities. Our concepts of
explanation and understanding are constructed implic-
itly on the basis of what we can grasp as humans. With
simulation and big-data science those kinds of charac-
terizations may no longer be accurate or relevant [5.44].

5.4 Computational Simulation and Human Cognition

It is on this last point that we turn to consider the ways
in which human cognitive processes are implicated in
processes of simulation model-building. Computational
science, of the nonbig data or nonmachine learning kind
which we have focused on here, is as Humphrey’s calls
it, a “hybrid scenario” as opposed to an “automated sce-
nario” [5.12, p. 616]. In his words:

“This distinction is important because in the hy-
brid scenario, one cannot completely abstract from
human cognitive abilities when dealing with rep-
resentational and computational issues. . . . We are
now faced with a problem, which we can call the an-
thropocentric predicament, of how we, as humans,
can understand and evaluate computationally-based
scientific methods that transcend our own abilities.”

Unlike machine-learning contexts, computational
modeling is in many cases a practice of using compu-
tation to extend traditional modeling practices and our
own capabilities to draw insight out of low-data con-
texts and complex systems for which theory provides at
best a limited guide. In this way cognitive capacities are
often heavily involved. The hybrid nature of computa-
tional science thus motivates the need for understanding
how human agents cognitively engage with and con-
trol opaque computational processes, and in turn draw
information out of them. Evaluating these processes –
their productiveness and reliability – requires in the first
step having some understanding of them. As we will
see, although computational calculation processes are
beyond our abilities, at least in the case of systems bi-
ology the use of computation by modelers is often far
more integrated with their own cognitive processes and
understanding, and thus far more under their control,
than we might think.

As we have seen there are several lines of philo-
sophical research on computational simulation that un-

derscore it is through the processes of model-building –
taken to comprise the incremental and interwoven pro-
cesses of constructing the model and investigating
its dynamics through simulation – that the modeler
comes to develop at least a pragmatic understanding of
the phenomena under investigation. Complex systems,
such as investigated in systems biology, present per-
haps the extreme case in which these practices are the
primary means through which modelers, mostly nonbi-
ologists, develop understanding of the systems. In our
investigations, modelers called the building and run-
ning of their models under various conditions getting
a feel for the model, which enables them to get a feel
for the dynamics of the system.

In our investigations we have witnessed that model-
ers (mainly engineers) with little understanding of biol-
ogy have been able to provide novel insights and highly
significant predictions, later confirmed by biological
collaborators, for the systems they are investigating
through simulation. How is it possible that engineers
with little to no biological training can be making sig-
nificant biological discoveries? A related question con-
cerns how complete novices are making scientific dis-
coveries through simulations crowdsourced by means
of video games such as Foldit and EteRNA, which
appear to enable nonscientists to quickly build accu-
rate/veridical structures representing molecular entities
they had no prior knowledge of [5.45, 46]. Nersessian
and Chadrasekharan, individually and together [5.24,
25, 42, 47–49], have argued that the answer to this ques-
tion lies in understanding how computational simula-
tion enhances human cognition in discovery processes.
Because of the visual and manipulative nature of the
crowdsourcing cases, the answer points in the direction
of the coupling of the human sensorimotor systemswith
simulation models. These crowdsourcing models re-
represent conceptual knowledge developed by the sci-
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entific community (e.g., structure of proteins) as com-
putational representations with a control interface that
can be manipulated through the gamer’s actions. The
interface enables these novices to build new representa-
tions drawing on tacit/implicit sensorimotor processes.
Although the use of crowdsourcing simulations in sci-
entific problem solving is new, the human sensorimotor
system has been used explicitly to detect patterns,
especially in dynamic data generated by computational
models, since the dawn of computational modeling.
Entire disciplines and methods have been built using
visualized patterns on computer screens. Complexity
theory [5.50, 51], artificial life [5.52, 53] and compu-
tational chemistry [5.54, 55] provide a few exemplars
where significant discoveries have been made.

Turning back now to the computational simula-
tions used by scientists that we have been discussing,
all of the above suggests that the model-building pro-
cesses facilitate a close coupling between the model and
the researcher’s mental modeling processes even in the
absence of a dynamic visualization. The building pro-
cess manipulates procedural and declarative knowledge
in the imagination and in the representation, creating
a coupled cognitive system of model and modeler [5.25,
42, 43, 48, 56, 57]. This coupling can lead to explicit
understanding of the dynamics of the system under
investigation. The notion of a coupled cognitive sys-
tem is best understood in terms of the framework of
distributed cognition [5.58, 59], which was developed
to study cognitive processes in complex task environ-
ments, particularly where external representations and
other cognitive artifacts and, possibly, groups of peo-
ple, accomplish the task. The primary unit of analysis is
the socio-technical system that generates, manipulates
and propagates representations (internal and external to
people). Research leading to the formation of the dis-
tributed cognition framework has focused largely on
the use of existing representational artifacts and less
so on the building/creation of the artifacts. The central
metaphor is that of the human offloading complex cog-
nitive processes such as memory to the artifact, which,
for example, in the canonical exemplar of the speed bug
that marks critical airspeeds for a particular flight, re-
places complex cognitive operations with a perceptual
operation and provides a publically available represen-
tation that is shared between pilot and co-pilot.

In the research cited above, we have been arguing
that offloading is not the right metaphor for under-
standing the cognitive enhancements provided through
the building of novel computational representations.
Rather, the metaphor should be that of coupling be-
tween internal and external representations. Delving
into the modifications needed of the distributed cogni-
tion framework to accommodate the notion of a coupled

cognitive system would take use too far afield in this
review (but see [5.25]). Instead, we will flesh out the no-
tion a bit by noting some of the ways in which building
and using simulation models enhance human cognitive
capabilities and, in particular, extend the capability of
the imagination system for simulative model-based rea-
soning.

A central, but yet not well-researched premise
of distributed cognition is, as Hutchins has stated
succinctly, that “humans create cognitive powers by
creating the environments in which they exercise
those powers” [5.58, p. 169]. Since building modeling-
environments for problem solving is a major component
of scientific research [5.49], scientific practices provide
an especially good locus for examining the human
capability to extend and create cognitive powers. In the
case of simulation model-building, the key question
is: What are the cognitive changes involved in building
a simulation model and how do these lead to discover-
ies? The key cognitive change is that over the course of
many iterations of model-construction and simulation,
the model gradually becomes coupled with the mod-
eler’s imagination system (mental model simulation),
which enables the modeler to explore different scenar-
ios. The coupling allows what if questions in the mind
of the modeler to be turned into detailed explorations
of the system, which would not be possible in the mind
alone. The computational model enables this explo-
ration because as it is incrementally built using many
data sets, the model’s behavior, in the systems biology
case, for instance, comes to parallel the dynamics of the
pathway. Each replication of experimental results adds
complexity to the model and the process continues until
the model is judged to fit all available data well. This
judgment is complex, as it is based on a large number
of iterations where a range of factors such as sensitivity,
stability, consistency, computational complexity and so
forth are explored. As the model gains complexity it
starts to reveal or expose many details of the system’s
behavior enabling the modeler to interrogate the model
in ways that are not possible in the mind alone (thought
experimenting) or in real-world experiments. It makes
evident many details of the system’s behavior that the
modeler could not have imagined alone because of the
fine grain and complexity of the details.

The parallel between computation simulation ex-
perimenting and thought experimenting is one philoso-
phers have commented on, but the current framing
of the discussion primarily centers on the issue of
interpreting simulations and whether computational
simulations should be construed as opaque thought
experiments [5.60, 61]. Di Paolo et al. [5.60] have ar-
gued that computational models are more opaque than
thought experiments, and as such, require more system-
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atic enquiry through probing of the model’s behavior. In
a similar vein, Lenhard [5.61] has claimed that thought
experiments are more lucid than computational mod-
els, though it is left unclear what is meant by lucid
in this context, particularly given the extensive discus-
sions aroundwhat specific thought experiments actually
demonstrate. In the context of the discussion of the
relation of thought experimenting and computational
simulation, we have argued that the discussion should
be shifted from issues of interpretation to a process-
oriented analysis of modeling [5.47]. Nersessian [5.62]
casts thought experimenting as a form of simulative
model-based reasoning, the cognitive basis of which is
the human capacity for mental modeling. Thought ex-
periments (conceptual models), physical models [5.63]
and computational models [5.47, 48] form a spectrum
of simulative model-based reasoning in that all these
types of modeling generate and test counterfactual
situations that are difficult (if not impossible) to imple-
ment in the real world. Both thought experiments and
computational models support simulation of counter-
factual situations, however, while thought experiments
are built using concrete elements, computational mod-
els are built using variables. Simulating counterfactual
scenarios beyond the specific one constructed in the
thought experiment is difficult and requires complex
cognitive transformations to move away from the con-
crete case to the abstract, generic case. On the other
hand, computational simulation constructs the abstract,
generic case from the outset. Since computational mod-
els are made entirely of variables, they naturally support
thinking about parameter spaces, possible variations
to the design seen in nature, and why this variation
occurs rather than the many others that are possi-
ble.

Thought experiments are a product of a resource
environment in science where the only tools available
were writing implements, paper (blackboards, etc.) and
the brain. Computational models create cognitive en-
hancements that go well beyond those resources and
enable scientists to study the complex, dynamic and
nonlinear behaviors of the phenomena that are the fo-
cus of contemporary science.

Returning to the nature of the cognitive enhance-
ments created, the coupling of the computational model
with the modeler’s imagination system significantly en-
hances the researcher’s natural capacity for simulative
model-based reasoning, particularly in the following
ways:

� It allows running many more simulations, with
many variables at gradients not perceivable or ma-
nipulable by the mind, which can be compared and
contrasted.

� It allows testing what-if scenarios with changes
among many variables that would be impossible to
do in the mind.� It allows stopping the simulation at various points
and checking and tracking its states. If some de-
sirable effect is seen, variables can be tweaked in
process to get that effect consistently.� It allows taking the system apart as modules, sim-
ulating them, and putting them together in different
combinations.� It allows changing the time in which intermediate
processes kick in.

These complex manipulations expose the modeler
to system-level behaviors that are not possible to exam-
ine in either thought alone or in real-world experimenta-
tion. The processes involved in building the distributed
model-based reasoning system comprising simulation
model and modeler enhance several cognitive abilities.
Here we will conclude by considering three (for a fuller
discussion see [5.25]). First, the model-building pro-
cess brings together a range of experimental data. Given
Internet search engines and online data bases, current
models synthesize more data than even before and cre-
ate a synthesis that exists nowhere in the literature and
would not be possible for modelers or biologists to
produce on their own. In effect, the model becomes
a running literature review. Thus, modeling enhances
the synthesizing and integrating capabilities of the mod-
eler, which is an important part of the answer as to how
a modeler with scant biological knowledge can make
important discoveries. Second, an important cognitive
effect of the model-building is to enhance the mod-
eler’s powers of abstraction. Most significantly, through
the gradual process of thousands of runs of simulations
and analyses of system dynamics for these, the modeler
gains an external, global view of the system as a whole.
Such a global view would not be possible to develop
just from mental simulation, especially since the inter-
actions among elements are complex and difficult to
keep track of separately. The system view, together with
the detailed understanding of the dynamics, provides
the modeler with an intuitive sense (a feeling for the
model) of the biological mechanisms that enables her
to extend the pathway structure in a constrained fash-
ion to accommodate experimental data that could not
be accounted for by the current pathway from which
the model started. Additionally, this intuitive sense of
the mechanism built from interaction with the model
helps to explain the success of the crowdsourcing mod-
els noted above (see also [5.64]).

Finally, the model enhances the cognitive capac-
ity for counterfactual or possible-worlds thinking. As
noted in our discussion of thought experimenting, the
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model-building process begins by capturing the re-
actions/interactions using variables. Variables provide
a place-holder representation, which when interpreted
with combinations of numbers for these variables, can
generate model data that parallels the known experi-
mental data. One interesting feature of the place-holder
representation is that it provides the modeler with a flex-
ible way of thinking about the reactions, as opposed to
the experimentalist who works with only one set of val-
ues. Once the model is using the experimental values,
the variables can take any set of values, as long as they
generate a fit with the experimental data. The modeler
is able to think of the real-world values as only one
possible scenario, to examine why this scenario is com-
monly seen in nature, and envision other scenarios that
fit. Thinking in variables supports both the objective
modelers often have of altering or redesigning a reac-
tion (such as the thickness of lignin in plant wall for
biofuels) and the objective of developing generic design
patterns and principles. More broadly, the variable rep-
resentation significantly expands the imagination space
of the modeler, enabling counterfactual explorations of
possible worlds that far outstrip the potential of thought
experimenting alone.

A more microscopic focus like this one on the actual
processes by which computational simulation is cou-
pled with the cognitive processes of the modeler begins
to help break down some of the mystery and seeming
inscrutability surrounding computation conveyed by the

idea that computational processes are offloaded auto-
mated processes from which inferences are derived.
The implications of this research into hybrid nature of
simulation modeling are that modelers might often have
more control over and insight into their models and
their alignment with the phenomena than philosophers
have realized. Given the emphasis placed in published
scientific literature on fitting the data and predictive
success for validating simulations, we might be missing
out on the important role that these processes internal
to the model-building or discovery context appear to
be playing (from a microanalysis of practice) in sup-
port of the models constructed. Indeed, the ability of
computational modeling to support highly exploratory
investigative processes makes it particularly relevant for
philosophers to have fine-grained knowledge of model-
building processes in order to begin to understand why
models work as well as they do and how reliable they
can be considered to be.

Acknowledgments. We gratefully acknowledge the
support of the US National Science Foundation grant
DRL097394084. Our analysis has benefited from col-
laboration with members of the Cognition and Learning
in Interdisciplinary Cultures (CLIC) Research Group
at the Georgia Institute of Technology, especially with
Sanjay Chandrasekharan. Miles MacLeod’s participa-
tion was also supported by a postdoctoral fellowship at
the TINT Center, University of Helsinki.

References

5.1 E. Winsberg: Sanctioning models: The epistemology
of simulation, Sci. Context 12(2), 275–292 (1999)

5.2 E. Winsberg: Models of success vs. the success of
models: Reliability without truth, Synthese 152, 1–19
(2006)

5.3 E. Winsberg: Computer simulation and the philoso-
phy of science, Philos. Compass 4/5, 835–845 (2009)

5.4 E. Winsberg: Science in the Age of Computer Simula-
tion (Univ. of Chicago Press, Chicago 2010)

5.5 E. Winserg: Computer simulations in science. In:
The Stanford Encyclopedia of Philosophy, ed. by
E.N. Zalta (Stanford Univ., Stanford 2014), http://
plato.stanford.edu/cgi-bin/encyclopedia/archinfo.
cgi?entry=simulations-science

5.6 N. Cartwright: The Dappled World: A Study of the
Boundaries of Science (Cambridge Univ. Press, Cam-
bridge 1999)

5.7 M.S. Morgan, M. Morrison: Models as mediating in-
struments. In: Models as Mediators: Perspectives on
Natural and Social Science, ed. by M.S. Morgan,
M. Morrison (Cambridge Univ. Press, Cambridge 1999)

5.8 J. Lenhard: Computer simulation: The cooperation
between experimenting and modeling, Philos. Sci.
74(2), 176–194 (2007)

5.9 E. Winsberg: Simulations, models, and theories:
Complex physical systems and their representations,
Philos. Sci. 68(3), 442–454 (2001)

5.10 W. Parker: Computer simulation through an error-
statistical lens, Synthese 163(3), 371–384 (2008)

5.11 P. Humphreys: Extending Ourselves: Computational
Science, Empiricism, and Scientific Method (Oxford
Univ. Press, New York 2004)

5.12 P. Humphreys: The philosophical novelty of com-
puter simulation methods, Synthese 169, 615–626
(2009)

5.13 W. Parker: Computer simulation. In: The Routledge
Companion to Philosophy of Science, ed. by S. Psillos,
M. Curd (Routledge, London 2013) pp. 135–145

5.14 E. Fox Keller: Models, simulation, and computer
experiments. In: The Philosophy of Scientific Exper-
imentation, ed. by H. Radder (Univ. of Pittsburgh
Press, Pittsburgh 2003) pp. 198–215

5.15 S. Peck: Agent-basedmodels as fictive instantiations
of ecological processes, Philos. Theory Biol. 4, 1–12
(2012)

5.16 T. Grüne-Yanoff, P. Weirich: Philosophy of simula-
tion, simulation and gaming, Interdiscip. J. 41(1),
1–31 (2010)

http://plato.stanford.edu/cgi-bin/encyclopedia/archinfo.cgi?entry=simulations-science
http://plato.stanford.edu/cgi-bin/encyclopedia/archinfo.cgi?entry=simulations-science
http://plato.stanford.edu/cgi-bin/encyclopedia/archinfo.cgi?entry=simulations-science


Models and Simulations References 131
Part

A
|5

5.17 M.A. Bedau: Weak emergence and computer simula-
tion. In: Models, Simulations, and Representations,
ed. by P. Humphreys, C. Imbert (Routledge, New York
2011) pp. 91–114

5.18 S. Peck: The Hermeneutics of ecological simulation,
Biol. Philos. 23(3), 383–402 (2008)

5.19 R. Frigg: Models and fiction, Synthese 172(2), 251–268
(2010)

5.20 T. Grüne-Yanoff: The explanatory potential of artifi-
cial societies, Synthese 169(3), 539–555 (2009)

5.21 M. MacLeod, N.J. Nersessian: Building simulations
from the ground-up: Modeling and theory in sys-
tems biology, Philos. Sci. 80(4), 533–556 (2013)

5.22 E.O. Voit: Computational Analysis of Biochemical
Systems: A Practical Guide for Biochemists and
Molecular Biologists (Cambridge Univ. Press, Cam-
bridge 2000)

5.23 M. MacLeod, N.J. Nersessian: The creative industry of
systems biology, Mind Soc. 12, 35–48 (2013)

5.24 S. Chandrasekharan, N.J. Nersessian: Building cog-
nition: The construction of external representa-
tions for discovery, Cogn. Sci. 39(8), 1727–1763 (2015),
doi:10.1111/cogs.12203

5.25 S. Chandrasekharan, N.J. Nersessian: Building cog-
nition: The construction of computational repre-
sentations for scientific discovery, Cogn. Sci. 39(8),
1727–1763 (2015)

5.26 H. Kitano: Looking beyond the details: A rise in sys-
tem-oriented approaches in genetics and molecular
biology, Curr. Genet. 41(1), 1–10 (2002)

5.27 H.V. Westerhoff, D.B. Kell: The methodologies of
systems biology. In: Systems Biology: Philosophical
Foundations, ed. by F.C. Boogerd, F.J. Bruggeman,
J.S. Hofmeyr, H.V. Westerhoff (Elsevier, Amsterdam
2007) pp. 23–70

5.28 R. Frigg, J. Reiss: The philosophy of simulation: Hot
new issues or same old stew, Synthese 169, 593–613
(2009)

5.29 E. Winsberg: Simulated experiments: Methodology
for a virtual world, Philos. Sci. 70(1), 105–125 (2003)

5.30 D.G. Mayo: Error and the Growth of Experimental
Knowledge (Univ. of Chicago Press, Chicago 1996)

5.31 N. Gilbert, K. Troitzsch: Simulation for the Social Sci-
entist (Open Univ. Press, Philadelphia 1999)

5.32 F. Guala: Models, simulations, and experiments. In:
Model-based reasoning: Science, technology, val-
ues, ed. by L. Magani, N.J. Nersessian (Kluwer Aca-
demic/Plenum Publishers, New York 2002) pp. 59–74

5.33 F. Guala: Paradigmatic experiments: The ultimatum
game from testing to measurement device, Philos.
Sci. 75, 658–669 (2008)

5.34 M. Morgan: Experiments without material interven-
tion: Model experiments, virtual experiments and
virtually experiments. In: The Philosophy of Scien-
tific Experimentation, ed. by H. Radder (University
of Pittsburgh Press, Pittsburgh 2003) pp. 216–235

5.35 W. Parker: Does matter really matter? Computer
simulations, experiments and materiality, Synthese
169(3), 483–496 (2009)

5.36 E. Winsberg: A tale of two methods, Synthese 169(3),
575–592 (2009)

5.37 M. MacLeod, N.J. Nersessian: Coupling simulation
and experiment: The bimodal strategy in integra-
tive systems biology, Stud. Hist. Philos. Sci. Part C 44,
572–584 (2013)

5.38 W.S. Parker: Predicting weather and climate: Uncer-
tainty, ensembles and probability, Stud. Hist. Philos.
Sci. Part B 41(3), 263–272 (2010)

5.39 W.S. Parker: Whose probabilities? Predicting climate
change with ensembles of models, Philos. Sci. 77(5),
985–997 (2010)

5.40 M. MacLeod, N.J. Nersessian: Modeling systems-level
dynamics: Understanding without mechanistic ex-
planation in integrative systems biology, Stud. Hist.
Philos. Sci. Part C 49(1), 1–11 (2015)

5.41 J. Lenhard: Surprised by a nanowire: Simulation,
control, and understanding, Philos. Sci. 73(5), 605–
616 (2006)

5.42 N.J. Nersessian: Creating Scientific Concepts (MIT
Press, Cambridge 2008)

5.43 N.J. Nersessian: How do engineering scientists
think? Model-based simulation in biomedical en-
gineering research laboratories, Top. Cogn. Sci. 1,
730–757 (2009)

5.44 W. Callebaut: Scientific perspectivism: A philosopher
of science’s response to the challenge of big data
biology, Stud. Hist. Philos. Sci. Part C 43(1), 69–80
(2012)

5.45 J. Bohannon: Gamers unravel the secret life of
protein, Wired 17 (2009), http://www.wired.com/
medtech/genetics/magazine/17-05/ff_protein, Last
accessed 06-06-2016

5.46 F. Khatib, F. DiMaio, Foldit Contenders Group, Foldit
Void Crushers Group, S. Cooper, M. Kazmierczyk,
M. Gilski, S. Krzywda, H. Zabranska, I. Pichova,
J. Thompson, Z. Popovic, M. Jaskolski, D. Baker:
Crystal structure of a monomeric retroviral protease
solved by protein folding game players, Nat. Struct.
Mol. Biol. 18(10), 1175–1177 (2011)

5.47 S. Chandrasekharan, N.J. Nersessian, V. Subrama-
nian: Computational modeling: Is this the end of
thought experiments in science? In: Thought Exper-
iments in Philosophy, Science and the Arts, ed. by
J. Brown, M. Frappier, L. Meynell (Routledge, London
2013) pp. 239–260

5.48 S. Chandrasekharan: Building to discover: A common
coding model, Cogn. Sci. 33(6), 1059–1086 (2009)

5.49 N.J. Nersessian: Engineering concepts: The interplay
between concept formation and modeling practices
in bioengineering sciences, Mind Cult. Activ. 19, 222–
239 (2012)

5.50 C.G. Langton: Self-reproduction in cellular au-
tomata, Physica D 10, 135–144 (1984)

5.51 C.G. Langton: Computation at the edge of chaos:
Phase transitions and emergent computation, Phys-
ica D 42, 12–37 (1990)

5.52 C. Reynolds: Flocks, herds, and schools: A distributed
behavioral model, Comp. Graph. 21(4), 25–34 (1987)

5.53 K. Sims: Evolving 3D morphology and behavior by
competition, Artif. Life 1(4), 353–372 (1994)

5.54 W. Banzhaf: Self-organization in a system of binary
strings. In: Artificial Life IV, ed. by R. Brooks, P. Maes
(MIT Press, Cambridge MA 2011) pp. 109–119

https://dx.doi.org/10.1111/cogs.12203
http://www.wired.com/medtech/genetics/magazine/17-05/ff_protein
http://www.wired.com/medtech/genetics/magazine/17-05/ff_protein


Part
A
|5

132 Part A Theoretical Issues in Models

5.55 L. Edwards, Y. Peng, J. Reggia: Computational mod-
els for the formation of protocell structure, Artif. Life
4(1), 61–77 (1998)

5.56 N.J. Nersessian, E. Kurz-Milcke, W.C. Newstetter,
J. Davies: Research laboratories as evolving dis-
tributed cognitive systems, Proc. 25th Annu. Conf.
Cogn. Sci. Soc. (2003) pp. 857–862

5.57 L. Osbeck, N.J. Nersessian: The distribution of repre-
sentation, J. Theor. Soc. Behav. 36, 141–160 (2006)

5.58 E. Hutchins: Cognition in the Wild (MIT Press, Cam-
bridge 1995)

5.59 E. Hutchins: How a cockpit remembers its speeds,
Cogn. Sci. 19(3), 265–288 (1995)

5.60 E.A. Di Paolo, J. Noble, S. Bullock: Simulation mod-
els as opaque thought experiments. In: Artificial Life
VII, ed. by M.A. Bedau, J.S. McCaskill, N.H. Packard,
S. Rasmussen (MIT Press, Cambridge 2000) pp. 497–
506

5.61 J. Lenhard: When experiments start. Simulation
experiments within simulation experiments, Int.
Workshop Thought Exp. Comput. Simul. (2010)

5.62 N.J. Nersessian: In the theoretician’s laboratory:
Thought experimenting as mental modeling, Proc.
Philos. Assoc. Am., Vol. 2 (1992) pp. 291–301

5.63 N.J. Nersessian, C. Patton: Model-based reasoning in
interdisciplinary engineering. In: Handbook of the
Philosophy of Technology and Engineering Sciences,
ed. by A. Meijers (Elsevier, Amsterdam 2009) pp. 687–
718

5.64 S. Chandrasekharan: Becoming knowledge: Cogni-
tive and neural mechanisms that support scien-
tific intuition. In: Rational Intuition: Philosophical
Roots, Scientific Investigations, ed. by L.M. Osbeck,
B.S. Held (Cambridge University Press, Cambridge
2014) pp. 307–337



133

TheoreticPart B
Part B Theoretical and Cognitive Issues
on Abduction and Scientific Inference

Ed. by Woosuk Park

6 Reorienting the Logic of Abduction
John Woods, Vancouver, Canada

7 Patterns of Abductive Inference
Gerhard Schurz, Dusseldorf, Germany

8 Forms of Abduction
and an Inferential Taxonomy
Gerhard Minnameier, Frankfurt am Main,
Germany

9 Magnani’s Manipulative Abduction
Woosuk Park, Daejeon, Korea



134

In the last century, abduction was extensively studied in
logic, semiotics, the philosophy of science, computer
science, artificial intelligence, and cognitive science.
The surge of interest in abduction derived largely from
serious reflection on the neglect of the logic of dis-
covery at the hands of logical positivists and Popper,
especially their distinction between the context of dis-
covery and the context of justification. At the same
time, the desire to recover the rationality of science
that has been seriously challenged by the publication
of Kuhn’s The Structure of Scientific Revolutionsmight
be another important factor. However, the consensus is
that researchers have failed to secure the core meaning
of abduction, let alone to cover the full range of its ap-
plications. The controversial status of abduction can be
immediately understood if we consider our inability to
answer the following questions satisfactorily:

� What are the differences between abduction and in-
duction?� What are the differences between abduction and the
well-known hypothetico-deductive method?� What does Peirce mean when he says that abduction
is a kind of inference?� Does abduction involve only the generation of hy-
potheses or their evaluation as well?� Are the criteria for the best explanation in abductive
reasoning epistemic or pragmatic, or both?� How many kinds of abduction are there?

Fortunately, the situation has improved much in
the last two decades. To say the least, some ambi-
tious attempts to attain a unified overview of abduction
have been made, e.g., in Gabbay and Woods (2005),
Magnani (2001), and Aliseda (2006). Each of these at-
tempts emphasizes its own strengths and achievements.
For example, Aliseda’s book represents some logical
and computational approaches to abduction quite well.
Gabbay and Woods, by introducing the distinction be-
tween explanatory/non-explanatory abductions, adopt
a broadly logical approach comprehending practical
reasoning of real-life logical agents. By introducing his
multiple distinctions between different kinds of abduc-
tion, i. e., selective/creative, theoretical/manipulative,
and sentential/model-based,Magnani (2001, 2009) de-
velops an eco-cognitive view of abduction, according
to which instances of abduction are found not only in
science and any other human enterprises, but also in an-
imals, bacteria, and brain cells. Part B of this Handbook
presents an overview of the most recent research on the
foundational and cognitive issues on abduction inspired
by all this.

In Chap. 6 JohnWoods provides us with the broader
context in which the significance of abductive reasoning
can be appreciated. He asks whether abduction’s epis-
temic peculiarities can be readily accommodated in phi-
losophy’s mainline theories of knowledge, and whether
abduction provides any reason to question the assump-
tion that the goodness of drawing a conclusion from
premises depends on an underlying relation of logical
consequence. His answer to these questions amounts
to a timely response to Hintikka’s announcement of
abduction as the central problem in contemporary epis-
temology, as well as the signal of naturalistic turn in
logic.

Gerhard Schurz’s Chap. 7 presents a thorough clas-
sification of different patterns of abduction. In partic-
ular, it attempts the most comprehensive treatment of
the patterns of creative abduction, such as theoretical
model abduction, common cause abduction, and statis-
tical factor analysis. This is significant, for, compared
to selective abductions, creative abductions are rarely
discussed, although they are essential in science. By ap-
pealing to independent testability and explanatory uni-
fication, a demarcation between scientifically fruitful
abductions and speculative abductions is also proposed.
Applications of abductive inference in the domains of
belief revision and instrumental/technological reason-
ing represent the author’s most recent interest in the
border between logic and the philosophy of science.

In Chap. 8 Gerhard Minnameier, by appropriating
all recent studies on abduction, presents a well-rounded
overview of the intricate relationships among deduc-
tion, induction, and abduction. By taking Peirce’s claim
seriously that (1) that there are only three kinds of rea-
soning, i. e. abduction, deduction, and induction, and
(2) that these are mutually distinct, he wants to clar-
ify the very notion of abduction. For this purpose,
Minnameier carefully examines the fundamental fea-
tures of the three inferences. He also suggests a novel
distinction between two dimensions: i. e., levels of ab-
straction and domains of reasoning. To say the least,
his taxonomy of inferential reasoning seems to pro-
vide us with a nice framework in which different
forms of inferences can be systematically accommo-
dated.

Finally, Woosuk Park counts Lorenzo Magnani’s
discovery of manipulative abduction as one of the most
important developments in recent studies on abduction
in Chap. 9. After briefly introducingMagnani’s distinc-
tion between theoretical and manipulative abduction,
Park discusses how and why Magnani counts diagram-
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matic reasoning in geometry as the prime example of
manipulative abduction. Among the commentators of
Peircean theorematic reasoning, Magnani is unique in
equating theorematic reasoning itself as abduction. Park
also discusses what he counts as some common charac-
teristics of manipulative abductions, and how and why
Magnani views manipulative abduction as a form of
practical reasoning. Ultimately, he argues that it is ma-
nipulative abduction that enables Magnani to extend
abduction to all directions to develop the eco-cognitive
model of abduction.

The authors of this part follow the following com-
monly accepted abbreviation used to refer to the edi-
tions of Peirce’s work:

� CP: Collected papers: C.S. Peirce: Reviews, Corre-
spondence, and Bibliography, Collected Papers of
Charles Sanders Peirce, Vol. 8 (Harvard Univ. Press,
Cambridge 1958), ed. by A.W. Burks� NEM: New Elements of Mathematics: C.S. Peirce:
Mathematical Philosophy, The New Elements of

Mathematics by Charles S. Peirce, Vol. IV (Mou-
ton, The Hague, 1976), ed. by C. Eisele� MS: manuscript: Peirce manuscript, followed by
a number in Richard R. Robin, Annotated Cata-
logue of the Papers of Charles S. Peirce Amherst:
University of Massachusetts, 1967.

References

� D. Gabbay, J. Woods: A Practical Logic of Cogni-
tive Systems. The Reach of Abduction: Insight and
Trial, Vol. 2 (Elsevier, Amsterdam 2005)� L. Magnani: Abduction, Reason, and Science: Pro-
cesses of Discovery and Explanation (Kluwer, New
York 2001)� A. Aliseda: Abductive Reasoning. Logical Investi-
gations into Discovery and Explanation (Springer,
Dordrecht 2006)� L. Magnani: Abductive Cognition. The Epistemo-
logical and Eco-cognitive Dimensions of Hypothet-
ical Reasoning (Springer, Berlin, Heidelberg 2009)



Reorienting t
137

Part
B
|6

6. Reorienting the Logic of Abduction

John Woods

Abduction, still a comparatively neglected kind of
premiss-conclusion reasoning, gives rise to the
questions I want to consider here. One is whether
abduction’s epistemic peculiarities can be accom-
modated happily in the mainline philosophical
theories of knowledge. The other is whether
abduction provides any reason to question the
assumption that the goodness of drawing a con-
clusion from premisses depends on an underlying
relation of logical consequence. My answer each
time is no. I will spend most of my time on the
first. Much of what I’ll say about the second is
a promissory note.
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Three facts about today’s logic stand out:

1. Never has it been done with such technical virtuos-
ity

2. Never has there been so much of it
3. Never has there been so little consensus about its

common subject matters.

It would seem that the more we have of it, the less
our inclination to get to the bottom of its sprawlingly
incompatible provisions. There is nothing remotely like
this in real analysis, particle physics or population ge-
netics. There is nothing like it in the premiss-conclusion
reasonings of politics and everyday life. Left undealt
with, one might see in logic’s indifference to its own
rivalries some sign of not quite knowing its own mind.

It could be said that one of logic’s more stimulating
events in our still-young century is the revival of the
idea that it is a universal discipline, that when all is said
and done there is a core structure to which all the mul-
tiplicities of our day are ultimately answerable. If the
historical record is anything to go on, the cornerstone

of that core structure is the relation of logical conse-
quence. It occasions some sensible operational advice:
If in your work you seek to enlarge logic’s present
multiplicities, have the grace to say why you think it
qualifies as logic, that is, embodies logic’s structural
core. This is not idle advice. I hope to give it heed in
the pages to follow, as we turn our attention to the logic
of abduction.

Although logic’s dominant focus has been the con-
sequence relation, in the beginning its centrality owed
comparatively little to its intrinsic appeal. Consequence
was instrumentally interesting; it was thought to be
the relation in virtue of which premiss-conclusion rea-
soning is safe, or whose absence would expose it to
risk. Reasoning in turn had an epistemic motivation.
Man may be many kinds of animal, but heading the
list is his cognitive identity. He is a knowledge-seeking
and knowledge-attaining being to which his survival
and prosperity are indissolubly linked, indispensable
to which is his capacity to adjust what he believes to
what follows from what. We might say then that as
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long as logic has retained its interest in good and bad
reasoning it has retained this same epistemic orienta-
tion. Accordingly, a logic of good and bad reasoning
carries epistemological presuppositions that aren’t typ-
ically explicitly developed.

It would be premature to say that abduction by
now has won a central and well-established place in
the research programs of modern logic, but there are
some hopeful signs of progress (important sources in-
clude [6.1–13]). In the literature to date there are two
main theoretical approaches, each emphasizing the dif-
ferent sides of a product-process distinction. The log-
ical (or product) approach seeks for truth conditions
on abductive consequence relations and of such other
properties as may be interdefinable with it. The compu-
tational (or process) approach constructs computational
models of how hypotheses are selected for use in ab-

ductive contexts. It is not a strict partition. Between
the logical and computational paradigms, abductive
logic programming and semantic tableaux abduction
occupy a more intermediate position. Whatever its pre-
cise details, the logic-computer science dichotomy is
not something I welcome. It distributes the theory of
abductive reasoning into different camps that have yet
to learn how to talk to one another in a systematic way.
A further difficulty is that whereas abduction is now an
identifiable research topic in logic – albeit a minority
one – it has yet to attain that status in computer science.
Such abductive insights as may occur there are largely
in the form of obiter dicta attached to the main business
at hand (I am indebted to Atocha Aliseda for insightful
advice on this point). This leaves us awkwardly po-
sitioned. The foundational work for a comprehensive
account of abductive reasoning still awaits completion.

6.1 Abduction

6.1.1 Peirce’s Abduction

Although there are stirrings of it in Aristotle’s notion of
apagogē [6.14], we owe the modern idea of abduction
to Peirce. It is encapsulated in the Peircean abduction
schema, as follows [6.15, CP 5.189]:

“The surprising fact C is observed.
But if A were true, C would be a matter of course.
Hence there is reason to suspect that A is true.”

Peirce’s schema raises some obvious questions. One
is how central to abduction is the factor of surprise. An-
other is the issue of how we are to construe the element
of suspicion. A third concerns what we are expected
to do with propositions that creep thus into our suspi-
cions. A fourth is what we are to make of the idea that
an occurrence of something is a matter of course. Like
so many of his better ideas and deeper insights, Peirce
has nothing like a fully developed account of abduc-
tion. Even so, the record contains some important ideas,
seven of which I’ll mention here:

P1 Abduction is triggered by surprise [6.15, CP 5.189].
P2 Abduction is a form of guessing, underwritten in-

nately by instinct ([6.16, p. 128], [6.15, CP 5.171],
[6.17, CP 7.220]).

P3 A successful abduction provides no grounds for be-
lieving the abduced proposition to be true [6.16,
p. 178].

P4 Rather than believing them, the proper thing to
do with abduced hypotheses is to send them off

to experimental trial ([6.15, CP 5.599], [6.18, CP
6.469–6.473], [6.17, 7.202–219]).

P5 The connection between the truth of the abduced
hypothesis A and the observed fact C is subjunc-
tive [6.15, CP 5.189].

P6 The inference that the abduction licenses is not to
the proposition A, but rather that A’s truth is some-
thing that might plausibly be suspected [6.15, CP
5.189].

P7 The hence of the Peircean conclusion is ventured de-
feasibly [6.15, CP 5.189].

Let us note that P3 conveys something of basic
importance. It is that successful abductions are eviden-
tially inert. They offer no grounds for believing the
hypotheses abduced. What, then, is the good of them?

6.1.2 Ignorance Problems

Seen in Peirce’s way, abductions are responses to igno-
rance problems. An agent has an ignorance problem in
relation to an epistemic target when it can’t be attained
by the cognitive resources presently at his command, or
within easy and timely reach of it. If, for some propo-
sition A, you want to know whether A is the case, and
you lack the information to answer this question, or to
draw it out by implication or projection from what you
currently do know, then you have an ignorance problem
with respect to A.

Two of the most common responses to ignorance
problems are (1) subduance and (2) surrender. In the
first case, one’s ignorance is removed by new knowl-
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edge, and an altered position is arrived at, which may
serve as a positive basis for new action. In the second
case, one’s ignorance is fully preserved, and is so in
a way that cannot serve as a positive basis for new ac-
tion (new action is action whose decision to perform is
lodged in reasons that would have been afforded by that
knowledge). For example, suppose that you’ve forgot-
ten when Barb’s birthday is. If her sister Joan is nearby
you can ask her, and then you’ll have got what you
wanted to know. This is subduance. On the other hand
if Joan is traveling incognito in Peru and no one else is
about, you might find that knowing Barb’s birthday no
longer interests you. So you might rescind your epis-
temic target. This would be surrender.

There is a third response that is sometimes avail-
able. It is a response that splits the difference between
the prior two. It is abduction. Like surrender, abduc-
tion is ignorance-preserving, and like subduance, it
offers the agent a positive basis for new action. With
subduance, the agent overcomes his ignorance. With
surrender, his ignorance overcomes him. With abduc-
tion, his ignorance remains, but he is not overcome
by it. It offers a reasoned basis for new action in the
presence of that ignorance. No one should think that
the goal of abduction is to maintain that ignorance.
The goal is to make the best of the ignorance that one
chances to be in.

6.1.3 The Gabbay–Woods Schema

The nub of abduction can be described informally. You
want to know whether something A is the case. But you
don’t know and aren’t in a position here and now to
get to know. However, you observe that if some fur-
ther proposition H were true, then it together with what
you already know would enable you to answer your
question with regard to A. Then, on the basis of this
subjunctive connection, you infer that H is a conjec-
turable hypothesis and, on that basis, you release it
provisionally for subsequent inferential work in the rel-
evant contexts.

More formally, let T be an agent’s epistemic target
at a time, and K his knowledge base at that time. Let
K� be an immediate successor of K that lies within the
agent’s means to produce in a timely way. Let R be an
attainment relation for T and let denote the subjunc-
tive conditional relation. K.H/ is the revision of K upon
the addition of H. C.H/ denotes the conjecture of H
and Hc its activation. Accordingly, the general structure
of abduction can be captured by what has come to be
known as the Gabbay–Woods schema [6.6, 19, 20]:

1. T! E [The ! operator sets T as an epistemic target
with respect to some state of affairs E]

2. �R.K; T/ [fact]
3. Subduance is not presently an option [fact]
4. Surrender is not presently an option [fact]
5. H 62 K [fact]
6. H 62 K� [fact]
7. �R.H; T) [fact]
8. �R.K.H/, T/ [fact]
9. H R.K.H/;T/ [fact]
10. H meets further conditions S1; : : : Sn [fact]
11. Therefore, C.H/ [sub-conclusion, 1–7]
12. Therefore, Hc [conclusion, 1–8].

It is easy to see that the distinctive epistemic feature
of abduction is captured by the schema. It is a given
that H is not in the agent’s knowledge set K. Nor is
it in its immediate successor K�. Since H is not in
K, then the revision of K by H is not a knowledge-
successor set to K. Even so, H R.K.H/;T/. But that
subjunctive fact is evidentially inert with respect to H.
So the abduction of H leaves the agent no closer than
he was before to achieving the knowledge he sought.
Though abductively successful, H doesn’t enable the
abducer to attain his epistemic target. So we have it
that successful abduction is ignorance-preserving. Of
course, the devil is in the details. Specifying the Si is
perhaps the hardest open problem for abductive logic.
In much of the literature it is widely accepted that K-
sets must be consistent and that its consistency must
be preserved by K.H/. This strikes me as unrealistic.
Belief sets are often, if not routinely, inconsistent. Also
commonly imposed is a minimality condition. There are
two inequivalent versions of it. The simplicity version
advises that complicated hypotheses should be avoided
as much as possible. It is sometimes assumed that truth
tends to favor the uncomplicated. I see no reason to ac-
cept that. On the other hand, simplicity has a prudential
appeal. Simple ideas are more easily understood than
complicated ones. But it would be overdoing things to
elevate this desideratum to the status of a logically nec-
essary condition. The other version is a form of Quine’s
maxim of minimum mutilation. It bids the theorist to
revise his present theory in the face of new information
in ways that leave as much as possible of the now-
old theory intact. It advises the revisionist to weigh the
benefits of admitting the new information against the
costs of undoing the theory’s current provisions. This,
too, is little more than prudence. No one wants to rule
out Planck’s introduction of the quantum to physics,
never mind the mangling of old physics that ensued.
Another of the standard conditions is that K.H/ must
entail the proposition for which abductive support has
been sought. In some variations inductive implication is
substituted. Both I think are too strong. Note also that
none of the three – consistency, minimality or implica-
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tion – could be thought of as process protocols. The Si
are conditions on hypothesis selection. I have no very
clear idea about how this is done, and I cannot but think
that my ignorance is widely shared. Small wonder that
logicians have wanted to offload the logic of discov-
ery to psychology. I will come back to this briefly in
due course. Meanwhile let’s agree to regard line (10) as
a promissory note [6.21, Chap. 11].

6.1.4 The Yes-But Phenomenon

Perhaps it won’t come as much of a surprise to learn
of the resistance with which the ignorance-preservation
claim has been met when the Gabbay–Woods schema
has been presented to (what is by now a sizable num-
ber of) philosophical audiences. There are those who
think that precisely because it strips good abductions
of evidential force, the G–W schema misrepresents
Peirce. Others think that precisely because it is faithful
to Peirce’s conditions the G–W schema discredits the
Peircean concept of abduction. Of particular interest is
the hesitation shown by philosophers who are actually
inclined to accept the schema, and accept the Peircean
notion. It may be true, they seem to think, that abduction
is ignorance-preserving, but it is not a truth to which
they take kindly. Something about it they find unsatis-
fying. There is a conventional way of giving voice to
this kind of reticence. One does it with the words, Yes,
but : : :. So we may speak of this class of resisters as the
ignorance-preservation yes-buts.

Some philosophers are of the view that there are at
least three grades of evidential strength. There is evi-
dential strength of the truth-preserving sort; evidential
strength of the probability-enhancing sort; and eviden-
tial strength of a weaker kind. This latter incorporates
a notion of evidence that is strong in its way without
being either deductively strong or inductively strong.
It is, as we might say, induction’s poor cousin. Pro-
ponents of this approach are faced with an interesting
challenge. They must try to tell us what it is for pre-
misses nondeductively to favor a conclusion for which
there is no strong inductive support. If the weak cousin
thesis is false, lots of philosophers are nevertheless
drawn to it. So perhaps the better explanation of the
yes-buts’ resistance to the ignorance-preservation claim
is that they think that it overstates the poor cousin the-
sis, that it makes of abduction a poorer thing than it
actually is. The poor cousin thesis says that abduc-
tion is the weakest evidential relation of the family.
But the ignorance-preservation thesis says that it is an
evidential relation of no kind, no matter how weak.
Accordingly, what the yes-buts are proposing is tanta-
mount to retention of the G–W schema for abduction
minus Peirce’s clause P3. This would allow success-

fully abduced hypotheses the promise of poor-cousin
evidential backing; but it wouldn’t be backing with no
evidential force. It is an attractive idea, but it cuts too
far.

There are too many cases in which successful rea-
soning, indeed brilliant reasoning, has the very charac-
teristic the reformers would wish to suppress. A case
in point is Planck’s quantum hypothesis. In the physics
of 1900s, black body radiation lacked unifying laws for
high and low frequencies. Planck was disturbed by this.
Notwithstanding his lengthy acquaintanceship with it,
the disunification of the black body laws was a surpris-
ing event. It was, for physics, not a matter of course.
Planck wanted to know what it would take to ease his
cognitive irritation. Nothing he knew about physics an-
swered this question. Nothing he would come to know
about physics would answer it either, as long as physics
was done in the standard way. Planck recognized that he
would never attain his target until physics were done in
a new way, in a way sufficiently at odds with the present
paradigm to get some movement on this question; yet
not so excessively ajar from it as to make it unrecogniz-
able as physics. That day in 1900 when he announced
to his son that he had overturned Newton, Planck was
drawn to the conditional that if the quantum hypothesis
Q were true then K.Q/ – that is, physics as revised by
the incorporation of Q – would enable him to reach his
target. So he put it to work accordingly. At no stage did
Planck think thatQwas true. He thought it lacked phys-
ical meaning. He thought that his reasoning provided no
evidence thatQwas true and no grounds for believing it
to be true. Peirce wanted a logic that respected this kind
of thinking. This is what I want too. The poor cousin
thesis doesn’t do this, and cannot.

Ignorance removal is prompted by the reasoner’s
desire to know something he doesn’t now know, or
to have more knowledge of it than he currently does.
What are the conditions under which this happens? It
seems right to say that without an appreciation of the
general conditions under which a human reasoner is in
a state of knowledge, this is a question without a princi-
pled answer. If, as I aver, there are abductive modes of
reasoning prompted by the desire to improve one’s epis-
temic condition which, even when wholly successful,
do not fulfill that objective, there must be two particu-
lar considerations thanks to which this is so. One would
have to do with abduction. The other has to do with
knowledge. A fair part of this first factor is captured
by the Gabbay–Woods schema (or so I say). The sec-
ond is catered for by the right theory of knowledge, if
there is one. We asked why, if a philosopher accepted
the Gabbay–Woods schema for abduction, would he
dislike its commitment to the ignorance-preservation
claim? The possibility that we’re now positioned to con-
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sider is that his yes-but hesitancy flows from how he
approaches the general question of knowledge. That is
to say, it is his epistemology that makes him nervous,

not his logic. If so, the yes part of yes, but : : : is di-
rected to the logic, but the but part is directed to the
epistemology.

6.2 Knowledge

6.2.1 Epistemology

I said in the abstract that epistemological considera-
tions affecting the goodness or badness of premiss-
conclusion reasoning are little in evidence in main-
stream logic. In so saying, I intend no slight to the
now large growing and prospering literature on epis-
temic logics [6.22–24]. For the most part these logics
construct formal representations of the standard reper-
toire of properties – consequence, validity, derivability,
consistency, and so on – defined for sentences to which
symbols for it is known that, and it is believed that
function as sentence operators. A central task for these
logics is to construct a formal semantics for such sen-
tences, typically on the assumption that these epistemic
expressions are modal operators, hence subject to a pos-
sible worlds treatment. Notwithstanding their explicitly
epistemic orientation, it remains true that there is in
this literature virtually no express contact with any of
the going epistemologies. So here, too, if they operate
at all epistemological considerations operate tacitly as
part of an unrevealed epistemological background in-
formation. I intend something different here. I want to
bring epistemology to the fore, which is precisely where
it belongs in logics of premiss-conclusion reasoning of
all kinds.

I want also to move on to what I think may be
the right explanation of the yes-buts’ dissatisfactions.
Before getting started, a caveat of some importance
should be flagged. The explanation I’m about to proffer
attributes to the yes-buts an epistemological perspec-
tive that hardly anyone shares; I mean by this hardly
any epistemologist shares, a notable exception is [6.25].
There is a good chance that whatever its intrinsic plau-
sibility, this new explanation will lack for takers. Even
so, for reasons that will appear, I want to persist with it
for awhile. Here is what it proposes.

The Right-Wrong Thesis
While the Gabbay–Woods schema gets something
right about abduction, it nevertheless gets ignorance-
preservation wrong. What it gets right is that good
abductions are evidentially inert. What it gets wrong is
that this lack of evidential heft entails a corresponding
failure to lift the abducer in any degree from his present
ignorance.

Corollary 6.1
There are abductive contexts in which knowledge can
be attained in the absence of evidence.

The idea of knowledge without supporting evidence
isn’t entirely new or in the least shocking. There is
a deeply dug-in inclination to apply this characteriza-
tion to quite large classes of cases. Roughly, these are
the propositions knowledge of which is a priori or in-
dependent of experience; or, as with Aristotle’s first
principles, are knownwithout the necessity or even pos-
sibility of demonstration; or, as some insist, are the
immediate disclosures of sense and introspection. Dis-
agreements have arisen, and still do, about whether
these specifications are accurate or sustainable, but it
would be a considerable exaggeration to call this sort of
evidential indifference shocking, and wildly inaccurate
as a matter of historical fact to think of it as new.

In truth, apriorism is beside the point of the right-
wrong thesis and its corollary. The knowledge that falls
within their intended ambit is our knowledge of con-
tingent propositions, whether of the empirical sciences
or of the common experience of life. The right-wrong
claim is that there are contingent propositions about the
world which, without being in any way epistemically
privileged, can be ignorance-reducing by virtue of con-
siderations that lend them no evidential weight. So what
is wanted is a theory of knowledge that allows this to
happen.

The historically dominant idea in philosophy is that
knowledge is true belief plus some other condition,
usually identified as justification or evidence. This, the
J-condition, has been with us at least since Plato’s The-
aeatetus, and much scholarly ink has been spilled over
how it is best formulated and whether it might require
the corrective touch of some further condition. But, as
a general idea, the establishment bona fides of the J-
condition are as rock solid as anything in philosophy.

The account of knowledge I am looking for arises at
the juncture of two epistemological developments. One
is the trend towards naturalism [6.26] and the other is
the arrival of reliabilism [6.27]. It is a theory in which
the J-condition fails as a general constraint on epistemi-
cally unprivileged contingent knowledge. Accordingly,
my first task is to try to downgrade the condition, to
deny it a defining role. Assuming some success with the
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first, my second task will be to find at the intersection
of these trends an epistemological orientation – perhaps
I would better call it an epistemological sensibility –
which might without too much strain be reconciled to
the loss of the J-condition. For ease of reference let me
baptize this orientation, this sensibility, the causal re-
sponse turn.

Whereupon task number three, which is to identify
those further features of the causal response model that
link up the notions of evidence and knowledge in the
heterodox ways demanded by the right-wrong thesis.

6.2.2 Losing the J-Condition

The J-condition has attracted huge literature and un-
derwritten a good deal of strategic equivocation. On
engaged readings of the condition, a person’s belief is
justified or evidenced only if he himself has produced
his justification then and there, or he has presented the
evidence for it on the spot. On disengaged readings,
a person is justified in believing if a justification exists
but hasn’t been invoked, or evidence exists but hasn’t
been adduced or even perhaps found. The engaged
and disengaged readings raise an interesting question.
How deeply engaged does one have to be to meet
the J-condition on knowledge? Most epistemologists
formulate the engaged-disengaged distinction as one
between internalist and externalist justification.

Engagement here is a matter of case making. The
two readings of J define a spectrum, but for present
purposes there is little that needs saying of what lies
within. It suffices to note that in its most engaged sense
a belief is justified or evidenced only if the believer can
himself make the case for it here and now. At the other
extreme, the belief is justified or evidenced if a case for
it is available in principle to someone or other. In the
first case, the individual in question has a high degree
of case-making engagement. In the other, his engage-
ment is a gestural, anonymous and proxied one: it is
engagement in name only.

Suppose the following were true. Suppose that, for
every piece of epistemically unprivileged contingent
knowledge p, there were a structure of facts in virtue of
which p is the case. Suppose further that for every such
p a person knows, it would be possible in principle to
discern this structure of the facts and the in-virtue-of re-
lation it bears to p’s truth. (I don’t think there is any re-
alistic chance of this being so, but let’s assume it for the
point at hand.) Suppose, finally, that we agreed to say
that when in principle knowledge of that structure and
that relation exists with respect to a p that a subject S
knows, there exists a justification of S’s belief that p. For
ease of reference, let’s call these factive justifications.
Factive justifications are justifications at their most

disengaged. They stand in radical contrast to highly en-
gaged justifications, which we may call forensic.

By construction of the case presently in view, fac-
tive justification will be the constant companion of any
piece of epistemically unprivileged contingent knowl-
edge that S chances to have. But we have in this
constancy not conditionhood but concomitance. Fac-
tive justification is a faithful accompaniment of such
knowledge, but it is not a constituent of it. Forensic jus-
tification is another story. We might grant that if, when
S knows that p, he has a forensic justification for his be-
lief, then his justification will have made a contribution
to this knowledge. But in relation to all that S knows it
is comparatively rare that there is a forensic justifica-
tion. Here is a test case, with a tip of the hat to Peirce:
Do you know who your parents are? Of course you do!
Very well, then, let’s have your forensic justification.

This is troublesome. If we persist in making foren-
sic justification a condition on knowledge, the result
is skepticism on an undesirable scale. If, on the other
hand, we decide to go with factive justification, then
justifications exist whenever knowledge exists, but they
aren’t conditions on this knowledge. They are not
a structural element of it. Whereupon we are met with
the J-condition dilemma.

J-Condition Dilemma
Depending on how it is read, the J-condition is either an
irrelevant concomitant of knowledge, or a skepticism-
inducing discouragement of it.

The forensic-factive ambiguity runs through all the
idioms of J-attribution. Concerning his belief that p
there might be evidence for p that S adduces or there
may be evidence for p that exists without attribution.
There may be reasons for it that S gives, or reasons for
it that exist without being given. Like confusions repose
in careless uses of have. If we allow that S has a justi-
fication or has evidence or has reasons whenever these
things exist factively, we mislicense the inference from
the factive to the forensic, allowing, in so doing, S to
have justifications that he’s never heard of.

6.2.3 The Causal Response Model
of Knowledge

The causal response (CR) model of knowledge is
rightly associated with reliabilism. In all the going
forms of it, the J-condition is preserved [6.28]. One
of the few places in the reliabilist literature where we
see stirrings of the pure version of the causal model is
Alvin Goldman’s first reliabilist paper, which appeared
in 1967. It is a rare place in Goldman’s foundational
corpus where the J-condition, if there at all, is given
shortest shrift. In some versions, the J-condition is
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satisfied when one’s belief has been reached by reli-
able procedures. In others, the condition is met when
the belief was reliably produced, that is, produced by
belief-forming mechanisms that were working reliably.
In contrast to the standard versions, the pure version
is one in which the J-condition is eliminated, rather
than reinterpreted along reliabilist lines. As a first ap-
proximation, the pure theory characterizes knowledge
as follows:

“S knows that if and only if p is true, S believes that,
the belief was produced by belief-forming devices,
in good working order, operating as they should on
good information and in the absence of Gettier nui-
sances and other hostile externalities.”

Fundamental to what I’ve been calling the pure
theory is the conviction that knowledge is not in any es-
sential or general way tied to case making, that knowing
is one thing and showing another. This is not to say that
case making is never implicated in knowledge. There
are lots of beliefs that would not have been had in the
absence of the case makings that triggered their forma-
tion. Think here of a mother’s sad realization that her
son is guilty of the crime after all, or a nineteenth cen-
tury mathematician’s grudging acknowledgment of the
transfinite. But as a general constraint, case making is
rejected by pure causalists; by causalists of the sort that
Goldman was trying to be in 1967.

6.2.4 Naturalism

Epistemology’s naturalized turn supplies a welcoming
habitat for the CR model. Naturalism comes in vari-
ous and competing versions, but at the core of them
all is the insistence that human knowledge is a natural
phenomenon, achieved by natural beings in accordance
with their design and wherewithal, interacting in the
causal nexi in which the human organism lives out his
life. Unlike the J theorist, the CR theorist is a respecter
of the passive side of knowledge. He knows that there
are large classes of cases in which achieving a knowl-
edge of something is a little more than just being awake
and on the scene. Even where some initiative is re-
quired by the knower, the resultant knowledge is always
a partnership between doing and being done to. So even
worked-for knowledge is partly down to him and partly
down to his devices.

It would be wrong to leave the impression that, on
the CR model, knowing things is just a matter of do-
ing what comes naturally. There are ranges of cases in
which knowledge is extremely difficult to get, if get-
table at all. There are cases in which knowledge is
unattainable except for the intelligence, skill, training
and expertise of those who seek it. Everyone has an

aptitude for knowledge. But there are cases galore in
which aptitude requires the supplementation of voca-
tion and talent – and training. CR theorists are no less
aware of this than their J rivals. The difference between
them falls in where the emphasis falls. Among J the-
orists there is a tendency to generalize the hard cases.
Among CR theorists there is a contrary tendency to
keep the hard cases in their place.

Let me say again that J-theories give an exag-
gerated, if equivocal, place to the role of showing in
knowing. Contrary to what might be supposed, the CR
model is no disrespecter of the showing-knowing dis-
tinction, albeit with a more circumscribed appreciation
of showing. I want to turn to this now.

6.2.5 Showing and Knowing

Consider the case of Fermat’s Last Theorem. The the-
orem asserts that for integers x, y, and z, the equation
xnC yn D zn lacks a solution when n> 2. Fermat fa-
mously left a marginal note claiming to have found
a proof of his theorem. I want to simplify the exam-
ple by stipulating that he did not have a proof and did
not think or say that he did. The received wisdom is
that Fermat went to his grave not knowing that his the-
orem is true. The received wisdom is that no one knew
whether the theorem is true until Andrew Wiles’ proof
of it in 1995. If the forensically conceived J model were
true, this would be pretty much the way we would ex-
pect the received wisdom to go.

If the J model is hard on knowledge, the CR model
is a good deal more accommodating. It gives to knowl-
edge a generous provenance. But I daresay that it will
come as a surprise that, on some perfectly plausible
assumptions, Fermat did indeed know the truth of his
theorem, never mind (as we have stipulated) that he was
all at sea about its proof. Fermat was no rookie. He was
a gifted and experienced mathematician. He was im-
mersed in a sea of mathematical sophistication. He was
a mathematical virtuoso. Fermat knew his theorem if
the following conditions were met: It is true (as indeed
it is), he believed it (as indeed he did), his highly trained
belief-forming devices were in good order (as indeed
they were) and not in this instance misperforming (as
indeed they were not), and their operations were not
compromised by bad information or Gettier nuisances
(as indeed was the case). So Fermat and generations
of others like-placed knew the theorem well before its
proof could be contrived.

We come now to a related point about showing
and knowing. Showing and knowing mark two distinct
goals for science, and a corresponding difference in
their satisfaction conditions. Not unlike the law, science
is in significant measure a case-making profession –
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a forensic profession – made so by the premium it
places on knowing when knowledge has been achieved,
rather than just achieving it. This has something to do
with its status as a profession, subject to its own ex-
acting requirements for apprenticeship, advancement
and successful practice. These are factors that impose
on people in the showing professions expectations that
regulate public announcement. Fermat may well have
known the truth of his theorem and may have had oc-
casion to say so to a trusted friend or his mother. But
he was not to say it for publication. Publication is a ve-
hicle for case making, and case making is harder than
knowing. Journal editors don’t give a toss for what you
know. But they might sit up and notice if you can show
what you know.

6.2.6 Explaining the Yes-Buts

The ignorance-preservation claim is rooted in the idea
of the no evidence-no knowledge thesis.

The No Evidence-No Knowledge Thesis
Since successful abduction is evidentially inert, it is
also epistemically inert. But this is justificationism: No
advance in knowledge without some corresponding ad-
vance in evidence.

The CR model jettisons justificationism. It de-
nies the very implication in which the ignorance-
preservation thesis is grounded. It is not hard to see that
the evidence, whose abductive absence Peirce seizes
upon, is not evidence in the factive sense. Peirce in-
sists that we have no business believing a successfully
abduced hypothesis. Peirce certainly doesn’t deny that
behind any plausibly conjectured hypothesis there is
a structure of facts in virtue to which it owes its truth
value. Peirce thinks that our track record as abductive
guessers is remarkably good. He is struck by the ratio
of right guesses to guesses. He is struck by our aptitude
for correcting wrong guesses. The evidence whose ab-
sence matters here is forensic, it is evidence by which
an abducer could vindicate his belief in the hypothesis
at hand. But Peirce thinks that in the abductive context
nothing vindicates that belief.

We come now to a critical observation. There is
nothing in Peirce’s account that tells us that abduced
hypotheses aren’t believed as a matter of fact. Some
clearly are not. At the time of their respective advance-
ments, Planck didn’t believe the quantum hypothesis
and Gell-Mann didn’t believe the quark hypothesis. But
it takes no more than simple inspection to see that there
are masses of cases to the contrary, that abductive suc-
cess is belief-inducing on a large scale.

There is in this commonplace fact something for
the CR theories to make something of. Let H be one

of those successfully abduced hypotheses that happen
to be true and, contrary to Peirce’s advice, believed
by its abducer S. What would it take to get us seri-
ously to propose that, when these conditions are met,
S’s belief-forming device’s are malfunctioning or are
in poor operating order. Notice that a commonly held
answer is not available here, on pain of question beg-
ging. It cannot be said that unevidenced belief is itself
evidence of malfunction and disorder. That is, it can-
not be said to the CR-theorist, since implicit in his
rejection of justificationism is his rejection of this an-
swer.

Is there, then, any reason to suppose that the arousal
of unevidenced belief might be some indication of prop-
erly functioning belief formation? Ironically enough,
there is an affirmative answer in Peirce himself. Peirce
is much taken with our capacity for right guessing. Our
facility with guessing is so impressive that Peirce is
driven to the idea that good guessing is something the
human animal is built for. But if we are built for good
guessing, and good abduction is a form of guessing,
how can the abduction of true hypotheses not be like-
wise something we’re built for? Accordingly, there is
a case for saying that.

Knowledge Enhancement
In the CR model of knowledge, there are numbers of
instances in which successful abduction is not only not
ignorance preserving, but actually knowledge enhanc-
ing.

Part of what makes for the irony of Peirce’s enthu-
siasm for right guessing is his insistence that guesses
not be indulged by belief. In this he is a justificationist.
Abducers have no business in believing unevidenced
propositions, never mind their abductive allure. This is
enough of a basis to pin the ignorance-preservation the-
sis on Peirce, but not on a CR theorist who accepts the
Gabbay–Woods schema. What this shows is that theirs
is not a disagreement about abduction. It is a disagree-
ment about knowledge.

There isn’t much likelihood that yes-buts will flock
to this accommodation. The reason is that hardly any-
one (any philosopher anyway) thinks the CR model is
true in its pure form. There is no space left to me to
debate the ins and outs of this. Suffice it to say that
it offers the abductive logician the very relief that the
yes-buts pine for. Besides, the CR theory just might be
true [6.21].

6.2.7 Guessing

In line (10) of the G–W schema the Si occur as place-
holders for conditions on hypothesis selection. Previ-
ously, I said that I didn’t know what these conditions
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are [6.7]. In point of fact there are two things that I
don’t know. One is the normative conditions in virtue of
which the selection made is a worthy choice. The other
is the causal conditions that enable the choice to be
made. It is easy to see that there are a goodmanyHs that
could serve as antecedents in line (9)’s H R.K.H/;T/
without disturbing its truth value. It is also easy to see
that a good many of those Hs would never be abduc-
tively concluded, never mind their occurrence there. It
is clear that a reasonable choice of H must preserve
the truth of (9). It is also clear that this is not enough
for abductive significance. A reasonable choice must
have some further features. I am especially at a loss to
describe how beings like us actually go about finding
things like that. Perhaps it will be said that my difficulty
is a reflection on me, not on the criteria for hypothesis
selection. It is true that the number of propositions that
could be entertained is at least as large as the number
of Hs that slot into the antecedent of (9) in a truth-
preserving way. Let’s think of these as constituting the
hypothesis-selection space. Selection, in turn, is a mat-
ter of cutting down this large space to a much smaller
proper subset, ideally a unit set. Selection, to this same
effect, would be achieved by a search engine operating
on the hypothesis-selection space. Its purpose would be
to pluck from that multiplicity the one, or few ones, that
would serve our purposes.

There is nothing remotely mystifying or opaque
about search engines (why else would we bother with
Google?). So isn’t the problem I’m having with the
Si that I’m not a software engineer? Wouldn’t it be
prudent to outsource the hypothesis-selection task to
someone equipped to perform it? To which I say: If that
is a doable thing we should do it. There is no doubt
that algorithms exist in exuberant abundance for search
tasks of considerable variety and complexity. There are
algorithms that cut down a computer system’s search
space to one answering to the algorithm’s flags. Perhaps
such an arrangement could be said to model hypothesis
selection. But it is another thing entirely as to whether,
when we ourselves are performing them, our hypothe-
sis selections implement the system’s algorithms. So I
am minded to say that my questions about the Si are not
comprehensively answerable by a software engineer.

Here is where guessing re-enters the picture, which
is what Peirce thinks that hypothesis selection is. Peirce
is struck by how good we are at it. By this he needn’t
have meant that we have more correct guesses than in-
correct. It is enough that, even if we make fewer correct
guesses than incorrect, the ratio of correct to incorrect
is still impressively high. We get it right, rather than
wrong, with a notable frequency. Our opportunities for
getting it wrong are enormous. Relative to the propo-
sitions that could have been guessed at, the number of

times that they are rightly guessed is amazing; so much
so that Peirce is led to surmise that our proclivity for
right guesses is innate. Of course, not all good guess-
ing is accurate. A good guess can be one that puts the
guessed-at proposition in the ball park, notwithstand-
ing that it might actually not be true. Here, too, good
guesses might include more incorrect ones than correct.
But as before, the ratio of correct to merely good could
be notably high. So the safer claim on Peirce’s behalf is
that beings like us are hardwired to make for good, al-
though not necessarily correct, guesses with a very high
frequency. It is lots easier to make a ball-park guess than
a true one; so much so that the hesitant nativist might
claim a hardwired proclivity for ball-park, yet not for
truth, save as a welcome contingency, which in its own
turn presents itself with an agreeable frequency. Thus
the safe inference to draw from the fact that H was se-
lected is that H is in the ball park. The inference to H’s
truth is not dismissable, but it is weaker.

Needless to say, nativism has problems all its own.
But what I want to concentrate on is a problem it poses
for Peircian abduction. At the heart of all is what to
make of ball-park guesses. The safest thing is to pro-
pose is that, even when false, a ball-park hypothesis
in a given context is one that bears serious operational
consideration there. There might be two overarching
reasons for this. One is that ball-park hypotheses show
promise of having a coherently manageable role in the
conceptual spaces of the contexts of their engagement.
Take again the example of Planck. The quantum hy-
pothesis was a big wrench to classical physics. It didn’t
then have an established scientific meaning. It entered
the fray without any trace of a track record. Even so, for
all its foreignness, it was a ball-park hypothesis. What
made it so was that P.Q/ was a theory revision recog-
nizable as physics. Contrast Q with the gold fairy will
achieve the sought-for unification. Of course, all of this
turns on the assumption that Peirce got it right in think-
ing that hypothesis selection is guessing, and to note
that good guessing is innate. Call this the innateness hy-
pothesis. The second consideration is that the frequency
of true hypotheses to ball-park hypotheses is notably
high.

Whether he (expressly) knows how it’s done, when
an abductive agent is going through his paces, there is
a point at which he selects a hypothesisH. If the innate-
ness thesis holds, then the agent has introduced a propo-
sition that has an excellent shot at being ball-park, and
a decent shot of being true. On all approaches to the
matter, an abduction won’t have been performed in the
absence of H; and on the G–W approach, it won’t have
been performed correctly unless H is neither believed
nor (however weakly) evidenced by its own abductive
success. On the other, our present reflections suggest
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that the very fact that H was selected is evidence that
it is ball-park, and less good but not nonexistent ev-
idence that it is true. Moreover, H is the antecedent
of our subjunctive conditional (9) H R.K.H/;T/. If
H is true so is R.K.H/;T/ by modus ponens; and if
R.K.H/;T/ holds the original ignorance problem is
solved by a form of subduance. In which case, the
abduction simply lapses. It lapses because the nonevi-
dential weight lent to a successfully abduced hypothesis
is, on the G–W model, weaker than the evidential sup-
port given it by way of the innateness hypothesis as
regards its very selection.

If, on the other hand, H is not true, but ball-park –
hence favorably evidenced – and being evidenced is
closed under consequence, then the reasoning at hand
also goes through under the obvious adjustments.

The problem is that there are two matters on which
Peirce can’t have his cake and eat it too. If he re-
tains the innateness thesis he can’t have the ignorance-
preservation thesis. Equally, if he keeps ignorance
preservation he must give up innateness, which nota
bene is not the thesis that guessing is innate but that
good guessing is innate. Yet if we give up innateness
we’re back to where we started, with less than we would
like to say about the actual conditions for which the
G–W Si are mere placeholders. I leave the innateness-
ignorance preservation clash as an open problem in
the abduction research program. Since, by our earlier
reasoning, there is an epistemology (CR) that retains
ignorance preservation only as a contingent property of
some abductions, my present uncertain inclination is to
retain G–W as modified by CR and to rethink innate-
ness. But I’m open to offers. I’ll get back to this briefly
in the section to follow.

Having had my say about the epistemological con-
siderations that play out in the logic of abduction, I want
to turn to the question of how, or to what extent, a logic
of abduction will meet universalist conditions on logic.
I want to determine whether or to what extent abductive
theories embody the structural core assumed by univer-
salists to be common to any theory that qualifies for
admittance to the province of logic.

Whatever the details, abduction is a form of
premiss-conclusion reasoning. By the conclusions-
consequence thesis, whenever the reasoning is good
the conclusion that’s drawn is a consequence of those
premisses. As logics have proliferated, so too the con-
sequences, albeit not exactly in a strict one-to-one
correspondence. If today there are more logics than one
can shake a stick at, there is a concomitant plenitude
of consequences relations. Much of what preoccupies
logicians presently is the classification, individuation,
and interrelatedness of this multiplicity. Whatever their
variations, there is one distinction to which they all an-

swer. Some consequence relations are truth-preserving;
all the others aren’t. Truth-preserving consequence is
(said to be) monotonic. (It isn’t. To take an ancient
example, Aristotle’s syllogistic consequence is truth-
preserving but nonmonotonic.) Premisses from which
a conclusion follows can be supplemented at will and
the conclusion will still follow. One way of captur-
ing this point is that truth-preserving consequence is
impervious to the openness of the world. As far as
consequencehood is concerned, the world might as
well be closed. Once a consequence of something, al-
ways a consequence of it. It is strikingly otherwise
with non-truth-preserving consequence. It is precisely
this indifference to the openness of the world that is
lost.

6.2.8 Closed Worlds

When we were discussing the J condition on knowl-
edge, we called upon a distinction between the factive
justification of a belief and its forensic justification. In
a rough and ready way, a factive justification is down
to the world, whereas a forensic justification is down to
us. We find ourselves at a point at which the idea of fac-
tivity might be put to further good use. To see how, it is
necessary to acknowledge that the distinction between
open and closed worlds is systematically ambiguous. In
one sense it marks a contrast between information states
at a time, with the closed world being the state of total
information, and open ones states of incomplete infor-
mation. In the other sense, a closed world can be called
factive. A closed world at t is everything that is the case
at t. It is the totality of facts at t. A closed world is also
open at t, not with regard to the facts that close it at t, but
in respect of the facts thence to come. We may suppose
that the world will cease to open at the crack of doom,
and that the complete inventory of all the facts that ever
were would be logged in the right sort of Doomsday
Book. It is not, of course, a book that any of us will get
to read. Like it or not, we must make do with openness.
Both our information states and the world are open at
any t before the crack. But the diachronics of facticity
outpace the accuracy of information states. When there
is a clash, the world at t always trumps our information
about it at t-n.

At any given time the world will be more closed
than its concurrent information states. At any given
time the state of the world outreaches the state of our
knowledge of it. When we reason from premisses to
conclusions we are not negotiating with the world.
We are negotiating with informational reflections of
the world. We are negotiating with information states.
Given the limitations on human information states, our
representations of the world are in virtually all respects
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open, and most premises-conclusion relations are sus-
ceptible to rupture. Truth-preserving consequences are
an interesting exception. The world can be as open as
openness gets, but a truth-preserving consequence of
something is always a consequence of it, never mind the
provisions at any t of our information states. Nonmono-
tonic consequence is different: Today a consequence
tomorrow a nonconsequence.

We might think that the more prudent course is
to cease drawing conclusions and postpone the deci-
sions they induce us to make until our information state
closes, until our information is permanently total. The
ludicrousness of the assumption speaks for itself. Cog-
nitive and behavioral paralysis is not an evolutionary
option. Thus arises the closed world assumption. Given
that belief and action cannot await the arrival of total in-
formation, it behooves us to draw our conclusions and
take our decisions when the likelihood of informational
defeat is least high, at which point we would invoke the
assumption that for the matter at hand the world might
just as well be closed.

The key question about the closed world assump-
tion is the set of conditions under which it is reasonable
to invoke it. The follow-up question is whether we’re
much good at it. I am not much inclined to think that we
have done all that well in answering the first question.
But my answer to the second is that, given the plenitude
of times and circumstances at which to invoke it, our
track record is really quite good; certainly good enough
to keep humanity’s knowledge-seeking project briskly
up and running. Even so, the closed world assumption
is vulnerable to two occasions of defeat. One is by way
of later information about later facts. Another is by way
of later information about the facts now in play. It is
easy to see, and no surprise at all, that new facts will
overturn present information about present facts with
a frequency that matches the frequency of the world’s
own displacement of old facts by new. Less easy to see
is how we manage as well as we do in invoking closure
in the absence of information about the present destruc-
tive facts currently beyond our ken. Here, too, we have
a cut-down problem. We call upon closure in the hope-
ful expectation that no present unannounced fact will
undo the conclusions we now draw and the decisions
they induce us to make. Comparatively speaking, vir-
tually all the facts there are now are facts that no one
will ever know. That’s quite a lot of facts, indeed it is
nondenumerably many (for isn’t it a fact that, for any
real number, it is a number, and is self-identical, and so
on?).

There is a point of similarity between hypothesis se-
lection and the imposition of world closure. Our good

track record with both invites a nativist account each
time. Oversimplified, we are as good as we are at se-
lecting hypotheses because that’s the way we were built.
We are as good as we are at closing the world because
that too is the way we were built. I suggested earlier
that in abductive contexts the very fact that H has been
selected is some evidence that it is true (and even better
evidence that it is ball-park). But this seems to contra-
dict the Peircian thesis that abductive success confers
onH nothing stronger than the suspicion that it might be
true. Since Peirce’s account of abduction incorporates
both the innateness thesis and the no-evidential-support
thesis, it would appear that Peirce’s account is inter-
nally inconsistent. I said a section ago that I had a slight
leaning for retaining the no-evidence thesis and lighten-
ing up on the innateness thesis. Either way is Hobson’s
choice. That, anyhow, is how it appears.

In fact, however, the appearance is deceptive. There
is no contradiction. Peirce does not make it a condition
on abductive hypothesis-selection that H enter the fray
entirely untouched by reasons to believe it or evidence
that supports it. He requires that the present support-
status of H has no role to play in the abductive process.
That H is somewhat well supported doesn’t, if true,
have any premissory role here. Moreover, it is not the
goal of abduction to make any kind of case forH’s truth.
The goal is to find anH which, independently of its own
epistemic status, would if true enable a reasoner to hit
his target T . But whatever the target is, it’s not the tar-
get of wanting to know whether H is true. It is true that,
if all goes well, Peirce asserts that it may be defeasibly
concluded that there is reason to suspect that H might
be true. But, again, abduction’s purpose is not to make
a case for H, no matter how weakly. The function of
the suspectability observation is wholly retrospective.
It serves as a hypothesis-selection vindicator. You’ve
picked the (or a) right hypothesis only if the true sub-
junctive conditional in which it appears as antecedent
occasions the abducer’s satisfaction that that, in and
of itself, would make it reasonable to suspect that H
might be so. In a way, then, the G–W schema misrepre-
sents this connection. It is not that the abduction implies
H’s suspectibility, but rather that the abduction won’t
succeed unless the truth of line (9) induces the sus-
pectibility belief [6.21] (for more on the causal role in
inference, readers could again consult [6.21]). And that
won’t happen if the wrong H has been selected, never
mind that it preserves (9)’s truth. For the point at hand,
however, we’ve arrived at a good result. The innateness
thesis and the no-support thesis are both implicated in
the Peircean construal of abduction, but are in perfect
consistency.
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6.3 Logic

6.3.1 Consequences and Conclusions

I said at the beginning that for nearly two and a half
millennia the central focus of logic has been the con-
sequence relation. More basic still was a concomitant
preoccupation with premiss-conclusion reasoning. For
a very long time logicians took it as given that these
two matters are joined at the hip.

Conclusions and Consequences
When someone correctly draws a conclusion from some
premisses, his conclusion is a consequence of them.

Corollary 6.2
If a conclusion drawn from some premisses is not a con-
sequence of them, then the conclusion is incorrectly
drawn.

If this were so, it could be seen at once that there is
a quite intuitive distinction between the consequences
that a premiss set has and the consequences that a rea-
sonable reasoner would conclude from it. Any treat-
ment of logic in which this distinction is at least implic-
itly present, there is a principled role for agents, for the
very beings who draw what conclusions they will from
the consequences that flow from the premisses at hand.
In any such logic there will be at least implicit provision
for the nature of the agent’s involvement. In every case
the involvement is epistemically oriented. People want
to know what follows from what. They want to know
how to rebut an opponent. They want to know whether,
when this follows from that that, they can now be said
to know that. In a helpful simplification, it could be said
that logic got out of the agency business in 1879. It is
not that agency was overlooked entirely, but rather that
it was scandalously short-sheeted. For consequence, the
having-drawing distinction would fold into having; and
having, it would be said, would be the very things
drawn by an ideally rational reasoner. Of course, this
downplaying of cognitive agency was never without its
dissenters. Indeed today we are awash in game theoretic
exuberance, to name just one development of note.

6.3.2 Semantics

Consequence derives its semantic character from its at-
tachment to truth, itself a semantic property in an odd
baptismal bestowal by Tarski. In the deductive case, it
is easy to see how truth is implicated in consequence
and how, in turn, consequence assumes its status as
a semantic relation. Not only does truth ground the
very definition of consequence, but it makes for a re-

lation that is also truth-preserving. The monotonicity
of consequence provides the sole instance in which
a consequence is impervious to the informational open-
ness of the world. It is the one case in informational
openness at t that is indifferent to the world’s factive
closure at t, to say nothing of its final closure at the
crack of doom. It has long been known that logicians,
then and now, harbor an inordinate affection for deduc-
tive consequence. It’s not hard to see why. Deductive
consequence has proved more responsive to theoreti-
cal treatment than any of the nondeductive variety. But
more centrally, it is the only consequence relation that
captures permanent chunks of facticity.

Whatever else we might say, we can’t say that
nonmonotonic relations are relations of semantic con-
sequence. If B is a nonmonotonic consequence of A it
holds independently of whatever makes for the truth
of A and B. Sometimes perhaps it holds on account
of probability conditions on A and B, but probability
has nothing to do with truth. If there is such a thing
as probabilistic consequence – think here of Carnap’s
partial entailment – it is not a semantic relation. We
may have it now that the evidence strongly supports the
charge against Spike in last night’s burglary. We might
come to know better tomorrow. We might learn that at
the time of the offense Spike was spotted on the other
side of town. So the world at t didn’t support then the
proposition that Spike did do it, never mind the state of
information the day after t.

No one doubts that yesterday there existed between
the evidence on hand and the charge against Spike a re-
lation of epistemic and decisional importance, a kind
of relation in whose absence a survivable human life
would be impossible. But a fair question nevertheless
presses for attention: Where is the gain in conceptualiz-
ing these vital premiss-conclusion relations as relations
of logical consequence? Where is the good of trying
to construe nonmonotonic relations on the model of at-
tenuated and retrofitted monotonic consequences? My
own inclination is to say that talk of nomonotonic con-
sequence misconceives the import of nonmonotonicity.
We tend to think of it as a distinguishing feature of con-
sequence relations, when what it really is is the defining
feature of nontruth preservation.

When premiss-conclusion reasoning is good but not
truth-preserving, it is made so by an underlying relation.
Any theory of premiss-conclusion reasoning had better
have something to say about this, about its nature and
how it operates. We should give it the name it both de-
serves and better reflects how it actually does function.
Let’s call it conclusionality. Conclusionality is an epis-
temic or epistemic/prudential relation. It is a relation
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that helps rearrange our belief states, hence possessing
decisional significance. Any struggle to discern whether
it is also a consequence relation seems to me to be sail-
ing into the wind.

Abductive conclusions are on the receiving end of
this relation; they are occupants of its converse do-
main. If our present reflections can be made to stand,
there is no relation of abductive consequence; and it
will cause us no end of distraction trying to figure out
how to make it one. It hardly needs saying that depriv-
ing a logic of abduction of its own relation of abductive
consequencemust of necessity rearrange how abductive
logic is conceptualized. There are plenty of logicians
more than ready to say that a logic without consequence
relations is a logic in name only – a logic façon de par-
ler, hence a logic that fails universalistic prescriptions.
I am otherwise minded. Logic started with conclusion-
ality relations. It was adventitiousness, not essence, that
brought it about that the ones first considered were also
consequence relations. Logic has had a good innings
right from the beginning. In a way, this has been un-
fortunate. The success we’ve had with consequence has
obscured our view of conclusionality. It has led us to
think that the more we can get conclusionality in gen-

eral to be a species of consequence, the faster we’ll
achieve some theoretical respectability. We would be
better served to place conclusionality at the core of logic
and to place consequence in an annex of less central im-
portance. If we did that, we could reinstate the logic of
abduction and equip it for admittance into universalist
respectability. But we could also reinvest to good effect
all that energy we’ve devoted to consequentializing the
conclusionality relation, in a refreshed effort to figure
how conclusionality actually works in the epistemically
sensitive environments in which, perforce, the human
organism must operate.
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7. Patterns of Abductive Inference

Gerhard Schurz

This article understands abductive inference as en-
compassing several special patterns of inference to
the best explanation whose structure determines
a promising explanatory conjecture (an abductive
conclusion) for phenomena that are in need of
explanation (Sect. 7.1). A classification of different
patterns of abduction is given in Sect. 7.2, which is
intended to be as complete as possible. A central
distinction is that between selective abductions,
which choose an optimal candidate from a given
multitude of possible explanations (Sects. 7.3 and
7.4), and creative abductions, which introduce
new theoretical models or concepts (Sects. 7.5–
7.7). While the discussion of selective abduction
has dominated the literature, creative abductions
are rarely discussed, although they are essential
in science. This paper introduces several kinds
of creative abduction, such as theoretical model
abduction, common-cause abduction, and sta-
tistical factor analysis. A demarcation between
scientifically fruitful abductions and speculative
abductions is proposed, by appeal to two in-
terrelated criteria: independent testability and
explanatory unification. Section 7.8 presents ap-
plications of abductive inference in the domains
of belief revision and instrumental/technological
reasoning.
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7.1 General Characterization of Abductive Reasoning and IBE

This article is based upon the work in Schurz [7.1]
where abductive inferences are described as special
patterns of inference to the best explanation (IBE)
whose structure determines a promising explanatory
conjecture (an abductive conclusion), and thus serves
as a search strategy for finding explanations for given
phenomena. However, depending on the explanatory
target and the background knowledge, there are rather
different patterns of abductive inference. Sections 7.2–
7.7 give a detailed reconstruction of these patterns of
abductive inference. Section 7.8 presents applications
of abduction in the domains of belief revision and in-
strumental reasoning. The introductory section explains
three general theses that underlie the analysis and termi-
nology of this chapter.

Thesis 7.1 (Induction versus abduction)
Peirce [7.2, CP 2.619–2.644], [7.3, CP 5.14–5.212] dis-
tinguished between three families of reasoning patterns:
deduction, induction, and abduction. Deductions are
non-ampliative and certain: given the premises are true,
the conclusion must be true. In contrast, inductions and
abductions are ampliative and uncertain, which means
that even if the truth of the premises is taken for granted,
the conclusion may be false, and is therefore subject to
further testing.

My first thesis is that induction and abduction are
two distinct families of ampliative reasoning that are not
reducible to each other. For this reason, I do not regard
induction as an umbrella term for all kinds of amplia-
tive (non-deductive) inferences [7.4, p. 42], [7.5], [7.6,
p. 28]. Rather, I understand induction in the narrow
Humean sense in which a property or regularity is trans-
ferred from the past to the future, or from the observed
to the unobserved.

Inductions and abductions can be distinguished by
their different targets. Both serve the target of ex-
tending our knowledge beyond observation, but in dif-
ferent respects. Inductions serve the goal of inferring
something about the future course of events, which
is important for planning, that is, adapting our ac-
tions to the course of events. In contrast, abductions
serve the goal of inferring something about the un-
observed causes or explanatory reasons of observed
events, which is of central importance for manipulat-
ing the course of events, that is, adapting the course
of events to our wishes [7.3, CP 5.189], [7.7, p. 35].
That abductions cannot be reduced to inductions fol-
lows from the fact that inductions cannot introduce new
concepts or conceptual models; they merely transfer
them to new instances. In contrast, some kinds of ab-

ductions can introduce new concepts [7.3, CP 5.170].
FollowingMagnani [7.8, p. 20], [7.9], I call abductions
that introduce new concepts or models creative, in con-
trast to selective abductions whose task is to choose the
best candidate from among a given multitude of possi-
ble explanations.

Thesis 7.2 (Inference to the best available explana-
tion may not be good enough)
Most authors agree that Harman’s IBE [7.10] has to
be modified in (at least) the following respect: No-
body knows all possible explanations for a given phe-
nomenon, and therefore, what one really has instead of
an IBE is an inference to the best available explanation,
in short an IBAE.

However, as Lipton [7.11, p. 58] has pointed out –
and this is my second thesis: the best available ex-
planation is not always good enough to be rationally
acceptable. If a phenomenon is poorly understood, then
one’s best available explanation is usually pure specu-
lation. In the early history of human mankind, the best
available explanations of otherwise unexplainable nat-
ural phenomena, such as the rising of the Sun or the
coming of the rain, was in terms of the actions of super-
natural agents. Speculative explanations of this sort fail
to meet important scientific demands that are discussed
in Sect. 7.1.

Summarizing, the rule IBE is not feasible, and
the rule IBAE is not generally acceptable. What is
needed for more satisfying versions of abductive rules
are (1) minimal criteria for the acceptability of sci-
entific abductions, and (2) comparative criteria for
the quality of the abducted explanations. Concerning
(2), many authors have pointed out [7.12, pp. 443]
that a unique criterion for the quality of an explana-
tion does not exist – we rather have several criteria
that may come into mutual conflict. For example, Lip-
ton [7.11, pp. 61] argued that in scientific abductions
we do not prefer the likeliest (most probable) expla-
nation, but the loveliest explanation (that with highest
explanatory strength), while Barnes [7.13] objected
that loveliness without likeliness is scientifically unac-
ceptable. One result of the present article, which has
a direct bearing on this debate, is that there is no gen-
eral answer to these questions, because the evaluation
criteria for different kinds of abductions are different.
For example, in the area of selective factual abduc-
tions, comparative plausibility criteria are important,
while in the area of creative second-order existen-
tial abductions, one needs only minimal acceptability
criteria.
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Thesis 7.3 (The strategic role of abduction as means
for discovery)
All inferences have a justificatory (or inferential) and
a strategic (or discovery) function, but to a differ-
ent degree. The justificatory function consists of the
justification of the conclusion, conditional on the justi-
fication of the premises. The strategic function consists
of searching for the most promising conjecture (con-
clusion), which is set out for further empirical testing,
or in Hintikka’s words, which stimulates new ques-
tions [7.14, p. 528], [7.15, Sect. 14].

In deductive inferences the justificatory function is
fully realized, because the premises guarantee the truth
of the conclusion. Deductive inferences may also serve
important strategic functions, because many different
conclusions can be derived from the same premises.
In inductive inferences, there is not much search strat-
egy involved, because the inductive conclusions of
a premise set are narrowly defined by the operations
of generalization over instances. So the major function
of inductive inferences is justificatory, but their jus-
tificatory value is uncertain. In contrast, in abductive
inferences, the strategic function becomes dominant.
Different from the situation of induction, in abduction
problems we are often confronted with thousands of
possible explanatory conjectures – anyone in the vil-
lage might be the murderer. The essential function of
abductions is their role as search strategies that tell us
which explanatory conjecture we should set out first
for further inquiry [7.14, p. 528] – or more generally,
which suggest a short and most promising (though not
necessarily successful) path through the exponentially
explosive search space of possible explanatory reasons.

In contrast, the justificatory function of abductions
is minor. Peirce pointed out that abductive hypotheses
are prima facie not even probable, as inductive hypothe-
ses, but merely possible [7.3, CP 5.171]. Only upon be-
ing confirmed by further tests may an abductive hypoth-
esis become probable. However, I cannot completely
agree with Peirce or other authors [7.14, 16], [7.17,
p. 192] who think that abductions are merely a discov-
ery procedure and whose justificatory value is zero. As
Niiniluoto pointed out, “abduction as a motive for pur-
suit cannot always be sharply distinguished from con-
siderations of justification” [7.12, S442]. Niiniluoto’s
point is confirmed by a Bayesian analysis: If a hypothe-
sis H explains an explanandum E (where P.H/;P.E/¤
0; 1), then P.EjH/ (E’s posterior probability) has been
raised compared to P.E/ (E’s prior probability), which
implies (by probability theory) that P.HjE/ > P.H/,
i. e., E raises H’s probability, if only a little bit.

It is essential for a good search strategy that it leads
us to an optimal conjecture in a reasonable amount of

time. In this respect, the rule of IBE fails completely.
It just tells us that we should choose the best (avail-
able) explanation without giving us any clue of how to
find it. To see the problem, as presented by a humor-
ous example, think of someone in a hurry who asks an
IBE-philosopher for the right way to the railway sta-
tion and receives the following answer: Find out which
is the shortest way among all ways between here and
the train station – this is the route you should choose.
In other words, IBE merely reflects the justificatory but
misses the strategic function of abduction, which in fact
is its essential function. For this reason, the rule of IBE
is, epistemically, rather uninformative [7.18, p. 281].

Peirce once remarked that there are sheer myriads
of possible hypotheses that would explain a given ex-
perimental phenomena, yet scientists usually manage to
find the true hypothesis after only a small number of
guesses [7.19, CP 6.5000]. But Peirce did not propose
any abductive rules for conjecturing new theories; he
rather explained this miraculous ability of human minds
by their abductive instincts [7.20, CP 5.47, fn. 12;
5.172; 5.212]. The crucial question seems to be whether
there can be anything like a logic of discovery. Pop-
per and the logical positivists correctly observed that
the justification of a hypothesis is independent from
the way it was discovered. This does not imply, how-
ever, that it would not be desirable to have in addition
good rules for discovering explanatory hypotheses – if
there only were such rules [7.16]. This paper intends to
show that there are such rules; in fact, every kind of ab-
duction pattern presented in this paper constitutes such
a rule.

The majority of the recent literature on abduction
has aimed at onemost general schema of abduction that
matches every particular case. I do not think that good
heuristic rules for generating explanatory hypotheses
can be found along this route, because such rules are de-
pendent on the specific type of abductive scenario, for
example, concerning whether the abduction is mainly
selective or creative (etc.). In the remainder of this pa-
per, I will pursue a different route to characterizing
abduction, which consists of modeling various particu-
lar schemata of abduction, each fitting a particular kind
of conjectural situation. Two major results of my paper
can be summarized as follows:

Result 7.1
There exist rather different kinds of abductive patterns.
While some of them enjoy a broad discussion in the lit-
erature, others have been neglected, although they play
an important role in science. The epistemological role
and the evaluation criteria of abduction are different for
the different patterns of abduction.
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Result 7.2
In all cases, the crucial function of a pattern of abduc-
tion or IBE consists in its function as a search strategy
that leads us, for a given kind of scenario, to the most
promising explanatory conjecture, which may then sub-
ject to further test. In selective abductions, the difficulty
usually lies in the fact that the search space of possible
conjectures is very large. On the other hand, in creative

abductions the difficulty often consists in finding just
one conjecture that meets the required constraints.

More important than my general theses and results
are the particular results of the following sections, in
which I model each kind of abduction as a specific
inference schema in which the most promising explana-
tory conjecture is structurally determined.

7.2 Three Dimensions for Classifying Patterns of Abduction

I classify patterns of abduction along three dimensions:

1. Along the kind of hypothesis that is abducted, i. e.,
that is produced as a conjecture

2. Along the kind of evidence that the abduction is
meant to explain

3. According to the beliefs or cognitive mechanisms
that drive the abduction.

I signify the different kinds of abduction according
to the first dimension. But the three dimensions are not

Kind of abduction Evidence to be
explained

Abduction produces Abduction is driven by

Factual abduction Singular empirical
facts

Empirical laws New laws

New theoretical models
of these phenomena

New laws/theories with
new concepts

Theoretical background
knowledge (b.k.)

New facts
(reasons/causes)

Factual reasons
Factual reasons postulating
new unknown individuals
Unobservable facts
(facts in the past)

Known laws
          "

          "

Known theories

          "

Known laws
or theories

Law abduction

Microscopic composition Extrapolation of b.k.Micro-part abduction

General empirical
phenomena (laws)

Introspective
phenomena

Concept of external reality

Theoretical-model-abduction

Second-order existential abduction

Observable-fact-abduction
First-order existential abduction

"
"

"

"

"

New laws/theories
with analogous concepts
Hidden (unobservable) causes

Analogy with b.k.

(see below)

Analogical abduction

Hypothetical cause abduction
Speculative abduction

"

"

Hidden common causes
New theoretical concepts

Causal unification
Speculation

Common-cause abduction "
(") (")

"
Strict common-cause abduction           ""
Statistical factor analysis           ""
Abduction to reality           "

Unobservable-fact-abduction
(Historical abduction)

Fig. 7.1 Classification of kinds of abduction

independent: the properties of an abductive pattern in
the second and third dimension are in characteristic co-
variance with its status in the first dimension. Also, how
the evidence together with the background knowledge
conveys epistemic support to the abducted hypothesis,
and by which follow-up procedures the abducted hy-
potheses is put to further test, depend crucially on the
kind of abducted hypothesis. Figure 7.1 anticipates my
classification of kinds of abductive patterns as a first
orientation for the reader – the listed kinds of abduction
are explained in Sects. 7.2–7.7.
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7.3 Factual Abduction

In factual abductions, both the evidence to be ex-
plained and the abducted hypothesis are singular facts.
Factual abductions are always driven by known im-
plicational laws going from causes to effects, and the
abducted hypotheses are found by backward reason-
ing, inverse to the direction of the law-like implications.
Factual abduction may also be called retroduction;
Chisholm [7.21, Ch. IV.2] speaks of inverse induction.
This kind of abduction has the following structure (the
double line D indicates that the inference is uncertain
and preliminary)

Known law: If Cx, then Ex
Known evidence: Ea has occurred
DDDDDDDDDDDDDDDDDDDDDD
Abducted conjecture: Ca could be the reason.

One may call the factual abduction schema the offi-
cial Peirce abduction schema, since Peirce [7.2, CP
2.619–2.644] formalized abduction in this way and
named it hypothesis; later he generalized abduction in
the way described in Sect. 7.1. Factual abductions are
omnipresent in common sense reasoning, and presum-
ably rely on inborn abductive instincts of hominids.
Prototypical examples are detective stories [7.22], or
more generally, all sorts of causal interpretations of
traces. The AI literature is focused almost exclusively
on factual abductions (Sect. 7.3.4). Depending on the
epistemological nature of the abducted fact, one can
distinguish between the following three subpatterns.

7.3.1 Observable-Fact Abduction

Here one reasons according to the fact-abduction
schema from observed effects (Ea) to non-observed but
observable causes (Ca) in the background of known
laws. The follow-up test procedure consists of the
attempt to gain direct evidence for the abducted con-
jecture. In the example of a murder case, such direct
evidence would be given, for example, by a confession
of the putative murderer.

In the setting of factual abduction, the problem
often consists of the combinatorial explosion of the
search space of possible causes, in the presence of
a rich background store of laws but in the absence
of a rich factual knowledge. Thus, factual abductions
are primarily selective in the sense of Magnani [7.8,
p. 20], and their epistemic support depends on the
degree to which the background knowledge increases
their probability in comparison to alternative possible
causes. Consider the following example: If your
evidence consists of the trace of the imprints of sandals

on an elsewhere empty beach, then your immediate
conjecture is that somebody was recently walking
here. How did you arrive at this conjecture? Classical
physics allows for myriads of ways of imprinting
footprints into the sand of the beach, which reach from
cows wearing sandals on their feet to footprints that
are drawn into the sand or blown by the wind, etc. The
majority of these possible abductive conjectures will
never be considered by us because they are extremely
improbable. The major strategic algorithm that we
apply in factual abduction cases of this sort is a prob-
abilistic elimination technique, which usually works
in an unconscious manner: our mind quickly scans
through our large memory store containing millions of
memorized possible scenarios and only those that have
minimal plausibility pop up in our consciousness.

So, probabilistic evaluation of possible causes given
certain effects and elimination of implausible causes
plays a central role in factual abductions. Fumer-
ton [7.23, p. 592] has gone further and argued that
factual abduction can even be reduced to ordinary
inductive-statistical inference. More precisely, he ar-
gues that the first inference pattern (below) can be re-
duced to the second inference pattern (below) in the fol-
lowing way (where P.�/ denotes subjective-epistemic
and p.�/ statistical probability, and K expresses back-
ground knowledge).

Abductive inference W
L W 8x.Fx! Gx/
Ga
DDDDDDDDDDDDD
Fa .presupposition W

P.FajGa^ L^K/D high/

Fumerton’s
reduction:

???y

Inductive� statistical inference W
L0 W p.FxjGx/D high
Ga
DDDDDDDDD P.FajGa^ L0/D high
Fa

Although Fumerton’s reduction seems reasonable in
some cases, I see two reasons why his argument is not
generally correct. Firstly, the abductive hypothesis is
probabilistically evaluated not merely in the light of the
evidence Ga and an inverse statistical law L0, but in the
light of the entire background knowledge K. Fumerton
may reply that the inference pattern on the right may be
appropriately extended so that it includes background
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knowledge. But secondly, Fumerton’s proposed trans-
formation does not correspond to psychological reality,
nor would it be strategically recommendable. Every in-
dividual case (or effect) is different, and hence, only
a small fraction of possible cause-effect scenarios are
encountered frequently enough in a human lifetime in
order to be represented by Fumerton-like conditional
probabilities. For example, if you are not a turtle expert
and you observe the trace of a turtle in the sand, then
the only way in which you may arrive at the right guess
that there was a turtle crawling here is by careful back-
ward reasoning combined with elimination. Unless you
are a turtle hunter, it is unlikely that you will have ex-
plicitly stored information concerning the typical sand
traces of turtles via a corresponding forward conditional
of the sort proposed by Fumerton.

7.3.2 First-Order Existential Abduction

This subcase of factual abduction occurs when the
antecedent of a law contains so-called anonymous vari-
ables, i. e., variables that are not contained in the con-
sequent of the law. In the simplest case, the formal
structure of first-order existential abduction is as fol-
lows (cf. also [7.24, p. 57]).

L W 8x8y.Ryx! Hx/

logically equivalent W 8x.9yRyx! Hx/

Ha

DDDDDDDDDDDD
Conjecture W 9yRya

Instantiating the consequent of the law with a and back-
ward chaining yields a law-antecedent in which one
variable remains uninstantiated (Rya). In such a case,
the safest abductive conjecture is one in which we
existentially quantify over this variable. We have al-
ready discussed an example of this sort in Sect. 7.3.1:
from the footprint in the sand we abductively infer that
some man was walking on the beach. Prendinger and
Ishizuka [7.25, p. 322] call first-order existential ab-
duction element-creative abduction, because here the
existence of an unknown object is hypothesized.

Note, however, that only in some cases will we be
satisfied with the existential conjecture. In other cases,
in particular in criminal cases, all depends on finding
out which individual is the one whose existence we
conjecture – who was the murderer? Here one is not sat-
isfied with a first-order existential abduction but want to
have a proper, fully-instantiated fact abduction.

In observable-fact abduction, the abducted hypothe-
sis may at later stages of inquiry be confirmed by direct
observation – for example, when we later meet the man

who had walked yesterday on this beach. In this case,
the weak epistemic support that the abductive inference
conveys to the conjecture gets replaced by the strong
epistemic support provided by the direct evidence: ab-
duction has played an important strategic role, but it no
longer plays a justificatory role. This is different, how-
ever, in all of the following patterns of abduction, in
which the abductive hypothesis is not directly observ-
able, but only indirectly confirmable via its empirical
consequences.

7.3.3 Unobservable-Fact Abduction

This kind of abduction has the same formal structure
as observable-fact abduction, but the abducted fact is
unobservable. The typical case of unobservable-fact ab-
ductions are historical-fact abductions, in which the
abducted fact is unobservable because it is located
in the distant past. The abducted fact may also be
unobservable in principle, because it is a theoretical
fact. However, in such a case the abduction is usu-
ally not driven by simple implicational laws, but by
a quantitative theory, and the abducted theoretical fact
corresponds to a theoretical model of the observed phe-
nomenon: This sort of abduction differs crucially from
law-driven factual abduction and is therefore treated
under the separate category of theoretical-model abduc-
tion (Sect. 7.5).

Historical-fact abductions are of obvious impor-
tance for all historical sciences [7.12, p. 442]. Assume,
for example, that biologists discover marine fossil
records, say fish bones, in the ground of dry land. They
conjecture abductively, given their background theo-
ries, that some geological time span ago there was
a sea here. Their hypothesis cannot be directly veri-
fied by observations. So the biologists look for further
empirical consequences that follow from the abducted
conjecture plus background knowledge – for example,
further geological indications such as calcium deposits,
or marine shell fossils, etc. If the latter findings are
observationally verified, the abductive conjecture is
confirmed. Logically speaking, an unobservable-fact
abduction performs a combination of abductive back-
ward reasoning and deductive or probabilistic forward
reasoning to consequences that can be put to further
test. This is graphically displayed by the bold arrow in
Fig. 7.2.

If the empirical consequence Ea is verified, then
both pieces of evidence Ga and Ea provide epistemic
support for the abducted hypothesis Ha (modulo prob-
abilistic considerations in the light of the background
knowledge). So, the initial abductive inference has
not only a strategic value, but keeps its justificatory
value.



Patterns of Abductive Inference 7.3 Factual Abduction 157
Part

B
|7.3

(intermediate backward step)
Ha

Qa   (historical hypothesis)
Ga  (given evidence)

Ea  (empirical consequence)
?  (further test operations)

Fig. 7.2 Historical-fact abduction (the bold arrow indi-
cates the route of the abduction process)

7.3.4 Logical and Computational Aspects
of Factual Abduction

If one’s background knowledge does not contain gen-
eral theories but just a finite set of (causal) implicational
laws, then the set of possible abductive conjectures is
finite and can be generated by backward-chaining infer-
ence procedures. In this form, abductive inference has
frequently been studied in AI research [7.26, 27]. Given
is a knowledge base KD hLŒx�;FŒa�i in form of a fi-
nite set LŒx� of monadic implicational laws going from
conjunctions of open literals to literals, and a finite set
FŒa� of facts (closed literals) about the individual case
a. (A literal is an atomic formula or its negation.) Given
is moreover a certain goal, which is a (possibly con-
junctive) fact Ga that needs to be explained. One is not
interested just in any hypotheses that (if true) would ex-
plain the goal Ga givenK, but only in those hypotheses
that are not further potentially explainable in K [7.28,
p. 133], [7.29].

So formally, the candidates for abducible hypothe-
ses are all closed literals AŒa� such that AŒa� is neither
a fact in FŒa�, nor the consequent (head) of a law, i. e.,
AŒa� cannot be further explained by other laws inK. The
set of all possible abductive conjectures AŒa� for arbi-
trary abduction tasks inK is called the set of abducibles
HŒa�. The abductive task for goal Ga is then defined as
follows: Find all possible explanations, i. e., allminimal
sets EŒa� of singular statements about a such that:

(i) EŒa�� FŒa�[HŒa�

+ Ga

*Sa *Ua*R2a *T2a

Q1a Q2a

*Va+T1a*R1a

HaFa
0.40.2

0.3 0.5

0.3

Fig. 7.3 Search space for a factual abduction problem.C indicates a known fact, 	 indicates possible abductive hypothe-
ses. The numbers are probability values (they do not add up to 1 because of an unknown residual probability). The bold
arrow indicates the route of a best-first search, which leads to the abductive conjecture T2a

(ii) LŒx�[FŒa�[EŒa� is consistent
(iii) LŒx�[EŒa� logically implies GŒa� (by forward

chaining).

Those elements of the explanatory sets EŒa� that are
abducibles are the abductive hypotheses for GŒa�.

This kind of abduction problem is graphically dis-
played in Fig. 7.3 in the form of a so-called and-or
tree [7.30, Ch. 13]. The labeled nodes of an and-
or tree correspond to literals, unlabeled nodes rep-
resent conjunctions of them, and the directed edges
(arrows) correspond to laws in LŒx�. Arrows con-
nected by an arc are and-connected; those without an
arc are or-connected. Written as statements, the laws
underlying Fig. 7.3 are 8x.Fx! Gx/, 8x.Hx! Gx/,
8x.Q1x^Q2x! Gx/, 8x.R1x^R2x! Fx/, 8x.Sx!
Hx/, 8x.T1x^T2x! Hx/, 8x.Ux! Q1x/, 8x.Vx!
Q2x/. Besides the goal Ga, the only known fact is T1a.

Algorithms for this sort of task have been imple-
mented, for example, in the programming language
Prolog in the form of backward-chaining with back-
tracking to all possible solutions.

The task of finding all possible explanations has ex-
ponential complexity and, thus, is intractable (that is,
the time of this task increases exponentially in the num-
ber of data points and possible hypotheses). Only the
complexity of finding some explanation has polynomial
complexity and is tractable [7.26, Ch. 7, p. 165, Th. 7.1,
7.2]. Therefore it is crucial to constrain the search space
by probabilistic (or plausibilistic) evaluation methods.
A simple heuristic strategy is the best-first search: for
each or-node one processes only that successor that has
the highest plausibility value (among all successors of
this node). The route of a best-first abduction search is
depicted in Fig. 7.3 by the bold arrow.

A related but more general framework for fac-
tual abductions via backward reasoning is abduction
within Beth tableaux [7.15], [7.7, Ch. 4]. Even more
general frameworks are Gabbay’s labeled deductive
systems [7.31, Part III] and abduction within epis-
temic dynamic logic [7.32]. An alternative approach
for computing abductive hypotheses is abductive rea-
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soning in the framework of adaptive logic [7.33, 34].
Here one infers singular explanatory hypotheses by
backward chaining defeasibly and excludes them as
soon as contradicting abnormality statements turn out
to be derivable in later stages of the proof. As a result,
one doesn’t compute all possible minimal explanations
(consistent with the knowledge base) but only those that
are undefeated.

Besides probabilistic elimination, the second major
technique of constraining the search space is interme-
diate information acquisition: not only the ultimately
abducted conjectures, but also intermediate conjec-
tures (nodes) along the chosen search path can be set
out for further empirical test – or in the framework

of Hintikka et al. [7.15], they may stimulate further
interrogative inquiry [7.35, Ch. 6]. As an example,
consider again a criminal case: If backward reason-
ing leads to the possibility that the butler could have
been the murderer, and along an independent path,
that the murderer must have been left handed, then
before continuing the abductive reasoning procedure
one better finds out first whether the butler is in-
deed left handed. There are also some AI abduction
systems that incorporate question-asking modules. For
example, the RED system, designed for the purpose
of red-cell antibody identification based on antigen-
reactions of patient serum, asks intermediate questions
of a database [7.26, pp. 72].

7.4 Law Abduction

In this kind of abduction, both the evidence to be ex-
plained and the abducted hypothesis are implicational
laws, and the abduction is driven by one (or several)
known implicational laws. Because of the latter fact,
this kind of abduction is more similar to factual abduc-
tions than to theory-driven abductions that are discussed
in Sect. 7.5. Law abductions can already be found in
Aristotle, and they correspond to what Aristotle has
called the mind’s power of hitting upon the middle term
of a syllogism (An. Post., I, 34). Here is an example.

Background law: 8x.Cx! Ex/
Whatever contains sugar tastes sweet

Empirical law to be explained: 8x.Fx! Ex/
All pineapples taste sweet

DDDDDDDDDDDDDDDDDDDDD
Abducted conjecture: 8x.Fx! Cx/

All pineapples contain sugar.

A more general example of law abduction in qualitative
chemistry is this,

All substances that contain molecular groups
of the form C have property E:

All substances of empirical kind S
have certain empirical properties E:

DDDDDDDDDDDDDDDDDDDDD
Conjecture: Substances of kind S
have molecular characteristics C:

In the case where there are several causal laws of the
form 8x .Cix! Ex/, one has to select the most plausi-
ble one. In any case, the conclusions of law abductions
are conjectural and in strong need of further support.

Flach and Kakas [7.27, pp. 21] have argued that
a law abduction can be reduced to the following combi-
nation of a fact abduction and an inductive generaliza-
tion

Background law: 8x.Cx! Ex/

Observed facts: Fai^Eai 1
 i 
 n
! Induction basis for: 8x.Fx! Ex/

DDDDDDDDDDDDDD Factual abduction
Abducted hypotheses: Cai 1
 i 
 n
hence: Fai ^Cai 1
 i 
 n
! Induction basis for: 8x.Fx! Cx/ :

This decomposition, however, is somewhat artificial.
Law abductions are usually performed in one single
conjectural step. We don’t form the abductive hypoth-
esis that x contains sugar for each observed pineapple
x, one after the other, and then generalize it, but we
form the law-conjecture pineapples contain sugar at
once.

All patterns of abduction that we have discussed so
far are driven by known qualitative implication laws,
and they are mainly selective, i. e., their driving algo-
rithm draws a most promising candidate from a class of
possible conjectures, which is very large but in principle
constructible. Discussion of such patterns dominates
the abduction literature. The patterns of abductions to
be discussed in the next sections are rarely discussed
in the literature. They are not driven by implicational
laws, but either by scientific theories, or by (causal)
unification procedures. Moreover, they are not mainly
selective but mainly creative, that is, the underlying
abduction operation constructs something new, for ex-
ample a new theoretical model or a new theoretical
concept.
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7.5 Theoretical-Model Abduction

The explanandum of a theoretical-model abduction is
typically a well-confirmed and reproducible empirical
phenomenon expressed by an empirical law – for ex-
ample, the phenomenon that wood floats in water but
a stone sinks in it. The abduction is driven by an already
established scientific theory that is usually quantita-
tively formulated. The abductive task consists in finding
theoretical (initial and boundary) conditions that de-
scribe the causes of the phenomenon in the theoretical
language and that allow the mathematical derivation of
the phenomenon from the theory. Halonen and Hin-
tikka [7.36] argue that this task makes up the essential
point of the scientist’s explanatory activity. Formally,
these theoretical conditions are expressed by factual or
law-like statements, but their semantic content corre-
sponds to what one typically calls a theoretical model
for a particular kind of phenomenon within a given
theory, whence I speak of theoretical-model abduction.
Note also that with my notion of a model I do not im-
ply a particular kind of formalization of models: they
can be represented by statements or by set-theoretical
models [7.37, p. 109]. A general translation between
sentential and model-theoretic theory representations is
developed in Schurz [7.38].

As an example, consider Archimedes’ theoretical
model of the phenomenon of buoyancy. Here one
searches for a theoretical explanation of the fact that
certain substances like stones and metals sink in wa-
ter while others like wood and ice float on water,
solely in terms of mechanical and gravitational effects.
Archimedes’ ingenious abductive conjecture was that
the amount of water that is supplanted by the floating
or sinking body tends to lift the body upwards, with
a force fW that equals the weight of the supplanted wa-
ter (Fig. 7.4). If this force is greater than the weight of
the body (fB) the body will float, otherwise it will sink.
Since the volume of supplantedwater equals the volume
of the part of the body that is underwater, and since the
weight is proportional to the mass of a body, it follows
that the body will sink exactly if its density (mass per
volume) is greater than the density of water.

The situation of theoretical-model abduction is
rather different from the situation of factual abductions:
one does not face here the problem of a huge multitude
of possible theoretical models or conjectures, since the
given theory constrains the space of possible causes to
a small class of basic parameters (or generalized forces)
by which the theory models the domain of phenomena
that it intends to explain. In the Archimedean case, the
given theory presupposes that the ultimate causes can
only be contact forces and gravitational forces – other
ultimate causes such as intrinsic capacities of bodies

to float or invisible water creatures, etc., are excluded.
Therefore, the real difficulty of theoretical-model ab-
duction does not consist in the elimination of possible
explanations – this elimination is already achieved by
the given theory – but of finding just one plausible
theoretical model that allows the derivation of the phe-
nomenon to be explained. If such a theoretical model
is found, this is usually celebrated as a great scientific
success.

Theoretical-model abduction is the typical theo-
retical activity of normal science in the sense of
Kuhn [7.39], that is, the activity of extending the ap-
plication of a given theory core (or paradigm) to new
cases, rather than changing a theory core or creating
a new one. If the governing theory is classical physics,
then examples of theoretical model abduction come in
the hundreds, and physics text books are full of them.
Examples are the theoretical models underlying:

1. The trajectories (paths) of rigid bodies in the con-
stant gravitational field of the Earth (free fall,
parabolic path of ballistic objects, gravitational pen-
dulum, etc.)

2. The trajectories of cosmological objects in position-
dependent gravitational fields (the elliptic orbits of
planets, Kepler’s laws, the Moon’s orbit around the
Earth, and the lunar tides, interplanet perturbations,
etc.)

3. The behavior of solid, fluid or gaseous macroscopic
objects viewed as systems of more-or-less coupled
mechanical atoms (the modeling of pressure, fric-
tion, viscosity, the thermodynamic explanation of
heat and temperature, etc.); and finally

4. The explanation of electromagnetic phenomena by
incorporating electromagnetic forces into classical
physics [7.40, Ch. 5.3].

While for all other kinds of abductions we can pro-
vide a general formal pattern and algorithm by which
one can generate a most promising explanatory hy-
pothesis, we cannot provide such a general pattern for
theoretical model abduction because here all depends

fB

fW

Volume of supplanted water,
causes water level to rise,
pushes body upwards

Fig. 7.4 Theoretical conditions that allow the mechanical deriva-
tion of the law of buoyancy



Part
B
|7.5

160 Part B Theoretical and Cognitive Issues on Abduction and Scientific Inference

on which theory is assumed in the background. But if
the theory is specified, then such patterns can often be
provided: they are very similar to what Kitcher [7.41,
p. 517] calls a schematic explanatory argument, except
that the explanandum is now given and the particu-
lar explanatory premises have to be found within the
framework of the given theory. See the example in
Tab. 7.1.

Theoretical-model abduction can also be found in
higher and more special sciences than physics. In chem-
istry, the explanations of the atomic component ratios
(the chemical gross formulae) by a three-dimensional
molecular structure are the results of theoretical-model
abductions; the given theory here is the periodic ta-
ble plus Lewis’ octet rule for forming chemical bonds.
A computational implementation is the automatic ab-
duction system DENDRAL [7.42, pp. 234], which
abducts the chemical structure of organic molecules,
given their mass spectrum and their gross formula.

Theoretical model abductions also take place in evo-
lutionary theory. The reconstruction of evolutionary
trees of descendance from given phenotypic similarities
is a typical abductive process. The basic evolution-
theoretical premise here is that different biological
species descend from common biological ancestors
from which they have split apart by discriminative
mutation and selection processes. The alternative ab-
ductive conjectures about trees of descendance can be
evaluated by probability considerations. Assume three
species S1, S2, and S3, where both S1 and S2 but not
S3 have a new property F – in Sober’s example, S1 is
sparrows, S2 D robins, S3 D crocodiles, and F D hav-
ing wings [7.43, pp. 174–176]. In this case, the tree
of descendance T1 where the common ancestor A first
splits into S3 and the common ancestor of S1 and S2,
which has already F, requires only one mutation-driven
change of non-F into F, while the alternative tree of

Table 7.1

Abduction pattern of Newtonian particle mechanics:
Explanandum: A kinematical process involving (a) some moving particles whose position, velocity and accel-
eration at a variable time t is an empirical function of their initial conditions, and (b) certain objects defining
constant boundary conditions (e.g., a rigid plane on which a ball is rolling, or a large object that exerts a gravi-
tational force, or a spring with Hooke force, etc.)

==============================================================================

Generate the abducted conjecture as follows: (i) Specify for each particle its mass and all non-neglectible
forces acting on it in dependence on the boundary conditions and on the particle’s position at the given time.
(ii) Insert these specifications into Newton’s second axiom (which says that for each particle x and time t, the
sum of all forces on x at t equals the mass of x times the acceleration of x at t). (iii) Try to solve the resulting
system of differential equations. (iv) Check whether the resulting time-dependent trajectories fit the empirical
function mentioned in the explanandum; if yes, the conjecture is preliminarily confirmed; if no, then search for
(perturbing) boundary conditions and/or forces that may have been overlooked.

S3S2S1

T1

*

S3S2S1

T2

*

*

Fig. 7.5 Two alternative trees of descendance; 	 D muta-
tion of non-F into F

descendance T2 in which A first splits into S1 and a com-
mon F-less ancestor of S2 and S3 requires two such
mutations (Fig. 7.5). So probabilistically T1 is favored
as against T2.

There are some well-known examples were close-
ness of species due to common descent does not go
hand in hand with closeness in terms of phenotypic
similarities: Examples of this sort are recognized be-
cause there are several independent kinds of evidence
that the tree of descendance must simultaneously ex-
plain, in particular:

1. Phenotypic similarities
2. Molecular similarities
3. The fossil record [7.44, Ch. 17].

An example of qualitative-model abduction in the
area of humanities is interpretation [7.31, Sect. 4.1].
The explanandum of interpretations are the utterances,
written text, or the behavior of given persons (speakers,
authors, or agents). The abducted models are conjec-
tures about the beliefs and intentions of the given
persons. The general background theory is formed by
certain parts of folk psychology, in particular the gen-
eral premise of all rational explanations of actions,
namely, that normally or ceteris paribus, persons act
in a way that is suited to fulfill their goals given their
beliefs about the given circumstances [7.45, Sect. 1].
More specific background assumptions are hermeneu-
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tic rationality presumptions [7.46], Grice’s maxims of
communicative cooperation [7.47], and common con-
textual knowledge. The investigation of interpretation
as an abductive process is also an important area in
AI [7.48].

What all abduction schemata discussed so far have
in common is that they are driven by known laws or

theories, and hence, they work within a given con-
ceptual space. In other words, the abduction schemata
discussed so far cannot introduce new concepts. In the
next section we turn to abduction schemata that can do
this: Since their explanans postulate the existence of
a new kind of property or relation, we call them second-
order existential abductions.

7.6 Second-Order Existential Abduction

The explanandum of a second-order existential ab-
duction consists of one or several general empirical
phenomena, or laws. What one abducts is an at least
a partly new property or kind of concept governed by
an at least partly new theoretical law. Depending on
whether the concept is merely partly or completely new,
the abduction is driven by extrapolation, analogy, or by
pure unification. We discuss these kinds of abductions
in the following subsections Sects. 7.6.1–7.7.4.

7.6.1 Micro-Part Abduction

In this most harmless case of second-order existen-
tial abduction, one abducts a hypothesis about the
unobservable micro-parts of observable objects that
obey the same laws as the macroscopic objects, in or-
der to explain various observed empirical phenomena.
The prototypical example is the atomic hypothesis that
was already conjectured in antiquity by Leucippus and
Democritus and was used to explain such phenomena
as the dissolution of sugar in water. These philosophers
have abducted a new natural kind term: atoms, which
are the smallest parts of all macroscopic bodies, be-
ing too small to be observable, but otherwise obeying
the same mechanical laws as macroscopic bodies. So
what one does here is to extrapolate from macroscopic
concepts and laws to the microscopic domain – whence
we may also speak here of extrapolative abduction. In
the natural sciences after Newton, the atomic hypothe-
sis turned out to have enormous explanatory power. For
example, Dalton’s atomic hypothesis had successfully
explained Avogadro’s observation that equal volumes
of gases contain the same number of gas particles. Dal-
ton also postulated that all substances are composed of
molecules built up from certain atoms in certain integer-
valued ratios, in order to explain the laws of constant
proportions in chemical reactions [7.49, pp. 259]. The
different states of aggregation of substances (solid,
fluid, and gaseous) are explained by different kinds of
intermolecular distances and interactions. We conclude
our list of examples here, although many more applica-
tions of the atomic hypothesis could be mentioned.

Extrapolative micro-part abductions differ from
analogical abductions insofar as the atoms are not
merely viewed as analogical to mechanical particles;
they are literally taken as tiny mechanical particles
(though too small to be observable). Nevertheless one
may view extrapolative abductions as a pre-stage of
analogical abductions, which we are going to discuss
now.

7.6.2 Analogical Abduction

Here one abducts a partially new concept together
with partially new laws that connect this concept with
given (empirical) concepts, in order to explain the given
law-like phenomenon. The concept is only partly new
because it is analogical to familiar concepts, and this is
the way in which this concept was discovered. So ana-
logical abduction is driven by analogy.We first consider
Thagard’s [7.24] example of sound waves.

Background knowledge: Laws of propagation and
reflection of water waves.

Phenomenon to be explained: Propagation and
reflection of sound
DDDDDDDDDDDDDDDDDDDDDDDD
Abductive conjecture: Sound consists of
atmospheric waves in analogy to water waves.

According to Thagard [7.24, p. 67] analogical abduc-
tion results from a conceptual combination: the already
possessed concepts of wave and sound are combined
into the combined concept of a sound wave. I think that
this early analysis of Thagard [7.24] is too simple. In
my view, the crucial process that is involved in ana-
logical abduction is a conceptual abstraction based on
an isomorphic or homomorphic mapping. What is ab-
ducted by this analogy is not only the combined concept
of sound wave, but at the same time the theoretical con-
cept of a wave in abstracto (the later paper of Holyoak
and Thagard [7.50] supports this view).

A clear analysis of analogy based on conceptual ab-
straction has been given by Gentner [7.51]. According
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to Gentner’s analysis, an analogy is a partial isomor-
phic mapping m between two relational structures, the
source structure (D, (Fi W 1
 i 
 m), (Ri W 1
 i
 n))
and the target structure (D�, (F�

i W 1
 i
 m�), (R�

i W
1
 i 
 n�)), where the Fi are monadic predicates and
the Ri are relations. Gentner argues convincingly [7.51,
p. 158] that an analogical mapping preserves only the
relations of the two structures (at least many of them,
including second-order relations such as being-a-cause-
of ), while monadic properties are not preserved. This is
what distinguishes an analogy from a literal similar-
ity. For example, our solar system is literally similar
to the star system X12 in the Andromeda galaxy, inas-
much as the X12 central star is bright and yellow like
our sun, and surrounded by planets that are similar to
our planets. Thus, our sun and the X12 star have many
(monadic) properties in common. On the other hand,
an atom (according to the Rutherford theory) is merely
analogical to our solar system: the positively charged
nucleus is surrounded by electrons just as the sun is
surrounded by planets, being governed by a structurally
similar force law. But concerning its monadic proper-
ties, the atomic nucleus is very different from the sun
and the electrons are very different from the planets.
Formally, then, an analogical mapping m maps a sub-
set D0 of D bijectively into a subset D0� of D�, and
many (but not necessarily all) relations Ri, with i 2 I �
f1; : : : ; ng, into corresponding relations R�

m.i/, such that
the following holds: For all a, b 2 D0 and Ri with i 2 I,
aRib iff m.a/R�

m.i/m.b/, where iff stands short for if
and only if. In this sense, the Rutherford-analogy maps
sun into nucleus, planet into electron, gravitational
attraction into electrical attraction, surrounding into
surrounding, etc. It follows from the existence of such
a partial isomorphic mapping that, for every explana-
tory law L expressed in terms of mapping-preserved
relations that hold in the D0-restricted source structure,
its starred counterpart L� will hold in theD0�-restricted
target structure. In this way, explanations can be trans-
ferred from the source to the target structure.

Every partial isomorphism gives rise to a concep-
tual abstraction by putting together just those parts
of both structures that are isomorphically mapped into
each other: the resulting structure (D0, (Ri W i 2 I)),
which is determined up to isomorphism, is interpreted
in an abstract system-theoretic sense. In this way, the

abstract model of a central force system arises, with
a central body, peripherical bodies, a centripetal and
a centrifugal force [7.51, p. 160]. So, finding an ab-
ductive analogy consists in finding the theoretically
essential features of the source structure that can be
generalized to other domains, and this goes hand-in-
hand with forming the corresponding conceptual ab-
straction. In our example, the analogical transfer of
water waves to sound waves can only work if the theo-
retically essential features of (water) waves have been
identified, namely, that waves are produced by cou-
pled oscillations. The abductive conjecture of sound
waves also stipulates that sound consists of coupled os-
cillations of the molecules of the air. Only after the
theoretical model of sound waves has been formed,
does a theoretical explanation of the propagation and
reflection of sound waves become possible.

7.6.3 Hypothetical (Common) Cause
Abduction

This is the most fundamental kind of conceptually
creative abduction. The explanandum consists either
(a) in one phenomenon or (b) in severalmutually inter-
correlated phenomena (properties or regularities). One
abductively conjectures in case (a) that the phenomenon
is the effect of one single hypothetical (unobservable)
cause, and in case (b) that the phenomena are effects
of one common hypothetical (unobservable) cause. I
will argue that only case (b) constitutes a scientifically
worthwhile abduction, while (a) is a case of pure specu-
lation. In both cases, the abductive conjecture postulates
a new unobservable entity (property or kind) together
with new laws connecting it with the observable prop-
erties, without drawing on analogies to concepts with
which one is already familiar. This kind of abduction
does not presuppose any background knowledge ex-
cept knowledge about those phenomena that are in need
of explanation. What drives hypothetical-cause abduc-
tion is the search for explanatory unification, usually in
terms of hidden or common causes – but later on, we
will also meet cases where the unifying parameters have
a merely instrumentalistic interpretation. Hypothetical
(common) cause abduction is such a large family of ab-
duction patterns that we treat it separately in the next
section.

7.7 Hypothetical (Common) Cause Abduction Continued

Salmon [7.52, pp. 213] has emphasized the importance
of finding common-cause explanations for the justifi-
cation of scientific realism. However, Salmon does not
inform us about the crucial difference between scien-

tific common-cause abduction and speculative (cause)
abduction. In the next two subsections I argue that the
major criterion for this distinction is causal unification
and (connected with this) independent testability.
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7.7.1 Speculative Abduction Versus Causal
Unification: A Demarcation Criterion

Ockham’s razor is a broadly accepted maxim among
IBE-theorists: an explanation of observed phenomena
should postulate as few new theoretical (unobservable)
entities or properties as possible [7.53, pp. 97–100].
Upon closer inspection this maxim turns out to be
a gradual optimization criterion, for an explanation is
better, the fewer theoretical (hidden) entities that it pos-
tulates, and the more phenomena it explains. However,
by introducing sufficiently many hidden variables one
can explain anything one wants. Where is the borderline
between reasonably many and too many hidden vari-
ables postulated for the purpose of explanation? Based
on Schurz [7.1, p. 219], [7.54, pp. 246], [7.40, pp. 112]
I suggest the following demarcation criterion.

DC (Demarcation Criterion) for 2nd-Order Abduction:
The introduction of one new theoretical variable
(entity or property) merely for the purpose of ex-
plaining one phenomenon is always speculative and
post facto, i. e., has no independently testable empir-
ical consequences. Only if the postulated theoretical
variable explains many intercorrelated but analyt-
ically independent phenomena, and in this sense
yields a causal or explanatory unification, is it a le-
gitimate scientific abduction that is independently
testable and, hence, worthy of further investigation.

Let us explain the criterion (DC) by way of ex-
amples. The simplest kind of speculative abduction
explains every particular phenomenon P by a special
power who (or which) has caused this phenomenon. In
what follows, read  .'/ as some power of kind  in-
tends that ' happens, where the formula ' may either
express a singular fact or an empirical regularity or law
that is frequently clothed in the form of an empirical
disposition. Accordingly, we have two kinds of specu-
lative abductions – see Table 7.2.

Table 7.2

Speculative Fact-Abduction : Example:
Explanandum E: Ca John got a cold.

==============================================================================

Conjecture H:  .Ca/^8'. .'/! '/ God wanted John to get a cold, and whatever God
wants, happens.

Speculative Law-Abduction: Example:
Explanandum E: 8x.Ox! Dx/ Opium has the disposition to make people sleepy

(after consuming it).

==============================================================================

Conjecture H: 8x.Ox!  .Dx//^8x. .Dx/! Dx/ Opium has a special power (a virtus dormitiva)
that causes its disposition to make people sleepy.

Speculative abductions have been performed by our
human ancestors since the earliest times. All sorts of
unexpected events can be pseudo-explained by specu-
lative fact-abductions. They do not achieve unification,
because for every event (E) a special hypothetical wish
of God ( .E/) has to be postulated [7.55, p. 86]. For
the same reason, such pseudo-explanations are entirely
post hoc and don’t entail any empirical predictions by
which they could be independently tested.

Speculative law-abductions were especially com-
mon in the Middle Ages: every special healing capacity
of a certain plant (etc.) was attributed to a special power
that God had implanted in nature for human benefit.
The example of the virtus dormitiva was ironically em-
ployed by Molieré, and famous philosophers have used
it as a paradigm example of a pseudo-explanation [7.56,
Book 5, Ch. 7, Sect. 2], [7.57, Ch. 6, Sect. 2]. Specu-
lative law-abductions violate Ockham’s principle since
we have already a sufficient cause for the disposition
to make one sleepy, namely the natural kind opium, so
that the postulated power amounts to a redundant multi-
plication of causes. More formally, the schema does not
offer unification because for every elementary empirical
law one has to introduce two elementary hypothetical
laws to explain it [7.55, p. 87]. For the same reason, the
abductive conjecture has no predictive power that goes
beyond the predictive power of the explained law.

I do not want to diminish the value of cognitive
speculation by this analysis. Humans have an inborn in-
stinct to search for causes [7.58, Ch. 3], and cognitive
speculations are the predecessor of scientific inquiry.
However, it was pointed out in Sect. 7.1 that the best
available explanations are often not good enough to
count as rationally acceptable. The above speculative
abduction patterns can be regarded as the idling of our
inborn explanatory search activities when applied to
events for which a proper explanation is out of reach.

In contrast to these empty causal speculations, sci-
entific common cause abductions have usually led to
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genuine theoretical progress. The leading principle of
causal unification is the following.

(CC) Causal Connection Principle: If two properties or
kinds of events are probabilistically dependent, then
they are causally connected in the sense that either
one is a cause of the other (or vice versa), or both
are effects of a common cause (where X is a cause
of Y iff a directed path of cause-effect relations leads
from X to Y).

The causal connection principle (CC) does not en-
tail that every phenomenon must have a sufficient
cause – it merely says that all correlations result from
causal connections. This principle has been empiri-
cally corroborated in almost every area of science, in
the sense that conjectured common causes have been
identified in later stages of inquiry; the only known
exception is quantum mechanics. Here we treat (CC)
not as a dogma, but as a meta-theoretical principle
that guides our causal abductions. (CC) is a conse-
quence of the more general causal Markov condition,
which is the fundamental axiom of the theory of causal
nets [7.59, pp. 396], [7.40, p. 16], [7.60, pp. 29].
Schurz and Gebharter [7.61, Sect. 2] demonstrate that
the causal Markov condition can itself be justified via
an explanatory abduction inasmuch as it yields the
best and only plausible explanation of two (in)stability
properties of statistical correlations: screening-off and
linking-up.

The way that the causal connection principle leads
to common-cause abduction is as follows: Whenever
we encounter several intercorrelated phenomena, and –
for some reason or other – we can exclude that one
causes the other(s), then (CC) requires that these phe-
nomena must have some (unobservable) common cause
that simultaneously explains all of them. The most im-
portant scientific example of this sort is common cause
abduction from correlated dispositions: since disposi-
tions cannot cause other dispositions, their correlations
must have a common intrinsic cause.

Electronic
energy band
model

Metal

Characteristic glossing
Smooth surface
Hardness
Elasticity
Ductility (at high temperatures)
High conductivity of electricity
High conductivity of heat
Solvability in acid
...

Theoretical model
(micro-structure)

Common cause:
intrinsic structure

Common dispositions of certain kinds of
substances such as iron, tin, copper, ...

Fig. 7.6 Common-cause
abduction of the chemical
kind term metal

7.7.2 Strict Common-Cause Abduction
from Correlated Dispositions
and the Discovery
of New Natural Kinds

In this section I analyze common-cause abduction in
a deductivistic setting, which is appropriate when the
domain is ruled by strict laws. Probabilistic generaliza-
tions are treated in Sect. 7.7.3. Recall the schema of
speculative law-abduction, where one dispositionD oc-
curring in one (natural) kind F was pseudo-explained
by a causal power  .D/. In this case of a single disposi-
tion, the postulate of a causal power .D/ that mediates
between F and D is an unnecessary multiplication
of causes. But in the typical case of a scientifically
productive common-cause abduction, we have several
(natural) kinds F1; : : : ;Fn all of which have a set of
characteristic dispositions D1; : : : ;Dm in common –
with the result that all these dispositions are correlated.
Assuming that it is excluded that one disposition can
cause another one, then by principle (CC) these corre-
lated dispositions must be the common effects of a cer-
tain intrinsic structure that is present in all of the kinds
F1 : : : ;Fn as their common cause. For example, the
following dispositional properties are common to cer-
tain substances such as iron, copper, tin, etc. (Fig. 7.6):
a characteristic glossing, smooth surface, characteris-
tic hardness, elasticity, ductility, high conductivity of
heat and of electricity. Already before the era of mod-
ern chemistry, craftsmen had abducted that there exists
a characteristic intrinsic property of substances that is
the common cause of all these (more-or-less strictly)
correlated dispositions, and they called it metallic char-
acter Mx. To be sure, the natural kind term metal
of premodern chemistry was theoretically hardly un-
derstood. But the introduction of a new (theoretical)
natural kind term is the first step in the development
of a new research program. The next step was then
to construct a theoretical model of the postulated kind
metal, by which one can give an explanation of how
the structure of a metal can cause all these correlated
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dispositions at once. In combination with atomic (and
molecular) hypotheses the abducted natural kind terms
of chemistry became enormously fruitful. In modern
chemistry, the molecular microstructure of metals is
modeled as an electron band of densely layered en-
ergy levels among which the electrons can easily shift
around [7.62, pp. 708].

The structural pattern of the example in Fig. 7.6 can
be formalized as in Tab. 7.3. The abductive conjecture
H logically implies the explanandumE and yields a uni-
fication of n �m empirical (elementary) laws by nCm
theoretical (elementary) laws, which is a polynomial
reduction of elementary laws. At the same time, H gen-
erates novel empirical consequences by which it can be
independently tested, as follows.H does not only postu-
late the theoretical property  x to be a merely sufficient
cause of the dispositions; it also assumes that these dis-
positions are an empirical indicator of the theoretical
property  x [7.54, p. 111]. This indicator relation may
either be reconstructed in a strict form (as indicated in
brackets [$]), or in a weaker probabilistic form. In ei-
ther case, if we know for some new kind F� that it
possesses some of the dispositions, then the abducted
common-cause hypothesis predicts that F� will also
possess all the other dispositions. This is a novel (qual-
itatively new) prediction. For example, we can predict
solubility in acid for a new kind of metallic ore, even if
this ore has never been put into acid before. Novel pre-
dictions are a characteristic virtue of genuine scientific
theories that go beyond simple empirically inductive
generalizations [7.54, p. 112].

Having described the basic principles and mecha-
nisms of common-cause abduction, we must add four
important clarifications:

1. Instrumentalist versus realist interpretations: In
common-cause abduction, a new theoretical prop-
erty is postulated or discovered that accomplishes
a unified explanation of correlated empirical phe-
nomena. Even if the theory-core describing this
property it is independently confirmed in later
experiments, there is no guarantee that the hy-
pothesized theoretical property has realistic refer-

Table 7.3

Common-cause abduction (abducted theoretical concept:  ).
Explanandum E: All kinds F1; : : : ;Fn have the dispositions D1; : : : ;Dm in common.

8i 2 f1; : : : ; ng8j 2 f1; : : : ;mg W 8x.Fix! Djx/.

==============================================================================

Abductive conjecture H: All F1s; : : : ;Fns have a common intrinsic and structural property  that is a cause
and an indicator of all the dispositionsD1; : : : ;Dm.

8i 2 f1; : : : ; ng W 8x.Fix!  x/^8j 2 f1; : : : ;mg W 8x. x! Œ$�Dix/.

ence. Also a purely instrumentalistic interpretation
of a theoretical concept is possible, as a useful
means of unifying empirical phenomena (which is
defended, for example, by van Fraassen [7.63]).
However, the more empirically successful a theory
becomes, the more plausible it is to assume that the
theoretical concept producing this success actually
does refer to something real [7.64, Sect. 6.2].

2. Addendum on dispositions: I understand disposi-
tions as conditional (or functional) properties: That
an object x has a disposition D means that when-
ever certain initial conditions C are (or would
be) satisfied for x, then a certain reaction R of
x will (or would) take place. This understanding
of dispositions is in accordance with the received
view [7.65, p. 44], [7.66]. Dispositional properties
are contrasted with categorical properties, which
are not defined in terms of conditional effects, but
in terms of occurrent intrinsic structures or states
(in the sense of Earman [7.67, p. 94]). Dispo-
sitional properties can have categorical properties
such as molecular structures as their causal basis,
but they are not identical with them. Although the
received view is not uncontroversial [7.68, 69], it is
strongly supported by the situation that underlies
common-cause abduction (Fig. 7.7): Here different
dispositions have the same molecular structure as
their common cause; so they cannot be identical
with this molecular structure.
Prior et al. [7.66, p. 255] argue that since dispo-
sitions are functional properties, they can only be
the effects of (suitable) categorical causes, but can-
not themselves act as causes. If this argument is
not convincing enough, here is a more detailed
argument showing why, at least normally, disposi-
tions cannot cause each other. Assume D1 and D2

are two correlated dispositions, each of them being
equivalent with an empirical regularity of the above-
mentioned form: Dix$def 8t.Cixt! Rixt/ (for i 2
f1; 2g, t for the time variable). The implication ex-
presses a cause-effect relation. Now, if D1 would
cause D2, the only possible causal reconstruction
would be to assume that C1 causes C2, which causes
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R2, which in turn causes R1 .C1! C2! R2!
R1/. But normally this is impossible, since the ini-
tial conditions are freely manipulable and, hence,
causally independent. For example, my decision to
irradiate a substance with light (to test for its gloss-
ing) can in no way cause my decision to heat it (to
test for its ductibility).
A final remark: When I speak of a molecular struc-
ture as being the cause of a disposition, I understand
the notion of cause in a more general sense than
the narrow notion of event causation. This extended
usage of cause is reducible to the notion of event
causation as follows: A disposition Dx, being de-
fined as the conditional property 8t.Cxt! Rxt/, is
caused by a categorical property  x iff each mani-
festation of the disposition’s reaction, Rxt, is caused
by  x together with the initial conditions Cxt, or
formally, iff 8x8t.Lx^Cxt! Rxt/.

3. The precise explication of causal unification –
many effects explained by one or just a few
causes – presupposes formal ways of counting
elementary phenomena, expressed by elementary
statements. There are some technical difficulties
involved with this. Solutions to this problem have
been proposed in Schurz [7.70], Gemes [7.71], and
more recently in Schurz and Weingartner [7.72].
The following explication is sufficient for our
purpose: We represent every given belief system
(or set of statements) K by the set of all those
elementary statements S of the underlying language
that are relevant consequences of K, in the sense
that no predicate in S is replaceable by another
arbitrary predicate (of the same place-number),
salva validitate of the entailment K k �S. Here,
a statement S is called elementary iff S is not log-
ically equivalent to a nonredundant conjunction of
statements S1^� � �^Sn each of which is shorter than
S. Borrowing the terminology from Gemes [7.71],
we call the elementary relevant consequences of K
K’s content elements. It can be shown that every set
of sentences is classically equivalent with the set
of its content elements; so no information is lost by
this representation [7.72, Lemma 7.2]. But note that
our analysis of common-cause abduction does not
depend on this particular representation method;
it merely depends on the assumption that a natural
method of decomposing the classical consequence
class of a belief system K into a nonredundant set
of smallest content elements exists.

Many more examples of common-cause abduction
in the natural sciences can be given. For example,
Glauber’s discovery of the central chemical concepts of
acids, bases, and salts in the 17th century was based

on a typical common-cause abduction [7.49, pp. 196].
The fundamental common-cause abduction of Newto-
nian physics was the abduction of the gravitational
force as the common cause of the disposition of bod-
ies on the Earth to fall and the disposition of the planets
to move around the Sun in elliptic orbits. Here, New-
ton’s qualitative stipulation of the gravitational force as
the counterbalance of the centrifugal force that acts on
the circulating planets was his abductive step, while
his quantitative calculation of the mathematical form
of the gravitational law was a deduction from Kepler’s
third law plus this abductive conjecture [7.73, p. 203].
Another example is the abduction of the goal(s) of
a person as the common cause of her behavior un-
der various conditions. Prendinger and Ishizuka [7.25,
p. 324] have utilized common-cause abduction in au-
tomated web usage mining to infer the interests of
Internet users based on their browsing activities. Korn-
messer [7.74] shows that common-cause abduction was
the leading principle in the development of the princi-
ples and parameters approach in theories of generative
grammar.

Common-cause abduction can also be applied to or-
dinary, nondispositional properties or (kinds of) events
that are correlated. However, in this case one has first to
consider more parsimonious causal explanations that do
not postulate an unobservable common cause but stipu-
late one of these events or properties to be the cause of
the others. For example, if the three kinds of events F,
G, and H (for example, eating a certain poison, having
difficulties in breathing, and finally dying) are strictly
correlated and always occur in the form of a tempo-
ral chain, then the most parsimonious conjecture is that
these event types form a causal chain. Only in the spe-
cial case where two (or several) correlated event types,
say F and G, are strongly correlated, but we know that
there cannot be a direct causal mechanism that connects
them, is a common-cause abduction the most plausible
conjecture. An example is the correlation of lightning
and thunder: we know by induction from observation
that light does not produce sound, and hence, we con-
jecture that there must be a common cause of both of
phenomena.

We finally discuss our demarcation criterion (DC)
in the light of Bayesian confirmation theory. Accord-
ing to criterion (DC), a speculative hypothetical cause
explanation can never be regarded as confirmed by
the evidence; only a common-cause explanation can.
A Bayesian would probably object that our demarca-
tion between single- and common-cause abduction is
just a matter of degree [7.75, p. 141]. Recall from
Sect. 7.1 that a given piece of evidence E raises the
probability of every hypothesis H that increases E’s
probability (since by Bayes’ theorem, P.HjE/=P.H/D
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P.EjH/=P.E//. So according to standard Bayesian no-
tions of confirmation [7.76] the evidence E: John got
a cold does indeed confirm the speculative post facto
speculation Hspec: God wanted John to get a cold –
just to a minor degree in comparison to the scientific
hypothesis Hsci: John was infected by a virus. So it
seems that our demarcation criterion is in conflict with
Bayesian confirmation theory.

Schurz [7.77] suggests a way of embedding (DC)
into the Bayesian perspective. In all cases of post facto
explanations, the hypothesis H results from fitting a la-
tent (unobserved) first- or second-order variable X to
the observed evidence E. So H entails the more gen-
eral background hypothesis 9XH.X/ in which the latent
variable X is unfitted and existentially generalized. In
our example, 9XHspec.X/ says: There exists a God who
wants some X, and whatever God wants, happens.Hspec

results from 9XHspec.X/ by replacing X by John got
a cold and omitting the existential quantifier. Note that
9XHspec.X/ is a content element of Hspec that transcends
(is not contained in) the evidence.

Schurz [7.77] argues that the probability-raising of
Hspec by E is a case of pseudo-confirmation and not of
genuine confirmation, because the probability increase
of Hspec by E does not spread to Hspec’s evidence-
transcending content element 9XHspec.X/. This follows
from the fact that 9XHspec.X/ can be fitted to every
possible piece of evidence whatsoever. Therefore the
probability of 9XHspec.X/ remains as low as it was
before conditionalization, for arbitrarily many pieces
of evidence, whence the posterior probability of Hspec

(which entails 9XspecH.X/) also remains low.
Also note that the scientific hypothesisHsci contains

a latent variable X that has been fitted to the evidence
E. In our example the unfitted hypothesis 9XHsci.X/
says that every disease is caused by some pathogenic
agent X, which is fitted to John’s cold by replacing X
by a virus. In this case, however, Hsci implies further
empirical consequences E0 (e.g., that John’s immune
system will contain characteristic antibodies) by which
it can independently tested. If such independent evi-
dence E0 raises the probability of Hsci as well, this is no
longer the result of a post facto fitting, but an instance of
genuine confirmation, because now this probability in-
crease spreads to Hsci’s evidence-transcending content
element 9XsciH.X/ [7.77, Sect. 4].

7.7.3 Probabilistic Common-Cause
Abduction and Statistical Factor
Analysis

Statistical factor analysis is an important branch of sta-
tistical methodology whose analysis (according to my
knowledge) has been neglected by philosophers of sci-

ence (with the exception ofHaig [7.78], who shares my
view of factor analysis). In this section I want to show
that factor analysis is a certain generalization of hypo-
thetical common-cause abduction, although sometimes
it may be better interpreted in a purely instrumentalistic
way. For this purpose, I assume that scientific concepts
are represented as statistical random variables X; Y; : : : ,
each of which can take several values xi, yj. (A ran-
dom variable X W D! IR assigns to each individual d of
the domain D a real-valued number X.d/; a dichotomic
property Fx is coded by a binary variable XF with val-
ues 1 and 0.) The variables are assumed to be at least
interval-scaled, and the statistical relations between the
variables are assumed to be monotonic – the linearity
assumption of factor analysis yields good approxima-
tions only if these conditions are satisfied.

Let us start from the example of the previous
section, where we have n empirically measurable
and highly intercorrelated variables X1; : : : ;Xn, i. e.,
cor.Xi;Xj/Dhigh for all 1
 i; j 
 n. An example would
be the scores of test persons on n different intelligence
tests. We assume that none of the variables screens
off the correlations between any other pair of variables
(i. e., cor.Xi;XjjXr/¤ 0 for all r¤ i; j), which makes it
plausible that these n variables have a common cause,
distinct from each of the variables – a theoretical fac-
tor, call it F. In our example, F would be the theoretical
concept of intelligence. Computationally, the abductive
conjecture asserts that for each 1
 i 
 n, Xi is approxi-
mated by a linear function fi of F, fi.F.x//D aiF.x/, for
given individuals x in the domain D (since we assume
the variables Xi to be z-standardized, the linear function
fi has no additive termCbi). The true Xi-values are scat-
tered around values predicted by this linear function,
fi.F/, by a remaining random dispersion si; the square
s2i is the remainder variance. According to the stan-
dard linear regression technique, the optimally fitting
coefficients ai are computed so as to minimize this re-
mainder variance. Visually speaking, the Xi-values form
a stretched cloud of points in an n-dimensional coordi-
nate system, and F is a straight line going through the
middle of the cloud such that the squared normal devia-
tions of the points from the straight line are minimized.

So far we have described the linear-regression
statistics of the abduction of one factor or cause. In
factor analysis one also takes into account that the mu-
tually intercorrelated variables may have not only one
but several common causes. For example, the variables
may divide into two subgroups with high correlations
within each subgroup, but low correlations between the
two subgroups. In such a case the reasonable abductive
conjecture is that there are two independent common
causes F1 and F2, each responsible for the variables
in one of the two subgroups. In the general picture of
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factor analysis, there are n given empirical variables
Xi, which are explained by k < n theoretical factors (or
common causes) Fj as follows (for the following [7.79,
Ch. 3]; note that I can describe here only the most
common method of factor analysis without discussing
subtle differences between different methods):

X1 D a11F1C � � �C a1kFkC s1
: : :

Xn D an1F1C � � �C ankFkC sn :

This is usually written in a matrix formulation: XD
F �A0. While each variable Xi and factor Fj takes dif-
ferent values for the different individuals of the sample,
the factor loadings aij are constant and represent the
causal contribution of factor Fj to variable Xi. Given
the further assumption that the factor variables Fj are
standardized, each factor loading aij expresses the cor-
relation between variable Xi and factor Fj, cor.Xi;Fj/.
Since the variance of each variable Xi equals the sum of
the squared factor loadings a2ij and the remainder vari-
ance si, each squared factor loading a2ij measures the
amount of the variance of Xi explained (i. e., statisti-
cally predicted) by factor Fj. The sum of the squared
loadings of a factor Fj,˙1�i�naij, measures the amount
of total variance of the variables which is explained by
Fj, and the sum of all of the squared loadings divided
through n equals the percentage of variance explained
by the extracted factors, which is a measure for the ex-
planatory success of the factor-statistical analysis.

The major mathematical technique to find those
k < n factors that explain a maximal amount of the total
variance is the so-called principal component analysis.
Instead of providing a detailed mathematical explana-
tion, I confine myself to the following remarks. The k
factors or axes are determined according to two crite-
ria:

(i) They are probabilistically independent (or orthogo-
nal) to each other

(ii) The amount of explained variance is maximized
(i. e., the remainder variances are minimized).

Visually speaking, the first factor F1 is determined
as an axis going through the stretched cloud of points
in the n-dimensional coordinate system; then the next
factor F2 is determined as an axis orthogonal to F1, and
so on, until the k < n factor axes are determined by the
system of coefficients aij.

The success of an explanation of n variables by
k < n factors is greater, the less the number k com-
pared to n, and the higher the amount of the total
variance explained by the k factors. This fits perfectly
with my account of unification of a given set of n

empirical variables by a small set of k theoretical vari-
ables, as explained in Sect. 7.7.1. While the amount of
explained variance of the first factor is usually much
greater than 1, this amount becomes smaller and smaller
when one introduces more and more factors (in the triv-
ial limiting case kD n the amount of explained variance
becomes 100%). According to the Kaiser–Guttman cri-
terion one should introduce new factors only as long
as their amount of explained variance is greater than
1 [7.79, p. 75]. Hence, a theoretical factor is only con-
sidered nontrivial if it explains more than the variance
of just one variable and, in this sense, offers a uni-
ficatory explanation to at least some degree. This is
the factor analytic counterpart of my suggested de-
marcation criterion for hypothetical-cause abduction
(DC).

We have seen in Sect. 7.7.2 that not only realistic but
also instrumentalistic interpretations of the abducted
factors are possible. In fact, several statisticians tend to
interpret the results of a factor analysis cautiously as
a merely instrumentalistic means of data reduction in
the sense of representing a large class of intercorrelated
empirical variables by a small class of independent the-
oretical variables. In spite of this fact, I think that the
intended interpretation of the factors of a factor analy-
sis is their realistic interpretation as common causes, for
that is how they are designed. I regard the instrumental-
istic perspective as an important warning that not every
empirically useful theoretical structure must correspond
to an existing structure of reality.

7.7.4 Epistemological Abduction to Reality

The relevance of abduction for realism is usually dis-
cussed within the context of theories and theoretical-
entity realism. For many epistemologists [7.4, p. 44],
[7.21, Chap. IV.5–6], the fundamental problem of com-
mon sense realism – the reasoning from introspective
sense data to an external reality causing these percep-
tions – is an inference sui generis, and its justification is
a problem of its own. In contrast to this position, I wish
to point out that reasoning from introspective sense
data to common-sense realism is in perfect fit with the
pattern of common-cause abduction [7.53, p. 98]. The
hypothesis of external objects that cause our sensual ex-
perience yields a common-cause explanation of a huge
set of intercorrelations between our introspective expe-
riences.

First, there are the intra-sensual intercorrelations,
in particular those within our system of visual per-
ceptions. There are potentially infinitely many 2-D
visual images of a perceptual object, but all these 2-
D images are strictly correlated with the position and
angle at which we look at that object; so these cor-
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relations have a common-cause explanation in terms
of three-dimensional external objects by the laws of
the perspectival projection. To be sure, these common-
cause abductions are mainly unconscious and rely on
inborn computations performed by the visual cortex of
our brains. What we consciously experience are the ab-
ducted three-dimensional objects that make up the mind
of the naive realist. However, certain situations – for
example, the case of visual illusions caused by 3-D
pictures – make it plain that what underlies our three-
dimensional visual appearances is a complicated ab-
ductive computational process [7.80]. Moreover, since
in our ordinary visual perceptions some objects partly
conceal other objects that are behind them, our visual
abductions always include the task of Gestalt comple-
mentation. Identification of three-dimensional objects
based on two-dimensional projective images is an im-
portant abductive task in the AI field of visual object
recognition [7.81, Ch. 24.4]. Scientifically advanced
versions of visual abduction where one abducts the
shape of entire objects from sparse fragments have been
analyzed in the field of archeology [7.82].

The inter-sensual correlation between different sen-
sual experiences, in particular between visual percep-
tions and tactile perceptions, is the second important

basis for the unconscious abduction to an outer reality –
in fact, these correlations seem even to be the major fun-
dament of our naive belief in the outer reality. If you
have a visual appearance of an object, but you are un-
sure whether it is a mere visual illusion or not, then you
will probably go to the object and try touch it – and
if you can, then your realistic desires are satisfied. On
the other hand, visual appearances that do not corre-
spond to tactile ones, so-called ghosts, have frightened
the naively realistic mind and occupied its fantasy since
the earliest times.

This concludes my analysis of patterns of abduc-
tion. Instead of a conclusion, I refer to the classification
of abduction patterns in Fig. 7.1, and to my main the-
ses and results as explained in Sect. 7.1, which are
densely supported by the details of my analysis. As a fi-
nal conclusion, I propose the following: As Peirce once
remarked [7.20, CP 6.500], the success of scientists at
finding true hypotheses among myriads of possible hy-
potheses seems to be a sheer miracle. I think that this
success becomes much less miraculous if one under-
stands the strategic role of patterns of abduction. In the
concluding section, I present applications of abductive
reasoning in two neighboring fields: belief revision and
instrumental or technological reasoning.

7.8 Further Applications of Abductive Inference

7.8.1 Abductive Belief Revision

The theory of belief revision formulates rules for the
rational change of a given belief system (knowledge) K
upon receiving new evidence. K is understood as a set
of (believed) sentences that is closed under deductive
consequence (K D Cn.K/) and the pieces of evidence
Ei are usually (though not always) taken as certainly
true (the so-called axiom of success). According to
the well-known AGM-theory of belief revision (after
Alchourrón, Gärdenfors and Makinson [7.83, 84]), the
rational change of a belief systemK upon receiving new
evidence E is characterized as follows:

1. If E is consistent with K, this change is called the
expansion of K by E, abbreviated as KCE, and de-
fined as KCEDdef Cn.K[fEg/, i. e., the logical
closure of the union of K and fEg.

2. If E is inconsistent with K (i. e., K entails :E), this
change is called the revision of K by E, abbreviated
as K 	E and defined as K 	EDdef Cn..K�:E/C
E/, where K�:E is called the contraction of K by
:E and intuitively characterized as a minimal yet
reasonable subset of K that is consistent with E.

Thus, K 	E is the closure of the expansion of K’s
contraction by :E with E; this definition is called
the Levi identity. There is no consensus about a most
reasonable or right contraction operation in the litera-
ture.

A general deficiency of standard definitions of be-
lief expansion and revision is their failure to represent
learning on the basis of evidence. This is a consequence
of the idea that the expansion or revision should always
be as minimal as possible [7.85, p. 80]. An alternative
is abductive belief expansion and revision. It rests on
the idea that the expansion or revision of K by new
evidence E should be the result of addingE to K and ab-
ducting a suitable explanation of E (assuming that such
an explanation is not already present in K).

In what follows, the abductive belief expansion or
revision of a belief system K by new evidence E is
abbreviated as KCCE or K 		E, respectively. A first
approach of this sort was initiated by Pagnucco [7.86],
who characterized the space of abductible explanations
in a maximally liberal way: an abduction (explanation)
of E given K may be any sentence S such that S en-
tails E within K; in the most trivial case, S is identical
with E. Thus, Pagnucco defines an abductive belief
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expansion operation as any operation CC satisfying
KCCED Cn.K[fSg/ for some sentence S such that
K[fSg is consistent and entails E (provided K[fEg is
consistent). Belief revision is then defined by the Levi
identityK		E Ddef .K�:E/CCE. A similar approach
to abductive belief revision is suggested in Aliseda [7.7,
pp. 184].

Schurz [7.85, pp. 88] argues that from the view-
point of philosophy of science, Pagnucco’s notion of
abduction is too weak, since not just any sentence
that logically entails E constitues a scientific explana-
tion of E. Schurz [7.85] utilizes the abduction patterns
classified in Fig. 7.1 to explicate corresponding op-
erations of abductive belief expansion and revision.
He defines abductive belief expansion as KCCEDdef

K[fEg[ abd.K;E/, where the triple (E; abd.E;K/;K)
expresses one of the abduction situations classified in
Fig. 7.1: E is the evidence to be explained, abd(E;K)
is the abductive conjecture, and K is the given back-
ground belief system that drives the abduction [7.85,
p. 93]. Next, Schurz [7.85, pp. 94–6] discovers that
an appropriate definition of abductive belief revision
fails to meet the Levi identity for two reasons, which
he calls the problems of old evidence and incremen-
tal belief revision. He defines abductive belief revision
based on a suitable notion of the abductive revision
of an explanatory hypothesis by contradicting evi-
dence [7.85, p. 96]. Operations of intelligent abductive
belief revision that are congenial in spirit have been
implemented in computer programs by Bharathan and
Josephson [7.87].

A related account to abductive belief revision has
been developed by Cevolani [7.88]. Cevolani agrees
with Schurz that the characterization of an explana-
tion as any sentences that entails the explanadum is
too weak. He suggests that the abductive hypothesis S
that in the given belief system K explains E should be
such that the expected verisimilitude of the resulting be-
lief systems KCCE or K 		E, respectively, increases.
Similar to Schurz, Cevolani observes that his so-defined
notion of abductive belief revision fails to satisfy the
Levi identity [7.88, p. 011].

Generalized abduction:
C: Abductandum, conclusion to be inferred
K: System of background beliefs
==========================================

Ordinary explanatory abduction
C is an observed (true) phenomenon
P is an optimal explanation of C
given K.

Instrumental abduction
C expresses a goal to be realized
P expresses an optimal means for realiz-
realizing P given K.

P: Abductans, abducted conjecture such that {P}  K entails C

Fig. 7.7 Generalized, explanatory and
instrumental abduction

7.8.2 Instrumental Abduction
and Technological Reasoning

Abductions in the standard meaning of this word are ex-
planatory in the sense that it is the task of the abductive
hypothesis to explain a given phenomenon. All patterns
of abductive inference that are classified in Fig. 7.1 and
discussed in Sects. 7.2–7.7 are explanatory abductions.
Tomiyama et al. [7.89, 90] and Tuzet [7.91, p. 152] have
proposed to extend the meaning of the notion of ab-
duction so that it also includes technological or, more
generally, any sort of instrumental reasoning.

In instrumental abduction, the proposition that the
abductive hypothesis entails in the given background
system is not yet true, but rather represents a goal, i. e.,
something that one wishes to realize, and the abductive
hypothesis (conclusion) expresses a conjectured means
to realize this goal. Referring to the patterns of abduc-
tions classified in a predecessor paper of Schurz [7.1],
Tomiyama et al. [7.89] show how abductive reasoning
can be applied to create the design of a refrigerator. For
Tuzet [7.91, p. 152], the reasoning schemaWe want E. If
C then E. Therefore, we should try to bring about C ex-
presses the basic form of instrumental abduction, con-
strained by the restriction that C should be practically
appropriate: for example C must be practically realiz-
able and must not have unwanted side-effects (etc.).

Generally speaking, often – though not always –
instrumental reasoning proceeds by similar cognitive
operations as abductive reasoning, the only difference
being that the abductandum is not yet realized but ex-
presses a goal. Therefore I propose to call this sort
of reasoning instrumental abduction, provided one is
aware that this notion extends the proper meaning of
abduction to a different domain of application. (Note
that Tuzet [7.91] speaks of epistemic versus projectual
abduction; I prefer the designations explanatory versus
instrumental abduction because they are more specific.)
The distinction between explanatory and instrumental
abduction is summarized in Fig. 7.7.

In Fig. 7.7 the superordinate concept that covers ex-
planatory as well as instrumental abduction is called
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generalized abduction. What is common to both forms
of abduction is a process that searches for missing
premises P for a given conclusion C. Gabbay and
Woods [7.17, p. 191] andWoods [7.92, p. 153] go so far
as to call every cognitive process an abduction so long
as it generates a premise P from which a given sentence
C can be derived or obtained in the given background
system K (thereby the authors generalize the notion of
consequence to an arbitrary closure relation R). Ac-
cording to this view, a process that confirms C, or that
predicts C (via finding suitable premises), would also be
called an abduction. From the viewpoint of philosophy

of science, I am inclined to think that this generaliza-
tion overstretches the notion of abduction. On the other
hand, from a logical viewpoint it seems to make sense
to call any process that searches for premises in order
to infer a given inference goal an abduction in the logi-
cally generalized sense.

Acknowledgments. For valuable help I am in-
debted to Ilkka Niiniluoto, Theo Kuipers, Gerhard
Brewka, Gustavo Cevolani, Lorenzo Magnagni, Hel-
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8. Forms of Abduction and an Inferential Taxonomy

Gerhard Minnameier

In recent years, the Peircean concept of abduction
has been differentiated into different forms and
made fruitful in a variety of contexts. However, the
very notion of abduction still seems to be in need
of clarification. The present contribution takes very
seriously Peirce’s claim (1) that there are only three
kinds of reasoning, that is, abduction, deduction,
and induction, and (2) that these are mutually
distinct. Therefore, the fundamental features of
the three inferences canvassed, in particular as
regards inferential subprocesses and the validity
of each kind of reasoning. It is also argued that
forms of abduction have to be distinguished along
two dimensions: one concerns levels of abstraction
(from elementary embodied and perceptual lev-
els to high-level scientific theorizing). The other
concerns domains of reasoning such as explana-
tory, instrumental, and moral reasoning. Moreover,
Peirce’s notion of theorematic deduction is taken
up and reconstructed as inverse deduction. Based
on this, inverse abduction and inverse induction
are introduced as complements of the ordinary
forms. All in all, the contribution suggests a tax-
onomy of inferential reasoning, in which different
forms of abduction (as well as deduction and in-
duction) can be systematically accommodated. The
chapter ends with a discussion on forms of abduc-
tion found in the current literature.
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For Peirce, not the proverbial misfortune comes in
threes, but rather does fortune, not least with respect
to his inferential triad of abduction, deduction, and in-
duction. On the one hand, they are thought to cover
the whole process of scientific reasoning from problem
statement to the final adoption of a hypothesis [8.1, CP
5.171 (1903)]. On the other hand, he claimed that there
are but these three elementary types of inferences so
that all kinds of reasoning must belong to either abduc-
tion, deduction, or induction [8.2, CP 8.209 (c. 1905)].
Moreover, and this may sound strange, he explains in

the same place that even his earlier classification of
inferences dating from 1867 can be understood in the
same way, that is, in the sense of the mature Peirce’s
conception of the three inferences.

Peirce [8.2, CP 8.209 (c. 1905)]:

“I say that these three are the only elementary
modes of reasoning there are. I am convinced of
it both a priori and a posteriori. The a priori rea-
soning is contained in my paper in the Proceedings
of the American Academy of Arts and Sciences for



Part
B
|8

176 Part B Theoretical and Cognitive Issues on Abduction and Scientific Inference

April 9, 1867. I will not repeat it. But I will men-
tion that it turns in part upon the fact that induction
is, as Aristotle says, the inference of the truth of the
major premiss of a syllogism of which the minor
premiss is made to be true and the conclusion is
found to be true, while abduction is the inference
of the truth of the minor premiss of a syllogism of
which the major premiss is selected as known al-
ready to be true while the conclusion is found to
be true. Abduction furnishes all our ideas concern-
ing real things, beyondwhat are given in perception,
but is mere conjecture, without probative force. De-
duction is certain but relates only to ideal objects.
Induction gives us the only approach to certainty
concerning the real that we can have. In forty years
diligent study of arguments, I have never found one
which did not consist of those elements.”

This is puzzling, if one considers Peirce’s own dis-
cussion of his earlier conception in his later work where
he states explicitly that [8.2, CP 8.221 (1910)]:

“in almost everything I printed before the beginning
of this century I more or less mixed up Hypothesis
and Induction (i. e., abduction and induction accord-
ing to his later terminology, G.M.).”

Thus, if he is not contradicting himself, both state-
ments must be true, however, each in a specific respect.

This is one riddle I will try to solve in this chap-
ter, but it is not the only one. I take it as one specific
stumbling stone on the way to a full understanding of
the very notion and logicality of abduction. In order
to achieve a comprehensive account of abduction, how-
ever, it is also necessary to accommodate a whole host
of different concepts of abduction that have been sug-
gested in recent years. Magnani, for instance, not only
distinguishes between creative and selective abduc-
tion [8.3], but also between sentential and model-based
abduction, theoretical and manipulative abduction, ex-
planatory and nonexplanatory abduction [8.4]. The lat-
ter distinction is drawn from Gabbay and Woods [8.5],
who maintain that abduction be extended to cover not
merely explanatory, but also nonexplanatory abduc-
tion, although they remain diffident qualifying their
differentiation “as a loose and contextually flexible dis-
tinction” [8.5, p. 115].

Another classification is proposed by Schurz [8.6]
who distinguishes between factual abduction, law-
abduction, theoretical-model-abduction, and second
order existential-abduction, with the first and last being
further divided into subclasses. Building on this clas-
sification and extending it, Hoffmann [8.7] produces
a 3� 5 matrix containing 15 types. Most importantly,
he amends Schurz’s main categories by a form focusing

on theoric transformations that generate or select a new
system of representation. However, the idea of theoric
transformations relates to Peirce’s distinction between
theorematic and corollarial deduction, which raises the
question of whether theoric transformations really be-
long to the realm of abductive reasoning (note that
Hoffmann discusses Peirce’s analysis of Desargues’
theorem in [8.8, NEM III/2, 870–871 (1909)]. Here,
another Peircean puzzle enters the scene, because he
himself has claimed that theorematic deduction “is very
plainly allied to retroduction (i. e., abduction, G.M.),
from which it only differs as far as I now see in being
indisputable” [8.9, MS 754 (1907)].

Thus, while there seem to be many different forms
of abduction, it is unclear how many distinctive forms
there really are. However, what is much more important
is that the scientific community still seems to grapple
with the very notion of abduction, that is, what are the
central features of abduction as such or of its specific
forms. Above, I started citing Peirce with his claim that
there be only three basic and distinct kinds of inferences.
However, apart from what has already been mentioned
above, a persistent problem seems to be to distinguish
between abduction and induction, inasmuch as infer-
ence to the best explanation (henceforth IBE) has to be
understood as a form of induction in the Peircean sense.
In [8.10], I have tried to disentangle abduction and IBE,
and I have not been alone with this view [8.11]. How-
ever, Gabbay andWoodsmention inference-to-the-best-
explanation abductions [8.5, p. 44], and their schema
for abduction [8.5, p. 47] seems to capture both abduc-
tion and IBE. Magnani [8.3, p. 19], [8.4, pp. 18–22]
and Schurz [8.6, pp. 201–203] equally subsume IBE to
abductive reasoning. I reckon that this has to do with
similarities between their notion of selective abduction
on the one hand and IBE on the other.

In my view, Peirce was right to claim that there are
but three kinds of reasoning and that there are clear lines
of demarcation between them. Accordingly, I think
there is reason to tighten the Peirce-strings by integrat-
ing different forms of abduction (as well as deduction
and induction) within a clear and coherent taxonomy.
In Sect. 8.1, I will first point out that abduction and
IBE are distinct (Sect. 8.1.1), then show how abduction,
deduction, and induction hang together to form a pro-
ductive inferential cycle from a pragmatist point of view
(Sect. 8.1.2), and finally explain how this productivity
enables us to construct a hierarchy of conceptual levels
(Sect. 8.1.3). Within this context, different forms of ab-
ductions can be distinguished in terms of the cognitive
levels at which they are located, and in terms of whether
new concepts are invented or existing ones applied.

In Sect. 8.2, I explicate the logicality of each of the
three inferential types. This is done in two steps. First
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(Sect. 8.2.1), the inferences will be analyzed in terms
of three characteristic subprocesses that Peirce assumes
for inferences in general, that is, (1) colligation, (2) ob-
servation, and (3) judgment ([8.12, CP 2.442–244 (c.
1893)], see also Kapitan [8.13, p. 479]). Next, the va-
lidity of each inference will be discussed in Sect. 8.2.2.

Based on this analysis, Peirce’s notion of theore-
matic reasoning is explored in Sect. 8.3. In Sect. 8.3.1,
theorematic deduction is explicated as inverse deduc-
tion, leading from the result of corollarial deduction to
the premise of corollarial deduction, that is, the theoreti-
cal point of view from which the result can be deduced.
An instructive example is given in Sect. 8.3.2, and in
Sect. 8.3.3 the idea of inverse inferences is extended
to inverse abduction and induction. As a result, we end
up with three ordinary and three inverse forms of pure
inferential types (note that Peirce has also introduced
analogy as a compound inference conjoining abduction
and induction [8.14, CP 1.65]; see also [8.15] on this
issue).

In Sect. 8.4, I will discuss three important distinc-
tions among forms of abductive reasoning: creative
versus selective abduction (Sect. 8.4.1), factual versus
theoretical abduction (Sect. 8.4.2), and explanatory ver-
sus nonexplanatory abduction (Sect. 8.4.3). It turns out
that abductions (and other inferences) are to be dis-
tinguished in terms of knowledge generation (creative)
versus knowledge application (selective) and along two
cognitive dimensions: one concerns levels of abstrac-
tion (from elementary embodied and perceptual levels
to high-level scientific theorizing). The other concerns
domains of reasoning such as explanatory, instrumental,
and moral reasoning. In the concluding Sect. 8.5, the
main results of my analysis are summarized and routes
for further research indicated.

Although I consider my argumentation coherent and
in line with Peirce, I do not claim to deliver an exegesis
of what Peirce himself might have thought, especially
since parts of my inferential taxonomy are clearly not
contained in his works.

8.1 Abduction in the Overall Inferential Context

8.1.1 Disentangling Abduction and IBE

In a recent overview of Peirce’s theory of abduction,
Psillos stresses that abduction, deduction, and induction
“constitute the three ultimate, basic and independent
modes of reasoning. This is a view that runs through
the corpus of the Peircean work” [8.16, p. 121]. So, the
task of defining and distinguishing these three kinds of
inferences might be assumed to be easy. However, real-
ity is different, not least because [8.16, pp. 136–137]

“[t]he picture of abduction that Peirce has painted
is quite complex. On the face of it, there may be
a question of its coherence. Abduction is an infer-
ence by means of which explanatory hypotheses
are admitted, but it is not clear what this admission
amounts to.”

Why is abduction so hard to grasp? To my mind, the
main reason is that it is often confounded with (aspects
of) induction or IBE and that Peirce himself has given
rise to such confusion. At first, he came up with a syl-
logistic account of this inferential triad [8.12, CP 2.623
(1878)], but told us later that “in almost everything I
printed before the beginning of this century I more or
less mixed up Hypothesis and Induction” [8.2, CP 8.221
(1910)]. As already quoted above, however, he also
maintained that in some sense the early Peirce’s con-
cept of hypothesis and the mature Peirce’s abduction
were still equivalent. What’s more, the passage quoted

in the introduction makes explicit that the purpose of
abduction is twofold (1) to generate new hypotheses
and (2) to select hypotheses for further examination (see
also [8.13, p. 477]; [8.17, p. 503]). The same is true for
the following passage [8.18, CP 6.525 (1901)]:

“The first starting of a hypothesis and the enter-
taining of it, whether as a simple interrogation
or with any degree of confidence, is an inferen-
tial step which I propose to call abduction. This
will include a preference for any one hypothesis
over others which would equally explain the facts,
so long as this preference is not based upon any
previous knowledge bearing upon the truth of the
hypotheses, nor on any testing of any of the hy-
potheses, after having admitted them on probation. I
call all such inference by the peculiar name, abduc-
tion, because its legitimacy depends upon altogether
different principles from those of other kinds of in-
ference.”

Thus, the question remains as to whether abduc-
tion is associated with IBE at least in some sense, and
if so, whether abduction as such bears this feature or
whether there are two different basic kinds of abduc-
tion – creative and selective – as Magnani [8.3, 4] and
Schurz [8.6] hold. In the succeeding passages, Peirce
writes on the testing of hypotheses and explains his con-
cept of induction, in particular as a means to determine
which of a number, or even a multitude, of hypotheses



Part
B
|8.1

178 Part B Theoretical and Cognitive Issues on Abduction and Scientific Inference

is the best explanation and ought to be adopted as true
or likely to be true [8.18, CP 6.526–536 (1901)]. Within
this elaboration, he is careful to make sure that the se-
lective aspect of abduction is something different [8.18,
CP 6.528 (1901)]:

“These distinctions (among forms of induction,
G.M.) are perfectly clear in principle, which is all
that is necessary, although it might sometimes be
a nice question to say to which class a given in-
ference belongs. It is to be remarked that, in pure
abduction, it can never be justifiable to accept the
hypothesis otherwise than as an interrogation. But
as long as that condition is observed, no positive fal-
sity is to be feared; and therefore the whole question
of what one out of a number of possible hypotheses
ought to be entertained becomes purely a question
of economy.”

Elsewhere, Peirce points out that the abductive se-
lection of hypotheses is usually guided by criteria like
simplicity and breadth [8.19, CP 7.220–222 (c. 1901)],
and his main idea is that we do not consider just any
possible hypothesis, but those hypotheses that make
most sense to us from the outset (i. e., those with the
highest subjective prior probabilities; see also [8.20]).
However, this is no IBE, since it is merely a question of
economy, and Peirce clearly states that no sound judg-
ment could be based on this kind of selection, for it is
“the most deceptive thing in the world” [8.12, CP 2.101
(1902)]. The further course of inquiry, and whether an
originally neglected possibility will have to be taken up
at a later stage, depends entirely on induction. For when
the selected hypothesis is finally evaluated in the light
of empirical data it has to be judged [8.12, CP 2.759
(1905)]:

“whether the hypothesis should be regarded as
proved, or as well on the way toward being proved,
or as unworthy of further attention, or whether it
ought to receive a definite modification in the light
of the new experiments and be inductively reexam-
ined ab ovo, or whether finally, that while not true
it probably presents some analogy to the truth, and
that the results of the induction may help to suggest
a better hypothesis.”

If the hypothesis is regarded as proved, then this
is IBE. However, it could not possibly be regarded as
proved if there were yet another hypothesis around that
could not be excluded based on the evidence gathered
so far. Hence, selection in the context of abduction and
selection in the context of induction are quite different.
In the former case, its role is merely practical, not logi-
cal; that is, one hypothesis is tried first, and if it testifies
to be beyond any doubt, other alternatives would not

have to be considered anymore (however, this implies
that by the same token all possible alternatives must, in
fact, be refuted). Or if it is to be conceived as logical,
then the hypothesis to be rejected at this stage has ei-
ther to be conceived as abductively (here: explanatorily)
invalid (see Sect. 8.2.2), or the rejection has to follow
from an inductive evaluation of the competing hypothe-
ses. From such an inductive evaluation it might follow
that the hypothesis currently countenanced is well on
the way of being proved in the above-quoted sense, in
that it is better than a number of other hypotheses, al-
though further testing or further reflection about novel
approaches seems appropriate.

Anyhow, it has to be admitted that Peirce is impre-
cise in this respect. However, in order not to confuse
abductive and inductive logic, I would suggest the rigid
interpretation just stated. Moreover, I would like to refer
to Aliseda, who has pointed out very clearly the diffi-
culties of coming to grips with the selection of a best
or preferred inference as an abductive task [8.21, pp.
72–74], even though she herself endorses hypothesis se-
lection as an abductive task [8.21, p. 33].

On this background, let us now consider Gabbay
and Woods’ reconstruction of abductive reasoning [8.5,
p. 47]. According to them, it starts with a cognitive
target T (e.g., to explain a certain phenomenon) that
cannot be met based on the reasoner’s background
knowledge K, and that the reasoner wants to attain
(hence TŠ). R denotes the attainment relation on T ,
and Rpres the presumptive attainment relation on T . If
R.K; T/ is not possible, the reasoner aims at an en-
hanced successor knowledge base K� so that R.K�; T/
holds. H denotes a hypothesis, and K.H/ a knowledge
base revised by H. Furthermore, there is C.H/, which
means that it is “justified (or reasonable) to conjecture
that H” [8.5]. And finally, “Hc denotes the discharge
of H. H is discharged when it is forwarded assertively
and labelled in ways that reflect its conjectural ori-
gins” [8.5]. Based on these definitions they suggest the
following schema [8.5, p. 47]:

1. TŠ [declaration of T]
2. :.R.K;T// [fact]
3. :.R.K�; T// [fact]
4. Rpres.K.H/;T/ [fact]
5. H meets further conditions S1; : : : ; Sn [fact]
6. Therefore, C.H/ [conclusion]
7. Therefore, Hc [conclusion]

As I try to explain also in Sect. 8.3, the reach of ab-
duction ought to be limited to steps 1 through 4, with
(4) establishing a valid abductive inference, that is, that
Rpres.K.H/;T/ holds. This establishes abductive valid-
ity in that H is capable of explaining the surprising
facts. And this is precisely what Rpres.K.H/;T/ cap-
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tures. Steps 5 through 7 ought, to mymind, be attributed
to induction, in this case a rather tentative induction
that Peirce has labeled “abductory induction” [8.18, CP
6.526 (c. 1901)], because it only qualifies a hypoth-
esis H as better than possible alternative hypotheses,
but not in the sense of a full-fledged inductive judg-
ment to the truth of H. Further conditions S1; : : : ; Sn
may exist in the form of background knowledge per-
taining to Peirce’s criteria of simplicity or breadth (see
above) or additional empirical evidence in favor of H.
However, these further pieces of information clearly go
beyond the abductive task; they may be produced by de-
ductive reasoning about what certain hypotheses imply
(because how do S1; : : : ; Sn become conscious?), and
are finally considered in inductive reasoning. Therefore,
I propose to repatriate steps 5 through 7 to the realm
of induction, and to take very seriously the following
statement [8.2, CP 8.218 (c. 1901)]:

“Nothing has somuch contributed to present chaotic
or erroneous ideas of the logic of science as failure
to distinguish the essentially different characters of
different elements of scientific reasoning; and one
of the worst of these confusions, as well as one
of the commonest, consists in regarding abduction
and induction taken together (often mixed also with
deduction) as a simple argument. Abduction and
induction have, to be sure, this common feature,
that both lead to the acceptance of a hypothesis be-
cause observed facts are such as would necessarily
or probably result as consequences of that hypoth-
esis. But for all that, they are the opposite poles of
reason [. . . ].”

Recently, McKaughan [8.20], Campos [8.22], and
Mackonis [8.23] have argued in favor of a wide no-
tion of IBE, including abduction, although they endorse
the sharp disctinction others and myself have made.
However, in the light of the subtle, but nonetheless
important, distinctions I have tried to highlight in this
section, I think there is not much use fitting it all in one
global concept of IBE.

8.1.2 The Dynamical Interaction
of Abduction, Deduction,
and Induction

By the end of the nineteenth century, Peirce rejected his
original syllogistic approach and said “I was too much
taken up in considering syllogistic forms [. . . ], which I
made more fundamental than they really are” [8.12, CP
2.102 (1902)]. However, even more to the point, Peirce
realized that induction “never can originate any idea
whatever. Nor can deduction. All the ideas of science
come to it by the way of Abduction” [8.1, CP 5.145

(1903)]. The crucial point here is that induction can
only operate with concepts that are already at hand. On
top of this, even simple regularities like 8x.Fx! Gx/
do not suggest themselves, but have to be considered
by an active mind, before they can be tested and even-
tually accepted or rejected (see Sect. 8.1.3, relating to
Carnap’s disposition predicates). This is why the ma-
ture Peirce suggests that abduction is the process by
which new concepts, laws, and theories are first con-
ceived, before they are investigated further by deductive
and inductive processes [8.1, CP 5.171 (1903)]:

“Abduction is the process of forming an explana-
tory hypothesis. It is the only logical operation
which introduces any new idea; for induction
does nothing but determine a value, and deduc-
tion merely evolves the necessary consequences of
a pure hypothesis. Deduction proves that something
must be; Induction shows that something actually
is operative; Abduction merely suggests that some-
thing may be. Its only justification is that from its
suggestion deduction can draw a prediction which
can be tested by induction, and that, if we are ever
to learn anything or to understand phenomena at all,
it must be by abduction that this is to be brought
about.”

Abduction is most important in our overall reason-
ing, because without it we could not possibly acquire
any idea of the world, not even elementary perceptions
of objects, let alone scientific theories. Hence, “no new
truth can come from induction or from deduction” [8.2,
CP 8.219 (c. 1901)]. Whereas abduction is very power-
ful in terms of the generation of fruitful new ideas, how-
ever, it is very week in terms of empirical validity, as
Peirce often stresses. He even says that his discovering
the true nature of abduction so late was “owing to the
extreme weakness of this kind of inference” [8.12, CP
2.102 (1902)]. Empirical validity is gained by deducing
necessary consequences from the abduced hypotheses,
especially predictions that can be tested empirically,
and the inductive evaluation of the experimental results
(or other suitable evidence). Figure 8.1 illustrates the
dynamical interaction of the three inferential types.

So far, the role of abduction and deduction seems
self-evident. However, an explanation should be given
for the role of induction in this triad, in particular why it
points back to where abduction starts in Fig. 8.1. After
all, induction is typically understood as the inference to
the truth (or falsity) of the theory in question, and as
a consequence it should point back to the theory itself,
like for example in Magnani’s ST-Model [8.4, p. 16];
also [8.3, p. 23].

However, induction in the Peircean sense is tied
back to his pragmatism, which, again, rests on the logic
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Fig. 8.1 The dynamical interaction of abduction, deduc-
tion, and induction

of abduction (cf. also [8.15, pp. 207–212]). Peirce [8.1,
CP 5.196 (1903)]:

“That is, pragmatism proposes a certain maxim
which, if sound, must render needless any further
rule as to the admissibility of hypotheses to rank as
hypotheses, that is to say, as explanations of phe-
nomena held as hopeful suggestions.”

In other words, all we need in the first place is
the confidence that abduction may enable us, by the
construction of concepts and hypotheses, to acquire
objective knowledge at all. Otherwise, all deductive
and inductive examination were futile. However, since
abduction is based on experience, induction cannot
go beyond that level to infer some kind of “absolute
truth” [8.24–27]. Therefore, all that induction can do is
to establish habits of expectation and action based on
theories.

Peirce [8.1, CP 5.197 (1903)]:

“What, then, is the end of an explanatory hypoth-
esis? Its end is, through subjection to the test of
experiment, to lead to the avoidance of all surprise
and to the establishment of a habit of positive ex-
pectation that shall not be disappointed.”

To be sure, theories in this sense are understood re-
alistically, not as psychological contrivances [8.24, pp.
201–203]. However, finally adopting a theory means to
project its content onto all its cases, observed and unob-
served, in the past, present, and future. And only in this
sense can a theory still be revised or eventually rejected
in the future. It is important, therefore, that a circle
closes in this very sense of creating habits of expec-
tation and action so that these habits can, in principle,
always be broken up again in the future (see also [8.26,
pp. 51–57]).

Peirce [8.2, CP 8.270 (1902)] (see also [8.1, CP
5.524 (c. 1905)]):

“The question is what passes in consciousness, es-
pecially what emotional and irritational states of
feeling, in the course of forming a new belief. The

man has some belief at the outset. This belief is,
as to its principal constituent, a habit of expecta-
tion. Some experience which this habit leads him
to expect turns out differently; and the emotion of
surprise suddenly appears.”

Thus, when an accepted theory is subsequently ap-
plied to relevant cases, it is not only being applied, but
also reassessed over and over. In this very sense, knowl-
edge acquisition and knowledge application are funda-
mentally tied together and follow the same inferential
principles. That is, every application of previously ac-
quired knowledge has to be understood as:

1. Abducing from a certain situational configuration to
a suitable interpretation, then

2. Deducing a certain course of action or expectation,
and

3. Inducing whether one’s actions or expectations
were confirmed by experience.

Furthermore, if every application of knowledge
constitutes a chance to strengthen or weaken the un-
derlying belief, then by the same token, all failures
and situation-specificities in the application of knowl-
edge [8.28] and action-guiding principles, in particular
moral principles [8.29, 30], can also be addressed and
analyzed within this very frame of reference.

8.1.3 Abduction and Abstraction

As we have seen in the previous sections, the key
feature of abduction is to construct new explanatory
concepts to accommodate the surprising facts that give
rise to them. “By its very definition abduction leads to
a hypothesis which is entirely foreign to the data” [8.31,
MS 692 (1901)]. Abductive hypotheses are typically of
a higher degree of complexity in the sense that phe-
nomena are not just explained by other phenomena that
might have brought them about, but by a theory of
the phenomena. Such theories constitute higher cog-
nitive levels, and this entails that theoretical entities
are not observable in the same way as the phenomena
they are meant to explain. Of course, Hanson’s princi-
ple of theory-ladenness of experience [8.32] states that
no experience (at least no description of experiences)
is theory-free. Nonetheless, there are levels of cogni-
tive architectures building on each other. This has been
clear ever since Carnap discovered that not even simple
disposition predicates could be reduced to observation
sentences [8.33, 34].

When Schurz [8.6] differentiates between vari-
ants like fact-abduction, law-abduction, or theoretical
abduction, he also distinguishes such levels, how-
ever, without making this aspect of successive theory-
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building fully explicit. I think it would be a fruitful
endeavor to reconstruct how conceptual (or theoreti-
cal) levels are built onto one another by successive
abductions. For instance, when a simple disposition is
discovered (that sugar dissolves in water), this con-
stitutes an empirical law, which is itself a concept of
a regularity in nature. It can also be used to explain why
someone else does not see the sugar in her drink. We
could say that it is very well in there, but cannot be seen,
because it has dissolved.

What this simple example shows is that even in sim-
ple fact-abduction, we do not just infer to the fact, but
to the law from which it then follows that sugar might
be in a liquid, even if no sugar can be seen. Thus, dis-
positional laws and simple action schemes (When the
switch is pushed, the light will go on) constitute an el-
ementary theory level, that is, regularities in terms of
observation language. However, these regularities are
themselves phenomena that one may wish to explain,
especially when one starts wondering, how the switch
is causally connected with the light. At first, it was es-
tablished that a natural regularity exists. Now, as the
regularity is established as a matter of fact, it becomes
the object of theoretical reflection and represents the
fact to be explained.

This is what Hintikka highlights when he discusses
the difference between abduction and IBE. He says
that [8.32, p. 509]:

“when a dependence law telling us how the ob-
served variable depends on the controlled one the
law does not explain the result of the experiment. It
is the result of the experiment, nature’s answer to
the experimental investigator’s question.”

Earnan McMullin has made the same point con-
cerning the role of laws in explanation: “Laws are
the explanada; they are the questions, not the an-
swers” [8.35, p. 90]. And he continues [8.35, p. 91]:

“To explain a law, one does not simply have re-
course to a higher law from which the original law
can be deduced. One calls instead upon a theory,
using this term in a specific and restricted sense.
Taking the observed regularity as effect, one seeks
by abduction a causal hypothesis which will ex-
plain the regularity. To explain why a particular sort
of thing acts in a particular way, one postulates an
underlying structure of entities, processes, relation-
ships, which would account for such a regularity.
What is ampliative about this, what enables one to
speak of this as a strong form of understanding, is
that if successful, it opens up a domain that was pre-
viously unknown, or less known.”

I consider this a strong and important point (see
also [8.36, 37] on explanatory hierarchies and explana-
tory coherence). Laws, in this view, are not the solutions
(the explanations) but the problems (the facts to be ex-
plained). However, I would not go so far as to deny
laws, even simple empirical laws, any explanatory func-
tion. It just depends on the point of view and the
theoretical level, which is needed and appropriate to
solve a particular explanatory problem. If one is looking
for causal relationships between events, one is in fact
searching for law-like explanations. And this not only
applies to children in their early cognitive development.
Most adults are content with knowing what keys to
press in order to use certain functions of a software; in
such cases the question is how a certain result is brought
about, and the explanation consists in functional rela-
tions between the keys or menu options and the results
visible on the screen. The same applies to cookbooks
and manuals for technical appliances in which it is
explained, how things work or why something I tried
did not work. I assume that, for example, Schurz’s ac-
count of explanation as unification applies not only to
scientific theories, but also to such simple forms of ex-
planation [8.10, 38].

Thus, there seems to be an order of theory-levels
or levels of abstraction, where the higher ones explain
the lower ones, and where abduction is the process that
takes the reasoner from a lower level to a higher one.
Such a hierarchy of levels may also be the clue to under-
standing how (intuitive) cognition works below explicit
sentential reasoning and how the latter comes about in
ontogenetic development.

Peirce famously argued that perceptual judgments
are no abductions. However, he seems to have been too
strict or narrow-minded in this context (see also [8.3,
pp. 42–43], [8.4, pp. 268–276]). While he clearly ad-
mits that perceptual judgment “is plainly nothing but
the extremest case of Abductive Judgements” [8.1, CP
5.185 (1903)] and that “abductive inference shades
into perceptual judgment without any sharp line of de-
marcation between them” [8.1, CP 5.181 (1903)], he
maintains that they are nonetheless distinct, because un-
like abductive inferences, perceptual judgments were
“absolutely beyond criticism” [8.1, CP 5.181 (1903)].
Peirce points out repeatedly that abduction as an infer-
ence requires control and that this misses in perceptual
judgment [8.1, CP 5.157, 181, 183, 194 (1903)]. He
therefore holds that perceptual judgment is the “start-
ing point or first premiss of all critical and controlled
thinking” [8.1, CP 5.181 (1903)], hence something on
which abduction is based, but which does not belong to
abduction itself.

However, Peirce fails to consider two aspects of per-
ceptual judgments: first, they might be conceivable as
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established facts in the sense of a complete triad of
abduction, deduction, and induction. This would ex-
plain why we are (normally) certain of our perceptions.
Second, and more importantly, Peirce fails to consider
that abductions are well-controlled, not by conscious
thought, but by action. Perceptions can be understood
as habits of action, that is, of categorization and behav-
ior in accordance with what we perceive. And finally,
the abductive or conjectural part of this process is that
with every new perception the individual literallymakes
sense of what enters into the sensory system. Some-
times these creations are fallacious or even foolish, but
this puts them fully in line with abduction in general.

At least, this is what I suggest at this point, and it
would certainly have to be examined in more detail.
However, Magnani’s [8.4] and Park’s [8.39] reflections
on animal, visual, and manipulative abduction point in
the very same direction and could be accommodated as
basic forms, not only of abduction, but also of inferen-
tial functioning in general. Moreover, reconstructing the
formation of perceptual judgments in this way makes
the pragmatist epistemology even more stronger, be-
cause there is no specific level of consciousness, where
epistemic processes start (see [8.40] for a discussion of
this link between abduction and pragmatism). As for
perceptual judgments, they are at this basic level not
controlled by conscious reflection, but nonetheless con-
trolled in an embodied and enacted manner [8.41]. Epis-
temology, then, would rather be embedded in life and
would not have to resort to any a priori forms of cogni-
tion whatsoever. It also constitutes, to mymind, a sound
basis for nonreliabilist epistemological externalism.

Without being able to explain my main point here in
detail, I just assume that there are levels over levels of
understanding and interaction with one’s environment.
And even though Peirce has never developed a theory
of successive abstraction in this overarching sense, he
had a clear idea of the basic principle, which he calls
hypostatic abstraction. To explain his ideas, Peirce re-
lates to Molière’s Malade imaginaire, where a medical
student takes his oral examination in the last scene. He
is asked why opium puts people to sleep and he confi-
dently replies that opium had a dormitive virtue whose
nature was to lull the senses to sleep [8.1, CP 5.534 (c.
1905)]:

“Quia est in eo
Virtus dormitiva,
Cujus est natura
Sensus assoupire.

Whereupon the chorus bursts out,

Bene, bene, bene, bene, respondere:
Dignus, dignus est entrare,
In nostro docto corpore.”

Peirce explains [8.1, CP 5.534 (c. 1905)]:

“Even in this burlesque instance, this operation of
hypostatic abstraction is not quite utterly futile. For
it does say that there is some peculiarity in the
opium to which the sleep must be due; and this is
not suggested in merely saying that opium puts peo-
ple to sleep.”

Elsewhere, he discusses the same idea, but speaks of
subjectal abstraction as opposed to precisive abstrac-
tion (see also [8.42]).

Peirce [8.8, NEM III/2, p. 917 (1904)]:

“There are two entirely different things that are of-
ten confused from no cause that I can see except
that the words abstract and abstraction are applied
to both. One is ˛�˛��"	�& leaving something out
of account in order to attend to something else. That
is precisive abstraction. The other consists in mak-
ing a subject out of a predicate. Instead of saying,
Opium puts people to sleep, you say it has dormitive
virtue. This is an important proceeding in mathe-
matics. For example, take all symbolic methods, in
which operations are operated upon. This may be
called subjectal abstraction.”

By subjectal abstraction Peirce means that “a tran-
sitive element of thought is made substantive, as in the
grammatical change of an adjective into an abstract
noun” [8.12, CP 2.364 (1901)]. Even though dormi-
tive virtue does not explain why opium puts people to
sleep, it states an explanatory problem in the sense that
a general law (with opium as cause and putting peo-
ple to sleep as effect) has to be explained at a higher,
more abstract level. In this very sense, dormitve virtue
goes beyond stating a mere disposition of opium (see
also Schurz’s discussion on this issue [8.6, pp. 219–
221]).

Forms of abductive reasoning could, therefore, be
distinguished according to levels of abstraction in the
sense in which Jean Piaget discusses constructive devel-
opment and cognitive architectures [8.43]. Among the
forms that Schurz [8.6] differentiates, some are at the
same level, while others belong to different levels. Fac-
tual abduction and law abduction all concern simple
empirical laws, the latter establishing them, the for-
mer applying them. Higher level abduction is what he
calls theoretical-model abduction: “The explanandum
of a theoretical-model abduction is typically a well-
confirmed and reproducible empirical phenomenon ex-
pressed by an empirical law” [8.6, p. 213].

However, the distinction between empirical laws, on
the one hand, and theoretical models, on the other hand,
seems to be still rather crude (again, if this is compared
to the fine-grained, but highly systematic, distinctions
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made by Piaget and Garcia [8.43]). To date, research
on cognitive architectures has primarily focused on the
lower end of the cognitive hierarchy, i. e., how relative
simple conceptual and action schemata are built and
grounded in the brain’s modal systems for perception,
emotions, and actions [8.41, 44, 45]. However, since ab-

duction is the process that leads to successively more
abstract cognitions in the sense of hierarchical com-
plexity, there is a promising route for further research
and a systematic differentiation of types of abductions
according to the cognitive levels, to which they apply
(as for moral cognition see [8.46] as an example).

8.2 The Logicality of Abduction, Deduction, and Induction

8.2.1 Inferential Subprocesses
and Abduction
as Inferential Reasoning

As already mentioned above, Peirce regarded abduction
as an extremely weak kind of inference. This raises the
question of whether it is an inference at all. On top
of this, he says that abduction is “nothing but guess-
ing” [8.19, CP 7.219 (1901)] and its results merely “the
spontaneous conjectures of instinctive reason” [8.18,
CP 6.475 (1908)]. However, abduction is also said to
“cover all the operations by which theories and con-
ceptions are engendered” [8.1, CP 5.590 (1903)], and
since it takes us to novel concepts and theories, he can-
not mean guesses in the ordinary sense of picking out
something at random from a range of existing objects
of choice. However, the question remains whether ab-
duction is an inference or merely an instinct. In a way,
both seems to be true [8.47], but for the present purpose
it suffices to stress that abduction has an inferential as-
pect [8.32, 47, 48]. So, let us try to track this inferential
aspect of abduction.

In this respect it may be instructive to consider
Peirce’s thoughts on inference in general. On his view,
all inferences are mental acts of reasoning and as such
describe a process with a definite beginning and a def-
inite end. Any inference begins with a question that
requires an answer in the form of the respective conclu-
sion. Abduction aims at possible explanations, deduc-
tion at necessary consequences following from certain
premises, and induction aims at determining whether
to accept or reject a hypothesis. Whatever the infer-
ence, however, the process of answering these questions
contains three distinctive steps, which Peirce calls col-
ligation, observation, and judgment.

Peirce [8.12, CP 2.442 (c. 1893)]:

“The first step of inference usually consists in bring-
ing together certain propositions which we believe
to be true, but which, supposing the inference to be
a new one, we have hitherto not considered together,
or not as united in the same way. This step is called
colligation.”

Peirce [8.12, CP 2.443–444 (c. 1893)]:

“The next step of inference to be considered con-
sists in the contemplation of that complex icon . . .
so as to produce a new icon. [. . . ] It thus appears that
all knowledge comes to us by observation. A part
is forced upon us from without and seems to result
from Nature’s mind; a part comes from the depths
of the mind as seen from within [. . . ].”

Peirce [8.12, CP 2.444]:

“A few mental experiments – or even a single one
[. . . ] – satisfy the mind that the one icon would at all
times involve the other, that is, suggest it in a spe-
cial way [. . . ] Hence the mind is not only led from
believing the premiss to judge the conclusion true,
but it further attaches to this judgment another – that
every proposition like the premiss, that is having an
icon like it, would involve, and compel acceptance
of, a proposition related to it as the conclusion then
drawn is related to that premiss.”

He concludes that “[t]he three steps of inference
are, then, colligation, observation, and the judgment
that what we observe in the colligated data follows
a rule” [8.12, CP 2.444]. The step of colligation is con-
sistently used and explained and thus seems to be rather
clear [8.1, CP 5.163 (1903)], [8.1, CP 5.579 (1898)].
However, Peirce is less precise about the other two. In
particular, his differentiation, in this context, between
a plan and the steps of reasoning may cause some con-
fusion [8.1, CP 5.158–166 (1903)]. As for the plan he
says that [8.1, CP 5.162 (1903)]:

“we construct an icon of our hypothetical state of
things and proceed to observe it. This observation
leads us to suspect that something is true, which we
may or may not be able to formulate with precision,
and we proceed to inquire whether it is true or not.”

Thus, we observe what is colligated in the premise
in order to produce a result. Even though this observa-
tion may be guided by strategies and other background
knowledge the result will first come about in a spon-
taneous act as the reasoner becomes conscious of it.



Part
B
|8.2

184 Part B Theoretical and Cognitive Issues on Abduction and Scientific Inference

When discussing observation in the context of abduc-
tion, he goes on to a general description of observation
that brings out this main feature very plainly [8.1, CP
5.581 (1898)]:

“And then comes an Observation. Not, however, an
External observation of the objects as in Induction,
nor yet an observation made upon the parts of a dia-
gram, as in Deduction; but for all that just as truly an
observation. For what is observation?What is expe-
rience? It is the enforced element in the history of
our lives. It is that which we are constrained to be
conscious of by an occult force residing in an ob-
ject which we contemplate. The act of observation is
the deliberate yielding of ourselves to that force ma-
jeure – an early surrender at discretion, due to our
foreseeing that we must, whatever we do, be borne
down by that power, at last.”

Thus, the observed result is forced upon us in
a rather uncontrolled manner. We just see it and can’t
help seeing it. However, in order to come to a conclu-
sion as the last step of inference, we have to evaluate
whether the result is valid in terms of the respective
inference. This constitutes the judgmental step that fi-
nalizes each inference (see [8.49] for this matter).

8.2.2 The Validity of Abduction, Deduction,
and Induction

Peirce is explicit concerning the validity of an abductive
judgment [8.1, CP 5.197 (1903)]:

“What is good abduction? What should an ex-
planatory hypothesis be to be worthy to rank as
a hypothesis? Of course, it must explain the facts.
But what other conditions ought it to fulfill to be
good? The question of the goodness of anything is
whether that thing fulfills its end. What, then, is
the end of an explanatory hypothesis? Its end is,
through subjection to the test of experiment, to lead
to the avoidance of all surprise and to the establish-
ment of a habit of positive expectation that shall not
be disappointed. Any hypothesis, therefore, may be
admissible, in the absence of any special reasons to
the contrary, provided it be capable of experimental
verification, and only insofar as it is capable of such
verification. This is approximately the doctrine of
pragmatism.”

Valid abduction thus has to satisfy two criteria:

1. It has to explain the facts, meaning that the initial
surprise be eliminated, and

2. The explanation has to be capable of experimental
verification in the pragmatist sense.

Any abductively observed result that does not meet
these criteria will have to be rejected. If the criteria are
met, however, the hypothesis will have to be accepted
as a valid abductive conclusion (see also my reflections
in Sect. 8.1.1). From this point of view, we can now
understand Peirce’s famous statement of the abductive
inference [8.1, CP 5.189 (1903)]:

“The surprising fact, C, is observed;
But if A were true, C would be a matter of course,
Hence, there is reason to suspect that A is true.”

This only relates the final subprocess of abduction,
the judgmental part. However, it is not to be confused
with abduction as an inferential cognitive process as
a whole [8.50]. Kapitan has famously criticized Peirce’s
concept of abduction, claiming that it was essentially
a deductive argument [8.51]. However, he fails to see
that the above statement does not describe the entire
process of abductive reasoning. And, as far as this de-
ductive aspect of the abductive judgment is concerned,
Peirce himself expresses this clearly [8.1, CP 5.146
(1903)], [8.40, p. 168]. However, this does not turn the
abductive judgment into a deductive inference, because
it is not the primary task to derive C, since C is already
known and constitutes the premise, whereas A consti-
tutes the conclusion.

Kapitan’s later account of abduction [8.51] is
largely adequate, but still there is one widespread prob-
lem. Like many others, he conflates the abductive judg-
ment with the selective aspect that I have argued above
(Sect. 8.1.1) should be excluded. Hintikka [8.52, pp.
44–52] grapples with the notion of abductive inference
for just the same reason. In my view, this makes it all the
more important to drive a deep wedge between accom-
modating the facts as the abductive task, and evaluating
abductively valid hypotheses as an inductive task.

The validity of deduction seems to be unproblem-
atic. So, let us move straight to induction. It has already
been pointed out above that induction is the inference
that yields factual knowledge, constituting factual truth.
However, what is the precise relation between knowl-
edge and truth? The classical notion of knowledge as
justified true belief requires that a proposition be true in
order to be known. However, a main theorem from the
point of view of pragmatism is that knowledge is log-
ically prior, that is, knowledge establishes truth rather
than requiring it as a condition. After all, this is the ba-
sic idea of disquotationalism [8.26, pp. 57–64].

As regards the validity of induction, I adopt an
analysis of knowledge and its formation proposed by
Suppe [8.53] within the framework of a possible-worlds
semantics. He suggests a nonreliabilistic externalist ap-
proach to knowledge. On this view, we know p if it
is not causally possible that we perceive the evidence
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as it is unless the suggested hypothesis is true. This
is indicated by a causal possibility operator , where
causal possibility refers to all logically possible worlds
that are consistent with the natural laws of our world
(i. e., our current background knowledge regarding nat-
ural laws). According to Suppe’s approach, the truth
of a proposition results from knowing it, and knowing
results from the condition stated in (iv), below, being
satisfied. Furthermore, “satisfying (iv) entails the satis-
faction of condition (iii)” [8.53, p. 402], since R and/or
K function as decisive indicators for ˚ .

S propositionally knows that � if and only if

(i) S undergoes a cognitive process R, or S has prior
knowledge that K

(ii) S, knowing how to use ˚ and knowing how to use
� with the same propositional intent, as a result of
undergoing R or having prior knowledge that K en-
tertains the proposition ˚ with that propositional
intent as being factually true or false

(iii) ˚ is factually true
(iv) there exists a conjunction C of partial world state

descriptions and probability spaces such that C &
� ˚ (C & R & K & � ˚) & ˚ (C & � ˚) &
R & ˙ (R & � ˚)

(v) as a result of undergoing R or K, S believes that
˚ [8.53, p. 405].

As a result, induction can be conceived in terms
of an elaborate eliminative inductivism in the sense of
Earman [8.54]. A theory is to be adopted, if all that has
been observed so far supports it and that no alternative
hypothesis is conceivable (at the current state of knowl-
edge).

The results of my analysis are condensed in Fig. 8.2
(which is reduced to the essential features). Note that
the diagram shows steps in the inferential processes.
They are not to be misread as syllogisms.

Colligation C

C

H

Abduction

H  P

Deduction

□((H  P)→E)  E

Observation H → (H  P)→E

□((H  P)→E)

E   E  H )

Judgement H 

Induction

Fig. 8.2 A formal model of inferential (sub)processes

In abduction we colligate the relevant aspects of
a given explanatory problem, that is, what happens to
be the case, hence C. C is observed with the intention
to find a theoretical hypothesis H that would, if true,
explain C, that is, render the previously surprising phe-
nomenon causally possible. As one hits on an idea, one
has to make sure that H would really explain C. This is
the abductive judgment H.

This result gained from abduction is then used as
input for the following deduction, together with suit-
able premises P available from background knowledge.
These are observed so as to generate necessary con-
sequences, in particular empirical hypotheses E. The
judgment �..H^P/! E/ states that E follows with
necessity from .H^P/.

Again, the deductive conclusion is input into induc-
tion, where it is colligated with the actual experiment,
which are then observed. This observation is more
than just recording what happens; in fact, such record-
ing would have to be understood as the main part of
the inductive colligation. Observation in the context
of induction means to look at these results (maybe
at the time when they are actually produced) under
the aspect of whether they confirm the tested hypoth-
esis and disconfirm its rivals. If the final outcome is
positive, H is accepted as causally necessary, hence
H.

8.3 Inverse Inferences

8.3.1 Theorematic Deduction
as Inverse Deduction

Writing about mathematical reasoning, Peirce says:
“My first real discovery about mathematical procedure
was that there are two kinds of necessary reasoning,
which I call the Corollarial and the Theorematic” [8.55,
NEM IV, p. 49 (1902)]. However, scholars disagree
on what is the content of this discovery. For Hin-
tikka, “a valid deductive step is theorematic, if it
increases the number of layers of quantifiers in the
proposition” [8.56, p. 307]. Ketner claims that Hintikka
fails to see “the true importance of Peirce’s corollar-

ial/theorematic reasoning distinction” [8.57, p. 409],
which, according to Ketner, is that “it makes signif-
icant contributions toward showing that mathematics
and logic are observational, experimental, hypothesis-
confirming sciences” [8.57, p. 409]. Ketner also main-
tains that the “production of experiments within theo-
rematic reasoning, on Peirce’s view, is done through
abduction” [8.57, p. 411]. Referring to this argument,
Hoffmann says he had “spent some effort to find in
Peirce’s writings hints at such a connection between ab-
duction and theorematic reasoning, but without much
success” [8.48, p. 293]. However, Hoffmann acknowl-
edges and discusses obvious similarities between the-
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orematic deduction and abduction and comes to the
following result: “It is one thing to prove a theorem and
another to formulate it” and continues that “it would
make sense to describe the first task as theorematic
deduction and the second task as abduction” [8.48, p.
294].

In view of this puzzlement concerning the proper
understanding of theorematic deduction and its relation
to abduction, my suggestion is not to subdivide theore-
matic deduction into abductive and deductive aspects,
but to reconstruct theorematic deduction as a form of
reasoning of its own, albeit similar to abduction in an
important respect. As for the similarity between abduc-
tion and theorematic deduction, Peirce himself remarks
that “[i]t is very plainly allied to retroduction, from
which it only differs as far as I now see in being indis-
putable” [MS 754 (1907), quoted from [8.48, p. 293]].
And the commonality apparently lies in the creative act
of introducing a new idea not present in the premises
from which one starts [8.58, p. 97].

Peirce [8.55, NEM IV, 42 (1902)]:

“What I call the theorematic reasoning of math-
ematics consists in so introducing a foreign idea,
using it, and finally deducing a conclusion from
which it is eliminated. Every such proof rests, how-
ever, upon judgments in which the foreign idea is
first introduced, and which are simply self-evident.
As such, they are exempt from criticism.”

Peirce [8.55, NEM IV, 49 (1902)]:

“The peculiarity of theorematic reasoning is that it
considers something not implied at all in the con-
ceptions so far gained, which neither the definition
of the object of research nor anything yet known
about could of themselves suggest, although they
give room for it.”

Again, the foreign idea is what alludes to abduc-
tion, and once it is gained, self-evident judgments can
be taken in order to prove a theorem. Elsewhere in the
same text, Peirce has made clear that these self-evident
judgments are, in fact, corollarial deductions [8.55,
NEM IV, 38 (1902)]:

“Theorematic deduction is deduction in which it is
necessary to experiment in the imagination upon the
image of the premiss in order from the result of
such experiment to make corollarial deductions to
the truth of the conclusion.”

All these explanations by Peirce can be accommo-
dated, if theorematic abduction is conceived of as an
inverse deduction that infers from the result of corollar-

ial deduction to the premises from which the result can
be deductively derived. The similarity with abduction
results from the fact that theorematic deduction takes
the reasoner to a theoretical point of view, which is
the point in the above diagram on inferential reasoning
(Fig. 8.1) where abduction would take her. Thus, ab-
duction and theorematic deduction both aim at the same
point (Fig. 8.3).

Within this frame of reference, it also becomes clear
why Peirce thinks that theorematic deduction is am-
pliative. He just did not call it ampliative deduction,
because he feared that this labeling would have been
considered as unacceptable [8.55, NEM IV, 1 (1901)]:

“It now appears that there are two kinds of deductive
reasoning, which might, perhaps, be called explica-
tory and ampliative. However, the latter term might
be misunderstood; for no mathematical reasoning is
what would be commonly understood by amplia-
tive, although much of it is not what is commonly
understood as explicative. It is better to resort to new
words to express new ideas. All readers of mathe-
matics must have felt the great difference between
corollaries and major theorems.”

The overall process of theorematic deduction can
then be analyzed based on the three inferential subpro-
cesses discussed in Sect. 8.2.1, only that the process
runs in the inverse direction, starting from a proposition
to be proved, say whether p or :p is logically true (col-
ligation). This is the premise of theorematic deduction,
which is then observed in order to find a conceptual
point of view from where to derive either p or :p (ob-
servation). Once a candidate for this is found, it has to
be established by a corollarial deduction to p or :p,
which is equivalent to judgment in the context of theore-
matic deduction. This is how I understand Peirce when
he says [8.55, NEM IV, p. 38 (1902)] (see also [8.12,
CP 2.267 (c. 1903)]; [8.59, CP 4.233 (1902)]):

“Theorematic deduction is deduction in which it is
necessary to experiment in the imagination upon the

Induction

DeductionAb
du

cti
on

Theory

Facts (t0) Consequences t1, 2, 3, ...

Theorematic
deduction

Fig. 8.3 Theorematic deduction in relation to the inferen-
tial triad
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image of the premiss in order from the result of
such experiment to make corollarial deductions to
the truth of the conclusion.”

Hoffmann, too, stresses that theorematic reasoning
(he uses the notion of theoric transformations) essen-
tially consists in “looking at facts from a novel point of
view” – a phrase taken from [8.60, MS 318] ([8.7, p.
581], [8.48, p. 291], [8.4, p. 181]). And the fact that at-
taining this novel point of view is first of all the result
of observation that subsequently has to be subjected to
a corollarial deduction as judgment within theorematic
deduction may also explain the following passage.

Peirce [8.61, NEM III, p. 869 (1909)]:

“To the Diagram of the truth of the Premisses some-
thing else has to be added, which is usually a mere
May-be, and then the conclusion appears. I call this
Theorematic reasoning because all the most impor-
tant theorems are of this nature.”

Ketner [8.57, p. 408] refers to this passage to un-
derpin his view that theorematic deduction is a kind
of abduction. However, on my account theorematic de-
duction is a May-be, firstly, in the sense of introducing
a theoretical point of view, and secondly, because it is
spontaneously generated by observation and still has to
be submitted to judgment. This is my reconstruction of
theorematic deduction as inverse deduction. Further re-
finements might be necessary, in particular analyzing
the variants that Levy discusses in [8.58, pp. 98–103].
However, this must be left to a separate analysis. Here,
I prefer to provide an instructive example and extend the
idea of inverse inferences to include inverse abduction
and inverse induction.

A B A C A D

Fig. 8.5 Graph of the state sequence in seven bridges
problem

8.3.2 An Example for
Theorematic Deduction

In addition to Peirce’s examples like Desargues’ theo-
rem (discussed in [8.7, pp. 581–584]), I suggest Leon-
hard Euler’s solution of the Königsberg bridge problem
as a case in point. In Euler’s time, the river Pregel
formed the topological shape shown in Fig. 8.4. The
question is whether it is possible to pass all seven
bridges on a walk while passing each bridge only once.

To solve this problem, Euler used a graph in which
the state sequence is shown as transitions from region
to region. Figure 8.5 shows how this looks like, if one
starts in region A and passes the first five bridges in
numerical order. Accordingly, the number of regions
in this diagram will always be NC 1, where N is the
number of all bridges. Moreover, with the five bridges
connected to region A, this region is mentioned three
times. A so-called uneven region, that is, one with an
uneven number of bridges, will always appear .nC1/=2
times in the graph, independently from whether one
starts in this very region or in another region. This
is different for even regions. If we only consider re-
gions A and B, there are only two bridges. If one
starts in A, A is mentioned twice and B only once. If
one starts in B, it is the other way round. In general,
the region is mentioned n=2 times if one starts out-
side this region, and n=2C 1 times if one starts from
within.

However, all regions in the seven bridges problem
are uneven so that the solution is rather simple. A walk
on which one passes each bridge only once encom-
passes seven transitions between eight states. However,
each region must appear .nC1/=2 times in the diagram,
which means three times for region A and two for re-
gions B through D, that is, nine altogether. Hence, the
desired walk is impossible.

This example shows that from an abstract topolog-
ical point of view it is possible to formulate principles
from which the impossibility of the specified walk can
be deduced. The diagram in Fig. 8.4, together with
the question, represents the colligated premise, which
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is then observed. The result of this observation is the
approach represented in the graph in Fig. 8.5 and the
further reflections based on it. The final judgment con-
sists in deriving the solution, that is, the proof as such.

8.3.3 Inverse Abduction
and Inverse Induction

Based on the reconstruction of theorematic deduction
as an inverse deduction, it follows naturally that there
could be two other forms of reasoning: inverse abduc-
tion and inverse induction (Fig. 8.6). Moreover, since
inverse (theorematic) deduction is similar to abduction
in that it aims at the same point in Fig. 8.6, inverse
abduction should be similar to induction, and inverse
induction should be similar to deduction.

Inverse abduction starts from some theory or ab-
stract concept and searches, for examples, possible
instantiations. For instance, the economist Nicholas
Kaldor [8.62] suggested the cobweb model, which ex-
plains how supply (S) and demand (D) develop if time
lags are assumed for the reaction of the supply side to
a change in demand and vice versa (see Fig. 8.7). If the
supply curve is steeper than the demand curve, prices
(P) and quantities (Q) will gradually converge to the
equilibrium. However, if the slope is the same, supply
and demand will fluctuate cyclically.

If it is asked what would be a case in point of
such a persistently fluctuating supply and demand, this
would require what I call inverse abduction. The the-
oretical model has to be understood on the abstract
level, but it is unclear whether there is a concrete case
at all to it. An example would be the so-called pork
cycle that was observed in the 1920s in the United
States and in Europe. Kaldor’s theoretical model pro-
vides a possible explanation for such phenomena, but
in this case the argument runs in the opposite di-
rection, from the theory to the case. The similarity
to induction consists in the fact that inverse abduc-
tion projects a possible explanation onto a case (and
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Fig. 8.6 Inverse inferences
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Fig. 8.7a,b The cobweb model: (a) successive adjustment
of supply and demand; (b) cyclical fluctuations of supply
and demand

all other relevant cases one might think of or en-
counter). The difference is that it is only a provi-
sional projection (if the theory is true), whereas in
induction factual truth in the pragmatist sense is estab-
lished.

The difference can also be stated in this way: inverse
abduction starts from the colligation of a theoretical
model of some sort, which has a meaning but as yet
no reference. This theoretical model is observed in or-
der to be able to project it onto some case to which it
refers (here is the similarity to induction). Finally, it has
to be judged (abductively) whether the case that sug-
gested itself can really be subsumed to the theoretical
model.

Other examples for inverse abduction are riddles
that we give children to solve, once they can use
concepts independently from concrete references, for
example, What has a face and two hands, but no arms
or legs? A clock. The task is to find something concrete
that satisfies this abstract definition. Again, the defini-
tion is first colligated, then observed in order to project
it onto some concrete object, and the final part consists
in the judgment as to whether the definition really ap-
plies to the object and whether this inference is thus
abductively valid (in this case, as a possible circum-
scription of a clock).

Turning to inverse induction, this inference starts
from the purported truth (or falsity) of a theory and
tries to infer back to a crucial experiment that de-
termines whether the theory would have to be ac-
cepted or rejected. This form of reasoning typically
applies when two competing approaches stand against
each other, in particular when both are well-confirmed
by ordinary induction, but are mutually incompatible.
One famous example are Bell’s inequalities based on
the Einstein–Podolsky–Rosen (EPR) Gedankenexper-
iment. The EPR assumptions entail the fulfilment of
Bell’s inequalities, quantum theory entails their viola-
tion. Hence, the inequalities did not prove anything in
themselves, but were the basis for a decisive empiri-
cal test, eventually carried out by Alain Aspect, which
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established the validity of quantum theory and refuted
Einstein in his attempt to save classical physics.

Inverse induction is similar to deduction because it
essentially involves deductive steps to derive the deci-
sive experimental conditions. However, as opposed to
Peirce’s theorematic deduction, it does not prove any-
thing, and unlike corollarial deduction it does not just
derive what follows from a certain theory, but starts
from competing theories and the intention to determine
which one is true and which one false. From this col-
ligated premise, the theories are observed in order to
find the decisive experimental conditions, and the final
judgment does not concern the deductive validity but
whether the test would really be decisive.

Another, much simpler, example is the so-called
Wason selection task [8.63], one of the most inves-
tigated experimental paradigms. This task consists in
determining which two of four cards one has to turn
over in order to know whether a certain rule is true or
false. There are cards with a yellow or a red back, and
on their front-sides they have a number, even or odd.
Now, there are four cards showing (1) a 3, (2) an 8, (3)
a red back, and (4) a yellow back. The rule says that if
a card shows an even number on one face, then its op-

posite face is red. So, which two cards have to be turned
over to see whether this rule is violated? The solution is
the two cards showing the 8 and the yellow back.

Not even 10% get this right (at least in this rather
formal context). The reason may be that they fail to see
that they need to use modus ponens (even number !
red back) and modus tollens (: (red back)!: (even
number). However, the task is not just to use modus po-
nens and modus tollens correctly, and therefore it is not
just about deduction, as is usually thought. Rather is it
the most important part of this reasoning task to find
out (through observation) that these deductive rules al-
low you to determine which two cards have to be turned
over. Moreover, strictly speaking, there are also two
competing hypotheses involved: the rule and its nega-
tion.

To sum up, all inverse inferences contain elements
of its predecessor in the ordinary order, and these ele-
ments are important in the observational subprocesses.
Here, inverse abduction relates to induction, inverse
deduction to abduction, and inverse induction to de-
duction. However, the final judgments are abductive in
inverse abduction, deductive in inverse deduction, and
inductive in inverse induction.

8.4 Discussion of Two Important Distinctions
Between Types of Abduction

8.4.1 Creative Versus Selective Abduction

In this section, some of the important and/or controver-
sial distinctions between abductions shall be discussed
starting with the one between creative and selective ab-
duction (see also [8.64]). Most scholars endorse the
view that abduction has to fulfil these two purposes, but
Magnani [8.3, 4] and Schurz [8.6], in particular, discuss
them even as separate forms of abduction. However, I
oppose this view and think that (1) there is no separate
form of abduction that is selective, and (2) that the ways
in which abduction might be rightly called selective are
specific forms of one and the same basic form of abduc-
tion. As I have pointed out already in Sects. 8.1.1 and
8.2.1 all other candidates for selective abduction would
have to be reinterpreted as forms of induction.

Selective abduction is an elusive concept, not only
because it is easily confused with IBE, but also be-
cause different authors understand it in different ways.
In particular, I see a difference in the usage by Mag-
nani and Schurz, on the one hand, and by Kapitan
and Hintikka on the other hand. As for the latter, Hin-
tikka [8.17, p. 503] cites Kapitan, who claims that
“[t]he purpose of scientific abduction is both (i) to gen-

erate new hypotheses and (ii) to select hypotheses for
further examination” [8.13, p. 477]. They state this with
particular reference to [8.18, CP 6.525], where creation
and selection do not appear as two different kinds of ab-
duction, but as two aspects of one and the same notion
of abduction [8.18, CP 6.525 (c. 1901)]:

“The first starting of a hypothesis and the enter-
taining of it, whether as a simple interrogation or
with any degree of confidence, is an inferential step
which I propose to call abduction. This will include
a preference for any one hypothesis over others
which would equally explain the facts, so long
as this preference is not based upon any previous
knowledge bearing upon the truth of the hypotheses,
nor on any testing of any of the hypotheses, after
having admitted them on probation.”

The last part of the passage ensures that the selec-
tive aspect is not confused with induction. Furthermore,
Peirce makes clear that selection does not mean sep-
arating stupid ideas from sensible ones, because they
all have to explain the facts, that is, have to be valid
abductions. Thus, selection does not refer to the abduc-
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tive judgment by which stupid ideas are sorted out. The
hypotheses among which to select have already passed
this test. However, elsewhere Peirce makes clear that
“the whole question of what one out of a number of
possible hypotheses ought to be entertained becomes
purely a question of economy” [8.18, CP 6.528 (1901)].
Hence, this aspect of selection concerns abduction only
from a practical point of view, not from a logical one,
as I have argued above in Sect. 8.1.1.

Turning to Magnani and Schurz, the latter writes
[8.6, p. 202]:

“Following Magnani (2001, p. 20) I call abductions
which introduce new concepts or models creative,
in contrast to selective abductions whose task is to
choose the best candidate among a given multitude
of possible explanations.”

This sounds as if IBE were included in this notion
of selective abduction. However, Magnani is careful to
distinguish between these, when he discusses what he
calls the “two main epistemological meanings of the
word abduction” [8.4, p. 10], that is, creative and se-
lective abduction on the one hand, and IBE on the other
hand. Then, he goes on to differentiate between creative
and selective abduction [8.4, p. 10]; see also [8.3, p. 19]:

“An illustration from the field of medical knowl-
edge is represented by the discovery of a new
disease and the manifestations of causes which can
be considered as the result of a creative abductive
inference. Therefore, creative abduction deals with
the whole field of the growth of scientific knowl-
edge. This is irrelevant in medical diagnosis where
instead the task is to select from an encyclopedia of
prestored diagnostic entities.”

As it turns out, selective abduction in Magnani’s
sense is nothing else than the application of previously
established knowledge. In this sense, some suitable
background knowledge is activated or selected vis-à-vis
a certain problem. As I understand it, medical diag-
nosis is only one example; such selective abductions
seem to be part of everybody’s daily routines. I have
discussed abduction as knowledge application above in
Sect. 8.1.2, so there is nothing more to add here. On
this account, selective abduction is to be reconstructed
as the abductive step of knowledge application, in par-
ticular in the sense that:

1. Specific (explanatory) concepts or theories are acti-
vated (selected) from one’s background knowledge,
triggered by the initial problem at hand.

2. Accepted as the result of abductive judgment
(whereas other spontaneously generated ideas may
be rejected as abductively invalid).

3. And, if there are more than one abductively valid
ideas, ranked in order of a priori plausibility, how-
ever, only for economical reasons.

To be sure, the latter aspect is clearly the least cen-
tral one, since it is merely of practical importance. And
it should be noted that Magnani does not attribute it to
selective abduction when he writes: “Once hypotheses
have been selected, they need to be ranked [. . . ] so as
to plan the evaluation phase by first testing a certain
preferred hypothesis” [8.3, p. 73]. As also Peirce warns
in [8.18, CP 6.525, see above], it should by no means
be confused with inductive reasoning.

This reconstruction of selective abduction as the ab-
ductive step in knowledge application allows us, finally,
to solve the riddle highlighted in the introduction. It
concerns what Peirce calls a priori reasoning in the
passage quoted there, and which he associates with his
earlier, syllogistic, concept of abduction (i. e., hypo-
thetical reasoning). When Peirce explains that this kind
of [8.2, CP 8.209 (c. 1905)]:

“abduction is the inference of the truth of the minor
premiss of a syllogism of which the major premiss
is selected as known already to be true while the
conclusion is found to be true,”

1. The major premiss to be selected is the theory to
which one abduces (e.g., 8x.Fx! Gx/).

2. Based on the conclusion (of the syllogism), Ga,
which is found to be true and which needs to be
explained.

3. And Fa results from the assumption that the occur-
rence of Ga is a case of 8x.Fx! Gx/.

With respect to (3), the only question remaining is
whether the abduction runs from Ga to 8x.Fx! Gx/,
as I have suggested, or from Ga to Fa, as Schurz [8.6]
might perhaps argue based on his notion of factual ab-
duction. This is discussed in the following section.

8.4.2 Factual Versus Theoretical Abduction

This is how Schurz formalizes the basic form of factual
abduction [8.6, p. 206]:

“Known Law: If Cx; then Ex
Known Evidence: Ea has occurred

Abduced Conjecture: Ca could be the reason.”

Let us take an example that Aliseda uses in [8.21].
I wake up in the morning in a hotel, look out of the
window, and see that the lawn is wet (w ). Wondering
about why it is wet, I think that it might have rained (r)
or that the sprinklers were on (s) last night. Hence, there
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are two possible causes, r and s. However, the question
is whether I abduce to r and s or to r! w and s!
w , respectively. In my view, both is true in a certain
way, which becomes clear if we distinguish inferential
subprocesses.

Of course, as we look out of the window and wonder
about w (colligation), either r or s or both spring to our
minds (observation). However, since we are looking for
an explanation of w , we are not interested in r or s as
such, but whether w because of r (r! w ) or whether
w because of s (s! w ). In other words, the law must
be implicit in observing the fact, because the fact only
makes sense as part of the law. What’s more, a sponta-
neous idea is no valid abduction (not yet). In order to
abduce that r or that s we have to perform a judgment
(explicitly or implicitly) of the type of Schurz’s schema.
Thus, Schurz’s schema fleshes out the abductive judg-
ment in the case of factual abduction. And even though
r or s may be our spontaneous ideas they are engen-
dered not as such, but as the antecedents of r! w and
s! w , respectively.

This may all appear self-evident. However, since
factual abduction is basically abduction to known laws
and theories (rather than to facts pure and simple),
we can unify Schurz’s subforms of factual abduction,
namely observable-fact abduction, first-order existen-
tial abduction, and unobservable-fact abduction [8.6,
pp. 27–210]. Moreover, it reveals that Schurz’s distinc-
tion between factual abduction, on the one hand, and
law abduction, on the other hand, does not refer to en-
tirely different forms of abductive inference. The only
difference is that law abduction relates to the creative
abduction of new laws, whereas factual abduction re-
lates to selective abduction as the abductive step of the
application of known laws. Schurz sanctions this view
when he writes [8.6, p. 207]:

“In the setting of factual abduction, the problem
consists in the combinatorial explosion of the search
space of possible causes in the presence of a rich
background store of laws but in the absence of a rich
factual knowledge. Thus, factual abductions are pri-
marily selective in the sense of Magnani.”

However, I see yet another problem with this de-
scription. It assumes that there is a multitude of possible
hypotheses from which one or a few plausible ones
have to be chosen. In the very same sense he explains
that [8.6, p. 204]:

“in abduction problems we are often confronted
with thousands of possible explanatory conjectures
(or conclusions) – everyone in the village might be
the murderer.”

To my mind, this misrepresents (factual) abduction.
For on the one hand, if we take each of the village’s in-
habitants as a hypothetical candidate for the murderer,
and intend to boil down their number by some kind of
inference, this would have to be induction. On the other
hand, if the problem really is to reduce the search space,
then we are not dealing with a multitude of conjectures
as abductive solutions to some abductive problem (find-
ing the murderer), but we are dealing with a problem.
The fact that there is a multitude of possibilities changes
the situation. The task is not simply to select one of
those hypotheses, but to come up with a theory that ex-
plains the murder and identifies particular individuals
as suspects.

The deeper truth is that instead of merely select-
ing we move to higher level of reasoning, just in the
sense that I have described in Sect. 8.1.3. The very first
level, in the example of the murderer, is that one un-
derstands that the very concept of a murder implies that
the victim has been killed by someone. Given that there
are certain objective restrictions, not every human be-
ing can possibly have committed the crime, but just the
set of the villagers. The next step is to move to the level
of narratives in the sense of a coherent description of
what might have happened. However, there might be
still too many possibilities, or also none. Yet another
step could consist in applying theoretical knowledge as
professional profilers do.

As already expounded in Sect. 8.1.3, my sugges-
tion is to reconstruct different forms of abduction in
the dimension of theoretical abstraction. Since factual
abduction comes out as applied law or theory abduc-
tion, there is no fundamental difference between fac-
tual and theoretical abduction. However, what should
be distinguished systematically are cognitive levels in
reasoning, down from elementary cognitive levels cap-
tured by forms like visual (or iconic) and manipula-
tive abduction [8.3, 4], and up to high-level abductions
like theoretical model abduction, common cause ab-
duction [8.6], or trans-paradigmatic abduction [8.65].
Magnani, Schurz, Hoffmann, and others have done pio-
neering work explicating abductive inferences at both
ends concrete versus abstract cognition, a dimension
which I prefer to call hierarchical complexity. However,
the precise structures of hierarchical complexity have
yet to be revealed (cf. Sect. 8.1.3, above).

One also has to be careful to distinguish forms that
do not fit entirely in this order. This seems to apply, for
example, to Schurz’s notions of (extrapolational) mi-
cropart abduction and analogical abduction [8.6, pp.
216–219]. The former consists, for example, in extrap-
olating from the behavior of observable macroobjects
to assume that unobservable microparts like atoms be-
have in the same (or a similar) way. However, this is
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equivalent to an analogical inference from macro to mi-
cro, and as such both do not indicate a certain level of
abstraction or complexity, but, following also Peirce,
are to be reconstructed as compound inferences (in-
cluding an abductive and an inductive step to hit the
abductive target), as I have tried to reveal in [8.15].
Moreover, Schurz’s concept of hypothetical (common)
cause abduction [8.6, pp. 219–222], where he draws
to the dormitive virtue example (see Sect. 8.1.3), is, to
my mind, no valid form of abduction, since this kind of
reasoning establishes a problem (Why does opium put
people to sleep? or What does its dormitive virtue con-
sist of?), not the solution. It yields the premise of an
abductive inference, but not more.

8.4.3 Explanatory Versus Nonexplanatory
Abduction

However, Schurz [8.6] points to yet another interesting
form of abduction, when he discusses “statistical fac-
tor analysis” as a kind of “probabilistic common cause
abduction” [8.6, pp. 228–231]. He believes that [8.6, p.
228]:

“factor analysis is a certain generalization of hy-
pothectical common cause abduction, although
sometimes it may better be interpreted in a purely
instrumentalistic way.”

As I have argued a few lines above, hypothetical
common cause abduction is no abduction. However, I
fully endorse Schurz’s interpretation of factor analysis
(to be sure, he thinks of exploratory factor analysis,
not confirmatory factor analysis, which also exists).
Exploratory factor analysis is a method to reveal cor-
relative structures among numerical representations of
empirical items and thus give us a clue as to possi-
ble common causes for certain types of effects (the
dependent variables). However, factor analyses do not
explain anything. Factors, once extracted, have to be
interpreted, and this is where they are used as hints
toward a possible explanation. Hence, their value con-
sists in being instrumental to find interesting patterns in
a dataset, but they do not explain anything as such.

Throughout this chapter, I have focused on (forms
of) explanatory abduction as the basic purposive con-
text, because this is the received understanding of
abduction in general and because most concepts of ab-
ductions fall into this category. However, Gabbay and
Woods [8.5] have made the point that there are types
of reasoning that do not have an explanatory purpose.
In particular, they point to abductions that do not aim
at a plausible explanation, because they, in fact, “ad-
vance propositionally implausible hypotheses” [8.5, p.
115]. The purpose of such abductions cannot be ex-

planatory, but they can serve to fulfil some other kind
of purpose.

As an example, Gabbay and Woods discuss New-
ton’s action-at-a-distance theorem, which was never
conceived of as an explanatory hypothesis by Newton,
since he thought that such an action was causally im-
possible [8.5, p. 116]. From that point of view, it is clear
that in the explanatory context an action at a distance
poses a problem, that is, that of explaining gravitation,
not a solution (like Schurz’s hypothetical cause abduc-
tion discussed above). However, Gabbay and Woods
point out that [8.5, p. 118–119]:

“[t]he action-at-a-distance equation serves New-
ton’s theory in a wholly instrumental sense. It al-
lows the gravitational theory to predict observations
that it would not otherwise be able to predict.”

Thus, there are hypotheses that are not set forth in
order to explain something, but to serve some practical
purpose. Newton used the action-at-a-distance equation
as a tool to predict phenomena. Psychologists have used
factor analysis as a tool to find basic personality traits
(pioneered by [8.66]).

However, technological sciences in general – me-
chanical, electronic, medical engineering and the like –
do not aim at explanations. They aim at practical,
though principled, solutions to practical problems. They
may be built on explanatory theories, but what they de-
velop does not have to be true; it has to be effective.
Sometimes, technologies have been invented, before
the mechanisms that they employed were sufficiently
understood (as for instance in the case of x-rays).
Moreover, although technological theories are typically
based on explanatory theories, the latter ones are input
in this context and appear in the colligation of abductive
inferences to technological theories.

For instance, laser technology employs physics in
many ways, but the technology itself is abduced from
these background theories. Before the laser was in-
vented, Charles Townes and Arthur Schawlow devel-
oped themaser (microwave amplification by stimulated
emission of radiation) in 1954 to amplify radio signals.
A few years later, the first optical laser was invented.
The technological aim was to produce focused light, not
to explain anything. And even though it was unclear,
at the outset, what practical purposes the technology
could be used for, it was effective in producing what
it was invented for. On top of this, searches for practi-
cal applications – of which we know many today – can
be easily accommodated as inverse abductions (as sug-
gested in Sect. 8.3.3), from technological theories (here:
laser technology) to concrete practical problems which
might be solved, either in principle or better than with-
out the technology. Based on technologies, the practical
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problems and further background knowledge, the func-
tioning of machines and appliances can be deductively
derived, and the machines or prototypes so constructed
are then evaluated in terms of effectiveness and effi-
ciency.

Hence, there seems to exist (at least) a second kind
of cognitive architecture parallel to the explanatory ar-
chitecture (and, accordingly, Magnani [8.4, p. 71] is
right to claim that Gabbay and Woods’ [8.5] notion of
instrumental abduction is orthogonal to the forms he
distinguishes). On the one hand, explanatory concepts
and theories aim at true accounts, and truth is the eval-
uative criterion for induction. On the other hand, there

are technological theories, which are inductively evalu-
ated in terms of effectiveness and – as far as economic
aspects are concerned – efficiency.

However, technological theories seem to be just
one domain of reasoning among others to complement
explanatory reasoning. At least moral concepts and
ethical theories could be a third domain [8.26, pp. 90–
101], [8.30], and they are evaluated neither in terms of
truth nor effectiveness, but in terms of justice. I can
only allude to these domains, here, and a separate pa-
per will be necessary to expound these ideas. However,
what seems obvious is that there are distinct realms of
abduction and of reasoning in general.

8.5 Conclusion
To sum up, I have argued (as Peirce did) that there
are precisely three basic kinds of inferences: abduction,
deduction, and induction. I have distinguished three
inferential subprocesses and introduced three inverse
types of inference, based on the analysis of inferential
subprocesses. My claim is that all kinds of real reason-
ing ought to be reducible to one of these three basic
forms, its inverse forms, or a particular subprocesses
within one inferential type. However, I also mentioned
analogical reasoning as a special compound form of in-
ferential reasoning and referred the reader to my [8.15].

Moreover, I have tried to point out that apart from
these fundamental kinds of reasoning, inferences can
be distinguished along two dimensions. One is the di-
mension of hierarchical complexity so that concepts
and theories are built upon one another across cognitive
levels, from elementary perception and action to high-

level scientific theories. The other dimension, discussed
in the previous section, is that of domains. By a do-
main I do not mean, in this context, issues of content to
which one and the same theory is applied, but domains
of reasoning. In this respect I distinguished explanatory,
technological, and moral/ethical concepts and theories.

This framework opens up a taxonomical system that
might be able to accommodate the various forms of rea-
soning in general, and of abduction in particular, that
have been suggested so far. I have discussed a few of
them, but by far not all. However, my hope is that this
taxonomy allows us to account for all a multitude of
varieties of abduction, deduction, and induction, while
recognizing them in their particular place and function
in an overall system and help us to a distinctive under-
standing of similarities and differences between these
individual forms.
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9. Magnani’s Manipulative Abduction

Woosuk Park

Despite the extensive research in logic, cognitive
science, artificial intelligence, semiotics, and phi-
losophy of science, there is no sure proof that we
have better or deeper understanding of abduction
than its modern founder, Charles S. Peirce. In this
sense, one of the most important developments in
recent studies on abduction is Lorenzo Magnani’s
discovery of manipulative abduction. In this paper,
I shall examine in what ways Magnani goes with
and beyond Peirce in his views on manipulative
abduction. After briefly introducing his distinction
between theoretical and manipulative abduction
(Sect. 9.1), I shall discuss how and why Magnani
counts diagrammatic reasoning in geometry as
the prime example of manipulative abduction
(Sect. 9.2). Though we can witness an increasing
interest in the role of abduction and manipulation
in what Peirce calls theorematic reasoning, Mag-
nani is unique in equating theorematic reasoning
itself as abduction. Then, I shall discuss what he
counts as some common characteristics of manip-
ulative abductions (Sect. 9.3), and how and why
Magnani views manipulative abduction as a form
of practical reasoning (Sect. 9.4). Ultimately, I shall
argue that it is manipulative abduction that en-
ables Magnani to extend abduction to all directions
to develop the eco-cognitive model of abduction.
For this purpose, fallacies and animal abduction
will be used as examples (Sect. 9.5).
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9.1 Magnani’s Distinction Between Theoretical
and Manipulative Abduction

It is certainly worthwhile to take a view of Magnani’s
multiple distinctions of abduction:

1. Selective/creative
2. Theoretical/manipulative
3. Sentential/model based.

Above all, our focal interest lies in understanding
the relationships between these three distinctions. The

most revealing seems to be the following text [9.1,
p. 11]:

“What I call theoretical abduction certainly illus-
trates much of what is important in creative ab-
ductive reasoning, in humans and in computational
programs, especially the objective of selecting and
creating a set of hypotheses (diagnoses, causes, hy-
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potheses) that are able to dispense good (preferred)
explanations of data (observations), but fails to ac-
count for many cases of explanations occurring in
science and in everyday reasoning when the ex-
ploitation of environment is crucial. [. . . ] I maintain
that there are two kinds of theoretical abduction, sen-
tential, related to logic and to verbal/symbolic infer-
ences, and model based, related to the exploitation
of internalized models of diagrams, pictures, etc.”

This text is important because it presents a ten-
tative definition of theoretical abduction and the sub-
division of theoretical abduction into sentential and
model-based abductions. The passage above says that
theoretical abduction can be a kind of creative reason-
ing (not only selective, as in diagnosis).

Insofar as Magnani views theoretical abduction also
as a kind of creative abduction, and again insofar as
he tries to distinguish between theoretical and ma-
nipulative abductions, he must also view manipulative
abduction as a kind of creative abduction. Magnani
introduces the concept of manipulative abduction as fol-
lows [9.1, p. 12] (cf. [9.2, pp. 15,16,43]):

“The concept of manipulative abduction captures
a large part of scientific thinking where the role of
action is central, and where the features of this ac-
tion are implicit and hard to be elicited: Action can
provide otherwise unavailable information that en-
ables the agent to solve problems by starting and by
performing a suitable abductive process of genera-
tion or selection of hypotheses.”

For my present purpose, the following text is more
informative [9.1, p. 39] (cf. [9.2, p. 53]):

“Manipulative abduction [9.2] – contrasted with
theoretical abduction – happens when we are think-
ing through doing and not only, in a pragmatic
sense, about doing. [. . . ] Manipulative abduction

Sentential Model-based

Manipulative

Theoretical

Creative
Selective    

Fig. 9.1 Magnani’s classification of abduction: Cubic
model

refers to an extra-theoretical behavior that aims
at creating communicable accounts of new expe-
riences to integrate them into previously existing
systems of experimental and linguistic (theoretical)
practices.”

As is clear from this quote, manipulative abduction
is contrasted with theoretical abduction by Magnani.

Further, inMagnani’s writings it is also stressed that
manipulative abduction is occurring taking advantage
of those model-based (e.g., iconic) aspects that are em-
bedded in external models [9.1, p. 58]:

“We have seen that manipulative abduction is a kind
of abduction, usually model based and so intrinsi-
cally iconic, that exploits external models endowed
with delegated (and often implicit) cognitive and
semiotic roles and attributes.”

This line of thought clearly indicates a possibility
that Magnani’s multiple distinctions of abduction may
work in such a way that each distinction represents
a different dimension in our understanding of abduc-
tion. What I have in mind might be presented crudely
as in the cubic model of Magnani’s classification of ab-
duction (Fig. 9.1).

9.2 Manipulative Abduction in Diagrammatic Reasoning

9.2.1 Abductive and Manipulative Aspects
of Diagrammatic Reasoning

In Peirce’s distinction between corollarial and theore-
matic reasoning, there are some typical texts in Peirce’s
writings frequently invoked by the commentators. For
example, Hoffmann cites [9.3, NEM 4:38] in [9.4, p.
290] (cf. [9.5, CP 2.267], [9.6, CP 7.204] and [9.3,
NEM 4:288]):

“Corollarial deduction is where it is only necessary
to imagine any case in which the premises are true
in order to perceive immediately that the conclusion
holds in that case [. . . ] Theorematic deduction is de-
duction in which it is necessary to experiment in
the imagination upon the image of the premiss in
order from the result of such experiment to make
corollarial deductions to the truth of the conclu-
sions.”
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Marietti cites the following texts as “the classic
description given by Peirce of the two types of deduc-
tion” [9.7, CP 2.267]:

“A corollarial deduction is one that represents the
conditions of the conclusion in a diagram and finds
from the observation of this diagram, as it is, the
truth of the conclusion. A Theorematic Deduction
is one which, having represented the conditions of
the conclusion in a diagram, performs an ingenious
experiment upon the diagram, and by the observa-
tion of the diagram, so modified, ascertains the truth
of the conclusion.”

Marietti [9.7, p. 120, NEM 4:42]:

“What I call the theorematic reasoning of math-
ematics consists in so introducing a foreign idea,
using it, and finally deducing a conclusion from
which it is eliminated.”

CP 4.233 seems, however, the most extensive
text pertinent to Peirce’s distinction between corol-
larial/theorematic distinction in broader perspective. I
discussed this text rather extensively in [9.8].

In their treatment of these typical Peircean texts,
recently many commentators have discussed diagram-
matic reasoning in connection with abduction. For ex-
ample, Hoffmann [9.4, p. 411] writes (cf. [9.9, p. 337],
[9.10, p. 69], [9.11, p. 465] and [9.4, pp. 292–293]):

“The creativity of theorematic reasoning and the
role of observation in it support the interpretation
that there must be, for Peirce, a connection between
this form of deductive reasoning and abduction.
Both, at least, seem to fulfill the same task. What
theorematic deduction is for mathematics, abduc-
tion seems to be for scientific discoveries in general.
Thus, Ketner (1985) maintained ‘that production
of experiments within theorematic reasoning, on
Peirce’s view, is done through abduction’.”

It is interesting to note that, while Ketner clearly
invokes abduction in the “experiments within theore-
matic reasoning”, Hoffmann himself is merely making
an analogy between theorematic deduction in mathe-
matics and abduction in science. Campos [9.12] is also
somewhat similar to Hoffmann’s case [9.12, p. 135]:

“In mathematical reasoning, the imagination cre-
ates experimental diagrams that function as signs
that are then perceived, interpreted, judged, often
transformed, re-imagined, re-interpreted, and so on,
in a continuous process. Experimental hypotheses
are imaginative suggestions that become subject to
logical scrutiny as possible keys to the solution
of a theorematic deduction. Once conceived, the

experimental diagrams act like objects for observa-
tion; they now resist the mind, as it were, and must
be evaluated as solutions to the mathematical prob-
lem. In this respect, this process is akin to abduction
in the natural sciences.”

Marietti [9.7] seems to go one step further in this
regard, for she explicitly mentions the necessity of
abduction in theorematic demonstration in mathemat-
ics [9.7, p. 124]:

“In my view, it is possible to identify an opera-
tion in thought – it takes place essentially above
the diagram and involves precisely the perceptual
relations organized by it – which forms the core
of the abductive inference that makes the demon-
stration synthetic, theorematic, creative. This is the
point: There has to be an abductive inference in
every informative demonstration given that a con-
necting thread running through Peirce’s thoughts
on the logic of science is that ‘[a]ll the ideas of
science come to it by the way of abduction’ (CP
5.145). In a theorematic demonstration – that is in
a demonstration introducing new knowledge into
our mathematical system – it is necessary to carry
out an abductive passage.”

However, Marietti leaves it unclear how it is pos-
sible to have “synthetic, theorematic, creative” mathe-
matical demonstration. So, one might say that Marietti
is here detecting the indispensability of abduction in
theorematic reasoning.

Stjernfelt [9.13] is clearly much more informative
as to how abduction takes place in theorematic reason-
ing [9.13, p. 276]:

“An important issue here – both related to the ad-
dition of new elements or foreign ideas and to
the experiment aspects – is the relation between
theorematic reasoning and abduction. A finished
piece of theorematic reasoning, of course, is de-
ductive – the conclusion follows with necessity
from the the premises. But in the course of con-
ducting the experiment, an abductive phase appears
when investigating which experimental procedure,
among many, to follow; which new elements or for-
eign ideas to introduce. This may require repeated,
trial-and-error abductive guessing, until the final
structure of the proof is found – maybe after years
or centuries. Exactly the fact that neither premises
nor theorems need to contain any mentioning of
the experiment or the introduction of new elements
makes the abductive character of experimentation
clear. Of course, once the right step has been found,
abductive searching may cease and the deductive
character of the final proof stands out.”
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Here, Stjernfelt makes it exactly clear when and
where abduction intervenes in theorematic reasoning.
When conducting the experiments with diagrams, “an
abductive phase appears”. He is also quite explicit about
what are abduced at that phase: i. e., “which experi-
mental procedure to follow”, and “which new elements
or foreign ideas to introduce”. His view seems attrac-
tive in that at least it rather persuasively appeasing the
apparent conflict between theorematic deduction and
abduction. Though “a finished piece of theorematic
reasoning, of course, is deductive”, abductive phase
appears in doing experiments with diagrams. At the
same time, he also explains why it has been difficult
to notice abductive phase in theorematic reasoning, for
“once the right step has been found, abductive search-
ing may cease and the deductive character of the final
proof stands out”. He is perceptive enough to point out
that [9.13, p. 276]:

“Exactly the fact that neither premises nor theorems
need to contain any mentioning of the experiment
or the introduction of new elements makes the ab-
ductive character of experimentation clear.”

A few recent commentators are also to be congratu-
lated for their discussion of manipulation in diagram-
matic reasoning. After pointing out that “for Peirce
mathematics is a science of observation and experimen-
tation upon diagrams akin to the physical sciences”, for
example, Campos draws our attention to the following
text [9.12, p. 129] (cf. [9.14, CP 4.530]):

“One can make experiments upon uniform dia-
grams, and when one does so, one must keep
a bright lookout for unintended and unexpected
changes thereby brought about in the relations of
different significant parts of the diagram to one
another. Such operations upon diagrams, whether
external or imaginary, take the place of the ex-
periments upon real things that one performs in
chemical and physical research. Chemists have ere
now, I need not say, described experimentation as
the putting of questions to Nature. Just so, experi-
ments upon diagrams are questions put to the Nature
of the relations concerned.”

In case of experiments on diagrams, it may be hard
not to notice the manipulative character, for in exper-
imenting on diagrams by doing certain operations we
are doing nothing but manipulations. Indeed, Campos
is able to locate a text, in which Peirce actually uses the
language of manipulation extensively [9.15, CP 3.363,
emphasis is mine]:

“As for algebra, the very idea of the art is that it
presents formulae which can be manipulated, and

that by observing the effects of such manipulation
we find properties not to be otherwise discerned. In
such manipulation, we are guided by precious dis-
coveries which are embodied in general formulae.
These are the patterns which we have the right to
imitate in our procedure, and are the icons par ex-
cellence of algebra [Emphasis is mine].”

Among the commentators of Peirce, Marietti seems
to be the one who highlights manipulation on diagrams
in more detail. She is rather explicit in presenting ma-
nipulation on diagrams as the core of mathematical
proofs, and thereby mathematics itself [9.16, p. 166]:

“Manipulation and observation of diagrammatic
signs characterize Peirce’s idea of mathematical
reasoning. The more that such reasoning leads to
relevant conclusions, the more manipulation and
observation play a key role in it.”

Marietti [9.7, p. 112]:

“It is well known that Peirce conceivedmathematics
as a semiotic activity using particular kinds of signs,
which he called diagrams. In his view, the work of
a mathematician consists entirely in observing and
manipulating these diagrammatic signs.”

Marietti’s commentaries are quite recommendable
in that they enable us to understand not only that ma-
nipulation on diagrams is everywhere in mathematics,
but also why it has such an important role in mathemat-
ics. For example, she writes [9.16, p. 151]:

“In order to experiment on a diagram, in fact, we
must face a single instance of it, that is to say, a spa-
tial and temporal object, be it actually drawn on
a blackboard or rather only scribed in our mind.
To look for a suitable strategy of demonstration
(to look for the foreign idea required in order to
get to the conclusion) means to manipulate a con-
crete, individual diagram according to established
rules, until the new cognition, whatever it might
be, appears on it. Manipulation, action, concrete ex-
perimentation: this is what a mathematical proof
consists in.”

Here, Marietti painstakingly elaborates what is in-
volved in diagrammatic reasoning. Experiment on dia-
grams is nothing but manipulation on them, which re-
quires “to manipulate a concrete, individual diagram”.
Indeed, both equations, that is, experimenting is manip-
ulating, andmanipulation is manipulation on individual
diagrams are emphasized by Marietti, as is clear from
the following [9.7, p. 121]:

“It is even more understandable, however, in the
case of the most fertile type of deduction, theore-
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matic deduction, in which it is not only a question
of observing the relations that emerge but also to
carry out some operations on this single model, on
the individual token. What is to be done is to manip-
ulate this sign, to implement a series of ingenious
experiments – hence creative and not mechanical –
aimed at finding the correct modification so as to
cause to emerge the new relations that we then ob-
serve. Such concrete work presupposes the concrete
quality of a material sign.”

Marietti further hints at what is involved in ma-
nipulation on individual diagrams. Sun-Joo Shin seems
to be another important contributor to the research on
Peircean diagrammatic reasoning, who emphasizes the
aspect of individuality in diagrams [9.17, 18]. [9.16,
p. 153]:

“The second step of the demonstration introduces
that spatiotemporal level which is indispensable in
view of the manipulation of the diagram. The ek-
thesis consists in the individualization of the initial
proposition, the protasis, which is expressed in gen-
eral terms.”

Marietti [9.16, p. 154]:

“Demonstrating means manipulating individual di-
agrams. In order to experiment on a diagram, as we
said above, we must face a single instance of it. De-
duction cannot work on general signs alone.”

Marietti [9.16, p. 155]:

“The individual diagrammatic sign really acts upon
us. We manipulate it, and it reacts on us concretely
showing some new relations that impose themselves
upon our understanding, escaping any doubt.”

In sum, some commentators of Peirce’s distinction
between corollarial and theorematic reasoning indeed
detect abductive and manipulative aspects of diagram-
matic reasoning in geometry. None of them, however,
invokes manipulative abduction in diagrammatic rea-
soning.

9.2.2 Magnani on Manipulative Abduction
in Diagrammatic Reasoning

Magnani already dealt with the role of model based
and manipulative abductions in geometrical reasoning
in several places [9.1, 2, 19, 20]. Since there have been
many attempts to understand Peirce’s philosophy of
mathematics focusing on his distinction between corol-
larial and theorematic reasoning, as we saw earlier,
Magnani’s results in model based and manipulative ab-
duction can be easily combined with previous results

in diagrammatic reasoning in geometry. For example,
Peircean corollarial reasoning would be model based,
theoretical, and visual abduction. On the other hand,
Peicean theorematic reasoning would be model based,
manipulative, and visual abduction [9.1, pp. 117–118,
176–178].

In assimilating Magnani’s views of manipulative
abduction to Peirce’s theory of diagrammatic reason-
ing in geometry, the most difficult point would be that
Peircean corollarial and theorematic reasonings are usu-
ally counted as deductions.Magnani claims that “theo-
rematic deduction can be easily interpreted in terms of
manipulative abduction” [9.1, p. 178]. However, it is not
clear what he has in mind. Probably, further hints can be
secured from the following quote from Magnani [9.1,
p. 181]:

“As I have already indicated Peirce further distin-
guished a corollarial and a theoric part within the-
orematic reasoning, and connected theoric aspects
to abduction [Hoffmann, 1999, p. 293]: Thêoric
reasoning [. . . ] is very plainly allied to what is nor-
mally called abduction [Peirce, 1966, 754, ISP, p.
8]. ”

As Hoffmann points out, however, there can be
different possible interpretations of what Peirce says
“either he identified abduction/retroduction and theoric
reasoning here or he claimed that there is abduction in
mathematics beyond theoric deduction” [9.4, p. 293].

Though extremely interesting and significant, it is
not my present concern to answer whether we can
safely understand Peirce’s theoric reasoning as abduc-
tion, as Magnani claims. What is at stake is rather
how and why Magnani views diagrammatic reasoning
in geometry as the prime example of manipulative ab-
duction. If so, by assuming that we now understand the
basics of Magnani’s notion of manipulative abduction,
we need to raise the following further questions. Why
does he appeal to diagrammatic reasoning in geometry
whenever he has to give an example of manipulative
abduction? What exactly does Magnani mean by ma-
nipulative abduction in geometrical reasoning? What
exactly do mathematicians do when they experiment on
diagrams? What kind of things could be manipulated in
mathematicians’ manipulative abduction?What is it for
to do manipulative abduction?

Magnani uses Fig. 9.2 as an example of cognitive
manipulating in diagrammatic demonstration. Accord-
ing to him, this example, taken from the field of ele-
mentary geometry, shows how [9.1, p. 176]:

“a simple manipulation of the triangle in Fig. 9.2a
gives rise to an external configuration – Fig. 9.2b –
that carries relevant semiotic information about the
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a) b)

Fig. 9.2a,b Diagrammatic demonstration that the sum of
the internal angles of any triangle is 180. (a) Triangle
(b) diagrammatic manipulation/construction (after [9.1,
p. 176])

internal angles of a triangle anchoring new mean-
ings”

What Magnani counts as cognitive manipulating
here is “the entire process through which an agent ar-
rives at a physical action”. And he claims that the very
process can be understood by means of the concept of
manipulative abduction. He continues [9.1]:

“In this perspective manipulative abduction is a spe-
cific case of cognitive manipulating in which an
agent, when faced with an external situations from
which it is hard or impossible to extract new mean-
ingful features of an object, elects or creates an
action that structures the environment in such a way
that it gives new information which would be oth-
erwise unavailable and which is used specifically to
infer explanatory hypotheses.”

The reason why diagrammatic reasoning in geome-
try is instrumental for Magnani to introduce manipula-
tive abduction is not hard to understand. From his point
of view, it is important to first note that “mathemati-
cal diagrams play various roles in a typical abductive
way”. Secondly, they are external representations that
provide both explanatory and nonexplanatory abductive
results [9.1, pp. 118–119]. The first point can be elabo-
rated by the following [9.1, p. 118]:

“Following the approach in cognitive science re-
lated to the studies in distributed cognition, I con-
tend that in the construction of mathematical con-
cepts many external representations are exploited,
both in terms of diagrams and of symbols. I have
been interested in my research in diagrams which
play an optical role – microscopes (that look at
the infinitesimally small details), telescopes (that
look at infinity), windows (that look at a particular
situation), a mirror role (to externalize rough men-
tal models), and an unveiling role (to help create
new and interesting mathematical concepts, theo-
ries, and structures).”

Also, the second point is further explained by Mag-
nani as follows.

m

P

l

Fig. 9.3 Euclidean parallel line (after [9.1, p. 120])

Two of them are central [9.1, pp. 118–119]:

� They provide an intuitive and mathematical expla-
nation able to help the understanding of concepts
difficult to grasp or that appear obscure and/or
epistemologically unjustified. I will present in the
following section some mirror diagrams which pro-
vided new mental representations of the concept of
parallel lines.� They help abductively create new previously un-
known concepts that are nonexplanatory, as illus-
trated in the case of the discovery of the non-
Euclidean geometry.

As we can infer from the passage just quoted, the
discovery of non-Euclidean geometry provides Mag-
nanian ideal springboard to elaborate his views on
manipulative abduction in diagrammatic reasoning. In
fact, Magnani [9.1] uses Lobachevsky’s discovery of
non-Euclidean geometry as an example, in which ma-
nipulative abduction played a crucial role. After briefly
narrating what happened to the parallel postulate of Eu-
clidean geometry throughout the history, he explains
Lobachevsky’s strategy to face the problem situation as
follows [9.1, p. 123]:

“Lobachevsky’s strategy for resolving the anomaly
of the fifth postulate was first of all to manipulate
the symbols, second to rebuild the principles, and
then to derive new proofs and provide a new math-
ematical apparatus; of course his analysis depended
on some of the previous mathematical attempts to
demonstrate the fifth postulate. The failure of the
demonstrations – of the fifth postulate from the
other four – that was present to the attention of
Lobachevsky, lead him to believe that the difficul-
ties that had to be overcome were due to causes
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Fig. 9.4 Non-Euclidean parallel lines (after [9.1, p. 131])

traceable at the level of the first principles of ge-
ometry.”

According to Magnani, we can detect the anomaly
of the fifth postulate from Fig. 9.3, for, unlike other
four postulates, “we cannot verify empirically whether
two lines meet, since we can draw only segments, not
lines” [9.1, p. 121].

In contrast to the diagram of Fig. 9.3, as Magnani
explains, the diagram of Fig. 9.4 introduces a new defi-
nition of parallelism [9.1, p. 13]:

“All straight lines which in a plane go out from
a point can, with reference to a given straight line
in the same plane, be divided in two classes – into
cutting and not-cutting. The boundary lines of the
one and the other class of those lines will be called
parallel to the given lines.”

See Magnani [9.1, p. 131] for further details:

“The external representation is easily constructed
like in of [Lobachevsky, Figure 2.11, Prop. 16,
p. 13], where the angle HAD between the parallel
HA and the perpendicular AD is called the angle
of parallelism, designated by ˘.p/ for ADD p. If
˘.p/ is < 12
 , then upon the other side of AD,
making the same angle DAK D˘.p/ will lie also
a line AK, parallel to the prolongation DB of the
line DC, so that under this assumption we must also
make a distinction of sides in parallelisms”

Magnani explicitly claims that Lobachevsky’s infer-
ence here “to rebuild the first principles of geometry
is prevalently a kind of manipulative and model-based
abduction” [9.1, 127]. As Magnani aptly points out,
“Lobachevsky’s target is to perform a geometrical ab-
ductive process able to create the new and very abstract
concept of non-Euclidean parallel lines”, and what is
remarkable is that “the whole epistemic process is me-
diated by interesting manipulations of external mirror
diagrams” [9.1, p. 123].

9.3 When Does Manipulative Abduction Take Place?

Earlier we saw how Magnani introduces the distinc-
tion between theoretical and manipulative abduction,
and how he counts diagrammatical reasoning in geom-
etry as an example of manipulative abduction. In order
to capture the essence of manipulative abduction, how-
ever, we may need a bit more systematic desiderata. In
other words, one might want an individually necessary
but jointly sufficient set of conditions for manipulative
abduction. Does Magnani present some such things in
addition to his frequently invoked claim that “manipu-
lative abduction happens when we are thinking through
doing and not only, in a pragmatic sense, about do-
ing?” [9.1, p. 46].

The answer seems to be positive, for, at least Mag-
nani presents what he calls “some common features of
the tacit templates of manipulative abduction [. . . ] that
enable us to manipulate things and experiments in sci-
ence are related to” [9.1, pp. 47–48]:

“1. sensibility toward the aspects of the phe-
nomenon which can be regarded as curious or ano-

malous; manipulations have to be able to introduce
potential inconsistencies in the received knowledge
[. . . ]; 2. preliminary sensibility toward the dynami-
cal character of the phenomenon, and not to entities
and their properties, common aim of manipulations
is to practically reorder the dynamic sequence of
events into a static spatial one that should pro-
mote a subsequent bird’s eye view [. . . ]; 3. referral
to experimental manipulations that exploit artificial
apparatus to free new possibly stable and repeatable
sources of information about hidden knowledge
and constraints [. . . ]; 4. various contingent ways
of epistemic acting: looking from different perspec-
tives, checking the different information available,
comparing subsequent events, choosing, discarding,
imaging further manipulations [. . . ].”

Further, Magnani finds it interesting that manipula-
tive abductions are present in mathematics in the sense
that geometrical constructions indeed satisfy all these
requirements [9.1, p. 49].
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However, it would be prudent not to conclude so
fast, for it is not clear which comes first. In a lengthy
paragraph just quoted selectively, Magnani uses the
well-known history of electromagnetism in the nine-
teenth century in order to make sense of many require-
ments for manipulative abduction. Magnani uses Oer-
sted’s report of his experiment about electromagnetism
as an example of 1, for it described some anomalous
aspects. Also, he uses Davy’s setup of using an artificial
tower of needles as an example of 3. Magnani seems
indebted here to Gooding’s views of the roles of con-
struals in science [9.1, pp. 48–51] and [9.21, pp. 29–69].
But, in order for the episodes in that history to be exam-
ples of manipulative abduction, should not there be first
pre-established set of requirements for manipulative ab-
duction? Magnani seems delighted to find geometrical
constructions satisfy all these requirements. But he does
not first discover manipulative abduction in geometrical
constructions, and sort out the commonalities of manip-
ulative abductions, and not the other way around? There
is some suspicion as to possible circularity inMagnani’s
way of thinking. Furthermore, not to mention the fact
that it is by no means clear what relations hold between
these requirements, there is room for doubt whether
each of the requirements is evidently an individually
necessary condition for manipulative abduction.

Some such worries make us wonder whether Mag-
nani simply enumerates some interesting traits that
appear in cases of manipulative abduction. Magnani

seems still collecting interesting cases that deserve to
be characterized as manipulative abductions, and iden-
tifying their interesting traits. In other words, he has
just drawn our attention to when and by what manip-
ulative abductions occur. What is interesting is, if we
are on the right track, such a search to find cases of
manipulative abduction and their typical characteristics
might result in a disjunctive property, whose extension
could be rather huge. Though it might be interesting
and meaningful to pursue such a property, it is definitely
not necessary and sufficient for manipulative abduction.
Contrary to what one might believe Magnani is do-
ing, he may be after entirely different target. Roughly
speaking, Magnani seems to aim at demonstrating the
ubiquity or pervasiveness of manipulative abduction.
What I have in mind could become clearer by “the
example discussed above”. It is rather impressive that
Magnani is able to uncover all the various iconic roles in
geometrical diagrams, such as optical, mirror, unveiling
roles. These different iconic roles are related to differ-
ent types of representations. Further, there is no end to
the synthesis or multiplication of these representations,
for [9.1, p. 49]:

“[t]he various procedures for manipulating objects,
instruments and experiences will be in their turn
reinterpreted in terms of procedures for manip-
ulating concepts, models, propositions, and for-
malisms”

9.4 Manipulative Abduction as a Form of Practical Reasoning

In order to sharpen the notion of manipulative ab-
duction in contrast to theoretical abduction, we need
some defining characteristics that appropriately capture
the essence of manipulative abduction. But we by no
means have exhausted the possible cases of manipula-
tive abduction. We seem to rather find the ubiquity or
pervasiveness of manipulative abduction. So, we seem
to face a dilemma or at least an essential tension: If we
stop somewhere satisfied with a set of conditions that
fits with some typical common characteristics of ma-
nipulative abductions, we might run the risk of ignoring
or neglecting some interesting cases of manipulative
abduction; On the other hand, if we indefinitely con-
tinue our search for all different types of manipulative
abduction, and try to subsume all of them under the gen-
eral rubric of manipulative abduction, it could become
difficult to find any that is definitely not a case of ma-
nipulative abduction.

I believe that Magnani is also well aware of such
a dilemma or an essential tension in his investigations

into manipulative abduction. He seems to make a de-
cision to do an inductive search for important cases of
manipulative abduction first, thereby postponing to give
a rigorous definition or a necessary and sufficient con-
ditions for manipulative abduction. My hunch may be
supported by Magnani’s two interesting moves. First,
in Chapter 7, “Abduction in human and logical agents:
Hasty generalizers, hybrid abducers, fallacies” of his
book on abductive cognition, he introduces an illu-
minating new perspective on manipulative abduction,
according to which we can view manipulative abduc-
tion “as a form of practical reasoning” [9.1, p. 362; see
also p. 384]:

“What has been called manipulative abduction in
the previous chapters will be re-interpreted as
a form of practical reasoning, a better understanding
of which can furnish a description of human beings
as hybrid reasoners in so far they are users of ideal
(logical) and computational agents.”
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There are several interesting points to note regard-
ing Magnani’s new perspective of manipulative abduc-
tion as a form of practical reasoning. For convenience’s
sake, let us distinguish between scientific contexts and
the contexts of ordinary life. As is clear from our dis-
cussion earlier, manipulative abduction plays important
roles in scientific contexts. But with this new perspec-
tive, we may deepen our understanding of some of
the characteristics of manipulative abduction in sci-
ence. According toMagnani, for example, the first three
among the new characteristics of manipulative abduc-
tion are also found in geometrical constructions. It may
not be irrelevant to invoke, in this regard, John Woods’
apt characterization of Magnani [9.22, p.240]:

“At the centre of Magnani’s investigations is the
reasoning of the practical agent, of the individual
agent operating on the ground, that is, in the cir-
cumstances of real life. In all its contexts, from the
most abstractly mathematical to the most muckilly
empirical, Magnani emphasizes the cognitive nature
of abduction.”

If Woods is right, then it is not a small matter that
manipulative abduction can be interpreted as a form of
practical reasoning. Magnani is shifting our focus from
more theoretical and abstract aspects of science to more
practical and experimental aspects of science by his em-
phasis on manipulative abduction. Now, if we turn to
the world of everyday reasoning with the new perspec-
tive of manipulative abduction as a form of practical
reasoning, we may realize how indispensablemanipula-
tive abduction is for individual agents in virtually every
moments and situations in real like. Again,Woods’ suc-
cinct summary of the pages 363–384 of Magnani [9.1]
is to the point [9.22]:

“In an original thrust, he identifies the practical
agent as a cognitive system whose resources are
comparatively scant and who sets his cognitive
targets with due regard (and respect) for these re-
source-limitations.”

Magnani’s second move is also impressive. In ad-
dition to the common characteristics of manipulative
abduction discussed earlier, Magnani identifies some
other common characteristics of manipulative abduc-
tion from the perspective of manipulative abduction as
a form of practical reasoning [9.1, pp. 51–52]:

“5. Action elaborates a simplification of the reasoning
task and a redistribution of effort across time [9.23],
when we need to manipulate concrete things in or-
der to understand structures which are otherwise too
abstract [9.24], or when we are in presence of re-
dundant and unmanageable information;

6. Action can be useful in presence of incomplete or
inconsistent information – not only from the per-
ceptual point of view – or of a diminished capacity
to act upon the world: it is used to get more data to
restore coherence and to improve deficient knowl-
edge;

7. Action enables us to build external artifactual mod-
els of task mechanisms instead of the correspond-
ing internal ones, that are adequate to adapt the
environment to the agent’s needs: Experimental ma-
nipulations exploit artificial apparatus to free new
possible stable and repeatable sources of informa-
tion about hidden knowledge and constraints.

8. Action as a control of sense data illustrates how
we can change the position of our body (and/or
of the external objects) and how to exploit various
kinds of prostheses (Galileo’s telescope, technolog-
ical instruments and interfaces) to get various new
kinds of stimulation: action provides some tactile
and visual information (e.g., in surgery), otherwise
unavailable.”

As individual agents with scant resources to manage
and survive in complicated and unfriendly environ-
ments, we can understand without much difficulty what
Magnani is talking about in this quote. Furthermore, as I
shall show by some examples in the next section, Mag-
nani’s recent research, including not only those works
directly concern abduction (such as Magnani [9.1]) but
also virtually all other works apparently dealing with
other subject matters (such as Magnani [9.25–27]) can
be interpreted as examining the roles of manipulative
abduction in all the different areas. Before turning to
examples, let us briefly examine what new aspects of
manipulative abduction are introduced by the character-
istics 5 through 8 in addition to characteristics 1 through
4. The most salient point would be that action-based
character of these characteristics are emphasized by
Magnani. In some sense, there seems to be one–one cor-
respondence between the new characteristics 5 through
8 and the old characteristics 5 through 8. For example,
in both and 3 and 7, artificial apparatus is invoked. The
only difference is that in the latter externality of artifac-
tual models is emphasized. Likewise, in both 4 and 8,
some contingent ways of acting are invoked. The only
difference is that, unlike epistemic acting in the former
(e.g., looking from different perspective), real acting is
done in the latter (e.g., control of sense-data by chang-
ing the position of the body). In other words, Magnani
seems to be insinuating that, when we interpret ma-
nipulative abduction as a form of practical reasoning,
thereby exploiting some action, we can find the new
characteristics that were in some sense already pregnant
in the old characteristics.
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The following quote fromMagnani [9.1] seems per-
fectly supports my understanding by clearly combining
his two moves [9.1, p. 397]:

“Human beings spontaneously (and also animals,
like already Peirce maintained) perform more or
less rudimentary abductive and inductive reasoning.
Starting from the low-level inferential performances
of the kid’s hasty generalization that is a strategic
success and a cognitive failure human beings ar-
rive to the externalization of theoretical inductive
and abductive agents as ideal agents, logical and

computational. It is in this way that merely success-
ful strategies are replaced with successful strategies
that also tell the more precise truth about things.
Human informal nondemonstrative inferential pro-
cesses of abduction (and of induction) are more
and more externalized and objectified: These ex-
ternal representations can be usefully rerepresented
in our brains (if this is useful and possible), and
they can originate new improved organic (mentally
internal) ways of inferring or suitably exploited
in a hybrid manipulative interplay, as I have said
above.”

9.5 The Ubiquity of Manipulative Abduction

In order to fathom Magnani’s mind in expanding the
scope of manipulative abduction by treating it as a form
of practical reasoning, the distinction between linguistic
and prelinguistic agent could be at least equally fruit-
ful as the distinction between scientific and everyday
context. As he wants to find manipulative abduction in
everyday as well as scientific contexts, he also wants
to find it in prelinguistic as well as linguistic agents.
How does Magnani expand manipulative abduction in
science to manipulative abduction in everyday context?
How does Magnani expand manipulative abduction in
linguistic agents to manipulative abduction in prelin-
guistic agents? A nice strategic point to get an overview
of both lines of expanding the scope of manipulative ab-
duction may be secured in Chapter 7 of Magnani [9.1]
entitled “Abduction in human and logical agents: Hasty
generalizers, hybrid abducers, fallacies”. On the one
hand, this chapter provides us with a clear example
of nonexplanatory abduction, thereby representing the
shift from the scientific to the practical. On the other
hand, it presents us a foil for the search of manip-
ulative abduction in nonhuman, prelinguistic agents.
In both respects, interestingly, Magnani seems to be
strongly influenced by and responding to Gabbay and
Woods [9.28] andWoods [9.29].

9.5.1 Manipulative Abduction in Fallacies

As pointed out by Park [9.30], we can witness the re-
cent surge of interest in classifying different patterns
or types of abduction. Many philosophers, including
Thagard, Magnani, Gabbay and Woods, Schurz, and
Hoffmann, have suggested their own classifications em-
phasizing different aspects of abduction [9.1, 2, 28,
31–33]. Such a development is remarkable, in view of
the fact that until quite recently the focus of the research
on Peircean abduction was basically to identify its log-

ical form [9.34]. Among these contributions, Gabbay
andWoods [9.28] seem most instrumental in expanding
our purview by introducing nonexplanatory abductions.
This is important, for as is clear from Schurz [9.32]
and Hoffmann [9.33], attempts at classifying abduction
is still largely focusing on the problem of classifying
explanatory abduction in science. Not to mention non-
explanatory abduction in science, such as instrumental
abduction, Gabbay and Woods [9.28] covers abduc-
tion in nonscientific context, such as legal abduction.
Magnaniwelcomes Gabbay and Woods’ distinction be-
tween explanatory and nonexplanatory abduction as
follows [9.1, p. 71]:

“In my previous book on abduction [9.2] I made
some examples of abductive reasoning that ba-
sically are nonexplanatory and/or instrumentalist
without clearly acknowledging it. The contribution
of Gabbay and Woods to the analysis of abduction
has the logical and epistemological merit of hav-
ing clarified these basic aspects of abduction, until
now disregarded in the literature. Their distinction
between explanatory, nonexplanatory and instru-
mental abduction is orthogonal to mine in terms of
the theoretical and manipulative (including the sub-
classes of sentential and model based) and further
allows us to explore fundamental features of abduc-
tive cognition.”

Magnani is also strongly influenced by Woods’ ex-
tensive and revolutionary study of fallacies. Above all,
Magnani is fully sympathetic with Woods’ project of
the naturalization of logic, the official core topic of
which is the one of logical fallacies [9.35, p. 20]. What
is needed here is just to understand howMagnani adopts
and appropriates Wood’s views of fallacies for his own
eco-cognitive project. Woods contends, and Magnani
confirms that fallacy has been counted as “a mistake in



Magnani’s Manipulative Abduction 9.5 The Ubiquity of Manipulative Abduction 207
Part

B
|9.5

reasoning, a mistake which occurs with some frequency
in real arguments and which is characteristically decep-
tive” [9.1, p. 404] and [9.29]. However, Magnani points
out that [9.1, pp. 404–405]:

“when they are used by actual reasoners, beings like
us, that is in an eco-logical and not merely logical –
ideal and abstract – way, they are no longer neces-
sarily fallacies.”

Magnani agrees with Woods’ conviction that from
Aristotle onward logic has irremediably mismanaged
the fallacies project. And he concurs with Woods’ be-
lief that naturalization of logic is appropriate to the task
of “an account of fallacious reasoning – and of its de-
tection, avoidance, and repair” [9.35, 36]. What Woods
calls EAUI-conception of fallacies is the traditional
perspective of fallacies that “fallacies are Errors of Rea-
soning, Attractive, Universal, and Incorrigible” [9.36,
p. 135], [9.35, p. 21]. Now, Magnani reports Woods’
views of fallacies as follows [9.35, p. 22]:

“According to Woods’ last and more recent obser-
vations the traditional fallacies – hasty generaliza-
tion included – do not really instantiate the tradi-
tional concept of fallacy (the EAUI-conception). In
this perspective it is not that it is sometimes strategi-
cally justified to commit fallacies (a perfectly sound
principle, by the way), but rather that in the case of
the Gang of Eighteen traditional fallacies they sim-
ply are not fallacies. The distinction is subtle, and I
can add that I agree with it in the following sense:
The traditional conception of fallacies adopts – so to
say – an aristocratic (ideal) perspective on human
thinking that disregards its profound eco-cognitive
character. Errors, in an eco-cognitive perspective,
certainly are not the exclusive fruit of the so-called
fallacies, and in this wide sense, a fallacy is an er-
ror – in Woods’ words – ‘that virtually everyone
is disposed to commit with a frequency that, while
comparatively low, is nontrivially greater than the
frequency of their errors in general’.”

By the term Gang of Eighteen, Woods refers to fol-
lowing typical fallacies [9.36, p. 5]:

“ad baculum, ad hominem, ad populum, ad vere-
cundiam, ad ignorantiam, ad misericordiam, af-
firming the consequent, denying the antecedent,
begging the question, gambler’s fallacy, post hic,
ergo propter hoc, composition and division (of
which secundum quid is a special case), faulty anal-
ogy, and ignoratio elenchi (of which straw man is
a special case).”

Magnani’s eco-cognitive perspective draws a rather
sharp distinction between strategic and cognitive ra-

tionality, and he explicitly claims that “many of the
traditional fallacies – hasty generalization for example –
call for an equivocal treatment” [9.35, p. 21] and [9.1].
What he means by “an equivocal treatment” is that the
so-called fallacies [9.1]:

“are sometimes cognitive mistakes and strategic
successes, and in at least some of those cases, it is
more rational to proceed strategically, even at the
cost of cognitive error.”

Magnani also claims that his general agreement
with Woods’ views of fallacies can be further strongly
motivated by his emphasis on what he calls the general
military nature of language, that is:

1. Human language possesses a pregnance-mirroring
function.

2. In this sense we can say that vocal and written lan-
guage is a tool exactly like a knife.

3. The so-called fallacies, are certainly linked to that
efficacious military intelligence, which relates to
the problem of the role of language in the so-
called coalition enforcement, which characterizes
all the various kinds of groups and collectives of hu-
mans [9.35, p. 22].

Indeed Magnani contends that in this perspective
language is basically rooted in a kind of military in-
telligence, a term coined by the mathematician René
Thom [9.37], the creator of the so-called catastrophe
theory. See Chap. 8 ofMagnani [9.1] for more in-depth
study of military intelligence and the notion of coalition
enforcement.

Certainly most people would believe that communi-
cation is the primary function of language. Also, when
broadly understood, communication might include the
manipulation of other human beings by language. One
possible danger is that whenever we talk about commu-
nicative function as the primary function of language,
we tend to ignore or neglect the manipulative func-
tion of language. Clever and sometimes malicious uses
of fallacies in order to manipulate other human be-
ings, definitely there is military intelligence involved.
In a word, we may say that manipulative abduction is
crucial in understanding the role of fallacies in military
intelligence.

9.5.2 Manipulative Abduction in Animals

I emphasized the central importance of animal abduc-
tion in Magnani’s thought in a series of papers [9.30,
38, 39]. This section draws extensively from these, es-
pecially [9.38]. Unlike these previous articles, this time
I want to highlight the role of manipulative abduction
in animal cognition. One of the most pressing issues in
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understanding abduction is whether it is an instinct or
an inference. For many commentators find it paradox-
ical “that new ideas and hypotheses are products of an
instinct (or an insight), and products of an inference at
the same time” [9.40, p. 131]. Paavola refers to [9.41–
46]. As Paavola points out, we seem to face a dilemma:
“If abduction relies on instinct, it is not a form of rea-
soning, and if it is a form of reasoning, it does not rely
on instinct” [9.40, p. 131]. Fortunately, Lorenzo Mag-
nani’s recent discussion of animal abduction sheds light
on both instinctual and inferential character of Peircean
abduction (Magnani [9.1, especially Chapter 5], “Ani-
mal abduction: From mindless organisms to artifactual
mediators”, which was originally published inMagnani
an Li [9.25]). Contrary to many commentators, who find
conflicts between abduction as instinct and abduction as
inference, he claims that they simply co-exist.

In order to overcome the conflict between abduc-
tion as an instinct and abduction as an inference, it
is not enough to draw attention to some relevant texts
from Peirce and to provide insightful interpretation
of them. Magnani needs to indicate exactly where he
is going beyond Peirce, thereby pointing out wherein
lies the limitation of Peirce’s views on abduction. It
is of course an important matter for Magnani himself
whether he is going beyond Peirce or not [9.1, p. 221].
Magnani finds such a clear example from Peirce’s dif-
ferent treatments of practical reasoning and scientific
thinking [9.1, pp. 278–279]:

“Elsewhere Peirce seems to maintain that instinct
is not really relevant in scientific reasoning but that
it is typical of just the reasoning of practical men
about every day affairs. So as to say, we can perform
instinctive abduction (that is not controlled, not rea-
soned) in practical reasoning, but this is not typical
of scientific thinking.”

Here Magnani quotes extensively from Peirce’s
Carnegie application of 1902 (MS L75) (cf. Arisbe
Website [9.47].) We should note that Magnani is fully
aware of the fact that we can find many instances where
Peirce allowed abductive instinct to humans even in
scientific reasoning. For example, hypothesis selection
is a largely instinctual endowment of human beings
which Peirce thinks is given by God or related to a kind
of Galilean lume naturale [9.1, p. 277] and [9.6, CP
7.220]:

“It is a primary hypothesis underlying all abduction
that the human mind is akin to the truth in the sense
that in a finite number of guesses it will light upon
the correct hypothesis.”

Magnani counts commentators like [9.4, 40, 48] as
maintaining that “instinct [. . . ] does not operate at the

level of conscious inferences like for example in the
case of scientific reasoning” [9.1, p. 279]. And he im-
plicitly blames their assumption of instinct “as a kind
of mysterious, not analyzed, guessing power” for such
a claim [9.1]. Indeed Magnani distances himself from
those commentators and Peirce himself as follows [9.1]:

“I think a better interpretation is the following that I
am proposing here: Certainly instinct, which I con-
sider a simple and not a mysterious endowment of
human beings, is at the basis of both practical and
scientific reasoning, in turn instinct shows the obvi-
ous origin of both in natural evolution.”

But on what ground does Magnani claim superior-
ity of his interpretation? How could he be so sure that
instinct is at the basis of both practical and scientific
reasoning? Even thoughMagnani does not formulate an
argument that proves his claim once and for all, there
seem to be enough clues for fathoming his mind. In
addition to his reliance on the naturalistic ground for
abductive instinct in humans, Magnani is also attracted
to the so-called synechism of Peirce. Further, he seems
encouraged by two intriguing points from Peirce: (1)
that “thought is not necessarily connected with brain”,
and (2) that “instincts themselves can undergo modi-
fications through evolution” [9.1, p. 278]. For the first
point, Magnani actually quotes from Peirce [9.14, CP
4.551]:

“Thought is not necessarily connected with brain.
It appears in the work of bees, of crystals, and
throughout the purely physical world; and one can
no more deny that it is really there, than that the
colours, the shapes, etc. of objects are really there.”

On the other hand, for the second point, he again
quotes from Peirce: [instincts are] “inherited habits,
or in a more accurate language, inherited disposi-
tions” [9.1, p. 278] and [9.5, CP 2.170].

In other words, Magnani seems to assimilate ab-
duction as an instinct and abduction as an inference
form both directions. This interpretation of Magnani’s
strategy seems to be supported strongly by his explicit
announcement [9.1, p. 267]:

“I can conclude that instinct versus inference repre-
sents a conflict we can overcome simply by observ-
ing that the work of abduction is partly explicable
as a biological phenomenon and partly as a more
or less logical operation related to plastic cognitive
endowments of all organisms.”

To those who would allow abductive instinct to
nonhuman animals but not to humans, he tries to em-
phasize the instinctual elements in human abductive
reasoning. On the other hand, to those who would allow
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abduction as inference to humans but not to nonhu-
man animals, he suggests to broaden the concept of
inference, and thereby that of thinking. For the for-
mer project, Magnani cites hypothesis generation in
scientific reasoning as a weighty evidence for abduc-
tive instinct in humans: From this Peircean perspective,
hypothesis generation is a largely instinctual and non-
linguistic endowment of human beings and, of course,
also of animals. It is clear that for Peirce abduction is
rooted in the instinct and that many basically instinc-
tually rooted cognitive performances, like emotions,
provide examples of abduction available to both hu-
man and nonhuman animals [9.1, p. 286]. Here, of
course, Magnani’s claim about hypothesis generation
as instinctual must be still controversial. Someone may
object that it should be able to work out what might
explain a phenomenon. For further discussion of this
complicated issue, please see [9.1, pp. 18–19]. In this
regard, Magnani distinguishes between “(1) abduction
that only generates plausible hypothesis (selective or
creative)” and “(2) abduction considered as inference to
the best explanation, that also evaluates hypotheses by
induction” [9.1, p. 18, Magnani’s emphasis]. And, he
makes it explicit that the first meaning of abduction is
what he accepts in his epistemological model. Though
inconclusive, Magnani’s claim about hypothesis gener-
ation as instinctual is more defensible under the first
meaning of abduction. Even after having noted these
supportive points, however, it is still unclear how ab-
duction could be rooted in instinctual-rooted cognitive
performances like emotion.

As for the latter project, Magnani wants to se-
cure inferential character of animal abduction from sign
activity and semiotic processes found in nonhuman ani-
mals. He frequently appeals to Peirce [9.49, CP 5.283]:

“all thinking is in signs, and signs can be icons,
indices or symbols. Moreover, all inferences are
a form of sign activity, where the word sign includes
feeling, image, conception, and other representa-
tion.”

Here is a lengthy quote from Magnani that makes
this point crystal clear [9.1, p. 288] and [9.5, 14, CP
5.283]:

“Many forms of thinking, such as imagistic, em-
phatic, trial and error, and analogical reasoning,
and cognitive activities performed through com-
plex bodily skills, appear to be basically model
based and manipulative. They are usually described
in terms of living beings that adjust themselves
to the environment rather than in terms of beings
that acquire information from the environment. In
this sense these kinds of thinking would produce

responses that do not seem to involve sentential as-
pects but rather merely noninferential ways of cog-
nition. If we adopt the semiotic perspective above,
which does not reduce the term inference to its sen-
tential level, but which includes the whole arena of
sign activity – in the light of Peircean tradition –
these kinds of thinking promptly appear full, infer-
ential forms of thought. Let me recall that Peirce
stated that all thinking is in signs, and signs can be
icons, indices, or symbols, and, moreover, all infer-
ence is a form of sign activity, where the word sign
includes feeling, image, conception, and other rep-
resentation.”

Magnani is well aware of the fact animals have been
widely considered as mindless organisms for a long
time. So, based on the cornerstone laid by Peirce, this
semiotic perspective needs further extension. But how
is it possible? According to Magnani, that is possible
thanks to the recent results in cognitive science and
ethology about animals, and of developmental psychol-
ogy and cognitive archeology of humans and infants.
[9.1, p. 283]:

“Philosophy itself has for a long time disregarded
the ways of thinking and knowing of animals, tra-
ditionally considered mindless organisms. Peircean
insight regarding the role of abduction in animals
was a good starting point, but only more recent re-
sults in the fields of cognitive science and ethology
about animals, and of developmental psychology
and cognitive archeology about humans and infants,
have provided the actual intellectual awareness of
the importance of the comparative studies.”

Magnani not only points out that inferences are not
necessarily structured like a language, but also there are
animal-like aspects in human thinking and feeling. [9.1,
p. 283]:

“Sometimes philosophy has anthropocentrically
condemned itself to partial results when reflecting
upon human cognition because it lacked in appre-
ciation of the more animal-like aspects of thinking
and feeling, which are certainly in operation and are
greatly important in human behavior.”

Encouraged by the discovery of “the ways of think-
ing in which the sign activity is of a nonlinguistic
sort” [9.1, p. 189] in lower animals, Magnani claims
that “a higher degree of abductive abilities has to be ac-
knowledged” to them [9.1, pp. 290,291]:

“Chicken form separate representations faced with
different events and they are affected by prior ex-
periences (of food, for example). They are mainly
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due to internally developed plastic capabilities to
react to the environment, and can be thought of
as the fruit of learning. In general this plasticity is
often accompanied by the suitable reification of ex-
ternal artificial pseudo representations (for example
landmarks, alarm calls, urine marks and roars, etc.)
which artificially modify the environment, and/or
by the referral to externalities already endowed with
delegated cognitive values, made by the animals
themselves or provided by humans.”

In fact, Maganni goes even farther in his ascription
of pseudo thought to nonhuman animals in his discus-
sion of affordances, multimodal abduction, cognitive
niches, and animal artifactual mediators. It is exactly
where we can find what Magnani believes to be a clear
evidence that manipulative abduction plays a crucial
role in animal sign activities.

As Magnani points out, we are now in a much better
position than Peirce to understand the way of thinking
and knowing of animals, thanks to [9.1, p. 283]:

“more recent results in the fields of cognitive sci-
ence and ethology about animals, and of develop-
mental psychology and cognitive archeology about
humans and infants.”

But Magnani reminds us of the fact that Darwin al-
ready paved a way toward the appreciation of cognitive
faculties of animals [9.1, pp. 284-285]:

“It is important to note that Darwin also paid great
attention to those external structures built by worms
and engineered for utility, comfort, and security.
I will describe later on in this chapter the cogni-
tive role of artifacts in both human and nonhuman
animals. Artifacts can be illustrated as cognitive
mediators [9.2] which are the building blocks that
bring into existence what it is now called a cogni-
tive niche: Darwin maintains that ‘We thus see that
burrows are not mere excavations, but may rather
be compared with tunnels lined with cement’ [9.50,
p. 112]. Like humans, worms build external artifacts
endowed with precise roles and functions, which
strongly affect their lives in various ways, and of
course their opportunity to know the environment.”

I would like to discuss a strong or active sense of
learning abduction from animals. I do interpret Mag-
nani’s ideas on perceiving affordance in human and
nonhuman animals as an answer to the problem of how
to learn abduction from animals in this sense. As far as
the problem of perceiving affordances is concerned, we
do not have to confess our inferiority to nonhuman an-
imals. It is we humans who have perceived affordances
in some highly creative ways. However, we cannot eas-

ily claim our superiority over nonhuman animals either.
It is roaches not humans that turn out to demonstrate
better ability for survival, which may imply superiority
in perceiving affordances. In a word, I think we may
safely and more profitably forget the issue of inferior-
ity or superiority. Let it suffice to say that we humans,
unlike nonhuman animals, seem to have very unique
abductive instinct displayed by our perceiving affor-
dances.

Magnani would be happy with my interpretation,
for he himself claims that “cognitive niche construction
can be considered as one of the most distinctive traits of
human cognition” [9.2, p. 331]. According to Magnani,
both human and nonhuman animals are chance seekers,
and thereby ecological engineers. They “do not simply
live their environment, but actively shape and change it
looking for suitable chances” [9.1, p. 319]. Further, “in
doing so, they construct cognitive niches” [9.1]. Then,
in chance seeking ecological engineering in general,
and in cognitive niche construction in particular, what
exactly does differentiate humans from nonhuman ani-
mals?

In order to answer this question, we need to un-
derstand in what respects Magnani extends or goes
beyond Gibson’s notion of affordance. In principle, it
should not be too difficult, because Magnani himself
indicates explicitly or implicitly some such respects of
his own innovation. Magnani takes Gibson’s notion of
affordance “as what the environment offers, provides,
or furnishes” as his point of departure. He also notes
that Gibson’s further definitions of affordance as [9.1,
p. 333]:

“1. Opportunities for action.
2. The values and meanings of things which can be

directly perceived.
3. Ecological facts.
4. Implying the mutuality of perceiver and environ-

ment.”

may contribute to avoiding possible misunderstand-
ing. Given this Gibsonian ecological perspective, Mag-
nani appropriates some further extensions or modifica-
tions by recent scholars in order to establish his own
extended framework for the notion of affordance. It is
simply beyondmy ability to do justice to all elements of
Magnani’s extended framework for affordances. Let me
just note one issue in which Magnani shows enormous
interest, Gibsonian direct perception.

Magnani takes Donald Norman’s ambitious project
of reconciling constructivist and ecological approaches
to perception seriously [9.1, 6.4.3, p. 343]. Above
all, Magnani notes that Norman “modifies the orig-
inal Gibsonian notion of affordance also involving
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mental=internal processing” [9.1, p. 337] based on
a text, where Norman writes [9.51, p. 14]:

“I believe that affordances result from the mental
interpretation of things, based on our past knowl-
edge and experience applied to our perception of the
things about us.”

If Norman is right, we may safely infer, as Mag-
nani does, that pace Gibson, “affordances depend on
the organism’s experience, learning, and full cognitive
abilities” [9.1, p. 337]. Both Norman and Magnani are
evidencing these ideas by formidable array of recent
results in cognitive experimental psychology and neu-
roscience [9.1, p. 341].

Now, given this extended framework for that ex-
tends and modifies some aspects of the original Gibso-
nian notion of affordances, what exactly is Magnani’s
contribution? In some sense, this is an unnecessary
stupid question, for everybody already knows the cor-
rect answer. By his expertise on abduction, and in
particular his Peircean thesis of perception as abduc-
tion, Magnani contributes enormously to deepen our
understanding of some truly big issues, such as how to
reconcile constructivist and ecological theories of per-
ception. So, my question aspires to understand more
specifically how the Peirce–Magnani view of percep-
tion as abduction contributes in that regard. Let us
suppose that the original Gibsonian notion of affor-
dance has been extended and modified a la Norman.
Would Magnani claim that such an extension or mod-
ification is impossible without abductive activities of
organisms? Or, would he claim that such an extension
or modificationis still incomplete without abduction?

Be that as it may, the big picture Magnani presents
is this [9.1, p. 348]:

“Organisms have at their disposal a standard en-
dowment of affordances (for instance through their
hardwired sensory system), but at the same time
they can extend and modify the scope of what can
afford them through the suitable cognitive abductive
skills.”

If we probe the question as to what exactly are
involved in organisms’ employment of cognitive ab-
ductive skills, Magnani would respond roughly as the
following lines [9.1, p. 346]:

“in sum organism already have affordances avail-
able because of their instinctive gifts, but also they
can dynamically abductively extract natural affor-
dances through affecting and modifying perception

(which becomes semiencapsulated). Finally, organ-
isms can also create affordances by building arti-
facts and cognitive niches.”

There are several points that become clear from this
quote, I think. First, in addition to the original Gibso-
nian framework for affordances, there is room for or-
ganisms to participate in perceiving affordances (in the
broad sense). Secondly, abductive skills are performed
by organisms in perceiving affordances. Thirdly, in such
abductively perceiving affordances, perception and ac-
tion are inseparably intertwined. Finally, organisms can
even create affordance by abduction. Except for the first
point, I think, all these seem to be due to Magnani.

At the beginning of this section, I introduced
Paavola’s dilemma: “If abduction relies on instinct, it is
not a form of reasoning, and if it is a form of reasoning,
it does not rely on instinct”. Though I welcomed basi-
cally Magnani’s way out of this dilemma, that is, they
simply co-exist, it was not clear exactly what that so-
lution means. After having improved our understanding
of manipulative abduction in animals, now we may un-
derstand it better. Magnani claims that, from a semiotic
point of view, the idea that there is a conflict between
views of abduction in terms of heuristic strategies or in
terms of instinct (insight, perception) [9.4, 40, 52], ap-
pears old fashioned. And he elaborates his claim that the
two aspects simply coexist, by adding that that is so at
the level of the real organic agent (Emphasis is mine).
Depending upon the cognitive/semiotic perspective we
adopt, he claims [9.1, pp. 281–282]:

“1. We can see it as a practical agent that mainly takes
advantage of its implicit endowments in terms of
guessing right, wired by evolution, where of course
instinct or hardwired programs are central.

2. We can see it as the user of explicit and more or less
abstract semiotic devices internally stored or exter-
nally available – or hybrid – where heuristic plastic
strategies (in some organism they are conscious) ex-
ploiting relevance and plausibility criteria – various
and contextual – for guessing hypotheses are ex-
ploited.”

Now we may underwrite the fact that the two as-
pects simply co-exist at the level of real organic agents,
who are manipulative abducers, for it would be hard
to find a better example of manipulative abduction than
creating affordances. In other words, manipulative ab-
duction is the key factor in Magnani’s thought about
animal abduction.
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9.6 Concluding Remarks
Until quite recently abduction has been studied most
extensively in scientific context. Even if we consider
abduction in artificial intelligence and cognitive sci-
ence, still the majority of the researches have been
governed by theoretical concerns. With Magnani’s dis-
covery of manipulative abduction, everything changes.
Insofar as manipulative abduction can be construed as
a form of practical reasoning, the possibility of expand-
ing the scope of abduction is wide open. As has been
seen earlier, Magnani indeed applies manipulative ab-
duction to an impressive array of areas, only a few of
which have been examined in this chapter. We con-

firmed that manipulative abduction plays an important
role in the use of fallacies in everyday life. Possibly
more impressive would be the establishment of ma-
nipulative abduction in animals as a research field. Of
course, there are many issues unsettled. Above all, there
is a desperate need to sharpen our conception of manip-
ulative abduction by deepening our understanding of
the characteristics of manipulative abduction. In both
expanding the scope and sharpening the conception of
manipulative abduction, Magnani’s pioneering achieve-
ment is simply overwhelming.Wemay expect rapid and
fruitful progress in both directions in the near future.
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This section, The Logic of Hypothetical Reasoning, Ab-
duction, andModels, shall be concerned with reviewing
some formal models for scientific inquiry. Scientific in-
quiry is a human enterprise to which we cannot deny
a big success. It has been our intellectual instrument for
achieving great endeavors, such as the arrival on the
moon, the possibility of internet communication, the
discovery of infections and the invention of vaccines,
and many more. The inferential processes involved in
scientific inquiry are an essential aspect to analyze
when carrying out an enterprise like the one in this
Springer Handbook of Model-Based Science. However,
the field and the material are so vast that it would be
impossible to review everything.

Therefore, the main concern within scientific rea-
soning will be ampliative reasoning, those inferential
processes in which the conclusion expands the given
information. This kind of reasoning manifests itself in
inferences such as induction and abduction, and it is
opposed to deduction, in which conclusions are certain
but add nothing new to the given. A salient aspect of
ampliative reasoning is the tentative epistemic status
of the conclusions produced, something which makes
them defeasible. That is, given additional information,
it may no longer be warranted to draw a previously valid
conclusion.

More particularly, the focus in this section will
be precisely on the tentative status of the conclusion
produced, of its being hypothetical. A hypothetical
statement is, at the very best, potential knowledge. It
is neither true nor false, but holds a hypothetical epis-
temic status, one that may be settled later as true (when
the hypothesis is corroborated) or as false (when it is
falsified). Hypothetical reasoning is understood here as
a type of reasoning for explanations.

One case of hypothetical reasoning is enumerative
induction, also known as inductive generalization, in
which the inferential process that is at stake is one
which obtains a universal statement (all ravens are
black) from a set of individual ones (the first raven
is black, . . . , the n-th raven is black). A generaliza-
tion from instances is a case of ampliative reasoning
because it expands what is stated in the instances by ad-
vancing a defeasible prediction (the next raven will be
black). That is, the generalization may fail when a fur-
ther instance falsifies the conclusion. As is well known,
inductive generalization is based on the assumption of
the uniformity of nature; the world is uniform and,
therefore, it seems safe to draw generalizations out of
instances, although they may fail at some point.

Another case of hypothetical reasoning that shall be
reviewed in depth is that of abduction. Broadly speak-

ing, abduction is a reasoning process from a single
observation to (plausible) explanations. This character-
ization, which largely follows the original formulation
of Charles Peirce (to be described in Chap. 10), still
leaves ample room for several interpretations. To begin
with, when talking about abduction, or any inferential
process for that matter, we may refer to a finished prod-
uct, in this case the abductive explanation, or to an
activity, the abductive process. These two are closely
related, for the abductive process produces an abduc-
tive explanation, but they are not the same. Moreover,
for a given fact to be explained, there are often sev-
eral abductive explanations to choose from, but only
one that counts as the best one. Thus, abduction is con-
nected to both hypotheses construction and hypotheses
selection. Some authors consider these processes as two
separate steps, construction dealing with the generation
of plausible explanations according to some criteria of
what counts as such, and selection with applying some
preference criteria to select the best one among the
plausible ones. Another issue to be settled in regard to
abduction is the distinction from its closest neighbor,
induction.

In this very broad map of hypothetical reasoning,
two approaches to abduction are salient, one which in-
terprets it as argument versus as inference to the best
explanation (each case, in turn, may be seen either as
a product or as a process). This is a familiar distinc-
tion in the philosophy of science, where abduction is
closely connected with issues of scientific explanation.
In a more in-depth view of logical abduction, three
characterizations may be identified, namely as logical
inference, as a computational process, and as a pro-
cess for epistemic change. Each one of these views
highlights one relevant aspect of abductive reasoning:
its logical structure (under an interpretation as a prod-
uct), its underlying computational mechanism (under an
interpretation as a process), and its role in the dynam-
ics of belief revision. Indeed, there are several ways to
characterize this reasoning type, and it may be more
appropriate to characterize abductive patterns rather
than trying to define it as a single concept. These ap-
proaches and logical characterizations of abduction will
be spelled out in detail in the introductory chapter, The
Logic Abduction: An Introduction, together with an at-
tempt to provide a proper distinction between induction
and abduction.

In Chap. 11 by Mathieu Beirlaen, Qualitative In-
ductive Generalization and Confirmation, the author
offers a number of adaptive logics for inductive gen-
eralization, each of which is analyzed as a criterion
of confirmation and confronted with Hempel’s satis-
faction criterion and the hypothetico-deductive model
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of confirmation. The adaptive criteria proposed in this
paper offer an interesting alternative perspective on
(qualitative) confirmation theory in the philosophy of
science.

Adaptive logics are a relatively new proof-theoreti-
cal framework designed to model ampliative reasoning
and dynamic information. For the case of inductive gen-
eralization, the defeasibillity of the conclusion is dealt
with in two respects. On the one hand, each of these
proposed logics uses a criterion to assert a generaliza-
tion as a statement within the proof. On the other hand,
each of these logics implements a strategy, a specific
way by which a generalization is refuted and, therefore,
marked in the proof, so that it is no longer considered
as part of the derivation (until it is unmarked due to new
information).

In Chap. 12 by Tjerk Gauderis,Modeling Hypothet-
ical Reasoning by Formal logics, the author offers an
interesting discussion in regard to the feasibility of the
project of modeling hypothetical reasoning by means
of formal logics, exploring the assumptions one has
to hold in order to accept or reject this endeavor. The
author then puts forward four patterns of hypothetical
reasoning, showing that not a single one can be eas-
ily modeled by formal means. Abduction of a singular
fact is the one pattern that has received most attention
in the logical literature; the author gives a review and
a detailed description of two adaptive logics devised for
this particular pattern, showing that although it is the
simplest pattern of all four, there are already some chal-
lenges to model it formally.

These two chapters share the logical framework of
adaptive logics as a formal model for scientific inquiry,
one for inductive generalization, the other one for sin-
gle fact abduction. Of the four patters of hypothetical
reasoning put forward by Gauderis, the second one, ab-
duction of a generalization, is indeed a case of inductive
generalization.

According to the previously mentioned classifica-
tion of hypothetical reasoning, these two chapters fall
into the argumentative approach of the type of rea-
soning modeled (inductive or abductive). However, the
chapter by Gauderis highlights a distinction between
practical abduction and theoretical abduction, which –
to a certain extent – corresponds to the argumentative
versus inference to the best explanation dichotonomy
of abduction found in the philosophical literature.

The next three chapters of this section belong to
the epistemic approach to abduction of taking an agent-
oriented stance, one in which the agent’s perspective is

at the center of the formal modeling. However, each of
these chapters is actually a combination of at least two
abductive characterizations.

In Chap. 13 by Angel Nepomuceno Fernández,
Fernando Soler Toscano and Fernando R. Velázquez
Quesada, Abductive Reasoning in Dynamic Epistemic
Logic, the authors rely on the dynamic epistemic logic
framework, which is largely based on a semantic per-
spective of modal logic and is an ideal tool to represent
an agent’s state of knowledge (and belief) together with
the dynamics of epistemic change. Operations to up-
grade, update and revise plausibility models are put
forward to dynamically change both the content and the
ordering of these models. Original characterizations of
what is an abductive problem (solution) are put forward,
not with respect to a background theory, as is the case
in the classical approach to abduction (see introductory
chapter), but rather with respect to an agent’s infor-
mation at a given state. Moreover, plausibility models
provide an ordering among epistemic possibilities and
accordingly, the best abductive explanation turns out
to be the most plausible one. This chapter exhibits the
inference to the best explanation approach and a combi-
nation of the inferential and epistemic characterizations
of abduction.

In Chap. 14 by Cristina Barés Gómez andMatthieu
Fontaine, Argumentation and Abduction in Dialogical
Logic, the authors offer an interesting discussion in fa-
vor of a reconciliation between argumentation theory
and formal logic; one in which their selected logical
framework, dialogical logic, is the formal model for sci-
entific inquiry. More particularly, reasoning is modeled
via a dialectical interaction in a game-like scenario be-
tween the proponent of a thesis and an opponent to it.
The authors endorse the view of Dov Gabbay and John
Woods, according to which abduction is a response to
an ignorance problem. An agent has an ignorance prob-
lem with respect to a cognitive target when she lacks the
knowledge to attain such a target, and abduction is but
one type of solution to this kind of problem. The authors
of this chapter propose an extension of the dialogical
framework to account for abduction and put forward the
notion of a concession problem, in order to do so. The
chapter follows the argumentative approach to abduc-
tion, but extends this view with a dialectical interaction
and combines aspects of the inferential and epistemic
characterizations.

In the last chapter of this section, Chap. 15 by Ju-
liana Bueno Soler,Walter Carnielli,Marcelo Coniglio,
and Abilio Rodrigues, Formal (In)consistency, Abduc-
tion and Modalities, the authors take a broader view of
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scientific inquiry and deal with the problem of inconsis-
tent information, as when there is conflicting evidence
for a fact to be explained. In accordance with the fo-
cus on hypothetical reasoning taken in this section,
the onset of conflicting information, as presented in
this chapter, is just another case of a tentative conclu-
sion, one which is taken in a sense weaker than true,
with a provisional status and pending further investiga-
tion. Authors of this chapter are interested in reviewing
the case when no obvious explanation is at hand, es-
pecially when contradictory information is involved,
and a meaningful explanation can still be constructed
(one that can not be produced in a classical setting).
They develop their own formal framework, based on the
classical tableaux systems. In respect to abduction, the
authors apply a paraconsistent logic to deal with it, and
even go further to draw connections between modali-
ties and consistency. Their approach is focused on the
process of hypothesis generation, making it attractive
for computational implementation (not developed in
the paper) and identified by the authors themselves as
a case of creative abduction, one which contrasts with

explicative abduction, according to the distinction put
forward by Lorenzo Magnani. The chapter mainly fol-
lows the argumentative approach to abduction and is
a combination of the computational and epistemic char-
acterizations.

By virtue of their being formal models of scientific
reasoning, the chapters to follow are technical; each one
of them offers an original contribution to the field, but
at the same time, they all provide the intuition and ra-
tionale behind the notions presented. The diversity of
formal frameworks displayed in this section shows the
wide variety of formal tools for hypothetical reasoning
modeling. These tools have proved useful to philoso-
phers, logicians, and computer scientists alike and may
also be so to anyone who would like to make use of
the potential of formal tools to model scientific in-
quiry at large. This section, The Logic of Hypothetical
Reasoning, Abduction, and Models, offers a thorough
introduction and is an overview to some formal models
for hypothetical reasoning found in the philosophy of
science and logical literature.
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10. The Logic of Abduction: An Introduction

Atocha Aliseda

In this chapter, the focus will be on formal models
of hypothetical reasoning, in particular on those
concerned with abductive reasoning.

In Sect. 10.1, the chapter offers a brief his-
tory of the notion of abduction, starting with an
attempt to distinguish it from its closest neigh-
bor, induction. Charles Peirce’s original conception
of abduction is then presented and followed
by an overview of abduction in the cognitive
sciences, together with some paradigmatic ex-
amples of the kind that will be dealt with in the
chapters to follow. Sect. 10.2 presents two main
approaches to abduction in philosophy, as argu-
ment and as inference to the best explanation
(IBE), something which sets the ground to put for-
ward a general logical taxonomy for abduction.
Sect. 10.3 goes deeper into three logic-based clas-
sical characterizations of abduction found in the
literature, namely as logical inference, as a com-
putational process, and as a process for epistemic
change.

Hypothetical reasoning is understood here as
a type of reasoning to explanations. This type of
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reasoning covers abductive as well as inductive
inferences. As for the latter, in this handbook part,
the concern will be limited to enumerative in-
duction and will leave its full presentation to the
corresponding chapter (Chap. 11).

10.1 Some History

10.1.1 Induction and Abduction

In this section, an attempt has been made to provide
a clear distinction between inductive and abductive rea-
soning. As it turns out, diverse terminologies are being
used.

On the one hand, for some, beyond deductive logic,
there is only place for inductive logic. For others, ab-
duction is another focus, and it is important, at least,
to clarify its relationship to induction. For C.S. Peirce,
to whom abduction owes its name, deduction, induc-
tion and abduction formed a natural triangle – but the
literature in general shows many overlaps, and even
confusions.

An example of the former view is given by Rus-
sell [10.1], when he claims:

“There are two sorts of logic: Deductive and induc-
tive. A deductive inference, if it is logically correct,
gives as much certainty to the conclusion as the
premises, while an inductive inference, even when it
obeys all the rules of logic, only makes the conclu-
sion probable even when the premises are deemed
certain.”

More recently, there is also a predominant view that
identifies induction with ampliative reasoning. For Paul
Thagard, who coined the field of computational philos-
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ophy of science, induction is understood in the broad
sense of any kind of inference that expands knowledge
in the face of uncertainty [10.2].

Since the time of John Stuart Mill (1806–1873),
the technical name given to all kinds of nondeduc-
tive reasoning has been induction, but several methods
for discovery and demonstration of causal relation-
ships [10.3] were recognized. These included generaliz-
ing from a sample to a general property, and reasoning
from data to a causal hypothesis (the latter further di-
vided into methods of agreement, difference, residues,
and concomitant variation). A more refined and modern
terminology is enumerative induction and explanatory
induction, of which inductive generalization, inductive
projection, statistical syllogism, and concept formation
are some instances.

Another term for nondeductive reasoning is sta-
tistical reasoning, introducing a probabilistic flavor,
in which explanations are not certain but only prob-
able. Statistical reasoning exhibits the same diversity
as abduction. First of all, just as the latter is strongly
identified with backward deduction (as it will be shown
later in this chapter), the former finds its reverse notion
in probability (For those readers interested in quantita-
tive approaches: the problem in probability is: Given an
stochastic model, what can we say about the outcomes?
The problem in statistics is the reverse: Given a set of
outcomes, what can we say about the model?). Both ab-
duction and statistical reasoning are closely linked with
notions like confirmation (the testing of hypotheses)
and likelihood (a measure for alternative hypotheses).
The former will be reviewed later in this part of the
handbook (Chap. 11).

On the other hand, some authors put forward
abduction as the main category and take induction as
one of its instances. Abduction as IBE is considered
by Harman [10.4] as the basic form of nondeductive
inference, which includes (enumerative) induction as
a special case (this approach will be presented later in
this chapter).

This confusion in terminology returns in artificial
intelligence (AI). Induction is used for the process of
learning from examples – but also for creating a the-
ory to explain the observed facts [10.5], thus making
abduction an instance of induction. Abduction is usu-
ally restricted to producing abductive explanations in
the form of facts (predicates of some sort, as those used
in computational implementations of abduction, to be
later introduced). When explanations are rules, it is then
regarded as part of induction. Indeed, the relationship
between abduction and induction has been a distin-
guished topic of several workshops in AI mainstream
conferences (European Conference on Artificial Intel-

ligence (ECAI) and International Joint Conference on
Artificial intelligence (IJCAI)) as well as that of edited
books [10.6].

With the sole purpose of providing a methodologi-
cal distinction between abduction and induction, in this
chapter, abductionwill be understood as reasoning from
a single observation to its explanations, and induc-
tion as enumerative induction, a reasoning kind from
samples to general statements. Given these tentative
characterizations, those aspects that distinguish them
will be highlighted. While induction explains a set of
observations, abduction explains a single one. Induction
makes a prediction for further observations, abduction
does not (directly) account for later observations. While
induction needs no background theory per se, abduction
relies on a background theory to construct and test its
abductive explanations.

As for their similarities, induction and abduction
are both ampliative and defeasible modes of reason-
ing. More precisely, they are nonmonotonic types of
inference. A consequence ) is labeled as nonmono-
tonic whenever T) b does not guarantee T , a) b.
That is, the addition of a new premise (a) may invali-
date a previous valid argument. In the terminology of
philosophers of science, nonmonotonic inferences are
not erosion proof [10.7]. Moreover, qua direction, both
run in the opposite direction to standard deduction; they
both run from evidence to explanation and the status of
the produced explanation is hypothetical.

To clear up terminological conflicts, one might want
to coin new terminology altogether. Some may ar-
gue for a new term of explanatory reasoning as done
in [10.8] or even better as hypothetical reasoning try-
ing to describe its fundamental aspects without having
to decide if they are instances of either abduction or in-
duction. In this broader perspective, it is also possible
to capture explanation for more than one instance or
for generalizations and introduce further fine-structure.
Indeed, a classification in terms of patterns of hypothet-
ical reasoningmay be very appropriate, as will be found
later on in this part of the handbook (Chap. 12. A key
reference in the literature in terms of patterns of abduc-
tion is found in [10.9]).

10.1.2 The Founding Father: C.S. Peirce

The literature on abduction is so vast that makes im-
possible to undertake a complete survey here. But any
history of abduction cannot fail to mention the founding
father: Charles Sanders Peirce (1839–1914).

Peirce is the founder of American pragmatism and
the first philosopher to give to abduction a logical form.
However, his notion of abduction is a difficult one to un-
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ravel. On the one hand, it is entangled with many other
aspects of his philosophy, and on the other hand, sev-
eral different conceptions of abduction evolved in his
thought. The notions of logical inference and of validity
that Peirce puts forward go beyond our present under-
standing of what logic is about. They are linked to his
epistemology, a dynamic view of thought as logical in-
quiry, and correspond to a deep philosophical concern,
that of studying the nature of synthetic reasoning. In
what follows, a few general aspects of his later theory
of abduction will be pointed out, to later concentrate
on some of its more logical aspects (for a more elab-
orate analysis of the evolution of Peirce’s abduction
as well as its connection to his epistemology [10.10–
12]).

For Peirce, three aspects determine whether a hy-
pothesis is promising: it must be explanatory, testable,
and economic. A hypothesis is an explanation if it ac-
counts for the facts. Its status is that of a suggestion
until it is verified, which explains the need for the sec-
ond criterion.

Finally, the motivation for the economic criterion is
twofold: A response to the practical problem of having
innumerable explanatory hypotheses to test, as well as
the need for a criterion to select the best explanation
among the testable ones.

For the explanatory aspect, Peirce gave the follow-
ing often-quoted logical formulation [10.13, CP 5.189]:

“The surprising fact, C, is observed.
But if A were true, C would be a matter of course.
Hence, there is reason to suspect that A is true.”

This formulation has played a fundamental role in
Peirce scholarship, and it has been the point of depar-
ture of many classic studies on abductive reasoning in
all fields that make up the cognitive sciences, mainly
those in which the approach is argumentative-based.
Nevertheless, these accounts have paid little attention
to the elements of this formulation and practically none
to what Peirce said elsewhere in his writings. This situ-
ation may be due to the fact that his philosophy is very
complex and not easy to be implemented in the compu-
tational realm. The notions of logical inference and of
validity that Peirce puts forward go beyond logical for-
mulations but at the same time some of his ideas find
a natural place in recent proposals, such as that found
in theories of belief revision (to be reviewed later in this
chapter).

The approach to abductive reasoning, in this hand-
book part, reflects this Peircean diversity in part, taking
abduction as a style of logical reasoning that occurs at
different levels and contexts and comes in several de-
grees.

10.1.3 The Cognitive Sciences

Research on abduction in AI dates back to the 1970s
of the twentieth century [10.14], but it is only fairly re-
cently that it has attracted great interest, in areas like
logic programming, knowledge assimilation, and diag-
nosis, to name a few. Some publications, collective and
individual alike, are found in [10.15–19], to name a few.
In all these places, the discussion about the different
aspects of abduction has been conceptually challeng-
ing but also shows a (terminological) confusion with its
close neighbor, induction (similar to what has already
been pointed out previously). Abduction has also been
a distinguished topic of model-based reasoning (MBR)
conferences (those linked to the editorial project of this
handbook).

The importance of abduction has been recognized
by leading researchers in nearly all fields that make
up the cognitive sciences: philosophy, computer sci-
ence, cognitive psychology, and linguistics. For Jaakko
Hintikka, abduction is the fundamental problem of con-
temporary epistemology, in which abductive inferences
must be construed as answers to the inquirer’s explicit
or (usually) tacit question put to some definite source
of answers (information) [10.11, p.519]. For Herbert
Simon, the nature of the retroductive process (Peirce’s
original term for abduction) is the main subject of
the theory of problem solving in both its positive and
normative versions [10.20, p.151]. For Paul Thagard,
several kinds of abduction play a key role as heuristic
strategies in the program PI (processes of induction),
a working system devoted to explain – in computational
terms – some of the main problems in philosophy of
science, such as scientific discovery, explanation, and
evaluation [10.2]. Finally, for Noam Chomsky, abduc-
tion plays a key role in language acquisition; for the
child abduces the rules of grammar guided by her in-
nate knowledge of language universals [10.21].

10.1.4 Some Examples

There are a variety of approaches that claim to capture
the true nature of the notion of abduction. One reason
for this diversity lies in the fact that abductive reasoning
occurs in a multitude of contexts and aims to cover from
the simplest selection of already existing hypotheses in
a context of common sense reasoning to the generation
of new concepts in science. Here are some examples il-
lustrating this variety (examples are taken from [10.8]):

1. Common sense: Explaining observations with sim-
ple facts. All you know is that the lawn gets wet
either when it rains, or when the sprinklers are on.
You wake up in the morning and notice that the lawn
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is wet. Therefore you hypothesize that it rained dur-
ing the night or that the sprinklers had been on.

2. Common sense: When something does not work.
You come into your house late at night, and notice
that the light in your room, which is always left on,
is off. It has being raining very heavily, and so you
think some power line went down, but the lights in
the rest of the house work fine. Then, you wonder
if you left both heaters on, something which usu-
ally causes the breakers to cut off, so you check
them: but they are OK. Finally, a simpler explana-
tion crosses yourmind.Maybe the light bulb of your
lamp which you last saw working well, is worn out,
and needs replacing.

These examples belong to a practical setting found
in our day-to-day common sense reasoning. The first
one is the paradigmatic example of abduction in AI and
will be analyzed in full detail later in this part of the
handbook, in Chap. 15. An extension of the second ex-
ample will be presented in Chap. 13.

Some other instances of abductive reasoning, but in
this case oriented to model the cognitive competence
of health practitioners and of working scientists are the
following:

3 Statistical reasoning: Medical diagnosis. Jane
Jones recovered quite rapidly from a streptococci
infection after she was given a dose of penicillin.
Almost all streptococcus infections clear up quickly
upon administration of penicillin, unless they are
penicillin resistant, in which case the probability of
quick recovery is rather small. The doctor knew that
Jane’s infection is of the penicillin-resistant type,
and is puzzled by her recovery. Jane Jones then
confesses that her grandmother had given her Bel-

ladonna, a homeopathic medicine that stimulates
the immune system by strengthening the physio-
logical resources of the patient to fight infectious
diseases (This is an adaptation of Hempel’s illustra-
tion of his inductive-statistical model of explanation
as shown in [10.7]. The part about homeopathy is
taken from [10.8])

4 Scientific reasoning: Kepler’s discovery. It has been
claimed that Johannes Kepler’s great discovery that
the orbit of the planets is elliptical rather than circu-
lar was a prime piece of abductive reasoning [10.13,
CP 2.623]. What initially led to this discovery was
his observation that the longitudes of Mars did not
fit circular orbits, but before even dreaming that the
best explanation involved ellipses instead of circles,
he tried several other forms. Moreover, Kepler had
to make some other assumptions about the planetary
system, without which his discovery does not work.
His heliocentric view allowed him to think that the
sun, so near to the center of the planetary system,
and so large, must somehow cause the planets to
move as they do. In addition to this strong conjec-
ture, he also had to generalize his findings for Mars
to all planets, by assuming that the same physical
conditions obtained throughout the solar system.

The third example is concerned with the construc-
tion of a diagnosis, in which based on a series of
observations (symptoms and signs) and of causal rela-
tions linking those observations to pathologies, health
professionals build their diagnoses in order to deter-
mine an illness. But abduction also occurs in theoretical
scientific contexts, such as the one described in the
fourth example, in which anomalous observations give
rise to new ideas that force to revise knowledge found
in existing theories.

10.2 Logical Abduction

In contemporary philosophy of science, logical ap-
proaches to abduction may be traced back to Hempel’s
models [10.8, 22–24] and are therefore related to a rea-
soning style connected to theories of explanation and
empirical progress [10.25]. More recently, logical ab-
duction found a place in computationally oriented the-
ories of belief change in AI as well as in the field of
nonmonotonic logics [10.18, 26–30].

In what follows, two approaches to abduction, as
an argument and as inference to the best explanation,
will be described. Later on, a general taxonomy for its
logical analysis will be proposed.

10.2.1 Argument

In AI circles, Peirce’s formulation has been gener-
ally interpreted as the following logical argument–
schema

C

A! C

A

where the status of A is tentative (it does not follow as
a logical consequence from the premises).
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However intuitive, this interpretation certainly cap-
tures neither the fact that C is surprising nor the addi-
tional criteria Peirce proposed. Moreover, the interpre-
tation of the second premise should not be committed
to material implication (For a causal interpretation of
this conditional [10.31]). But other interpretations are
possible; any nonstandard form of logical entailment or
even a computational process in which A is the input
and C the output, are all feasible interpretations for if C
were true, A would be a matter of course.

The additional Peircean requirements of testability
and economy are not recognized as such in AI, but to
some extent are nevertheless incorporated. The latter
criterion is implemented as a further selection process
to produce the best explanation, since there might be
several formulae that satisfy the above formulation but
are nevertheless inappropriate as explanations. Testabil-
ity as understood by Peirce is an extra-logical empirical
criterion.

10.2.2 Inference to the Best Explanation

Abduction as IBE was proposed by Gilbert Harman as
the basic form of nondeductive inference, one which in-
cluded enumerative induction as one of its instances.
According to him [10.4, p.89]:

“Uses of the inference to the best explanation are
manifold. When a detective puts the evidence to-
gether and decides that it must have been the butler,
he is reasoning that no other explanation which ac-
counts for all the facts is plausible enough or simple
enough to be accepted.”

This idea may be put into an argumentative form as
follows [10.32]:

“D is a collection of data
(facts, observations, givens)
H explains D
(would, if true, explain D)
No other hypothesis explains D as well as H does
Therefore, H is probably correct”

Given a fact to be explained, there are often several
possible abductive explanations, but (hopefully) only
one that counts as the best one. Pending subsequent
testing, in the previous common sense example of light
failure (2) several abductive explanations account for
the unexpected darkness of the room (power line down,
breakers cut off, bulb worn out). But only one may be
considered as best explaining the event, namely the true
one, the one that really happened. But other preference
criteria may be appropriate, too, especially when there
is no direct test available.

Under this approach, abduction may be regarded as
a single process by which a single best explanation is
constructed. And the focus is on finding selection cri-
teria which allow to characterize a hypothesis as the
best one (A key references for the interpretation of ab-
duction as inference to the best explanation is found
in [10.33]).

Thus, abduction is connected to both hypotheses
construction and hypotheses selection. Some authors
consider these processes as two separate steps: con-
struction dealing with what counts as a possible ab-
ductive explanation, and selection with applying some
preference criterion over possible abductive explana-
tions to select the best one.

As it turns out, the notion of a best abductive expla-
nation necessarily involves contextual aspects, varying
from application to application. There is at least a new
parameter of preference ranking here. There exists both
a philosophical tradition on the logic of preference,
and logical systems in AI for handling preferences that
may be used to single out best explanations [10.34, 35].
A proposal to tackle this approach in the framework of
dynamic epistemic logic, in which (an extension of) the
light failure example is analyzed in full detail, will be
presented later in this handbook part (Chap. 13).

10.2.3 A Taxonomy

What has been presented so far may be summarized as
follows. Abduction is a process whose products are spe-
cific abductive explanations, with a certain inferential
structure, making an (abductive) explanatory argument.
As for the logical form of abduction – referring to the
inference corresponding to the abductive process that
takes a background theory (�) and a given observation
(') as inputs, and produces an abductive explanation
(˛) as its output – the proposal here is that at a very
general level, the logical structure of abduction may be
viewed as a threefold relation

�; ') ˛ :

Other parameters are possible here, such as a prefer-
ence ranking, but these would rather concern the further
selection process. This characterization aims to capture
the direction (from evidence to abductive explanation)
of this type of reasoning. In the end, however, the goal is
to characterize an (abductive) explanatory argument, in
its deductive forward fashion, that is, an inference from
theory (�) and abductive explanation (˛) to evidence
(') as follows

�; ˛) ' :
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Against this background, three main parameters that
determine types of explanatory arguments are put for-
ward:

1. An inferential parameter ()) sets some suitable
logical relationship among explananda, background
theory, and explanandum.

2. Next, abductive triggers determine what kind of ab-
ductive process is to be performed: ' may be a novel
phenomenon, or it may be in conflict with the theory
�.

3. Finally, abductive outcomes (˛) are the various
products (abductive explanations) of an abductive
process: facts, rules, or even new theories.

Abductive Parameters
Varieties of Inference. In the above schema, the no-
tion of explanatory inference) is not fixed. It can be
classical derivability ` or semantic entailmentˆ, but it
does not have to be. Instead, it is regarded as a param-
eter that can be set independently. It ranges over such
diverse values as probable inference (�; ˛)probable

'), in which the explanans render the explanandum
only highly probable, or as the inferential mechanism
of logic programming (�; ˛)LP '). Further interpre-
tations include dynamic inference (�; ˛)dynamic '),
replacing truth by information change potential along
the lines of belief update or belief revision (Later in the
chapter, both the abductive mechanism in logical pro-
gramming as well as the belief revision framework will
be described further. The dynamic interpretation will be
reviewed in Chap. 13). To be sure, the point here is that
abduction is not one specific nonstandard logical infer-
ence mechanism, but rather a way of using any one of
these.

Two Triggers. According to Peirce, as his logical for-
mulation dictates, abductive reasoning is triggered by
a surprising phenomenon. The notion of surprise, how-
ever, is a relative one, for a fact ' is surprising only with
respect to some background theory� providing expec-
tations. What is surprising to someone (that the lights
go on as I enter the copier room) might not be surpris-
ing to someone else. One way to interpret a surprising
fact is as one in need of an explanation. From a logical
point of view, this assumes that the fact is not already
explained by the background theory �: � 6) '.

Moreover, one may also consider the status of the
negation of '. Does the theory explain the negation of

observation instead (�):')? Thus, two triggers for
abduction are identified: novelty and anomaly

Definition 10.1 (Abductive Novelty: � 6) ', � 6)
:')
' is novel. It cannot be explained (� 6) '), but it is
consistent with the theory (� 6) :')

Definition 10.2 (Abductive Anomaly: � 6) ', �)
:')
' is anomalous. The theory explains rather its negation
(�):').

As it will be shown later on, in the computational
literature on abduction, novelty is the condition for
an abductive problem. Following Peirce, incorporat-
ing anomaly as a second basic type is put forward
(See [10.8] for the proposal).

Of course, nonsurprising facts (where �) ')
should not be candidates for abductive explanations.
Even so, one might speculate if facts which are merely
probable on the basis of� might still need an abductive
explanation of some sort to further cement their status.

Different Outcomes. Abductive explanations them-
selves come in various forms: facts, rules, or even
theories. Sometimes one simple fact suffices to explain
a surprising phenomenon. In other cases, a rule estab-
lishing a causal connection might serve as an abductive
explanation. And many cases of abduction in science
provide new theories to explain surprising facts. These
different options may sometimes exist for the same ob-
servation, depending on how complex one wants to take
it. Later in this handbook part, patterns of hypothetical
reasoning will be classified according to abductive out-
comes types (Chap. 12).

Moreover, as well known in the history of science,
genuine abductive explanations sometimes introduce
new concepts, over and above the given vocabulary. For
instance, the eventual explanation of planetary motion
(example section in this chapter), was not given by Ke-
pler, but by Newton, who introduced a new notion of
force – and then derived elliptic motion via the law
of gravity. Abduction via new concepts – broadly con-
ceived – will be outside the scope of our analysis in this
part of the handbook (however, see Chap. 12 for a spe-
cial case of conceptual abduction).
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10.3 Three Characterizations

This section offers a description of three logical charac-
terizations of abduction found in the literature. Nowa-
days, there are plenty of logic-based papers on abduc-
tion, most of which fit into one of the following three
characterizations:

1. Abduction as logical inference
2. Abduction as computation
3. Abduction as epistemic change.

While the first one aims at characterizing abduc-
tion as backward deduction plus additional conditions
and (generally) has classical logical consequence as
an underlying inference, the second one focuses on
providing specific algorithms that produce abductive
explanations, and it is therefore as varied as compu-
tational platforms allow for. The last one puts forward
abductive operations to revise, expand and update and
has close links both with theories of belief revision and
of update in AI. These approaches may be labeled as the
classical characterizations of logical abduction. These
characterizations are classical in at least two respects. In
the first place, they are classical because they emerged
originally as logical models for abduction and capture at
least one relevant aspect of abductive reasoning: Its log-
ical structure, its underlying computational mechanism,
and its role in the dynamics of belief revision. In an-
other respect, they are classical – in so far as presented
in this chapter – because they exhibit a very classical
way for doing logic, computation, or formalizations of
belief revision theories.

Interesting proposals in all three characterizations
and of its combinations are to be found in special issues
of the Logic Journal of the IGPL (most notably, in spe-
cial issues on abduction, such as [10.36–38]). Some of
the chapters to follow are good examples of these com-
binations as well.

10.3.1 Inferential

The classical characterization of abduction as logical
inference is mainly a deductive classical logical account
in which a background theory (�), together with an ab-
ductive explanation ( ), constitutes the explananda and
do entail the explanandum ('). It puts forward the fol-
lowing logical schema.

Given a theory � (a set of formulae) and a formula
' (an atomic formula),  is an abductive explanation if:

1. �[ ˆ '
2.  is consistent with �
3.  6ˆ '
4.  is minimal.

When ˆ is interpreted as classical logical conse-
quence, conditions 1 and 2 go hand in hand and are
clearly mandatory. The first one dictates the entailment
condition while the second one imposes the abductive
explanation to be consistent with the background the-
ory, for the principle of explosion is valid in classical
logic (Chap. 15). As for condition 3, it is necessary
in order to avoid self-explanations or, more generally,
explanations that are independent from the background
theory. Condition 4 aims at capturing either a criterion
of best explanation by which minimal may be inter-
preted as selecting the weakest explanation (e.g., not
equal to �! ') or a preferred explanation (which re-
quires a predefined preference ordering). Additionally,
there is usually another requirement restricting the log-
ical vocabulary as well as the syntactic form of the
explanation  , such as being an atomic formula from
the vocabulary in the logical language. This schema
suggests a classification into abductive inferential styles
(as done in [10.8]), one in which plain, consistent, ex-
planatory, minimal, and preferential abductive styles
correspond to above conditions.

A (pre) condition to the above schema – not always
made explicit – is that the theory does not already en-
tail neither the explanandum nor its negation (� 6ˆ '
and � 6ˆ :'). In many proposals, this condition con-
stitutes an abductive problem (such as in Chap. 15).
Given the previous taxonomy for abduction by which
two abductive triggers were distinguished, the follow-
ing definition of an abductive problem is put forward,
one in which novel and anomalous problems are distin-
guished.

Definition 10.3 (Abductive problem)
Let � and ' be a theory and a formula, respectively, in
some language L. Let ˆ be a consequence relation on
L:
� The pair .�; '/ constitutes a (novel) abductive

problem when neither ' nor :' are consequences
of �. That is, when

� 6ˆ ' and � 6ˆ :' :
� The pair .�; '/ constitutes an anomalous abductive

problem when ' is not a consequence of �, but :'
is. That is, when

� 6ˆ ' and � ˆ :' :
It is typically assumed that the theory � is a set of

formulas closed under logical consequence, and that ˆ
is a truth-preserving consequence relation.
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Given this definition, a (novel) abductive solution
would then be any formula  which follows the log-
ical schema above. It remains to be seen however,
what would be an anomalous abductive solution for
an anomalous abductive problem. To this end, several
proposals exist in the literature (e.g., [10.39]), many
of which acknowledge the possibility of theory revi-
sion, for some formula may be retracted from � in
order to maintain the consistency of the revised the-
ory (in Chap. 13 a proposal is made in this direction
in the framewok of dynamic epistemic theories, one in
which a three-way distinction of abductive problems is
offered).

Going back to the logical schema above, it should
be stressed that some authors are not committed to clas-
sical logical entailment but rely instead on some other
form of nonclassical consequence, something that of-
ten has as a consequence that the conditions that make
up the logical schema need not be imposed explicitly
or are replaced instead by weaker ones. For example,
in Chap. 15 in which abduction is modeled in paracon-
sistent logics, the consistency condition is replaced by
a weaker one stating nontriviality (� and are nontriv-
ial when there exists a B such that �; 6ˆ B).

To be sure, while there are clear-cut characteriza-
tions of what is an abductive problem (solution), there
are several logical ways to make it precise. It should be
clear by now that there is a significant way in which ab-
duction is interpreted as a logical inference in its own
right. This characterization does integrate the view of
an otherwise varied group of scholars; John Woods has
labeled it as the AKM model, according to the initial
letters of its proponents surnames [10.40, p.305]:

“Thus, for example, for ‘A’ we have Aliseda [10.8];
for ‘K’ we have Kowalski [10.41], Kuipers [10.25],
Kakas et al. [10.26] and Flach and Kakas [10.6];
and for ‘M’ there is Magnani [10.19] and Meheus
et al. [10.30]. Needless to say, there are legions of
AKM-proponents whose surnames are ungraced by
any of these letters in first positions.”

10.3.2 Computational

Of the many computational approaches to abduction,
abductive logic programming (ALP) is the selected
one to be described in detail (see [10.26, 42–44] for
an overview to the field). Logic programming works
mostly within first-order logic, and it consists of logic
programs, queries, and an underlying inferential mech-
anism known as resolution. Abduction emerges natu-
rally in logic programming as a repair mechanism, that
is, its result is an extension of a logic program with the
facts needed for a query to succeed (a query does not

succeed when it is not derivable from the program). In
actual ALP, for these facts to be counted as abductions,
they have to belong to a predefined set of abducibles,
and to be verified by additional conditions (so-called in-
tegrity constraints), in order to prevent a combinatorial
explosion of possible explanations.

Therefore, logic programming does not use blind
deduction; different control mechanisms for proof
search determine how queries are processed and this
is crucial to the efficiency of the enterprise. Hence,
different control policies will vary in the abductions
produced, their form and the order in which they ap-
pear.

In what follows, it will be illustrated how an ALP
system works. A notation closer to logic than to logic
programs is the one used in what follows. An abductive
logic program has three components:

� A set of rules. Each rule has a head (a predicate) and
a body (a set of predicates). A way to prove the head
is to prove all predicates of its body. Rules without
body are facts and are assumed to be true. Here is
a very simple logic program

eats.X; Y/ vegetarian.X/ ;

vegetable.Y/ (10.1)

eats.X; Y/ carnivore.X/ ;

meat.Y/ (10.2)

vegetarian(rabbit) : (10.3)

There are two rules (10.1) and (10.2) for the pred-
icate eats.X;Y/. The first rule, for example, states that
a way to prove that X eats Y is to prove that X is veg-
etarian and Y is a vegetable. The fact (10.3) states that
the rabbit is vegetarian:

� A set of abducible predicates. A common re-
striction is that abducible predicates cannot be in
the head of any rule. In the example above, the
following may be considered as abducible pred-
icates: vegetarian.X/, carnivore.X/, vegetable.X/
and meat.X/.� A set of integrity constraints. These are rules with
? (falsehood) as head. To be satisfied, they require
that not all literals in the body are simultaneously
true. In the example above, the following constraint
may be added in order to avoid that an animal is
considered both a vegetarian and a carnivore

? vegetarian.X/; carnivore.X/ : (10.4)

An abductive problem in ALP manifests itself when
there is a query (an instance of some predicate) that
cannot succeed with the rules of the logic program



The Logic of Abduction: An Introduction 10.3 Three Characterizations 227
Part

C
|10.3

(the query is not derivable from the program). In the
example above, the query eats(rabbit,banana) is not suc-
cessful with the program (10.1)–(10.3). An abductive
solution in ALP is then a set of facts that, together with
the program, entail the original query. In above exam-
ple, there are two possible sets of these:

� fvegetable(banana)g� fcarnivore(rabbit), meat(banana)g.
But only the first one satisfies integrity con-

straint (10.4), because assuming carnivore(rabbit), to-
gether with vegetarian(rabbit), contradicts (10.4).

More technically, in ALP, standard selective linear
definite resolution [10.45] is extended to build the ab-
ductive solutions and check the integrity constraints.
Some modified resolution procedures and ALP systems
have been developed since the pioneer work of Bob
Kowalski [10.41], but the usual procedure remains the
same: look for abductive solutions at the dead ends of
the proofs. That is, when a resolution proof cannot be
completed because there is no clause to prove some
query, if the predicate of that query is abducible, then
it is incorporated to the abductive solution. Other pro-
cedures use well-founded semantics and stable models.
The overview of ALP is left here.

As already mentioned, there are indeed many com-
putational approaches to abduction. To end this section,
here are some final words in regard to the logical frame-
work of semantic tableaux, which – when properly
extended – allows for a combination of both approaches
to abduction previously reviewed, that of abduction as
a logical inference and abduction as computation.

As well known in the logical literature, semantic
tableaux is a refutation method to test formulae valid-
ity. Roughly speaking, it works as follows (see [10.46]
for an overview to the field):

“To test if a formula ' follows from a set of
premises �, a tableau tree for the sentences in
�[f:'g is constructed, denoted byT .�[f:'g/.
The tableau itself is a binary tree built from its ini-
tial set of sentences by using rules for each of the
logical connectives that specify the ways in which
the tree branches.

If the tableau closes (every branch contains an
atomic formula  and its negation), the initial set is
unsatisfiable and the entailment � ˆ ' holds. Oth-
erwise, if the resulting tableau has open branches,
the formula ' is not a valid consequence of�. ”

Within this framework, abduction comes into play
as en extension of the constructed tableau. When there
are open branches, which indicates the condition for
a novel abductive problem in this framework, the gen-
eration of abductive solutions consists in producing

those formulae, which close the open branches (in
a consistent way). Abduction in semantic tableaux of-
fers a way of implementing computationally the AKM
model (for more details on abduction in semantic
tableaux, see [10.27] for its original proposal and [10.8]
for a further development). Moreover, abduction in se-
mantic tableaux for a paraconsistent logical theory is to
be found in Chap. 15, in which a detailed description of
this framework will be offered.

10.3.3 Epistemic Change

Abduction has also been characterized as a process for
epistemic change, and in this respect an obvious related
territory is theories of belief revision in AI (see [10.8,
29, 47, 48] for an introduction and a more detailed ac-
count on this topic). These theories describe how to
incorporate a new piece of information into a database,
a scientific theory, or a set of common sense beliefs.
More precisely, given a consistent theory � closed un-
der logical consequence, called the belief state, and
a sentence ', the incoming belief, there are three epis-
temic attitudes for � with respect to ':

1. ' is accepted (' 2�)
2. ' is rejected (:' 2�)
3. ' is undetermined (' 62�;:' 62�).

Given these attitudes, the following operations char-
acterize the kind of belief change ' brings into �,
thereby effecting an epistemic change in the agent’s cur-
rently held beliefs:

� Expansion. A new sentence is added to� regardless
of the consequences of the larger set to be formed.
The belief system that results from expanding� by
a sentence ' together with the logical consequences
is denoted by �C '.� Contraction. Some sentence in � is deleted with-
out any addition of new facts. In order to guarantee
the deductive closure of the resulting system, some
other sentences of� may be given up. The result of
contracting � with respect to sentence ' is denoted
by �� '.� Revision. A new sentence that is (typically) incon-
sistent with a belief system� is added, but in order
that the resulting belief system be consistent, some
of the old sentences in � are deleted. The result of
revising � by a sentence ' is denoted by � 	 '.
Of these operations, revision is the most complex

one. Indeed the three belief change operations can be
reduced into two of them, since revision and contrac-
tion may be defined in terms of each other. In particular,
revision here is defined as a composition of contraction
and expansion: First contract those beliefs of� that are
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in conflict with ', and then expand the modified theory
with sentence ' (known as Levi’s identity). While ex-
pansion can be uniquely and easily defined (�C' D
f˛ j�_f'g ` ˛g), this is not so with contraction or re-
vision, as several formulas can be retracted to achieve
the desired effect. Therefore, additional criteria must be
incorporated in order to fix which formula to retract.
Here, the general intuition is that changes on the theory
should be kept minimal, in some sense of informational
economy (One way of dealing with this issue is based
on the notion of entrenchment, a preferential ordering
which lines up the formulas in a belief state according
to their importance [10.49]. Thus, those formulas that
are the least entrenched, should be retracted first).

Moreover, epistemic theories in this tradition ob-
serve certain integrity constraints (such as those pre-
viously shown for ALP), which concern the theory’s
preservation of consistency, its deductive closure and
two criteria for the retraction of beliefs: The loss of
information should be kept minimal and the less en-
trenched beliefs should be removed first. These are the
very basics of the AGM approach (This acronym stands
for the three initial letters of its proponents: Alchour-
rón, Gärdenfors, and Makinson, authors of the seminal
paper which started this tradition [10.50]).

Abduction may be seen as an epistemic process for
belief revision. In this context, an incoming sentence '
is not necessarily an observation, but rather a belief for
which an explanation is sought. The previously defined
abductive novelty and abductive anomaly correspond
respectively, to the epistemic attitudes of undetermina-
tion and rejection (provided that) is ` and � closed
under logical consequence). Both a novel phenomenon
and an anomalous one induce a change in the original
theory. The latter calls for a revision and the former for
expansion. So, the basic operations for abduction are
expansion and revision. Therefore, two epistemic atti-
tudes and changes in them are reflected in an abductive
model.

Here, then, are two abductive operations for epis-
temic change (as proposed in [10.8]):

� Abductive expansion. Given an abductive novelty ',
a consistent explanation ˛ for ' is computed in such
a way that �;˛) ', and then added to �.� Abductive revision. Given an abductive anomaly
', a consistent explanation ˛ is computed as fol-
lows: The theory � is revised into �0 so that it
does not explain :'. That is, �0 6) :', where
�0 D� � .ˇ1; : : : ; ˇl/ (In many cases, several for-
mulas and not just one must be removed from the
theory. The reason is that sets of formulas which
entail (explain) ' should be removed. Example:
Given � D f˛! ˇ; ˛; ˇg and ' D:ˇ, in order to
make �;:ˇ consistent, one needs to remove either
fˇ; ˛g or fˇ; ˛! ˇg). Once �0 is obtained, a con-
sistent explanation ˛ is calculated in such a way that
�0; ˛) ' and then added to �. Thus, the process
of revision involves both contraction and expansion.

Some of the previous examples of abduction given
in Sect. 10.1.4 may be described as expansions (1�3),
where the background theory gets expanded to account
for a new fact. Another one of them (4) is clearly a case
calling for theory revision, that in which the theory
needs to be revised in order to account for an anomaly,
such as those found in practical settings like diagnostic
reasoning [10.15, 39]. Belief revision theories provide
an explicit calculus of modification for both cases and
applied to abduction, operations for abductive expan-
sion and abductive revision are defined as well.

Note, however, that in this approach changes occur
only in the theory, as the situation or world to be mod-
eled is supposed to be static, only new information is
coming in. Another important type of epistemic change
studied in AI is that of update, the process of keeping
beliefs up-to-date as the world changes. A recent pro-
posal in this direction in connection to abduction is to
be found later in this part of the handbook, in Chap. 13.

10.4 Conclusions

This chapter covered, on the one hand, a brief his-
torical overview of the logic of abduction since its
origins in Charles Peirce’s view to its privileged place
in the cognitive sciences. In the context of philoso-
phy of science, logical abduction is relevant in re-
gard to issues of scientific explanation. In a broader
context, one including computer science, abduction
is immersed in the heuristics of inferential mecha-
nisms. On the other hand, this chapter offered an
in-depth overview of logical abduction. A distinc-
tion between approaches in which abduction takes the

form of an argument and those in which it mani-
fests itself as an inference to the best explanation,
is a useful one in philosophy, and was described in
Sect. 10.2.

Section 10.3 described three classical characteriza-
tions of abduction, namely as a logical inference, as
a computational process and as a process for epistemic
change. These characterizations have been the domi-
nant ones in the logical literature and are still a point of
reference to new proposals which go beyond the bound-
aries of the classical way.
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The history of the logic of abduction and of its for-
mal modeling is still on the making. The chapters to
follow offer an overview of formal tools to model logi-
cal and computational abduction.
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11. Qualitative Inductive Generalization
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Mathieu Beirlaen

Inductive generalization is a defeasible type of
inference which we use to reason from the partic-
ular to the universal. First, a number of systems
are presented that provide different ways of im-
plementing this inference pattern within first-
order logic. These systems are defined within the
adaptive logics framework for modeling defeasi-
ble reasoning. Next, the logics are re-interpreted
as criteria of confirmation. It is argued that they
withstand the comparison with two qualitative
theories of confirmation, Hempel’s satisfaction
criterion and hypothetico-deductive confirma-
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Logics of induction are tools for evaluating the strength
of arguments which are not deductively valid. There are
many kinds of argument the conclusion of which is not
guaranteed to follow from its premises, and there are
many ways to evaluate the strength of such arguments.
This chapter focusses on one particular kind of non-
deductive argument, and on one particular method of
implementation. The type of argument under consider-
ation here is that of inductive generalization, as when
we reason from the particular to the universal. A num-

ber of logics are discussed which permit us, given a set
of objects sharing or not sharing a number of properties,
to infer generalizations of the form All x are P, or All x
with property P share property Q. Inductive generaliza-
tion is a common practice which has proven its use in
scientific endeavor. For instance, given the fact that the
relatively few electrons measured so far carry a charge
of�1:6�10�19 Coulombs, we believe that all electrons
have this charge [11.1].

11.1 Adaptive Logics for Inductive Generalization

The methods used here for formalizing practices of
inductive generalization stem from the adaptive log-
ics framework. Adaptive logics are tools developed for
modeling defeasible reasoning, equipped with a proof
theory that nicely captures the dynamics of non-mono-
tonic – in this case, inductive – inference. In proofs for
adaptive logics for inductive generalization, the condi-
tional introduction of generalizations is allowed. The
proof theory is also equipped with a mechanism tak-
ing care that conditionally introduced generalizations
get retracted in case their condition is violated, for in-

stance when the generalization in question is falsified
by the premises.

In Sect. 11.2 and 11.3 the general framework of
adaptive logics is introduced, and a number of existing
adaptive logics for inductive generalization are defined.
The differences between these logics arise from dif-
ferent choices made along one of two dimensions.
A first dimension concerns the specific condition re-
quired for introducing generalizations in an adaptive
proof. A very permissive approach allows for their free
introduction, without taking into account the specifics
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of the premises. This is the idea behind the logic LI.
A more economical approach is to permit the introduc-
tion of a generalization on the condition that at least
one instance of it it present. This is the rationale behind
a second logic, IL. In an IL-proof a generalization All
P are Q can be introduced only if the premise set con-
tains at least one object which is either not-P orQ. More
economical still is the rationale behind a third logic, G,
which aims to capture the requirement of knowing at
least one positive instance of a generalization before
introducing it in a proof. That is, in a G-proof a gen-
eralization All P are Q can be introduced if the premise
set contains at least one object which is both P and Q.

The second dimension along which different con-
sequence relations are generated concerns the specific
mechanism used for retracting generalizations intro-
duced in adaptive proofs. It is often not sufficient to
demand retraction just in case a generalization is falsi-
fied by the premises. For instance, if the consequence
sets of our logics are to be closed under classical
logic, jointly incompatible generalizations should not
be derivable, even though none of them is falsified by
our premise set. Within the adaptive logics framework,
various strategies are available for retracting condi-
tional moves in an adaptive proof. Two such strategies
are presented in this chapter: the reliability strategy and
the minimal abnormality strategy.

Combining both dimensions, a family of six adap-
tive logics for inductive generalization is obtained (it
contains the systems LI, IL, and G, each of which can
be defined using either the reliability or the minimal
abnormality strategy). These logics have all been pre-
sented elsewhere (for LI, see [11.2–4]. For IL and G,
see [11.5]). The original contribution of this chapter
consists in a study comparing these systems to some

existing qualitative criteria of confirmation. There is an
overlap between the fields of inductive logic and con-
firmation theory. In 1943 already, Hempel noted that
the development of a logical theory of confirmation
might be regarded as a contribution to the field of in-
ductive logic [11.6, p. 123]. In Sect. 11.4 the logics
from Sect. 11.2 and 11.3 are re-interpreted as qualitative
criteria of confirmation, and are related to other qual-
itative models of confirmation: Hempel’s satisfaction
criterion (Sect. 11.4.1) and the hypothetico-deductive
model (Sect. 11.4.2). Section 11.4 ends with some re-
marks on the heuristic guidance that adaptive logics for
inductive generalization can provide in the derivation
and subsequent confirmation of additional generaliza-
tions (Sect. 11.4.3).

The following notational conventions are used
throughout the chapter. The formal language used is
that of first-order logic without identity. A primitive
functional formula of rank 1 is an open formula that
does not contain any logical symbols (9;8;:;_;^;
;�), sentential letters, or individual constants, and that
contains only predicate letters of rank 1. The set of
functional atoms of rank 1, denoted Af1, comprises
the primitive functional formulas of rank 1 and their
negations. A generalization is the universal closure
of a disjunction of members of Af1. That is, the set
of generalizations in this technical sense is the set
f8.A1 _ : : :_An/ j A1; : : : ;An 2Af1I n � 1g, where 8
denotes the universal closure of the subsequent for-
mula. Occasionally the term generalization is also used
for formulas equivalent to a member of this set, e.g.,
8x.Px  Qx/. It is easily checked that generalizations
8.A1_: : :_An/ can be rewritten as formulas of the gen-
eral form 8..B1^ : : :^Bj/ .C1_ : : :_Ck//, and vice
versa, where all Bi and Cj belong to Af1.

11.2 A First Logic for Inductive Generalization

In this section the standard format (SF) for adaptive
logics is introduced and explained. Its features are
illustrated by means of the logic LI from [11.3, 4],
chronologically the first adaptive logic for inductive
generalization. A general characterization of the SF is
provided, and its proof theory is explained. For a more
comprehensive introduction, including the semantics
and generic meta-theory of the SF, see, e.g., [11.7,
8].

11.2.1 General Characterization
of the Standard Format

An adaptive logic (AL) within the SF is defined as
a triple, consisting of:

(i) A lower limit logic (LLL), a logic that has static
proofs and contains classical disjunction

(ii) A set of abnormalities, a set of formulas that share
a (possibly) restricted logical form, or a union of
such sets

(iii) An adaptive strategy.

The LLL is the stable part of the AL: anything deriv-
able by means of the LLL is derivable by means of the
AL. Explaining the notion of static proofs is beyond
the scope of this chapter. For a full account, see [11.9].
(Alternatively, the static proofs requirement can be re-
placed by the requirement that the lower limit logic has
a reflexive, monotonic, transitive, and compact conse-
quence relation [11.8].) In any case, it suffices to know
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that the first-order fragment of Classical Logic (CL)
meets this requirement, as we work almost exclusively
with CL as a LLL. The lower limit logic of LI is CL.

Typically, an AL enables one to derive, for most
premise sets, some extra consequences on top of those
that are LLL-derivable. These supplementary conse-
quences are obtained by interpreting a premise set as
normally as possible, or, equivalently, by supposing
abnormalities to be false unless and until proven oth-
erwise. What it means to interpret a premise set as
normally as possible is disambiguated by the strategy,
element (iii).

The normality assumption made by the logics to be
defined in this chapter amounts to supposing that the
world is in some sense uniform. Normal situations are
those in which it is safe to derive generalizations. Ab-
normal situations are those in which generalizations are
falsified. In fact, the set of LI-abnormalities, denoted
˝LI, is just the set of falsified generalizations (the defi-
nitions are those from [11.5]; in [11.10, Sect. 4.2.2] it is
shown that the same logic is obtained if ˝LI is defined
as the set of formulas of the form :8xA.x/, where A
contains no quantifiers, free variables, or constants)

˝LI Ddf
˚:8.A1 _ : : :_An/ j A1; : : : ;An 2Af1I

n � 1g :
(11.1)

In adaptive proofs, it is possible to make conditional
inferences assuming that one or more abnormalities
are false. Whether or not such assumptions can be up-
held in the continuation of the proof is determined by
the adaptive strategy. The SF incorporates two adaptive
strategies, the reliability strategy and the minimal ab-
normality strategy. In the generic proof theory of the
SF, adaptive strategies come with a marking definition,
which takes care of the withdrawal of certain condi-
tional inferences in dynamic proofs. It will be easier to
explain the intuitions behind these strategies after defin-
ing the generic proof theory for ALs. For now, just note
that in the remainder LI is ambiguous between LIr and
LIm, where the subscripts r and m denote the reliability
strategy, respectively the minimal abnormality strategy.
Analogously for the other logics defined below.

11.2.2 Proof Theory

Adaptive proofs are dynamic in the sense that lines de-
rived at a certain stage of a proof may be withdrawn
at a later stage. Moreover, lines withdrawn at a certain
stage can become derivable again at an even later stage,
and so on. (A stage of a proof is a sequence of lines
and a proof is a sequence of stages. Every proof starts
off with stage 1. Adding a line to a proof by applying

one of the rules of inference brings the proof to its next
stage, which is the sequence of all lines written so far.)

A line in an adaptive proof consists of four ele-
ments: a line number, a formula, a justification and
a condition. For instance, a line

j A i1; : : : ; inI R � ;

reads: at line j, the formula A is derived from lines
i1� in by rule R on the condition�. The fourth element,
the condition, is what permits the dynamics. Intuitively,
the condition of a line in a proof corresponds to an
assumption made at that line. In the example above,
A was derived on the assumption that the formulas in
� are false. If, later on in the proof, it turns out that
this assumption was too bold, the line in question is
withdrawn from the proof by a markingmechanism cor-
responding to an adaptive strategy. Importantly, only
members of the set of abnormalities are allowed as el-
ements of the condition of a line in an adaptive proof.
Thus, assumptions always correspond to the falsity of
one or more abnormalities, or, equivalently, to the truth
of one or more generalizations.

Before explaining how the marking mechanism
works, the generic inference rules of the SF must be
introduced. There are three of them: a premise intro-
duction rule (Prem), an unconditional rule (RU), and
a conditional rule (RC). For adaptive logics with CL as
their LLL, they are defined as follows

Prem If A 2 � W
: : : : : :

A ;
RU If A1; : : : ;An `CL B W

A1 �1
:::

:::

An �n

B �1[ : : :[�n

RC If A1; : : : ;An `CL B_Dab.�/ W
A1 �1
:::

:::

An �n

B �1[ : : :[�n [�
:

Where � is the premise set, Prem permits the intro-
duction of premises on the empty condition at any time
in the proof. Remember that conditions, at the intuitive
level, correspond to assumptions, so Prem stipulates
that premises can be introduced at any time without
making any further assumptions.
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Since ALs strengthen their LLL, one or more rules
are needed to incorporate LLL-inferences in AL-proofs.
In the proof theory of the SF, this is taken care of by the
generic rule RU. This rule stipulates that whenever B is
a CL-consequence of A1; : : : ;An, and all of A1; : : : ;An

have been derived in a proof, then B is derivable, pro-
vided that the conditions attached to the lines at which
A1; : : : ;An were derived are carried over. Intuitively, if
A1; : : : ;An are derivable assuming that the members of
�1; : : : ; �n are false, and if B is a CL-consequence of
A1; : : : ;An, then B is derivable, still assuming that all
members of �1; : : : ; �n are false.

Before turning to RC, here is an example illus-
trating the use of the rules Prem and RU. Let �1 D
fPa^Qa;Pb;:Qcg. Suppose we start an LI-proof for
�1 as follows

1 Pa^Qa Prem ;
2 Pb Prem ;
3 :Qc Prem ;
4 Pa 1IRU ;
5 Qa 1IRU ;

Let � be a finite set of LI-abnormalities, that is, � �
˝LI. Then Dab.�/ refers to the classical disjunction
of the members of � (Dab abbreviates disjunction of
abnormalities; in the remainder, such disjunctions are
sometimes referred to as Dab-formulas). RC stipulates
that, whenever B is CL-derivable from A1; : : : ;An in
disjunction with one or more abnormalities, then B can
be inferred assuming that these abnormalities are false,
i. e., we can derive B and add the abnormalities in ques-
tion to the condition set, together with assumptions
made at the lines at which A1; : : : ;An were derived.

For instance, (11.2) is CL-valid

8x.Px_Qx/_:8x.Px_Qx/ (11.2)

Note that the second disjunct of (11.2) is a member
of ˝LI. In the context of inductive generalization the
assumption that the world is as normal as possible
corresponds to an assumption about the uniformity of
the world. In adaptive proofs, such assumptions are
made explicit by applications of the conditional rule.
Concretely, if a formula like (11.2) is derived in an
LI-proof, RC can be used to derive the first disjunct
on the condition that the second disjunct is false. In
fact, since (11.2) is a CL-theorem, the generalization
8x.Px_Qx/ can be inroduced right away, taking its
negation to be false (lines 1�5 are not repeated)

6 8x.Px_Qx/ RC f:8x.Px_Qx/g

In a similar fashion, RC can be used to derive other gen-
eralizations

7 8xPx RC f:8xPxg
8 8xQx RC f:8xQxg
9 8x.:Px_Qx/ RC f:8x.:Px_Qx/g
10 8x.Px_:Qx/ RC f:8x.Px_:Qx/g
11 8x.:Px_:Qx/ RC f:8x.:Px_:Qx/g

Each generalization is derivable assuming that its cor-
responding condition is false. However, some of these
assumptions clearly cannot be upheld. We know, for in-
stance, that the generalizations derived at lines 8 and
11 are falsified by the premises at lines 3 and 1 re-
spectively. So we need a way of distinguishing between
good and bad inferred generalizations. This is where
the adaptive strategy comes in. Since distinguishing
good from bad generalizations can be done in differ-
ent ways, there are different strategies available to us
for making the distinction hard. First, the reliability
strategy and its corresponding marking definition are
introduced. The latter definition takes care of the retrac-
tion of bad generalizations.

Marking definitions proceed in terms of the mini-
mal inferred Dab-formulas derived at a stage of a proof.
A Dab-formula that is derived at a proof stage by RU
at a line with condition ; is called an inferred Dab-for-
mula of the proof stage.

Definition 11.1 Minimal inferred Dab-formula
Dab.�/ is a minimal inferred Dab-formula at stage s of
a proof iff Dab.�/ is an inferred Dab-formula at stage s
and there is no�0 �� such that Dab.�0/ is an inferred
Dab-formula at stage s.

Where Dab.�1/; : : : ;Dab.�n/ are the minimal inferred
Dab-formulas derived at stage s,Us.� /D�1[: : :[�n

is the set of formulas that are unreliable at stage s.

Definition 11.2 Marking for reliability
Where � is the condition of line i, line i is marked at
stage s iff �\Us.� /¤ ;.

To illustrate the marking mechanism, consider the fol-
lowing extension of the LIr-proof for �1 (marked lines
are indicated by aX-sign; lines 1�5 are not repeated in
the proof)

6 8x.Px_Qx/ RC
f:8x.Px_Qx/gX

7 8xPx RC
f:8xPxgX

8 8xQx RC
f:8xQxgX
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9 8x.:Px_Qx/ RC
f:8x.:Px_Qx/gX

10 8x.Px_:Qx/ RC
f:8x.Px_:Qx/g

11 8x.:Px_:Qx/ RC
f:8x.:Px_:Qx/gX

12 :8xQx 3IRU
;

13 :8x.:Px_:Qx/ 1IRU
;

14 :8xPx_:8x.:Px_Qx/ 3IRU
;

15 :8x.Px_Qx/_:8x.:Px_Qx/ 3IRU
;

As remarked above, the generalizations derived at lines
8 and 11 are falsified by the premises, so it makes good
sense to mark them and thereby consider them not de-
rived anymore. As soon as we derive the negations of
these generalizations (lines 12 and 13) Definition 11.2
takes care that lines 8 and 11 are marked. The gener-
alizations derived at lines 6, 7, and 9 are not falsified
by the data, yet they are marked according to Defini-
tion 11.2, due to the derivability of the minimal inferred
Dab-disjunctions at lines 14 and 15. We know, for in-
stance, that the generalizations derived at lines 7 and 9
cannot be upheld together: at line 14 we inferred that
they are jointly incompatible in view of the premises.
Definition 11.2 takes care that both lines 7 and 9 are
marked at stage 15, since

U15.�1/D f:8xPx;:8xQx;:8x.Px_Qx/;
:8x.:Px_Qx/;:8x.:Px_:Qx/g :

(11.3)

The only inferred generalization left unmarked at stage
15 is 8x.Px_:Qx/, derived at line 10.

Due to the dynamics of adaptive proofs, we cannot
just take a formula to be an AL-consequence of some
premise set � once we derived it at some stage on an
unmarked line in a proof for � , for it may be that there
are extensions of the proof in which the line in question
gets marked. Likewise, we need to take into account the
fact that lines marked at a stage of a proof may become
unmarked at a later stage. This is taken care of by using
the concept of final derivability:

Definition 11.3 Final derivability
A is finally derived from � at line i of a finite proof
stage s iff (i) A is the second element of line i, (ii) line i

is not marked at stage s, and (iii) every extension of the
proof in which line i is marked may be further extended
in such a way that line i is unmarked.

Definition 11.4 Logical consequence for LIr

� `LIr A (A is finally LIr-derivable from � ) iff A is
finally derived at a line of an LIr-proof from � .

Given the premise set �1, there are no extensions of
the proof above in which any of the marked lines be-
come unmarked, nor are there extensions in which line
10 is marked and cannot be unmarked again in a fur-
ther extension of the proof. Hence, by Definitions 11.3
and 11.4

�1 6`LIr 8xPx ; (11.4)

�1 6`LIr 8xQx ; (11.5)

�1 6`LIr 8x.Px_Qx/ ; (11.6)

�1 `LIr 8x.Px_:Qx/ ; (11.7)

�1 6`LIr 8x.:Px_Qx/ ; (11.8)

�1 6`LIr 8x.:Px_:Qx/ : (11.9)

The logic LIr is non-monotonic: adding new premises
may block the derivation of generalizations that were
finally derivable from the original premise set. For in-
stance, suppose that we add the premise :Pd^Qd to
�1. Since the extra premise provides a counter-instance
to the generalization 8x.Px_:Qx/, the latter should no
longer be LIr-derivable from the new premise set. The
following proof illustrates that this is indeed the case

1 Pa^Qa Prem
;

2 Pb Prem
;

3 :Qc Prem
;

4 :Pd^Qd Prem
;

5 8x.Px_Qx/ RC
f:8x.Px_Qx/gX

6 8xPx RC
f:8xPxgX

7 8xQx RC
f:8xQxgX

8 8x.:Px_Qx/ RC
f:8x.:Px_Qx/gX
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9 8x.Px_:Qx/ RC
f:8x.Px_:Qx/gX

10 8x.:Px_:Qx/ RC
f:8x.:Px_:Qx/gX

11 :8xPx 4IRU
;

12 :8xQx 3IRU
;

13 :8x.:Px_:Qx/ 1IRU
;

14 :8x.Px_Qx/_:8x.:Px_Qx/ 3IRU
;

15 :8x.Px_:Qx/ 4IRU
;

Line 9 is marked in view of the Dab-formula derived
at line 15. There is no way to extend this proof in such
a way that the line in question gets unmarked. Hence,
�1[f:Pd^Qdg 6`LIr 8x.Px_:Qx/. In fact, no nontau-
tological generalizations whatsoever are LIr-derivable
from the extended premise set �1 [ f:Pd^Qdg.

11.2.3 Minimal Abnormality

Different interpretations of the same set of data may
lead to different views concerning which generaliza-
tions should or should not be derivable. Each such view
may be driven by its own rationale, and choosing one
such rationale over the other is not a matter of pure
logic. For that reason, different strategies are available
to adaptive logicians, each interpreting a set of data in
their own sensible way, depending on the context. The
reliability strategy was defined already. The minimal
abnormality strategy is slightly less skeptical. Conse-
quently, for some premise sets, generalizations may be
LIm-derivable, but not LIr-derivable.

Like reliability, the minimal abnormality strategy
comes with its marking definition. Let a choice set of
˙ D f�1; �2; : : :g be a set that contains one element
out of each member of˙ . A minimal choice set of˙ is
a choice set of ˙ of which no proper subset is a choice
set of ˙ . Where Dab.�1/;Dab.�2/; : : : are the mini-
mal inferred Dab-formulas derived from a premise set
� at stage s of a proof, ˚s.� / is the set of minimal
choice sets of f�1; �2; : : :g.

Definition 11.5 Marking for minimal abnormality
Where A is the formula and � the condition of line i,
line i is marked at stage s iff (i) there is no ' 2˚s.� /
such that ' \�D ;, or (ii) for some ' 2 ˚s.� /, there

is no line at which A is derived on a condition � for
which ' \� D ;.

An example will clarify matters. Let �2 D fPa^Qa^
Ra;:Rb^ .:Pb_:Qb/;:Pc^:Qc^Rcg.

1 Pa^Qa^Ra Prem
;

2 :Rb^ .:Pb_:Qb/ Prem
;

3 :Pc^:Qc^Rc Prem
;

4 8x.Px_Qx/ RC
f:8x.Px_Qx/gX

5 8x.Px_Rx/ RC
f:8x.Px_Rx/gX

6 8x.:Px_Rx/ RC
f:8x.:Px_Rx/gX

7 :8x.Px_Qx/ 3IRU
;

8 :8x.Px_Rx/_:8x.:Px_Rx/ 2IRU
;

9 8x.Px_Rx/_8x.:Px_Rx/ 5IRU
f:8x.Px_Rx/g

10 8x.Px_Rx/_8x.:Px_Rx/ 6IRU
f:8x.:Px_Rx/g

To see what is happening in this proof, we need to un-
derstand the markings. Note that there are two minimal
choice sets at stage 10

˚10.�2/D ff:8x.Px_Qx/;:8x.Px_Rx/g;
f:8x.Px_Qx/;:8x.:Px_Rx/gg :

(11.10)

Line 4 is marked in view of clause (i) in Definition 11.5,
since its condition intersects with each minimal choice
set in ˚10.�2/. Lines 5 and 6 are marked in view of
clause (ii) in Definition 11.5. For the minimal choice
set f:8x.Px_Qx/;:8x.Px_Rx/g, there is no line at
which 8x.Px_Rx/ was derived on a condition that
does not intersect with this set. Hence line 5 is marked.
Analogously, line 6 is marked because, for the minimal
choice set f:8x.Px_Qx/;:8x.:Px_Rx/g, there is no
line at which 8x.:Px_Rx/ was derived on a condition
that does not intersect with this set.

Things change, however, when we turn to lines 9
and 10. In these cases, none of clauses (i) or (ii) of Def-
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inition 11.5 apply: for each of these lines, there is a min-
imal choice set in˚10.�2/which does not intersect with
the line’s condition; and for each of the sets in ˚10.�2/,
we have derived the formula 8x.Px_Rx/_8x.:Px_
Rx/ on a condition that does not intersect with it. Hence,
these lines remain unmarked at stage 10 of the proof.

Things would have been different if we made use of
the reliability strategy, since

U10.�2/Df:8x.Px_Qx/;:8x.Px_Rx/;
:8x.:Px_Rx/g : (11.11)

In view of U10.�2/ and Definition 11.2, all of lines 4�6
and 9�10 would be marked if the above proof were
a LIr-proof.

As with the reliability strategy, logical consequence
for the minimal abnormality strategy is defined in terms
of final derivability (Definition 11.3). A consequence
relation for LIm is defined simply by replacing all oc-
currences of LIr in Definition 11.4 with LIm. Although
the proof above can be extended in many interesting
ways, showing the (non-)derivability of many more

generalizations than those currently occurring in the
proof, nothing will change in terms of final derivabil-
ity with respect to the formulas derived at stage 10

�2 6`LIm 8x.Px_Qx/ ; (11.12)

�2 6`LIm 8x.Px_Rx/ ; (11.13)

�2 6`LIm 8x.Px_:Rx/ ; (11.14)

�2 `LIm 8x.Px_Rx/_8x.:Px_Rx/ ; (11.15)

�2 6`LIr 8x.Px_Qx/ ; (11.16)

�2 6`LIr 8x.Px_Rx/ ; (11.17)

�2 6`LIr 8x.Px_:Rx/ ; (11.18)

�2 6`LIr 8x.Px_Rx/_8x.:Px_Rx/ : (11.19)

At the beginning of Sect. 11.2.3 it was mentioned
that the rationale underlying the reliability strategy is
slightly more skeptical than that underlying the mini-
mal abnormality strategy. The point is illustrated by the
proof for �2. As we saw, the formula 8x.Px_Rx/_
8x.:Px_Rx/ is LIm-derivable from �2, but not LIr-
derivable from �2.

11.3 More Adaptive Logics for Inductive Generalization

LI interprets the world as uniform by taking as normal
those situations in which a generalization is true, and
as abnormal those situations in which a generalization
is false. But of course, if uniformity is identified with
the truth of every generalization in this way, the world
can never be completely uniform (for the simple fact
that many generalizations are incompatible and cannot
be jointly true). Perhaps a more natural way to interpret
the uniformity of the world is to take all objects to have
the same properties: as soon as one object has property
P, we try to infer that all objects have property P. This
is the rationale behind the logic IL from [11.5].

Roughly, the idea behind IL is to generalize from
instances. Given an instance, the derivation of a gener-
alization is permitted on the condition that no counter-
instances are derivable. So abnormal situations are
those in which both an instance and a counter-instance
of a generalization are present. This is the formal defi-
nition of the set of IL-abnormalities

˝IL Ddf f9.A1 _ : : :_An/^9:.A1 _ : : :_An/ j
A1; : : : ;An 2Af1I n� 1g :

(11.20)

The logic IL is defined by the lower limit logic CL,
the set of abnormalities ˝IL, and the adaptive strategy
reliability (ILr) or minimal abnormality (ILm).

In an IL-proof generalizations cannot be condi-
tionally introduced from scratch, since an instance is
required. In this respect, IL is more demanding than
LI. However, it does not follow that for this reason IL
is a weaker logic, since it is also more difficult to derive
(disjunctions of) abnormalities in IL. A simple example
will illustrate that, for many premise sets, IL is in fact
stronger than LI. Consider the following IL-proof from
�3 D fPa;:Pb_Qbg
1 Pa Prem

;
2 :Pb_Qb Prem

;
3 8xPx 1IRC

f9xPx^9x:Pxg
4 Qb 2; 3IRU

f9xPx^9x:Pxg
5 8xQx 4IRC

f9xPx^9x:Px; 9xQx^9x:Qxg
In view of Pa `CL 8xPx_ .9xPx^9x:Px/, we applied
RC to line 1 and conditionally inferred 8xPx at line 3.
Next, we used RU to infer Qb from this newly obtained
generalization together with the premise at line 2. We
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now have an instance of 8xQx, so we can conditionally
infer the latter generalization, taking over the condition
of line 4. Importantly, not a single disjunction of mem-
bers of ˝IL is CL-derivable from �3. This means that
there is no way to mark any of lines 3�5 in any exten-
sion of this proof, independently of which strategy we
use.

Consequence relations for ILr and ILm are again
definable in terms of final derivability (Definition 11.3).
All we need to do is replace all occurrences of LIr in
Definition 11.4 with ILr, respectively ILm. Hence

�3 `IL 8xPx ; (11.21)

�3 `IL 8xQx : (11.22)

Compare the IL-proof above with the following LI-
proof from �3

1 Pa Prem
;

2 :Pb_Qb Prem
;

3 8xPx RC
f:8xPxgX

4 Qb 2; 3IRU
f:8xPxgX

5 8xQx RC
f:8xQxgX

6 :8xPx_:8x:Qx 1; 2IRU
;

7 :8xQx_:8x.:Px_:Qx/ 1; 2IRU
;

Independently of the adaptive strategy used (reliability
or minimal abnormality), there are no extensions of this
LI-proof in which any of lines 3�5 become unmarked.
Therefore

�3 6`LI 8xPx ; (11.23)

�3 6`LI 8xQx : (11.24)

The premise set �3 not only serves to show that IL is not
strictly weaker than LI in terms of derivable generaliza-
tions. It also illustrates that, although in an IL-proof we
generalize on the basis of instances, such an instance
need not always be CL-derivable from the premise set.
In the proof from �3, we derived the generalization
8xQx even though no instance of this generalization is
CL-derivable from �3. Instead, we first derived 8xPx
(of which �3 does provide us with an instance), and

then used this generalization to infer an instance of
8xQx. This is perfectly in line with the intuition be-
hind IL: If deriving a generalization on the basis of an
instance leads us to more instances of other general-
izations, then, assuming the world to be as uniform as
possible, we take the world to be uniform with respect
to these other generalizations as well.

When discussing inductive generalization, confir-
mation theorists often use the more fine-grained dis-
tinction between mere instances of a generalization,
positive instances, and negative instances. For example,
given a generalization 8x.Px Qx/, any a such that
Pa Qa is an instance of 8x.Px  Qx/; any a such that
Pa^Qa is a positive instance of 8x.Px Qx/; and any
a such that Pa^:Qa is a negative instance of 8x.Px 
Qx/. Instead of requiring a mere instance before in-
troducing a generalization, some confirmation theorists
have suggested the stronger requirement for a positive
instance, that is, a negative instance of the contrary
generalization (Sect. 11.4.3). According to this idea, in-
terpreting the world as uniform as possible amounts to
generalizing whenever a positive instance is available to
us. Abnormal situations, then, are those in which both
a positive and a negative instance of a generalization are
available to us. There is a corresponding variant of IL
that hard-codes this idea in its set of abnormalities: the
logic G from [11.5]. The latter is defined by the lower
limit logic CL, the set of abnormalities ˝G and either
the reliability strategy (Gr) or the minimal abnormality
strategy (Gm).

˝G Ddf

f9.A1 ^ : : :^An ^A0/^9.A1 ^ : : :^An ^:A0/ j
A0;A1; : : : ;An 2Af1I n� 0g :

(11.25)

In proofs to follow 9.A1^ : : :^An ^A0/^9.A1^ : : :^
An^:A0/ is abbreviated as A1^ : : :^An^˙A0 (where
again A0;A1; : : : ;An 2Af1). As an illustration of the
workings of G, consider the following G-proof from
�4 D fPa^Qa;:Qb;:Pcg

1 Pa^Qa Prem
;

2 :Qb Prem
;

3 :Pc Prem
;

4 8x.Px  Qx/ 1IRC
fPx^˙Qxg
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5 8x.Qx  Px/ 1IRC
fQx^˙Pxg

6 8x.Px� Qx/ 4; 5IRU
fPx^˙Qx;Qx^˙Pxg

7 9xPx^9x:Px 1; 3IRU
;

8 9xQx^9x:Qx 1; 2IRU
;

The formulas derived at lines 4�6 are finally G-deriv-
able in the proof. Since G-consequence too is defined
in terms of final derivability, it follows, independently
of the strategy used, that

�4 `G 8x.Px Qx/ ; (11.26)

�4 `G 8x.Qx Px/ ; (11.27)

�4 `G 8x.Px� Qx/ : (11.28)

Now consider the following IL-proof from �4 (where
A1; : : : ;An 2Af1, Š.A1 _ : : :_An/ abbreviates 9.A1 _
: : :_An/^9:.A1 _ : : :_An))

1 Pa^Qa Prem
;

2 :Qb Prem
;

3 :Pc Prem
;

4 8x.Px  Qx/ 1IRC
fŠ.:Px_Qx/gX

5 8x.Qx  Px/ 1IRC
fŠ.:Qx_Px/gX

6 8x.Px� Qx/ 4; 4IRU
fŠ.:Px_Qx/; Š.:Qx_Px/gX

7 ŠPx 1; 3IRU
;

8 ŠQx 1; 2IRU
;

9 Š.Px_Qx/_Š.:Px_Qx/ 1; 2IRU
;

10 Š.:Qx_Px/_Š.Px_Qx/ 1; 3IRU
;

11 Š.:Px_:Qx/ 1; 2IRU
;

The minimal inferred Dab-formulas inferred at lines
7�11 will remain minimal in any extension of this proof

(none of the disjuncts of any of the formulas derived at
lines 9 or 10 is separately derivable). Accordingly, the
marks in this proof will not change. Hence, indepen-
dently of the strategy used

�4 6`IL 8x.Px Qx/ ; (11.29)

�4 6`IL 8x.Qx Px/ ; (11.30)

�4 6`IL 8x.Px� Qx/ : (11.31)

Twomore remarks are in order. First, the example above
suggests that G is in general stronger than IL. This
is correct for the minimal abnormality strategy, but
false for the reliability strategy. An illustration is pro-
vided by the premise set �5 D fPa;Qb;Rb;Qc;:Rcg.
The generalization 8x.:Px  Qx/ cannot be inferred
on the condition :Px^˙Qx, since we lack a pos-
itive instance. It can be inferred on the conditions
˙Qx or ˙Px in view of 8xQx `CL 8x.:Px  Qx/ and
8xPx `CL 8x.:Px Qx/, but none of these conditions
are reliable in view of the derivability of minimal
Dab-formulas like˙Px_.Px^˙Rx/ and˙Qx_.Qx^
˙Px/_ .Px^˙Rx/.

The situation is different in an ILr-proof, where de-
riving 8x.:Px  Qx/ on the condition Š.Px_Qx/ in
a proof from �5 is both possible and final. That is, for
every derivable Dab-formula in which Š.Px_Qx/ oc-
curs, we can derive a shorter (minimal) disjunction of
abnormalities in which it no longer occurs. Summing
up

�5 6`Gr 8x.:Px Qx/ ; (11.32)

�5 `ILr 8x.:Px  Qx/ : (11.33)

The second remark is that the requirement for a pos-
itive instance before generalizing in a G-proof is still
insufficient to guarantee that for everyG-derivable gen-
eralization a positive instance is CL-derivable from the
premises. The following proof from Pa illustrates the
point

1 Pa Prem ;
2 8xPx 1IRC f˙Pxg
3 8x.Qx Px/ 2IRU f˙Pxg

Independently of the strategy used, no means are avail-
able to mark line 3, hence Pa `G 8x.Qx Px/, even
though no positive instance of 8x.Qx Px/ is avail-
able. More on this point below (see the discussion on
Hempel’s raven paradox in Sect. 11.4.1 and in the Ap-
pendix).

A total of six logics have been presented so far: the
logics LIr, LIm, ILr, ILm, Gr, and Gm. Each of these
systems interprets the claim that the world is uniform in
a slightly different way, leading to slightly different log-
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ics. Importantly, there is no Carnapian embarrassment
of riches here: each of the systems has a clear intuition
behind it.

The systems presented here can be combined so as
to implement Popper’s suggestion that more general
hypotheses should be given precedence over less gen-
eral ones [11.11]. For instance, if two generalizations
8x.Px Qx/ and8x..Rx^Sx/ Tx/ are jointly incom-

patible with the premises, a combined system gives
precedence to the more general hypothesis and delivers
only 8x.Px  Qx/ as a consequence. There are various
ways to hard-code this idea, resulting in various new
combined adaptive logics for inductive generalization,
each slightly different from the others. These combina-
tions are not fully spelled out here. For a brief synopsis,
see [11.5, Sect. 5].

11.4 Qualitative Inductive Generalization and Confirmation

Inductive logic and confirmation theory overlap to
some extent. As early as 1943, Hempel noted that
the development of a logical theory of confirmation
might be regarded as a contribution to the field of
inductive logic [11.6, p. 123]. Following Carnap and
Popper’s influential work on inductive logic and cor-
roboration respectively, many of the existing criteria
of confirmation are quantitative in nature, measuring
the degree of confirmation of a hypothesis by the
evidence, possibly taking into account auxiliary hy-
potheses and background knowledge. Here, the logics
defined in the previous two sections are presented
as qualitative criteria of confirmation, and are related
to other qualitative models of confirmation. Quantita-
tive criteria of confirmation are not considered. For
Carnap’s views on inductive logic, see [11.12]. For
Popper’s, see [11.11]. For introductions to inductive
logic and probabilistic measures of confirmation, see,
e.g., [11.13–16].

Let I be any adaptive logic for inductive general-
ization defined in one of the previous sections. (All
remarks on I-confirmation readily generalize to the
combined systems from [11.5, Sect. 5].) Where H is the
hypothesis and � contains the evidence, I-confirmation
is defined in terms of I-consequence:

Definition 11.6 I-confirmation
� I-confirms H iff � `I H.
� I-disconfirms H iff � `I :H.
� is I-neutral with respect to H iff � 6`I H and � 6`I
:H.

This definition of I-confirmation has the virtue of sim-
plicity and formal precision. The two main qualitative
alternatives to I-confirmation are Hempel’s satisfac-
tion criterion and the hypothetico-deductive model of
confirmation. In Sect. 11.4.1, I-confirmation is com-
pared to Hempel’s adequacy conditions, which serve
as a basis for his satisfaction criterion. In Sect. 11.4.2,
I-confirmation is compared to hypothetico-deductive
confirmation. Section 11.4.3 concerns the use of the

criteria from Definition 11.6 as heuristic tools for hy-
pothesis generation and confirmation.

11.4.1 I-Confirmation
and Hempel’s Adequacy Conditions

Let an observation report consist of a set of molecu-
lar sentences (sentences containing no free variables or
quantifiers). According to Hempel, the following con-
ditions should be satisfied by any adequate criterion for
confirmation [11.17]:

(1) Entailment condition: Any sentence which is en-
tailed by an observation report is confirmed by it.

(2) Consequence condition: If an observation report
confirms every one of a class K of sentences, then it
also confirms any sentence which is a logical con-
sequence of K:
(a) Special consequence condition: If an observa-

tion report confirms a hypothesis H, then it also
confirms every consequence of H.

(b) Equivalence condition: If an observation report
confirms a hypothesis H, then it also confirms
every hypothesis which is logically equivalent
to H.

(3) Consistency condition: Every logically consistent
observation report is logically compatible with the
class of all the hypotheses which it confirms.

If logical consequence is taken to be CL-conse-
quence, as Hempel did, then I-confirmation satisfies
conditions (1)-(3) no matter which adaptive logic for
inductive generalization is used, due to I’s closure un-
der CL. So all of the resulting criteria of confirmation
meet Hempel’s adequacy conditions. (For (3) the fur-
ther property of smoothness or reassurance is required,
from which it follows that the I-consequence set of con-
sistent premise sets is consistent as well [11.7, Sect. 6].)

The definition of Hempel’s own criterion requires
some preparation (the formal presentation of Hempel’s
criterion is taken from [11.18]). An atomic formula A
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is relevant to a formula B iff there is some model M
of A such that: if M0 differs from M only in the value
assigned to B, M0 is not a model of A. The domain
of a formula A is the set of individual constants that
occur in the atomic formulas that are relevant for A.
The development of a universally quantified formula
A for another formula B is the restriction of A to the
domain of B, that is, the truth value of A is evaluated
with respect to the domain of B. For instance, the do-
main of Pa^ .Pb_Qc/ is fa; b; cg whereas the domain
of Pa^Qa is fag; and the development of 8x.Px Qx/
for Pa^:Qb is .Pa Qa/^ .Pb Qb/.

Definition 11.7 Hempel’s satisfaction criterion
An observation report E directly confirms a hypothesis
H if E entails the development of H for E.
An observation report E confirms a hypothesis H if H
is entailed by a class of sentences each of which is di-
rectly confirmed by E.
An observation report E disconfirms a hypothesis H if
it confirms the denial of H.
An observation report E is neutral with respect to a hy-
pothesis H if E neither confirms nor disconfirms H.

There are two reasons for arguing that Hempel’s satis-
faction criterion is too restrictive, and two reasons for
arguing that it is too liberal. Each of these is discussed
in turn. First, in order for the evidence to confirm a hy-
pothesis H according to Hempel’s criterion, all objects
in the development of H must be known to be instances
of H. This is a very strong requirement. I-confirmation
is different in this respect. For instance,

Pa;Qa;:Pb;:Qb;Pc `I 8x.Px  Qx/ : (11.34)

In (11.34) it is unknown whether c instantiates the hy-
pothesis 8x.Px  Qx/, since the premises do not tell
us whether Pc Qc. The development of 8x.Px Qx/
entails Pc Qc, whereas the premise set of (11.34)
does not. So the hypothesis8x.Px  Qx/ is not directly
confirmed by these premises according to the satisfac-
tion criterion, nor is it entailed by one or more sentences
which are directly confirmed by them. Therefore the
satisfaction criterion judges the premises to be neutral
with respect to the hypothesis 8x.Px Qx/, whereas
(11.34) illustrates that 8x.Px  Qx/ is I-confirmed by
these premises.

Second, given the law 8x.Px Rx/, the report
fPa;Qa;Pb;Qbg, does not confirm the hypothesis
8x.Rx Qx/ according to Hempel’s original formu-
lation of the satisfaction criterion. The reason is that
auxiliary hypotheses like 8x.Px Rx/ contain quanti-
fiers and therefore cannot be elements of observation
reports. (The original formulation of Hempel’s criterion

can, however, be adjusted so as to take into account
background knowledge [11.19, 20].) For problems re-
lated to auxiliary hypotheses, see also Sect. 11.4.2.
For now, it suffices to note that the criteria from Def-
inition 11.6 do not face this problem, as quantified
formulas are perfectly allowed to occur in premise sets.
For instance, the set fPa;Qa;Pb;Qb;8x.Px Rx/g I-
confirms the hypothesis 8x.Rx Qx/

Pa;Qa;Pb;Qb;8x.Px Rx/ `I 8x.Rx Qx/ :

(11.35)

It seems, then, that I-confirmation is not too restric-
tive a criterion for confirmation. However, there are two
senses in which I-confirmation, like Hempelian confir-
mation, can be said to be too liberal. The first has to
do with Goodman’s well-known new riddle of induc-
tion [11.21]. The family of adaptive logics for inductive
generalization makes no distinction between regulari-
ties that are projectible and regularities that are not.
Using Goodman’s famous example, let an emerald be
grue if it is green before January 1st 2020, and blue
thereafter. Then the fact that all hitherto observed emer-
alds are grue confirms the hypothesis that all emeralds
are grue. The latter regularity is not projectible into the
future, as we do not seriously believe that in 2020 we
will start observing blue emeralds. Nonetheless, it is
perfectly fine to define a predicate denoting the prop-
erty of being grue, just as it is perfectly fine to define
a predicate denoting the property of being green. Yet
the hypothesis all emeralds are green is projectible,
whereas all emeralds are grue is not.

The problem of formulating precise rules for de-
termining which regularities are projectible and which
are not is difficult and important, but it is an epis-
temological problem that cannot be solved by purely
logical means. Consequently, it falls outside the scope
of this article. See [11.21] for Goodman’s formulation
and proposed solution of the problem, and [11.22] for
a collection of essays on the projectibility of regulari-
ties.

Finally, one may argue that I-confirmation is too
liberal on the basis of Hempel’s own raven paradox.
Where Ra abbreviates that a is a raven, and Ba abbre-
viates that a is black, a non-black non-raven I-confirms
the hypothesis that all ravens are black

:Ba;:Ra `I 8x.Rx  Bx/ : (11.36)

Even the logic G does not block this inference. The
reason is that we are given a positive instance of
the generalization 8x.:Bx :Rx/, so we can derive
this generalization on the condition 9x.:Bx^:Rx/^
9x.:Bx^Rx/. As the generalization 8x.:Bx :Rx/
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is G-derivable from the premises, so is the logically
equivalent hypothesis that all ravens are black,8x.Rx
Bx/ (remember thatG, like all logics defined in the pre-
vious section, is closed under CL).

Hempel’s own reaction to the raven paradox was
to bite the bullet and accept its conclusion [11.23].
According to Hempel, a non-black non-raven indeed
confirms the raven hypothesis in case we did not know
beforehand that the bird in question is not a raven. For
example, if we observe a grey bird resembling a raven,
then finding out that it was a crow confirms the raven
hypothesis [11.18]. But as pointed out in [11.19] this
defense is insufficient. Even in cases in which it is
known that a non-black bird is not a raven, the bird
in question, although irrelevant to the raven hypothesis,
still confirms it.

If – like Hempel – one accepts its conclusion, the
raven paradox poses no further problems for I-confir-
mation. Those who disagree are referred to the Ap-
pendix, where a relatively simple adaptive alternative
to G-confirmation is defined which blocks the paradox
by means of a non-material conditional invalidating the
inference from all non-black objects are non-ravens to
all ravens are black.

11.4.2 I-Confirmation
and the Hypothetico-Deductive
Model

If a hypothesis predicts an event which is observed at
a later time, or if it subsumes a given observation re-
port as a consequence of one of its postulates, then
this counts as evidence in favor of the hypothesis. The
hypothetico-deductive model of confirmation (HD con-
firmation) is an attempt to formalize this basic intuition
according to which a piece of evidence confirms a hy-
pothesis if the latter entails the evidence.

In its standard formulation, HD confirmation also
takes into account auxiliary hypotheses. Where � is
a set of background information distinct from the evi-
dence E,

Definition 11.8 HD-confirmation
E HD-confirms H relative to � iff:

(i) fHg[� is consistent,
(ii) fHg[� entails E (fHg [� ` E),
(iii) � alone does not entail E (� 6` E).

The intuitive difference conveyed by HD confirmation
and Hempelian confirmation becomes concrete if HD
confirmation is compared with Hempel’s adequacy cri-
teria from Sect. 11.4.1. Let H abbreviate Black swans
exist, let E consist of a black swan, and let � be

the empty set. Then, according to Hempel’s entailment
condition, H is confirmed by E, since E ` H. Not so
according to HD confirmation, for condition (ii) of
Definition 11.8 is violated (H 6` E) [11.24]. The same
example illustrates how HD confirmation violates the
following condition, which holds for the satisfaction
criterion in view of Definition 11.7 [11.25]:

(4) Complementarity condition: E confirms H iff E dis-
confirms :H.

The consequence condition too is clearly invalid
for HD confirmation. For instance, Ra Ba HD con-
firms 8x.Rx  Bx/, but it does not HD confirm the
weaker hypothesis 8x.Rx .Bx_Cx//, since 8x.Rx 
.Bx_Cx// 6` Ra Ba.

An advantage of HD confirmation is that it fares bet-
ter with the raven paradox. The observation of a black
raven (Ra;Ba) is not deducible from the raven hypoth-
esis 8x.Rx Bx/, so black ravens do not in general
confirm the raven hypothesis. But birds that are known
to be ravens do confirm the raven hypothesis once it
is established that they are black. For once it is known
that an object is a raven, the observation that it is black
is entailed by this knowledge together with the hypothe-
sis (8x.Rx  Bx/;Ra ` Ba). Likewise, a non-black non-
raven does not generally confirm the raven hypothesis.
Only objects that are known to be non-black can con-
firm the hypothesis by establishing that they are not
ravens. In formulas: 8x.Rx Bx/;:Ba ` :Ra.

HD confirmation faces a number of standard objec-
tions, of which three are discussed here. The first is the
problem of irrelevant conjunctions and disjunctions. In
view of Definition 11.8 it is easily checked that when-
ever a hypothesis H confirms E relative to �, so does
H0 D H^K for any arbitrary K consistent with�. Thus
adding arbitrary conjuncts to confirmed hypotheses pre-
serves confirmation. Dually, adding arbitrary disjuncts
to the data likewise preserves confirmation. That is,
whenever H confirms E relative to �, H also confirms
E0 relative to �, where E0 D E_F for any arbitrary F.

Various solutions have been proposed for dealing
with such problems of irrelevancy, but as so often the
devil is in the details (see [11.20] for a nice overview
and further references). For present purposes, it suf-
fices to say that I-confirmation is not threatened by
problems of irrelevance. Clearly, if the evidence E I-
confirms a hypothesis H, it does not follow that it I-
confirms H ^K for some arbitrary K consistent with
�, since from fEg[� `I H it need not follow that
fEg [� `I H ^K. Nor does it follow that E_F con-
firms H relative to �, since from fEg[� `I H it need
not follow that fE_Fg [� `I H.

A second objection against HD confirmation con-
cerns the inclusion of background information in Def-
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inition 11.8. In general, this inclusion is an advantage,
since evidence often does not (dis)confirm a hypothesis
simpliciter. Rather, evidence (dis)confirms hypotheses
with respect to a set of auxiliary (background) assump-
tions or theories. The vocabulary of a theory often
extends beyond what is directly observable. Notwith-
standing Hempel’s conviction to the contrary, nowadays
philosophers largely agree that the use of purely the-
oretical terms is both intelligible and necessary in
science [11.26]. Making the confirmation relation rel-
ative to a set of auxiliaries allows for the inclusion
of bridging principles connecting observation terms
with theoretical terms, permitting purely theoretical
hypotheses to be confirmed by pure observation state-
ments [11.27]. However, making confirmation relative
to background assumptions makes HD vulnerable to
a type of objection often traced back to Duhem [11.28]
and Quine [11.29]. Suppose that a hypothesis H entails
an observation E relative to �, and that E is found to
be false. Then either (a) H is false or (b) a member
of � is false. But the evidence does not tell us which
of (a) or (b) is the case, so we always have the op-
tion to retain H and blame some auxiliary hypothesis in
the background information. More generally, one may
object that what gets (dis)confirmed by observations is
not a hypothesis taken by itself, but the conjunction of
a hypothesis and a set of background assumptions or
theories.

With Elliott Sober, we can counter such holistic ob-
jections by pointing to the different epistemic status of
hypotheses under test and auxiliary hypotheses (or hy-
potheses used in a test). Auxiliaries are independently
testable, and when used in an experiment we already
have good reasons to think of these hypotheses as true.
Moreover, they are epistemically independent of the test
outcome. So if a hypothesis is disconfirmed by the HD
criterion, we can, in the vast majority of cases, maintain
that it is the hypothesis we need to retract, and not one
of the background assumptions [11.30].

A parallel point can be made concerning I-confir-
mation. Here too, we can add to the premises a set
� of auxiliary or background assumptions. And here
too, we can use Sober’s defence against objections
from evidential holism. A nice feature of I-confirma-
tion is that in adaptive proofs the weaker epistemic
status of hypotheses inferred from an observation re-
port in conjunction with a set of auxiliaries is reflected
by their non-empty condition. Whereas auxiliaries are
introduced as premises on the empty condition, induc-
tively generated hypotheses are derived conditionally
and may be retracted at a later stage of the proof.
For a more fine-grained treatment of background infor-
mation in adaptive logics for inductive generalization,
see [11.5, Sect. 6].

The third objection against HD confirmation dates
back toHempel’s [11.17], in which he argued that a vari-
ant of HD confirmation (which he calls the prediction
criterion of confirmation) is circular. The problem is
that in HD confirmation the hypothesis to be confirmed
functions as a premise from which we derive the evi-
dence, and that it is unclear where this premise comes
from. The hypothesis is not generated, but given in ad-
vance, so HD confirmation presupposes the prior attain-
ment – by inductive reasoning – of a hypothesis. This in-
ductive move, Hempel argues, already presupposes the
idea of confirmation, making the HD account circular.

The weak step in Hempel’s argument consists in
his assumption that the inductive jump to the origi-
nal attainment of a hypothesis already presupposes the
confirmation of this hypothesis. In testing or generat-
ing a hypothesis we need not yet believe or accept it.
Typically, belief and acceptance come only after con-
firming the hypothesis. Indeed, in probabilistic notions
of confirmation the idea is often exactly this: confirming
a hypothesis amounts to increasing our degree of belief
in it. Hempel’s circularity objection, it seems, confuses
hypothesis generation and hypothesis confirmation.

Hempel’s circularity objection does not undermine
HD confirmation, but it points to the wider scope of the
adaptive account as compared to HD confirmation. In
an I-proof, the conditional rule allows us to generate
hypotheses. Hypotheses are not given in advance but
are computable by the logic itself. Moreover, a clear
distinction can be made between hypothesis generation
and hypothesis confirmation. Hypotheses generated in
an I-proof may be derivable at some stage of the
proof, but the central question is whether they can be
retained – whether they are finally derivable. I-confir-
mation, then, amounts to final derivability in an I-proof
whereas the inductive step of hypothesis generation is
represented by retractable applications of RC.

11.4.3 Interdependent Abnormalities
and Heuristic Guidance

For any of the adaptive logics for inductive general-
ization defined in this chapter, at most one positive
instance is needed to try and derive and, subsequently,
confirm a generalization for a given set of premises.
This is a feature that I-confirmation shares with the
other qualitative criteria of confirmation. As a simple
illustration, note that an observation report consist-
ing of a single observation Pa confirms the hypothesis
8xPx according to all qualitative criteria discussed in
this chapter. Proponents of quantitative approaches to
confirmation may object that this is insufficient; that
a stronger criterion is needed which requires more than
one instance for a hypothesis to be confirmed. Against
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this view, one can uphold that confirmation is mainly
falsification-driven. Rather than confirming hypotheses
by heaping up positive instances, we try and test them
by searching for negative instances. In the remainder
of this section, it is argued by means of a number of
examples that I-confirmation is sufficiently selective as
a criterion for confirming generated hypotheses. The
examples moreover allow for the illustration of an ad-
ditional feature of I-confirmation: its use as a heuristic
guide for provoking further tests in generating and con-
firming additional hypotheses.

Simple examples like the one given in the previous
paragraph may suggest that, in the absence of falsifying
instances, a single instance usually suffices to I-con-
firm a hypothesis. This is far from the truth. Consider
the simple premise set �6 D f:Pa_Qa;:Qb;Pcg. This
premise set contains instances of all of the generaliza-
tions8xPx;8x:Qx, and8x.Px  Qx/. Not a single one
of these is IL-confirmed, however, due to the derivabil-
ity of the following disjunctions of abnormalities

ŠPx_ŠQx ; (11.37)

ŠPx_Š.:Px_Qx/ ; (11.38)

Š.Px_Qx/_Š.:Px_Qx/ ; (11.39)

ŠQx_Š.:Px_Qx/ ; (11.40)

Š.:Px_Qx/_Š.:Px_:Qx/ : (11.41)

Note that �6 contains positive instances of both 8xPx
and 8x:Qx, so not even a positive instance suffices
for a generalization to be finally IL-derivable in the
absence of falsifying instances. The same is true if
we switch from IL to G. None of 8xPx;8x:Qx, or
8x.Px Qx/ is G-confirmed, due to the derivability of
the following disjunctions of abnormalities

˙Px_˙Qx ; (11.42)

˙Px_ .Px^˙Qx/ ; (11.43)

˙Qx_ .Qx^˙Px/ : (11.44)

The reason for the non-confirmation of generalizations
like 8xPx;8x:Qx, or 8x.Px  Qx/ in this example
has to do with the dependencies that exist between
abnormalities. Even if a generalization is not falsified
by the data, it is often the case that this generaliza-
tion is not compatible with a different generalization
left unfalsified by the data. As a further illustration,
consider the premise set �7 D f:Ra;:Ba;Rbg. Again,
although no falsifying instance is present, the general-
ization 8x.Rx Bx/ is not IL-derivable. The reason is
the derivability of the following minimal disjunction of
abnormalities

Š.:Rx_Bx/_Š.:Rx_:Bx/ : (11.45)

Examples like these illustrate that I-confirmation is
not too liberal a criterion of confirmation. They also
serve to illustrate a different point. Minimal Dab-for-
mulas like (11.45) evoke questions. Which of the two
abnormalities is the case? For this particular premise
set, establishing which of Bb or :Bb is the case
would settle the matter. For if Bb were the case, then
the second disjunct of (11.45) would be derivable,
and (11.45) would no longer be minimal. Consequently,
the abnormality 9x.:Rx_Bx/^9x:.:Rx_Bx/ would
no longer be part of a minimal disjunction of abnor-
malities, and the generalization 8x.Rx Bx/ would
become finally derivable. Analogously, if :Bb were the
case, then the first disjunct of (11.45) would become
derivable, and, by the same reasoning, the generaliza-
tion 8x.Rx :Bx/ would become finally derivable.
Thus

�7 [ fBbg `IL 8x.Rx Bx/ ; (11.46)

�7 [f:Bbg `IL 8x.Rx:Bx/ : (11.47)

Two more comments are in order here. First, this ex-
ample illustrates that confirming a hypothesis often
involves the disconfirmation of the contrary hypothe-
sis. We saw that if we use Hempel’s criterion a non-
black non-raven confirms the raven hypothesis. But as
Goodman pointed out “the prospects for indoor or-
nithology vanish when we notice that under these same
conditions, the contrary hypothesis that no ravens are
black is equally well confirmed” [11.21, p. 71]. Thus,
according to Goodman, confirming the raven hypoth-
esis 8x.Rx Bx/ requires disconfirming its contrary
8x.Rx :Bx/. This is exactly what happens in the ex-
ample: in order to IL-derive 8x.Rx  Bx/, a falsifying
instance for its contrary is needed, as (11.46) illustrates.
Goodman’s suggestion that the confirmation of a hy-
pothesis requires the falsification/disconfirmation of its
contrary was picked up by Israel Scheffler, who de-
veloped it further in his [11.31]. Note that falsifying
the contrary of the raven hypothesis amounts to find-
ing a positive instance of the raven hypothesis. Thus, in
demanding a positive instance before permitting gen-
eralization in a G-proof, the latter system goes further
than IL in implementing Goodman’s idea. As we saw,
however, not even G goes all the way: a generalization
may be G-derivable even in the absence of a positive
instance.

Second, if empirical (observational or experimen-
tal) means are available to answer questions like
‹fBb;:Bbg in the foregoing example, these questions
may be called tests [11.2]. Adaptive logics for in-
ductive generalization provide heuristic guidance in
the sense that interdependencies between abnormalities
evoke such tests. Importantly, further tests may lead to
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the derivability of new generalizations. In the example,
deciding the question ‹fBb;:Bbg in favor of Bb leads
to the confirmation of 8x.Rx Bx/ and to the discon-
firmation of 8x.Rx:Bx/, while deciding it in favor
of :Bb leads to the confirmation of 8x.Rx :Bx/ and
to the disconfirmation of 8x.Rx Bx/. This is an im-
portant practical advantage of I-confirmation over other
qualitative criteria: adaptive logics for inductive gen-
eralization evoke tests for increasing the number of
confirmed generalizations.

The illustrations so far may suggest that this heuris-
tic guidance provided by I-confirmation only applies
to hypotheses that are logically related or closely con-
nected, like the raven hypothesis and its contrary. But
the point is more general, as the following example il-
lustrates.

Consider the premise set

�8 D fPa;Qa;:Ra;:Pb;
:Qb;Rb;Pc;Rc;Qd;:Peg :

Despite the fact that �8 contains positive instances of
the generalizations 8x.Px  Qx/ and 8x.Rx :Qx/,
and despite the fact that these generalizations are not
falsified by �8, none of them is IL-derivable due to the
derivability of the disjunction

Š.:Px_Qx/_Š.:Rx_:Qx/ : (11.48)

By the same reasoning as in the previous illustration,
�8 evokes the question ‹fQc;:Qcg. If this question is
a test (if it can be answered by empirical means), the
answer will confirm one of the generalizations 8x.Px
Qx/ and 8x.Rx :Qx/, and will disconfirm the other
generalization [11.2].

The example generalizes. In LI and G too, the
derivability of 8x.Px  Qx/ and 8x.Rx:Qx/ is
blocked due to the CL-derivability of the LI-minimal
Dab-formula (11.49), respectively the G-minimal Dab-
formula (11.50)

:8x.Px  Qx/_:8x.Rx :Qx/ ; (11.49)

.Px^˙Qx/_ .Rx^˙Qx/ : (11.50)

Here too, deciding the question ‹fQc;:Qcg resolves the
matter. Thus, where I 2 fLI; IL;Gg

�8 6`I 8x.Px Qx/ ; (11.51)

�8 6`I 8x.Rx :Qx/ ; (11.52)

�8 [fQcg `I 8x.Px Qx/ ; (11.53)

�8 [fQcg 6`I 8x.Rx :Qx/ ; (11.54)

�8 [ f:Qcg 6`I 8x.Px Qx/ ; (11.55)

�8 [ f:Qcg `I 8x.Rx :Qx/ : (11.56)

For some concrete heuristic rules applicable to the logic
LI, see [11.3].

11.5 Conclusions

A number of adaptive logics for inductive generaliza-
tion were presented each of which, it was argued, can
be re-interpreted as a criterion of confirmation. The log-
ics in question can be classified along two dimensions.
The first dimension concerns when it is permitted to
introduce a generalization in an adaptive proof. The
logic LI permits the free introduction of generaliza-
tions. IL and G require instances of a generalization
before introducing it in a proof. Interestingly, these
stronger requirements do not result in stronger log-
ics.

The second dimension along which the logics de-
fined in this chapter can be classified concerns their

adaptive strategy. Here, no surprises arise. A logic de-
fined using the reliability strategy is in general weaker
than its counterpart logic defined using the minimal
abnormality strategy (this was shown to be the case
for all adaptive logics defined within the standard for-
mat [11.7, Theorem 11]).

When re-interpreted as criteria of confirmation, the
logics defined here withstand the comparison with their
main rivals, i. e., Hempel’s satisfaction criterion and the
hypothetico-deductive model of confirmation. In con-
clusion, the adaptive confirmation criteria defined in
Sect. 11.4 offer an interesting alternative perspective on
(qualitative) confirmation theory.
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11.A Appendix: Blocking the Raven Paradox?

If a formalism defined in terms of CL behaves overly
permissive, a good strategy to remedy this problem is
to add further criteria of validity or relevance. For in-
stance, in order to avoid problems of irrelevant conjunc-
tions and disjunctions, hypothetico-deductivists may
impose further demands on HD confirmation [11.32–
35].

A similar strategy could be adopted with respect to
I-confirmation and the raven paradox. In this appendix,
an alternative adaptive logic of induction, IC, is defined,
as is a corresponding criterion of confirmation which is
slightly less permissive than the criteria from Sect. 11.4.
IC makes use of a non-classical conditional resembling
a number of conditionals originally defined in order to
avoid the so-called paradoxes of material implication.
First, an extension of CL is introduced, including this
new conditional connective. Next, the adaptive logic IC
is defined.

The new conditional, !, is fully characterized by
the following rules and axiom schema’s

A; .A! B/

B
; .MP/

A� B

.A! C/� .B! C/
; .RCEA/

A� B

.C! A/� .C! B/
; .RCEC/

.A! .B^C//� ..A! B/^ .A! C// ; .D^/

..A_B/! C/� ..A! C/^ .B! C// ; .D_/
((RCEA), (RCEC), and (D^) fully characterize the con-
ditional of Chellas’s logic CR from [11.36]. The latter
was also used for capturing explanatory conditionals
in [11.37]. See also [11.38, Chap. 5] for some closely
related conditional logics, including an extension of
Chellas’s systems that validates (MP).)

Let CL! be the logic resulting from adding! to
the language of CL, and from adding (MP)-(D_) to the
list of rules and axioms ofCL. Note that the conditional
! is strictly stronger than 

.A! B/ .A B/ : (11.57)

(By (MP), A; .A! B/ `CL! B. By the deduction the-
orem for , A! B `CL! A B. By the deduction
theorem again, `CL! .A! B/ .A B/.)

In view of this bridging principle between both
conditionals it is easily seen that counter-instances to
a formula of the form 8x.A.x/ B.x// form counter-
instances to 8x.A.x/! B.x//, and falsify the latter for-
mula as well. For instance, if Pa^:Qa, then, by CL,
:8x.Px  Qx/, and, by (11.57), :8x.Px! Qx/.

The adaptive logic IC is fully characterized by the
lower limit logic CL!, the set of abnormalities

˝IC Ddf f9.A1 ^ : : :^An ^A0/

^:8..A1 ^ : : :^An/! A0/ j
A0;A1; : : : ;An 2Af1I n� 0g; (11.58)

and the adaptive strategy reliability (ICr) or minimal
abnormality (ICm). IC is defined within the SF. All
rules and definitions for its proof theory are as for the
other logics defined in this chapter, except that in the
definition of RU and RC, CL is replaced with CL!.

The following proof illustrates how formulas are de-
rived conditionally in IC

1 :Ra Prem
;

2 :Ba Prem
;

3 8x.:Bx!:Rx/ 1; 2IRC
f9x.:Bx^:Rx/^:8x.:Bx!:Rx/g

Given only the premises :Ra and :Ba, there is no
possible extension of this proof in which line 3 gets
marked. Hence

:Ra;:Ba `IC 8x.:Bx!:Rx/ : (11.59)

However, contraposition is invalid for the new condi-
tional!, hence we cannot derive the raven hypothesis
from the formula derived at line 3. Note also that, in
view of (11.60), we cannot use the conditional rule RC
to derive 8x.Rx! Bx/ on the condition f9x.Rx^Bx/^
:8x.Rx! Bx/g in an IC-proof, since

:Ra;:Ba 6`CL! 8x.Rx! Bx/

_ .9x.Rx^Bx/^:8x.Rx! Bx// : (11.60)

Therefore

:Ra;:Ba 6`IC 8x.Rx! Bx/ : (11.61)

Thus, if conditional statements of the form for all x, if
A.x/ then B.x/ are taken to be IC-confirmed only if the
conditional in question is an arrow (!) instead of a ma-
terial implication, then the raven paradox, in its original
formulation, is blocked.

An additional property of IC is that strengthening
the antecedent fails for!. In Sect. 11.3, for instance,
we saw that

Pa `G 8x.Qx Px/ : (11.62)
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In IC, (11.62) still holds for the material implication,
but not for the new conditional. In an IC-proof from
Pa we can still derive 8xPx on the condition f9xPx^
9x:Pxg, and since IC extends CL it still follows that
8x.Px Qx/

Pa `IC 8xPx ; (11.63)

Pa `IC 8x.Qx Px/ : (11.64)

However, since 8xPx 6`CL! 8x.Qx! Px/, and since
we do not have any further means to conditionally de-
rive the formula 8x.Qx! Px/ in an IC-proof

Pa 6`IC 8x.Qx! Px/ : (11.65)

Originally, the logics in the G-family were constructed
as logics requiring a positive instance before we are al-
lowed to apply RC. This is reflected in the definition
of the set of G-abnormalities. In order to derive a for-
mula like 8x.Px  Qx/ on its corresponding condition,
a positive instance, e.g., Pa^Qa, is needed. Examples
like (11.36) and (11.62) show, however, that such a pos-
itive instance is not always required in order toG-derive
a generalization. The logic IC, it seems, does much bet-
ter in this respect. However, it still does not fully live up
to the requirement for a positive instance before gener-
alizing, as the following IC-proof from �9 D f:Ra^
:Ba;Rb;Bcg illustrates (where A0;A1; : : : ;An 2Af1,
..A1 ^ : : :^An/! A0/ abbreviates 9.A1 ^ : : :^An ^
A0/^:8..A1 ^ : : :^An/! A0/).

1 :Ra^:Ba Prem
;

2 Rb Prem
;

3 Bc Prem
;

4 8x.:Bx!:Rx/ 1IRC
f.:Bx!:Rx/g

5 Bb 2; 4IRU
f.:Bx!:Rx/g

6 8x.Rx! Bx/ 2; 5IRC
f.Rx! Bx/; .:Bx!:Rx/g

The key step in this proof is the derivation of Bb at
line 5, which together with Rb provides us with a pos-
itive instance of the raven hypothesis. Bb is derivable
from lines 2 and 4 in view of CL and (11.57). Ex-
cept for the formulas 9xRx^9x:Rx and 9xBx^9x:Bx,
no minimal Dab-formulas are CL!-derivable from �9.
Therefore

�9 `IC 8x.Rx! Bx/ : (11.66)

As (11.61) illustrates the logic IC avoids the raven
paradox in its original formulation. A possible draw-
back of IC is that it does not fully meet the demand
for a positive instance when confirming a hypothesis
(Sect. 11.4.3). It is left open whether it is possible and
desirable to further extend IC so as to fully meet this
demand.
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12. Modeling Hypothetical Reasoning
by Formal Logics

Tjerk Gauderis

In this chapter, it is discussed to which extent hy-
pothetical reasoning can be modeled by formal
logics. It starts by exploring this idea in general
(Sects. 12.1 and 12.2), which leads to the conclu-
sion that in order to model this kind of reasoning
formally, a more fine-grained classification of rea-
soning patterns should be in order. After such
a classification is provided in Sect. 12.3, a formal
framework that has proven successful to capture
some of these patterns is described (Sects. 12.4 and
12.6) and some of the specific problems for this
procedure are discussed (Sect. 12.5). The chapter
concludes by presenting two logics for hypothet-
ical reasoning in an informal way (Sects. 12.7 and
12.8) such that the nontechnically skilled reader
can get a flavor of how formal methods can be
used to describe hypothetical reasoning.
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12.1 The Feasibility of the Project

To an outsider, the claim that hypothetical or abductive
reasoning, that is, the act of forming and suggesting hy-
potheses for certain observations or puzzling facts, can
be modeled by means of formal logics might sound as
outlandish as claiming that computers have the same
cognitive and creative abilities as humans. After all, ab-
ductive or hypothetical reasoning – by which we always
mean the reasoning toward (explanatory) hypotheses,
not starting from certain (possibly counterfactual) hy-

potheses [12.1] – is often considered to be the hallmark
of creative ingenuity, leading to our rich and wide di-
versity of ideas, innovations, and scientific theories. It
just seems impossible that this richness can be recon-
structed or created by just using formal tools, which are
by nature abstracted from the specific semantic content.
This argument, in short the creativity excludes logic ar-
gument, is the main reason why even the field itself is
sharply divided between believers and nonbelievers.



Part
C
|12.1

250 Part C The Logic of Hypothetical Reasoning, Abduction, and Models

This argument, however, is a straw man. Nobody
would argue for the claim that hypothetical reasoning
can be modeled by means of formal logics along these
lines. What is argued in this chapter and the various
sources it cites is the more modest claim that certain
aspects and forms of hypothetical reasoning can be
modeled with the aid of formal systems that are specif-
ically suited for this task.

There are three important ways in which this modest
claim differs from the straw man that is attacked by the
creativity excludes logic argument:

1. Abductive reasoning is not a monolithic concept:
it does not consist of a single method or proce-
dure, but consists of many different patterns; formal
logics are only used to capture one specific and pre-
cisely defined pattern at a time.

2. The logics that are used for this goal are not neces-
sarily classical or deductive.

3. The relation between formal logics and abductive
reasoning is not that of an agent and an activity (i. e.,
formal logics do not display themselves abductive
reasoning like humans do) but that of a model and a
target: Formal logics are used by (human) agents to
model and – to a certain extent – to simulate certain
aspects of human abductive reasoning.

The semantic content that is lacking in abductive
reasoning is provided by these agents.

In the remainder of this introduction, the types of
logics that are suitable for modeling abductive or hypo-
thetical reasoning are discussed in further detail and the
framework that is used for the logics in this chapter is
introduced in general terms.

For those who are still a bit suspicious how abduc-
tive or hypothetical reasoning patterns can be modeled
using formal logics, it needs to be stressed that it is
not meant that any of these patterns is a valid inference
in classical logic (CL) or any other (nontrivial) deduc-
tive logic. To model defeasible reasoning steps such as
hypothesis formation, one has to use nonmonotonic log-
ics: logics for which an extension of a premise set does
not always yield a consequence set that is a superset
of the original consequence set. Or, put more simply,
logics according to which new information may lead to
revoke old conclusions.

It is important to note that the purpose in using
logics for this task is not the classical purpose of the
discipline of logic. Classically, the discipline of logic
studies the correct way to infer further knowledge from
already known facts. The correct way should guarantee
the truth of the new facts, under the supposition that the
old facts are true. Accordingly, this has motivated the
search for the right (deductive) logic (whether it be clas-
sical logic or another one such as intuitionistic logic).

The purpose here, however, is to model or explicate hu-
man reasoning patterns. As these patterns are fallible,
leading to conclusions that are not necessarily true even
if the premises are assumed to be true, it should be pos-
sible to revoke previously derived results; hence, the use
of nonmonotonic logics. Also, because there are many
patterns of human reasoning, it is natural to conceive of
a plenitude of logics in order to describe them.

Let this be explained a bit more formally. A logic
can be considered as a function from the power set of
the sentences of a language to itself. So, given a lan-
guage L and the set W of its well-formed formulas

L W }.W /! }.W / : (12.1)

Hence, a logic determines for every set of sen-
tences (or premise set) � the sentences of which can
be inferred from it (CnL.� /Ddf L.� /). Therefore, as
a reasoning pattern is nothing more than the inference
of some statements given some initial statements, in
principle, a logic can be devised to model any reason-
ing pattern in science. If this pattern can be formally
described, description by a formal logic is, in princi-
ple, possible. It has to be added, though, that in reality,
scientific and human reasonings include not only sen-
tences or propositions, but also direct observations,
sketches, and various other symbolic representations.
Yet, for the purpose of modeling particular reasoning
patterns, those sources can be generally represented by
suitable propositions.

Deductive logics, such as CL, have the property of
monotonicity, that is, for all premise sets � and � 0

CnL.� /� CnL.� [� 0/ : (12.2)

Most patterns of human reasoning, however, do not
meet this criterion. For instance, if an agent infers a hy-
pothesis, s/he is well aware of the fact that it might need
to be revoked on closer consideration of the available
background knowledge or in light of new information.

Although nonmonotonic reasoning has typically re-
ceived less attention in the field of logic than monotonic
reasoning, various frameworks for defeasible reasoning
and nonmonotonic logics are available such as default
logic, adaptive logics, and belief revision (see [12.2] for
a general overview of the variation in approaches). In
this chapter, the progress that has been made on mod-
eling abduction within the adaptive logics framework is
overviewed. This is a framework created by Batens over
the past three decades (see [12.3] or [12.4] for an exten-
sive overview and thorough formal introduction). This
framework for devising nonmonotonic logics has some
advantages that suit very well the project of modeling
abductive reasoning patterns.
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First, the focus in the adaptive logic program is, in
contrast with other approaches to nonmonotonic rea-
soning, on proof theory. For these logics, a dynamic
proof style has been defined in order to mimic to a cer-
tain extent actual human reasoning patterns. More in
particular, these dynamic proofs display the two forms
of revoking previously derived results that can also be
found in human reasoning: revoking old conclusions
on closer consideration of the available evidence (in-
ternal dynamics) and revoking them in light of new
information (external dynamics). One should not be
misled, however, by this idea of dynamic proofs in
thinking that the consequence set of adaptive logics
for a certain premise set depends on the proof. Adap-
tive logics are proper proof-invariant logics that assign
for each premise set � exactly one consequence set
CnL.� /.

Second, over the years, a solid meta-theory has
been built for this framework, which guarantees that if

an adaptive logic is created according to certain stan-
dards (the so-called standard format), many important
metatheoretical properties are generically proven. This
creates an opportunity for projects such as this to focus
almost exclusively on the application of these formal
methods without having to worry too much about prov-
ing their metatheoretical characteristics.

Finally, as the framework is presented as a unified
framework for nonmonotonic logics, it has been applied
in many different contexts. Over the years, adaptive
logics have been devised for, apart from abduction,
paraconsistent reasoning, induction, argumentation, de-
ontic reasoning, etc. Most of these applications have
been studied at the Centre for Logic and Philosophy
of Science (Ghent University). At this center’s web-
site, many references can be found to papers in various
contexts. The reference works mentioned earlier, [12.3]
and [12.5], also give a good overview of the various
applications.

12.2 Advantages and Drawbacks

Explicating patterns of hypothesis formation by means
of formal logics has a clear advantage: By reducing pat-
terns to their formal and structural essence, an insight
into the pattern’s precise conditions and applications is
gained that is hard to achieve purely by studying differ-
ent cases.

Another great advantage of the formal explication
of human reasoning patterns is that it allows for the
possibility of providing artificially intelligent agents
(which, in general, lack the human capacity for context
awareness unless it is explicitly provided) with formal
patterns to simulate human reasoning. In the case of
hypothesis formation, this possibility has presently al-
ready found applications in the artificial intelligence
subfields of abduction (diagnosis), planning, and ma-
chine learning (see [12.6] for an overview).

The method of explicating patterns of hypothesis
formation by means of formal adaptive logics also has
certain drawbacks, however.

First, formal logics are expressed in terms of a for-
mal language, in which not all elements of human
reasoning processes can be represented. This leads in-
evitably to certain losses. A very obvious example is
that in general only propositions can be represented in
logics. It means that all observations, figures, or other
symbolic representations must be reduced to descrip-
tions of them. A more important example in the case
of abduction is the implication relation. The adaptive
logics framework that is used in this chapter is, cer-
tainly for ampliative logics such as those for abduction

or induction, largely built around the use of a classical
material implication (mostly to keep things sufficiently
simple). As a result of this, all relations between a hy-
pothesis and the observations that led to their formation
(their triggers) are modeled by material implications.
It is clear that this is a strong reduction of the actual
richness of such relations. Hypotheses do not have to
imply their triggers: they can also just be correlated
with them or be probabilistically likely; or the rela-
tion can be much more specific, as in the case of an
explanatory or causal relation. This issue is relevant be-
yond the field of adaptive logics. Paul [12.6, p. 36] has
claimed that most approaches to abduction use a ma-
terial implication that is implicitly interpreted as some
kind of explanatory or causal relation. See also [12.7]
for an attempt to better capture the explanatory condi-
tional.

Second, if one sets out to model actual historical
human reasoning processes by means of dynamic logi-
cal proofs (as the adaptive framework allows us to do),
one quickly finds that it is not an easy task to boil
down those actual processes to the microstructure of
their individual reasoning steps. As human agents often
combine individual steps and seldom take note of each
individual step, these types of models always contain an
aspect of simulation.

Human reasoning also does not proceed linearly
step by step as proofs do: It contains circular motions,
off-topic deviations, and irrational connections that can-
not be captured by formal logics. Therefore, models of
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such reasoning processes are always, to a great extent,
idealized.

Natural languages are also immensely more com-
plex than any formal language can aspire to be. There-
fore, models of human reasoning are unavoidably sim-
plifications. Furthermore, as formal logics state every-
thing explicitly, any modeler of human reasoning has to
simplify deliberately the actual cases, only to achieve
a certain degree of comprehensibility.

Altogether, it is clear that formal models of hu-
man reasoning processes are, in fact, only models: They
contain abstractions, simulations, simplifications, and
idealizations. And although these techniques are the key
characteristics of models, such as those used in science,
it is not always easy to evade the criticism that formal
logics can only handle toy examples.

Third, certain patterns of creative hypothesis for-
mation, that is, those that introduce the hypothetical
existence of new concepts, cannot be modeled by first-
order logics. They seem to require at least the use of
second-order logics, and this is a possibility of which,
at present, the adaptive logics framework is not capable.

Fourth, as one is here purely concerned with hy-
pothesis formation and not with hypothesis selection,
formal methods will generate sets of possible hypothe-
ses that may grow exponentially in relation to the

growth of the agent’s background knowledge. It is clear
that this also poses a limit to the application of these
methods to real-world problems.

Finally, one might question the normativity of this
project (and more generally of the adaptive logics
program). By aiming to describe actual human rea-
soning processes, this branch of logics appears to put
a descriptive ideal first, which contrasts sharply with
the strongly normative ideals in the field of logic in
general. The standard answer to this question is that
adaptive logics attempt to provide both: On the one
hand, they aim to describe actual reasoning patterns;
on the other, once these patterns are identified, they
aim to prescribe how these patters should be rationally
applied. Yet, this does not answer how the trade-off
between these two goals of description and normativ-
ity should be conceived. Is it better to have a large
set of logics that is able to describe virtually any pat-
tern actually found in human reasoning, or should one
keep this set trimmed and qualify most actual human
reasoning as failing to accord with the highest nor-
mative standards? Therefore, it remains a legitimate
criticism that the goals of description and prescrip-
tion cannot be so easily joined: how their trade-off
should be dealt with needs further theoretical underpin-
ning.

12.3 Four Patterns of Hypothetical Reasoning

The quest to characterize abduction under a single
schema was abandoned around 1980. The main reasons
were that such attempts (Hanson’s [12.8, 9] proposal
to call abduction the logic of discovery) often did not
provide much detailed guidance for actual discovery
processes, and that even these general attempts al-
ways captured only a part of the discovery process
(e.g., inference to the best explanation, which was first
emphasized by Harman [12.10], describes only the se-
lection of hypotheses, not their formation).

Around the same time, research from different fields
such as the philosophy of science based on histori-
cal cases, artificial intelligence, and cognitive science
resulted in a new consensus that there is a pleni-
tude of patterns, heuristics, and methods of discov-
ery, which are open to normative guidance; yet, this
guidance might be content-, subject-, or context depen-
dent [12.11, 12].

Various authors in the literature on abduction have
tried to provide classifications of various patterns of
abductions [12.13–15]. For an overview of several
logic-based characterizations of abductions, see also
the introductory chapter of this section. Although these

attempts differ slightly, some general patterns clearly
stand out. In the following, the author’s personal inter-
pretation of these major general patterns is given. The
main reason this deviates from the previous classifica-
tions is that an attempt is made to simplify the rather
prolific classifications, yet to provide a sufficient ba-
sis for formal modeling. This is possible because it is
not attempted to give a fully exhaustive list or a list the
elements of which are mutually exclusive. The only pur-
pose was to give a simple list as a basis that covers most
instances of abductive reasoning and can serve as the
basis of formal modeling.

Before the classification of these major patterns
found in abductive reasoning is given, it is impor-
tant to note that abductive inferences form explanatory
hypotheses for observed facts using the agent’s back-
ground beliefs (or knowledge). Therefore, these pat-
terns have the structure of the inference of a hypothesis
(HYP) from some observed facts (OBS) and a part of
the agent’s background beliefs (or knowledge) (BBK).
These latter are, apart from toy examples, typically
more than a few factual statements and often encompass
a whole explanatory framework of (shared) assump-
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tions and knowledge that provides the explanatory link
between hypothesis and observations (see [12.16] for
an elaborate discussion of the role of an explanatory
framework in logical approaches to explanation).

In line with the Fregean tradition, factual statements
are considered as statements of a concept with regard to
one or more objects (or a logical combination of such
statements). For instance, the statement there was a civil
war in France in 1789 can be analyzed as the concept
a country in civil war applied to or with regard to the
object France in 1789. A fact is a true factual state-
ment. As such, concepts can also be considered as the
class of all objects (or tuples of objects) for which the
concept with regard to that object (or tuple of objects)
is a fact. An observed fact is a factual statement de-
scribing an agent’s observation that she considers to be
true. This can be broadly conceived to include also, for
instance, a graph or a table of measurements in a pa-
per. Together, the observed facts form the trigger for
the agent.

In this semiformal description of these patterns, that
p should be considered as a hypothesis is expressed
by using a formulation of the form it might be that p;
beliefs and observed facts can be expressed simply by
stating their content. Concepts such as a country in civil
war or a bipedal hominid are denoted by uppercase let-
ters (typically F for observed, factual concepts and E
for explanatory concepts) and objects such as France in
1789 or Lucy by lowercase letters such as x or y. A fi-
nite set or list of (related) objects or concepts can then
be expressed, for example, by x1; : : : ; xn or F1; : : : ;Fn

where generally n> 1 (hence, including the possibility
of a single object or concept; the other case is indicated
by n> 2). Finally, that a concept applies to certain ob-
jects will be indicated by the phrase with regard to:

1. Abduction of a singular fact

.OBS/ F with regard to x1; : : : ; xn .n> 1/

.BBK/ E with regard to x1; : : : ; xn explains
F with regard to those objects in
a certain explanatory framework
EF:

.HYP/ It might be that E with regard to
x1; : : : ; xn

Some examples of this pattern, which has also been
called simple abduction by Thagard [12.13], factual
abduction by Schurz [12.14], and selective fact ab-
duction by Hoffmann [12.15], are as follows:� The inference that (HYP) the hominid who has

been dubbed Lucy (x1) might have been bipedal
(E) from (OBS) observing the particular struc-
ture of her pelvis and knee bones (F) and (BBK)

knowledge about how the structure of pelvis and
knee bones relates to the locomotion of animals
(EF).� The inference that (HYP) two particles (x1 and
x2) might have opposite electric charges (E),
from (OBS) observing their attraction (F) and
(BBK) knowledge of the Coulomb force (EF).

2. Abduction of a Generalization

.OBS/ F with regard to all observed
objects of class D

.BBK/ E with regard to some objects
explains F with regard to those
objects in a certain explanatory
framework EF:

.HYP/ It might be that E with regard to
all existing objects of class D

Some examples of this pattern, which has also
been called rule abduction [12.13], law abduc-
tion [12.14], and selective law abduction [12.15],
are as follows:� The inference that (HYP) all hominids of the

last three million years (D) might have been
bipedal (E), from (OBS) observing the similar
structure of the pelvis and knee bones (F) of all
observed hominid skeletons dated to be younger
than three million years (D) and (BBK) knowl-
edge about how the structure of pelvis and knee
bones relates to the locomotion of animals (EF).� The inference that (HYP) all emitted radiation
from a particular chemical element (D) might
be electrically neutral (E), from (OBS) observ-
ing in all experiments conducted so far that
radiation emitted by this element (D) contin-
ues in a straight path in an external magnetic
field perpendicular to the stream of radiation (F)
and (BBK) knowledge of the Lorentz force and
Newton’s second law (EF).

3. Existential abduction, or the abduction of the exis-
tence of unknown objects from a particular class

.OBS/ F with regard to x1; : : : ; xn .n> 1/

.BBK/ The existence of objects
y1; : : : ; ym .m> 1/ of class E
would explain F with regard to
x1; : : : ; xn in a certain explanatory
framework EF:

.HYP/ It might be that there exist objects
y1; : : : ; ym of class E

Some examples of this pattern, which was already
called existential abduction by Thagard [12.13],
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and has also been called first-order existen-
tial abduction [12.14] and selective type abduc-
tion [12.15], are as follows:� The inference that (HYP) a hominid (y1) of the

genus Australopithecus (E) might have lived in
this area, from (OBS) observing a set of vul-
canized foot imprints (x1; : : : ; xn of class F) and
(BBK) the belief that these foot imprints are of
an Australopithecus (EF).� The inference that (HYP) there might be other
charged particles (y1; : : : ; ym of class E) in the
chamber, from (OBS) observing deflections in
the path (F) of a charged particle (x1) in a cham-
ber without external electric or magnetic fields
and (BBK) the knowledge of the Coulomb and
Lorentz forces and Newton’s second law (EF).

4. Conceptual abduction or the abduction of a new
concept

.OBS/ F1; : : : ;Fm .m> 2/ with regard to
each of x1; : : : ; xn .n> 2/

.BBK/ No known concept explains why
F1; : : : ;Fm with regard to each of
x1; : : : ; xn

.HYP/ It might be that there is a similarity
between the x1; : : : ; xn; which
can be labeled with a new concept
E that explains why F1; : : : ;Fm

with regard to each of x1; : : : ; xn in
a certain explanatory framework
EF:

It was Schurz [12.14] who pointed out that this pat-
tern is rational and useful for science only if the
observation concerns several objects each individu-
ally having the same or similar properties, so that
some form of conceptual unification is obtained.
Otherwise, for each fact, it could be suggested that
there exists an ad hoc power that explains (only) this
single fact.
Some examples of this pattern, which largely coin-
cides with the various types of second-order abduc-
tion, as Schurz [12.14] suggests and several types of
creative abduction conceived by Hoffmann [12.15],
are as follows:� The inference that (HYP) there might be a new

species of hominids (E), from (OBS) observ-
ing various hominid fossils (x1; : : : ; xn) that are
similar in many ways (F1; : : : ;Fm) and (BBK)
believing that these fossils cannot be classified
in the current taxonomy of hominids (EF).� The inference that (HYP) there might ex-
ist a new type of interaction (E), from
(OBS) observing similar interactive behavior

(F1; : : : ;Fm) between certain types of particles
(x1; : : : ; xn) in similar experiments and (BBK)
believing that this behavior cannot be explained
by the already known interactions, properties of
the involved particles and properties of the ex-
perimental setup (EF).

Using the terminology of Magnani [12.18] and fol-
lowing the distinction of Schurz [12.14], the first two
patterns, the abduction of a singular fact and that of
a generalization, can be considered as instances of se-
lective abduction, as the agent selects an appropriate
hypothesis in her background knowledge, while the lat-
ter two, existential abduction and conceptual abduction,
can be called creative abduction, as the agent creates
a new hypothetical concept or object. It has to be added
that Hoffmann [12.15] would dispute this distinction, as
he sees the third pattern (existential abduction) in the
first place as the selection of an already known type
(e.g., the genus Australopithecus), and not so much as
the creation of a new token (someone of this genus of
which his/her existence is now hypothesized).

As stated before, this list is not exhaustive. Further
patterns have been identified, such as the abduction of
a new perspective [12.15], for example, suggesting that
a problem might have a geometrical solution instead of
an algebraic one; analogical abduction [12.13], for ex-
ample, explaining similar properties of water and light,
by hypothesizing that light could also be wave-like;
or theoretical model abduction [12.14], for example,
explaining some observation by suggesting suitable
initial conditions given some governing principles or
laws. Some have even considered visual abduction, the
inference from the observation itself to a statement de-
scribing this observation, as a separate pattern [12.19].
For some of these patterns (or instances of them), it is
possible to argue that they are a special case of one of
the patterns mentioned earlier. For instance, the sug-
gestion of the wave nature of light can also be seen
as an instance of conceptual abduction, in which the
(mathematical) concept wave behavior is contructed to
explain the similar properties of water and light; yet,
it is true that the analogical nature of this inference
makes it a special subpattern with interesting proper-
ties in itself. This is also how Schurz [12.14] presents
it: In his classification, analogical abduction is one of
the types of second-order existential abduction he con-
ceives of.

Perhaps more important to note is that these pat-
terns are not mutually exclusive given a particular
instance of abductive reasoning. For instance, the in-
ference that leads to the explanation of why a particular
piece of iron is rusted can be described both as singular
fact abduction (this piece of iron underwent a reaction



Modeling Hypothetical Reasoning by Formal Logics 12.4 Abductive Reasoning and Adaptive Logics 255
Part

C
|12.4

with oxygen) and as existential abduction (there were
oxygen atoms present with which this piece of iron re-
acted). But in essence it describes the same explanation
for the same explanandum.

Also, combinations occur. For instance, if a new
particle is hypothesized as an explanation for an experi-
mental anomaly (such as, for instance,Wolfgang Pauli’s
suggestion of the neutrino in the case of the anomalous
ˇ spectrum [12.20]), then this is both an instance of ex-
istential abduction – there is a not yet observed particle
that causes the observed phenomenon – and an instance
of conceptual abduction – these hypothesized particles
are of a new kind of combination, which coincides with
Hoffmann’s [12.15] pattern of creative fact abduction.
Yet in the mind of the scientist, this process of hypothe-
sis formation might have occurred in a single reasoning
step.

One should not, however, be too worried about these
issues, if it is remembered that these patterns are cat-
egories for linguistic descriptions of actual reasoning
processes. Any actual instance of hypothesis formation
can be described in several ways by means of natural
language, and some of these expressions can be for-
mally analyzed in more than one way. Therefore, one
should not focus too much on the exact classification of
particular instances of hypothesis formation. Yet, this
does not render meaningless the project of explicating
various patterns of hypothesis formation. The goal of
this project is to provide normative guidance for future
hypothesis formation. If particular problems or observa-
tions can be looked at from different perspectives and,
therefore, expressed in various ways, it is only benefi-
cial for an agent to have multiple patterns of hypothesis
formation at her disposal.

12.4 Abductive Reasoning and Adaptive Logics

Now, the various attempts to model abductive reasoning
bymeans of adaptive logics are presented, though it first
needs to be explained why the framework of adaptive
logics is fit for this job.

First, adaptive logics allow for a direct implemen-
tation of defeasible reasoning steps (in casual appli-
cations of affirming the consequent). This makes it
possible to construct logical proofs that nicely inte-
grate defeasible (in this case ampliative) and deductive
inferences. This corresponds to natural reasoning pro-
cesses.

Second, the formal apparatus of an adaptive logic
instructs exactly which formulas would falsify a (defea-
sible) reasoning step. As these formulas are assumed
to be false (so long as one cannot derive them), they
are called abnormalities in the adaptive logic literature.
So, if one or a combination of these abnormalities is
derived in a proof, it instructs in a formal way which
defeasible steps cannot be maintained. This possibility
of defeating previous reasoning steps mirrors nicely the
dynamics found in actual human reasoning.

Third, for all adaptive logics in standard format,
such as the presented logics LAr

s and MLAs
s, there are

generic proofs for most of the important metatheoretical
properties such as soundness and completeness [12.4].

So far, most research effort has been focused on
modeling singular fact abduction, which already proves
to be, even it appears to be the easiest case, a rich and

fruitful point of departure. This is not exclusive to the
adaptive logics framework: In general, very little logics
have been proposed for other forms besides singular
abduction. Some of the few exceptions are [12.13]
and [12.16]. (This last logic, which is an adaptive logic,
suffers, however, from some complications [12.7,
appendix B] and [12.21, p. 140].) For these reasons,
this overview is limited to the various attempts to
model singular fact abduction within the framework of
adaptive logics.

The history of research into singular fact abduc-
tion within the adaptive logics community dates back
to the early 2000s and can be traced through the ar-
ticles [12.22–28]. Besides presenting early logics for
singular fact abduction, this research has also shown
that there actually exist two types of singular fact ab-
duction (see also Sect. 12.5). In recent years, for each
of these two types of abductions, an adaptive logic in
a standard format (see Sect. 12.6) has been developed:
LAr

s for practical abduction [12.29] andMLAs
s for the-

oretical abduction [12.30]. These will be the two logics
that will be presented and explained in this chapter (see
Sects. 12.7 and 12.8). It further needs to be noted that
recent research has even pushed further by considering
abduction from inconsistent theories [12.31], adapta-
tions for use in AI ([12.32], improved version in [12.21,
Ch. 5]), and a first logic for propositional singular fact
abduction [12.7].
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12.5 The Problem of Multiple Explanatory Hypotheses
The early research into logics for abduction has shown
that two types of abduction logics can actually be con-
structed, depending on how the logic deals with multi-
ple explanatory hypotheses for a single observation.

To explain this problem, consider the following
example. Suppose one has to form hypotheses for
the puzzling fact Pa, while one’s background knowl-
edge contains both .8x/.Qx Px/ and .8x/.Rx Px/.
There are two ways in which one can proceed. First,
one could construct a logic in which one could derive
only the disjunction .Qa_Ra/ and not the individual
hypotheses Qa and Ra. This first way, called practi-
cal abduction (according to the definition suggested
in [12.24, pp. 224–225] and first used in [12.27]) and
modeled by the logic LAr

s ([12.29], Sect. 12.7), is suit-
able for modeling situations in which one has to act on
the basis of the conclusions before having the chance to
find out which hypothesis actually is the case. A good
example is how people react to unexpected behavior.
If someone suddenly starts to shout, people will typi-
cally react in a hesitant way, taking into account that
either they themselves are somehow at fault or that the
shouting person is just frustrated or crazy and acting in-
appropriately.

Second, someone with a theoretical perspective (for
instance, a scientist or a detective) is interested in find-
ing out which of the various hypotheses is the actual
explanation. Therefore, it is important that s/he can ab-
duce the individual hypotheses Qa and Ra in order to
examine them further one by one. Early work on these
kinds of logics has been done in [12.27, 28]. Yet, these
logics have a quite complex proof theory. This is be-
cause, on the one hand, one has to be able to derive Qa
and Ra separately, but on the other, one has to prevent

the derivation of their conjunction .Qa^Ra/, because
it seems counterintuitive to take the conjunction of two
possible hypotheses as an explanation: For instance, if
the street is wet, it would be weird to suggest that it
has rained and that the fire department also just held an
exercise. Moreover, if the two possible hypotheses are
actually incompatible, it would lead to logical explosion
in a classical logical context.

Logical explosion is the situation that just any state-
ment can be derived from a certain premise set. In CL
this occurs when a premise set contains a contradic-
tion, that is, both a particular statement and its negation
can be derived from the premise set, which makes an
ex falso quodlibet argument possible. Briefly, such an
argument goes as follows: suppose one’s premise set
contains both the statements p and :p. Then, by means
of addition, one can first derive p_ q for any random
q. (Informally, as one already knows that p is true, any
statement of the form p or : : : will also be true.) But, as
:p also holds, one can derive q from this disjunction by
means of a disjunctive syllogism (the logical rule that if
you know that one side of disjunction is false, the other
side has to be true to make the disjunction true).

The logicMLAs
s [12.30] presented in this overview

(Sect. 12.8) solves this problem by adding modalities
to the language and deriving the hypotheses ˘Qa and
˘Ra instead ofQa and Ra. By conceiving of hypotheses
as logical possibilities, the conjunction problem is au-
tomatically solved because ˘Qa^˘Ra does not imply
˘.Qa^Ra/ in any standard modal logic. This approach
also nicely coincides with the common idea that hy-
potheses are possibilities. These features make the logic
MLAs

s very suitable for the modeling of actual theoret-
ical abductive reasoning processes.

12.6 The Standard Format of Adaptive Logics

Before the logics for abduction LAr
s and MLAs

s are
presented, the reader should first be provided with the
necessary background about the adaptive logics frame-
work, and, more in particular, with the nuts and bolts
of its standard format. This will, of course, be a limited
introduction, and the reader is referred to, for example,
[12.3] or [12.4] for a thorough introduction.

Definition 12.1
An adaptive logic in the standard format is defined by
a triple:

(i) A lower limit logic (henceforth LLL): a reflexive,
transitive, monotonic, and compact logic that has
a characteristic semantics

(ii) A set of abnormalities ˝: a set of LLL-contingent
formulas (that are not theorems of LLL) character-
ized by a logical form, or a union of such sets

(iii) An adaptive strategy.

The lower limit logic LLL specifies the stable part
of the adaptive logic. Its rules are unconditionally valid



Modeling Hypothetical Reasoning by Formal Logics 12.6 The Standard Format of Adaptive Logics 257
Part

C
|12.6

in the adaptive logic, and anything that follows from
the premises by LLL will never be revoked. Apart from
that, it is also possible in an adaptive logic to derive
defeasible consequences. These are obtained by assum-
ing that the elements of the set of abnormalities are as
much as possible false. The adaptive strategy is needed
to specify as much as possible. This will become clearer
further on.

Strictly speaking, the standard format for adaptive
logics requires that a lower limit logic contains, in ad-
dition to the LLL operators, also the operators of CL.
However, these operators have merely a technical role
(in the generic meta-theory for adaptive logics) and
are not used in the applications presented here. There-
fore, given the introductory nature of this section, this
will not be explained into further detail. In the logics
presented in this chapter, the condition is implicitly as-
sumed to be satisfied.

12.6.1 Dynamic Proof Theory

As stated before, a key advantage of adaptive logics is
their dynamic proof theory which models human rea-
soning. This dynamics is possible because a line in an
adaptive proof has – along with a line number, a for-
mula and a justification – a fourth element, that is, the
condition. A condition is a finite subset of the set of ab-
normalities and specifies which abnormalities need to
be assumed to be false for the formula on that line to be
derivable.

The inference rules in an adaptive logic reduce to
three generic rules. Where � is the set of premises,� is
a finite subset of the set of abnormalities˝ andDab.�/
the (classical) disjunction of the abnormalities in�, and
where

A � : (12.3)

indicates that A occurs in the proof on the condition �,
the inference rules are given by the generic rules

PREM If A 2 � W
:::
:::

A ;
RU If A1; � � � ;An `LLL B W

A1 �1
:::
:::

An �n

B �1[ : : :[�n

RC If A1; � � � ;An `LLL B_Dab.�/
A1 �1
:::
:::

An �n

B �1 [ : : :[�n[�

The premise rule PREM states that a premise may
be introduced at any line of a proof on the empty condi-
tion. The unconditional inference rule RU states that, if
A1; : : : ;An `LLL B and A1; : : : ;An occur in the proof on
the conditions �1; : : : ; �n, one may add B on the con-
dition �1 [ � � � [�n. The strength of an adaptive logic
comes from the third rule, the conditional inference rule
RC, which works analogously to RU, but introduces
new conditions. So, it allows one to take defeasible
steps based on the assumption that the abnormalities
are false (this rule also makes clear that any adaptive
proof can be transformed into a Fitch-style proof in the
LLL by writing down for each line the disjunction of
the formula and all of the abnormalities in the condi-
tion). Several examples of how these rules are employed
will follow.

The only thing that is still needed is a criterion that
defines when a line of the proof is considered to be de-
feated. At first sight, it seems straightforward to mark
lines of which one of the elements of the condition is
unconditionally derived from the premises, this means
that it is derived on the empty condition (defeated lines
in a proof are marked instead of deleted, because, in
general, it is possible that they may later become un-
marked in an extension of the proof). But this strategy,
called the simple strategy, usually has a serious flaw. If
it is possible to derive unconditionally a disjunction of
abnormalities Dab.�/ that is minimal, that is, if there
is no�0 �� such thatDab.�0/ can be unconditionally
derived, the simple strategy would ignore this informa-
tion. This is problematic, however, because at least one
of the disjuncts of the ignored disjunction has to be true.
Therefore, one can use the simple strategy only in cases
where

� `LLL Dab.�/

only if

there is an A 2� such that � `LLL A (12.4)

withDab.�/ being any disjunction of abnormalities out
of ˝. This condition will be met for the logic MLAs

s
(Sect. 12.8); this logic will, hence, employ the simple
strategy.

The majority of logics, however, do not meet this
criterion and for those logics, more advanced strategies
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have been developed. The best known of these are re-
liability and minimal abnormality. The logic LAr

s uses
the reliability strategy. This strategy, which will be ex-
plained and illustrated in the following, orders to mark
any line of which one of the elements is uncondition-
ally derived as a disjunct from a minimal disjunction of
abnormalities.

At this point, all elements are introduced to explain
the naming of the two logics that will be presented
in this chapter: As might be expected LA and MLA
stand for logic for abduction andmodal logic for abduc-

tion and the superscripts r and s stand for the adaptive
strategies reliability and simple strategy, respectively.
The subscript s originally denoted that the logic was
formulated in the standard format for adaptive logics,
but in [12.21], it is argued that it is more useful to in-
terpret this s as that they are logics for singular fact
abduction. After all, most adaptive logics are nowa-
days formulated in the standard format anyhow, and
this allows us to contrast these logics with the logic
LAr

8
which is a logic for abduction of generaliza-

tions [12.16, 21].

12.7 LArs: A Logic for Practical Singular Fact Abduction

In this section, the reader is introduced to the logic
LAr

s [12.29] in an informal manner. This will allow the
reader to gain a better understanding of the framework
of adaptive logics and the functioning of its dynamic
proof theory. In the next section, the same approach will
be used for the logic MLAs

s. The formal definitions of
both logics will be presented in the appendix for those
who are interested.

In order to model abductive reasoning processes of
singular facts, the logic LAr

s (as will the logic MLAs
s)

contains, in addition to deductive inference steps, de-
feasible reasoning steps based on an argumentation
schema known as affirming the consequent (combined
with Universal Instantiation)

.8˛/.A.˛/ B.˛//;B.ˇ/=A.ˇ/ : (12.5)

The choice for a predicate logic is motivated by
the fact that a material implication is used to model
the relation between explanans and explanandum. As
is well known that B `CL A B, a propositional logic
would allow one to derive anything as a hypothesis. In
the predicative case, the use of the universal quantifier
can avoid this. This can be seen if we compare `CL
B.ˇ/ .A.ˇ/ B.ˇ// with 6`CL B.ˇ/ .8˛/.A.˛/
B.˛// (see [12.7] for a propositional logic for abduction
that solves this problem in another way).

Let the list of desiderata for this logic first be
overviewed. This is important because in specifying the
set of abnormalities and the strategy, one has to check
whether they allow one to model practical abductive
reasoning according to one’s expectations. Apart from
the fact that by means of this logic one should be able to
derive hypotheses according to the schema of affirming
the consequent, one has to make sure that one cannot
derive – as a side effect – random hypotheses which

are not related to the explanandum. Finally, as has been
pointed out in the introduction, it is a nice feature of
adaptive logics that they enable one to integrate defea-
sible and deductive steps.

12.7.1 Lower Limit Logic

The lower limit logic of LAr
s is a classical first-order

logic CL. This means that the deductive inferences of
this logic are the reasoning steps modeled by classical
logic. Also, as this logic is an extension of classical
logic, any classical consequence of a premise set will
also be a consequence of the premise set according to
this logic.

12.7.2 Set of Abnormalities ˝

If one takes (here and in further definitions) the
metavariables A and B to represent (well-formed) for-
mulas, ˛ a variable and ˇ a constant of the language in
which the logic is defined L, we can define the set of
abnormalities of the logics LAr

s as

˝ D f.8˛.A.˛/ B.˛//

^ .B.ˇ/^:A.ˇ/// j
No predicate occurring in B

occurs in Ag (12.6)

The first line is the logical form of the abnormality;
the second line in the definition is to prevent self-
explanatory hypotheses. To understand the functioning
of this logical form, consider the following exam-
ple proof starting from the premise set, fQa;8x.Px 
Qx/g;8x.Px Rx/. The official layout of this chapter
in two columns forces to split each line of the proof over
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two lines and write the condition of the line on a second
line, starting with an �! arrow

1 8x.Px Qx/ -;PREM
�! ;

2 Qa -;PREM
�! ;

3 Pa_:Pa -; RU
�! ;

4 Pa_ .8x.Px Qx/^ .Qa^:Pa// 1,2,3;RU
�! ;

5 Pa 4;RC
�! f8x.Px Qx/^ .Qa^:Pa/g

From this premise set, one would like to be able
to form the hypothesis Pa. One obtains this hypothe-
sis as follows. One starts by writing two premises on
the first two lines and a tautology on the third line (all
these lines are not dependent on earlier lines, indicated
by the dash). These three lines allow one then to derive
the disjunction on line 4 by means of the unconditional
inference rule RU. This disjunction has the exact form
that allows one now to derive conditionally the hypoth-
esis Pa from it by applying the rule RC.

From this hypothesis, one can reason further in
a deductive way by applying, for example, modus po-
nens (note that the result of this inference has also
a nonempty condition)

:::
:::

:::

5 Pa 4;RC
�! f8x.Px Qx/^ .Qa^:Pa/g

6 8x.Px Rx/ -; PREM
�! ;

7 Ra 5,6;RU
�! f8x.Px Qx/^ .Qa^:Pa/g

Suppose now that one comes to know that :Pa is
the case and add this premise to the premise set and
continue the proof. Strictly speaking, this is not what is
actually done. What is actually done is to start a new
proof with another premise set (the extended set). But it
is easily seen that one can start this new proof with ex-
actly the same lines as the old proof. This way, it looks
as if one has extended the old proof. Therefore, it made
sense to use the phrase adding premises and continu-
ing a proof as it also nicely mirrors how human beings
deal with incoming information: They do no start over
their reasoning but incorporate the new information at

the point where they have arrived.

:::
:::

:::

5 Pa 4;RC
�! f8x.Px Qx/^ .Qa^:Pa/g

6 8x.Px  Rx/ -; PREM
�! ;

7 Ra 5; 6IRU
�! f8x.Px Qx/^ .Qa^:Pa/g

8 :Pa -;PREM
�! ;

9 8x.Px  Qx/^ .Qa^:Pa/ 1,2,6;RU
�! ;

This new premise makes it possible to derive un-
conditionally on line 9 the condition of the hypothesis
Pa. At this point, it is clear that one should not trust
anymore the hypothesis formed on line 5, which one
indicates by marking this line with a checkmark, in-
dicating that one lost one’s confidence in this formula
once one wrote down line 9. As the formula Ra is ar-
rived at by reasoning futher upon the hypothesis Pa, it
has (at least) the same condition, and is, hence, at this
point also marked.

In summary, each time one defeasibly derives a hy-
pothesis, one has to state explicitly the condition the
(suspected) truth of which would defeat the hypothesis.
Therefore, one can assume the hypothesis to be true as
long as one can assume the condition to be false; but
as soon as one has evidence that the condition might be
true, one should withdraw the hypothesis.

12.7.3 Reliability Strategy

In the previous example, one withdrew the hypothesis
because its condition was explicitly derived. However,
have a look at the following example proof from the
premise set fQa;Ra;8x.Px Qx/;8x.:Px Rx/g

1 8x.Px  Qx/ -;PREM
�! ;

2 8x.:Px  Rx/ -;PREM
�! ;

3 Qa -;PREM
�! ;

4 Ra -;PREM
�! ;

5 Pa 1,3;RC
�! f8x.Px Qx/^ .Qa^:Pa/g

6 :Pa 2,4;RC
�! f8x.:Px Rx/^ .Ra^Pa/g
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There is clearly something fishy about this situation.
As the conditions on lines 5 and 6 are not derivable from
this premise set, logical explosion would allow one to
derive anything from this premise set, if one were to
use the simple strategy. Still, it is quite obvious that at
least one of those two conditions has to be false, as the
disjunction of these two conditions is a theorem of the
lower limit logic. Yet, as one does not know from these
premises which disjunct is true and which one is false,
the most reliable thing to do is to mark both lines

:::
:::

:::

5 Pa 1,3;RC X7

�! f8x.Px Qx/^ .Qa^:Pa/g
6 :Pa 2,4;RC X7

�! f8x.:Px Rx/^ .Ra^Pa/g
7 .8x.Px Qx/^ .Qa^:Pa// 1–4;RU

_.8x.:Px  Rx/^ .Ra^Pa//
�! ;
This marking strategy is called the reliability strat-

egy and it orders one to mark lines for which an element
of the condition has been unconditionally derived as
a disjunct of a minimal disjunction of abnormalities (or
in short, a minimalDab formula). It is important to note
that (1) the disjunction should only hold disjuncts that
have the form of an abnormality (otherwise, a defeating
disjunction could be constructed for every hypothesis)
and (2) that this disjunction should be minimal (as dis-
junctions can always be extended by applications of the
addition rule). To clarify this last point: Suppose one
was able to derive the condition of line 5 by itself, then
the disjunction on line 7 would not be minimal anymore
and there would be no reason anymore to mark line 6.

12.7.4 Practical Abduction

The logic LAr
s is a logic for practical abduction

(Sect. 12.5). This means that it solves the problem of
multiple explanatory hypotheses by only allowing the
disjunction of the various hypotheses to be derived.
Consider the following example from the premise set
fRa;8x.Px  Rx/;8x.Qx Rx/g

1 8x.Px Rx/ -;PREM
�! ;

2 8x.Qx Rx/ -;PREM
�! ;

3 Ra -;PREM
�! ;

4 Pa 1,3;RC X6

�! f8x.Px  Rx/^ .Ra^:Pa/g
5 Qa 2,3;RC X7

�! f8x.Qx  Rx/^ .Ra^:Qa/g
6 .8x.Px Rx/^ .Ra^:Pa// 1-3;RC

_.8x..Qx^:Px/ Rx/
^.Ra^:.Qa^:Pa///
�! ;

7 .8x.Qx Rx/^ .Ra^:Qa// 1-3;RC
_.8x..Px^:Qx/ Rx/
^.Ra^:.Pa^:Qa///
�! ;

8 8x..Px_Qx/ Rx/ 1,2;RU
�! ;

9 Pa_Qa 3,8;RC
�! f8x..Px_Qx/ Rx/

^.Ra^:.Pa_Qa//g
Because of the fact that the minimal Dab formulas

on lines 6 and 7 could be derived from the premises, the
individual hypotheses Pa and Qa have to be withdrawn;
yet, the condition of their disjunction on line 9 is not
part of a minimal Dab formula from these premises.
This shows that this logic only allows one to derive
a disjunction in the case of multiple explanatory hy-
potheses, and none of the individual disjuncts.

12.7.5 Avoiding Random Hypotheses

Another important feature of a logic for abduction is
that it prevents from allowing one to derive random hy-
potheses. The three most common ways to introduce
random hypotheses is:

1. By deriving an explanation for a tautology, for ex-
ample, deriving Xa from the theorems Pa_:Pa and
8x.Xx .Px_:Px//

2. By deriving contradictions as explanations, which
leads to logical explosion, for example, deriv-
ing Xa^:Xa from Pa and the theorem 8x..Xx^
:Xx/ Px/

3. By deriving hypotheses that are not the most par-
simonious ones, for example, deriving Pa^Xa
from Qa and 8x.Px  Qx/ (and its consequence
8x..Px^Xx/ Qx/).

The logic LAr
s prevent these three ways by similar

mechanisms as the mechanism to block individual hy-
potheses illustrated above. Elaborate examples for each
of these three ways can be found in [12.29].
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12.8 MLAss: A Logic for Theoretical Singular Fact Abduction

In this section, the reader will be introduced to the
logic MLAs

s [12.30] in a similar informal manner. For-
mal definitions can again be found in the appendix.
Analogously, this logic also models deductive steps
combined with applications of affirming the consequent
(combined with universal instantiation); yet, it treats
the problem of multiple explanatory hypotheses now in
a different way: It allows one to derive these hypotheses
individually; yet to avoid logical explosion caused by
mutually exclusive hypotheses, it treats them as modal
possibilities (Sect. 12.5).

The list of desiderata for this logic is very analo-
gous as the one for the logic LAr

s , except for treating
the problem of multiple explanatory hypotheses in a dif-
ferent manner. Specific for this logic (as this logic is
aimed at modeling the reasoning of, e.g., scientists or
detectives [12.33]) is the desideratum that it handles
contradictory hypotheses, predictions, and counterevi-
dence in a natural way.

12.8.1 Formal Language Schema

As this logic is a modal logic, the language of this logic
is an extension of the language of the classical logic
CL. Let the standard predicative language of the clas-
sical logic be denoted with L. C, V , F , and W will
further be used to refer, respectively, to the sets of indi-
vidual constants, individual variables, all (well-formed)
formulas of L, and the closed (well-formed) formulas
of L.

LM, the language of the logicMLAs
s, is L extended

with the modal operator �. WM, the set of closed
formulas of LM is the smallest set that satisfies the fol-
lowing conditions:

1. If A 2W , then A, �A 2WM

2. If A 2WM, then :A 2WM

3. If A;B 2WM,
then A^B, A_B, A B, A� B 2WM.

It is important to notice that there are no occur-
rences of modal operators within the scope of another
modal operator or a quantifier. The set W� , the subset
of WM, the elements of which can act as premises in
the logic, is further defined as

W� D f�A j A 2W g : (12.7)

It is easily seen that

W� �WM : (12.8)

12.8.2 Lower Limit Logic

The LLL of MLAs
s is the predicative version of D, re-

stricted to the language schemaWM. D is characterized
by a full axiomatization of predicate CL together with
two axioms, an inference rule, and a definition

K �.A B/ .�A�B/ ; (12.9)

D �A:�:A ; (12.10)

NEC if ` A, then `�A ; (12.11)

˘ADdf :�:A (12.12)

This logic is one of the weakest normal modal log-
ics that exist and is obtained by adding the D-axiom to
the axiomatization of the better known minimal normal
modal logic K.

The semantics for this logic can be expressed by
a standard possible world Kripke semantics where the
accessibility relation R between possible worlds is se-
rial, that is, for every world w in the model, there is at
least one world w 0 in the model such that Rww 0.

12.8.3 Intended Interpretation of
the Modal Operators

As indicated above, explanatory hypotheses – the re-
sults of abductive inferences – will be represented by
formulas of the form ˘A (A 2W ). Formulas of the
form �B are used to represent explananda, other ob-
servational data, and relevant background knowledge.
Otherwise, this information would not be able to revoke
derived hypotheses (for instance, :A and ˘A are not
contradictory, whereas �:A and ˘A are). The reason
D is chosen instead of K is that it is assumed that the
explananda and background information are together
consistent. This assumption is modeled by the D-axiom
(for instance, the premise set f�:Pa,�.8x/Pxg is a set
modeling an inconsistent set of background knowledge
and observations, but in the logic K, this set would not
be considered inconsistent, because anything cannot be
derived from this set by Ex Falso Quodlibet. To be able
to do this, the D-axiom is needed.)

12.8.4 Set of Abnormalities

Since the final form of the abnormalities is quite com-
plex – although the idea behind is straightforward –
two more basic proposals that are constitutive for the
final form will first be considered and it will be shown
why they are insufficient. Obviously, only closed well-
formed formulas can be an element of any set of
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abnormalities. This will not be explicitly stated each
time.

12.8.5 First Proposal ˝1

This first proposal is a modal version of the set of ab-
normalities of the logic LAr

s

˝1 D f�.8˛.A.˛/ B.˛//

^ .B.ˇ/^:A.ˇ/// j
No predicate occuring in B

occurs in Ag (12.13)

Analogous to the logic LAr
s , this means that a derived

hypothesis will be defeated if one shows explicitly that
the hypothesis cannot be the case.

12.8.6 Simple Strategy

For this logic, the simple strategy can be used, which
means, as stated before, that one has to mark lines for
which one of the elements of the condition is uncondi-
tionally derived. It can easily be seen that the condition
for the use of the simple strategy, that is,

� `LLL Dab.�/

only if

there is an A 2� such that � `LLL A ; (12.14)

is fulfilled here. Since all premises have the form �A,
the only option to derive a disjunction of abnormali-
ties would be to apply addition, that is, to derive .�A_
�B/ from �A (or �B), because it is well known that
�.A_B/°�A_�B in any standard modal logic (it is
also possible to derive a disjunction from the premises
by means of the K-axiom. For instance, �.A B/ `
:�A_�B, but the first disjunct will always be equiv-
alent to a possibility (˘:A) and can, hence, not be an
abnormality).

12.8.7 Contradictory Hypotheses

As a first example of the functioning of this logic, con-
sider the following example starting from the premise
set f�Qa;�Ra;�8x.Px  Qx/;�8x.:Px  Rx/g. As
the reader is by now probably accustomed to the func-
tioning of the abnormalities, it is also shown how this
logic is able to handle contradictory hypotheses with-
out causing explosion.

1 �8x.Px  Qx/ -;PREM
�! ;

2 �8x.:Px  Rx/ -;PREM
�! ;

3 �Qa -;PREM
�! ;

4 �Ra -;PREM
�! ;

5 ˘Pa 1,3;RC
�! f�.8x.Px Qx/^ .Qa^:Pa//g

6 ˘:Pa 2,4;RC
�! f�.8x.:Px Rx/
^.Ra^::Pa//g

7 ˘Pa^˘:Pa 5,6;RU
�! f�.8x.Px Qx/^ .Qa^:Pa//,
�.8x.:Px Rx/^ .Ra^::Pa//g

˘Pa and ˘:Pa are derivable hypotheses because both
the conditions on lines 5–7 are not unconditionally
derivable from the premise set. It is also interesting
to note that, because of the properties of the lower
limit D, it is not possible to derive from these premises
that ˘.Pa^:Pa/. The conjunction of two hypotheses
is never considered as a hypothesis itself, unless there
is further background information that links these two
hypotheses in some way.

12.8.8 Predictions and Evidence

To show that this logic handles predictions and (coun-
ter) evidence for these predictions in a natural way, let
the premise set be extended with the additional impli-
cation �8x.Px Sx/

8 �8x.Px Sx/ -;PREM
�! ;

9 ˘Sa 5,8;RU
�! f�.8x.Px Qx/^ .Qa^:Pa//g

With this extra implication, the prediction ˘Sa can
be derived. As long as one has no further information
about this prediction (for instance, by observation), it
remains a hypothesis derived on the same condition as
˘Pa. If one would test this prediction, one would have
two possibilities. On the one hand, if the prediction
turns out to be false, the premise�:Sa could be added
to the premise set

:::
:::

:::

5 ˘Pa 1,3;RC X12

�! f�.8x.Px Qx/
^.Qa^:Pa//g

:::
:::

::: g
9 ˘Sa 5,8;RU X12

�! f�.8x.Px Qx/
^.Qa^:Pa//g
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10 �:Sa PREM
�! ;

11 �:Pa 8,10;RU
�! ;

12 �.8x.Px Qx/
^.Qa^:Pa// 1,3,11;RU
�! ;

In this case, one could subsequently derive �:Pa,
which would falsify the hypothesis ˘Pa. On the other
hand, if the prediction Sa turned out to be true, the
premise�Sa could have been added, but this extension
of the premise set would not allow us to derive �Pa.
Since true predictions only corroborate the hypothesis
but do not prove it, while false predictions directly fal-
sify the hypothesis, one can say that this logic handles
predictions in a Popperian way, although in using this
vocabulary, the reader has to be reminded thatMLAs

s is
a logic for modeling abduction and handling explana-
tory hypotheses, not a formal methodology of science.
This logic has nothing to say about the confirmation of
theories for which Popper actually employed the con-
cepts of corroboration and falsification [12.34].

12.8.9 Contradictions

One of the three ways a logic of abduction could gen-
erate random hypotheses as a side effect is by allowing
for the abduction of contradictions. How this is possi-
ble and how the logic prevents this are illustrated in the
following proof from the premise set f�Qag

1 �Qa -;PREM
�! ;

2 �8x..Xx^:Xx/ Qx/ -;RU
�! ;

3 ˘.Xa^:Xa/ 1,2;RC X4

�! f�.8x..Xx^:Xx/ Qx/
^.Qa^:.Xa^:Xa///g

4 �.8x..Xx^:Xx/ Qx/ 1;RU
^.Qa^ .:Xa_Xa///
�! ;

12.8.10 Tautologies

Still, there are other ways to derive random hypotheses
that are not prevented by the first proposal for the set
of abnormalities ˝1. For instance, ˝1 does not prevent
that random hypotheses can be derived from a tau-
tology, as illustrated by the following example. As is
impossible in the following proof from the premise set
; to unconditionally derive the abnormality in the con-
dition of line 3 from the premises, the formula of line

3, the random hypothesis˘Xa, remains derived in every
possible extension of the proof.

1 �.Qa_:Qa/ -;RU
�! ;

2 �8x.Xx  .Qx_:Qx// -;RU
�! ;

3 ˘Xa 1,2;RC
�! f�.8x.Xx .Qx_:Qx//
^..Qa_:Qa/^:Xa//g

Therefore, let the set of abnormalities be adjusted to ob-
tain the second proposal˝2.

12.8.11 Second Proposal ˝2

No hypothesis can be abduced from a tautology if the
abnormalities have the following form

˝2 D f�.8˛.A.˛/ B.˛//

^ .B.ˇ/^:A.ˇ///
_�8˛B.˛/ j

No predicate occurring in B

occurs in Ag (12.15)

It is clear that one can keep using the simple strat-
egy with this new set of abnormalities. It is also easily
seen that all of the advantages and examples described
above still hold. Each time one can derive an abnormal-
ity of˝1, one can derive the corresponding abnormality
of ˝2 by a simple application of the addition rule. Fi-
nally, the problem raised by tautologies, as illustrated
in the previous example, is solved in an elegant way,
because the form of abnormalities makes sure that the
abnormality will always be a theorem in case the ex-
planandum is a theorem. So, nothing can be abduced
from tautologies.

12.8.12 Most Parsimonious Explanantia

Still, there is third way to derive random hypotheses that
cannot be prevented by ˝2. Consider, for instance, the
following proof from the premise set f�Ra;�8x.Px
Rx/g

1 �Ra -;PREM
�! ;

2 �8x.Px  Rx/ -;PREM
�! ;

3 �8x..Px^Xx/ Rx/ 2;RU
�! ;

4 ˘.Pa^Xa/ 1,3;RC
�! f�.8x..Px^Xx/ Rx/
^.Ra^:.Pa^Xa///_�8xRxg
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5 ˘Xa 4;RU
�! f�.8x..Px^Xx/ Rx/
^.Ra^:.Pa^Xa///_�8xRxg

The reason why the random hypothesis ˘Xa can be
derived is the absence of a mechanism to ensure that
the abduced hypothesis is the most parsimonious one
and not the result of strengthening the antecedent of an
implication. Before defining the final and actual set of
abnormalities that also prevent this way of generating
random hypotheses, a new notation has to be introduced
to keep things as perspicuous as possible.

12.8.13 Notation

Suppose APCN.˛/ is the prenex conjunctive normal
form of A.˛/. This is an equivalent form of the formula
A.˛/ where all quantifiers are first moved to the front of
the expression and where, consequently, the remaining
(quantifier-free) expression is written in a conjunctive
normal form, that is, as a conjunction of disjunctions of
literals. Hence, apart from the quantifiers which are all
at the front, it is entirely made up of a big conjunction
of subformulae.

APCN.˛/D .Q1�1/ � � � .Qm�m/

.A1.˛/^ � � � ^An.˛//

and ` APCN.˛/� A.˛/ (12.16)

with m> 0, n > 1, Qi 2 f8; 9g for i6 m, �i 2V for i6
m, ˛ 2V and Ai.˛/ disjunctions of literals in F for i6
n.

Then, the new notation A�1
i .˛/ (16 i 6 n) can be

introduced so that there is a way to take out one of the
conjuncts of a formula in the PCN form. In cases where
the conjunction consists of only one conjunct (and, ob-
viously, no more parsimonious explanation is possible),
the substitution with a random tautology will make sure
that the condition for parsimony, added in the next set
of abnormalities, is satisfied trivially

if n> 1 W
A�1
i .˛/Ddf .Q1�1/ � � � .Qm�m/.A1.˛/^ � � �

^Ai�1.˛/^AiC1.˛/^ � � � ^An.˛//

with Aj.16 j6 n/ the j� th conjunct

of APCN.˛/ (12.17)

if nD 1 W
A�1
1 .˛/Ddf >
with > any tautology of CL: (12.18)

12.8.14 Final Proposal ˝

With this notation, the logical form of the set of abnor-
malities ˝ of the logicMLAs

s can be written as

˝ D f�.8˛.A.˛/ B.˛//^ .B.ˇ/^:A.ˇ///

_�8˛B.˛/_
n_

iD1

�8˛.A�1
i .˛/ B.˛// j

No predicate occuring in B occurs in Ag
(12.19)

This form might look complex, but its function-
ing is quite straightforward. What is constructed is
the disjunction of the three reasons why one should
refrain from considering A.ˇ/ as a good explanatory
hypothesis for the phenomenon B.ˇ/, even if one has
.8˛/.A.˛/ B.˛//. The disjunction will make sure
that the hypothesis A.ˇ/ is rejected as soon as one of
the following is the case:

1. When :A.ˇ/ is derived
2. When B.ˇ/ is a tautology (and obviously, does not

need an explanatory hypothesis)
3. When A.ˇ/ has a redundant part and is, therefore,

not an adequate explanatory hypothesis.

For the same reasons, as stated in the description of
˝2, one can keep using the simple strategy and all of
the advantages and examples described above will still
hold.

Let one has a look at how this final set of abnor-
malities solve the previous problem. As the condition
is fully written out, one can easily see that the third
disjunct �8x.Px  Rx/ is actually a premise, and that,
hence, the abnormality on line 4 unconditionally deriv-
able is

1 �Ra -;PREM
�! ;

2 �8x.Px  Rx/ -;PREM
�! ;

3 �8x..Px^Qx/ Rx/ 2;RU
�! ;

4 ˘.Pa^Qa/ 1,3;RC X5

�! f�.8x..Px^Qx/ Rx/
^.Ra^:.Pa^Qa///_�8xRx
_�8x.Px  Rx/_�8x.Qx Rx/g

5 �.8x..Px^Qx/ Rx/^ 2; RU
.Ra^:.Pa^Qa///_�8xRx
_�8x.Px  Rx/_�8x.Qx Rx/
�! ;

This concludes the informal presentation of this logic,
which, in its final form, meets all desiderata put up
front.
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12.9 Conclusions
There is quite some ground covered in this chapter, the
main purpose of which was to show in a direct yet nu-
anced fashion the feasibility and the limits of modeling
hypothetical reasoning by means of formal logics. It
started with an argument for this claim in a general way,
showing which assumptions one has to assume or re-
ject to take this view. As far as there is argued for the
feasibility of this project, the attention was also drawn
to certain limits, pitfalls, and disadvantages of it. This
discussion was then expanded by identifying four main
abduction patterns, which showed that no pattern of hy-
pothetical reasoning can be easily modeled.

In the second part of this chapter, gears were shifted
and a glimpse was shown of what is already possible
today with current logical techniques, by explaining
in detail two logics originating in the adaptive logics
framework: LAr

s for practical fact abduction andMLAs
s

for theoretical singular fact abduction. The purpose of
including the full details of these logics is threefold:
First, it shows the reader how certain steps, which are

admittedly modest, can be taken in the project of for-
mally modeling hypothetical reasoning. At the same
time, the reader is introduced to the unificational frame-
work of adaptive logics that shows promise to take some
further steps along the road. Finally, it also shows that
the use of formal models draws the attention to vari-
ous issues about these reasoning patterns which were
previously left unattended, for example, the difference
between practical and theoretical abduction or the im-
portance of avoiding random hypotheses by restricting
the use of tautologies and contradictions.

However, if one looks at the prospect of model-
ing abductive reasoning by means of formal (adaptive)
logics, one has to conclude that so far only the tip of
the iceberg has been scratched. At present, apart from
a single exception, only logics have been devised for
singular fact abduction, which is, in fact, the most easy
of the various patterns of abduction. Yet, the complica-
tions that already arise on this level warn dreamers that
the road ahead will be steep and arduous.

12.A Appendix: Formal Presentations of the Logics LAr
s and MLAs

s

In this appendix, the logics LAr
s andMLAs

s will, for the
sake of completeness be defined in a formal and pre-
cise way. This section is limited to what is needed to
present these specific logics. For a more general formal
presentation of adaptive logics in the standard format,
see [12.4].

Like any adaptive logic in the standard format, the
logics LAr

s and MLAs
s are characterized by the triple

of a lower limit logic, a set of abnormalities, and an
adaptive strategy.

For LAr
s , the lower limit logic is CL, the strategy is

the reliability strategy and the set of abnormalities˝LAr
s

is defined by

˝LAr
s
D f.8˛.A.˛/ B.˛//

^ .B.ˇ/^:A.ˇ/// j
No predicate occuring in B

occurs in Ag (12.20)

ForMLAss , the lower limit logic isD, the strategy is
the simple strategy and the set of abnormalities ˝MLAs

s

is, relying on the previously introduced abbreviation,
defined by

˝MLAs
s
D f�.8˛.A.˛/ B.˛//

^ .B.ˇ/^:A.ˇ///
_�8˛B.˛/

_
n_

iD1

�8˛.A�1
i .˛/ B.˛// j

No predicate occurring in B

occurs in Ag (12.21)

12.A.1 Proof Theory

The proof theory of these logics is characterized by the
three generic inference rules introduced in Sect. 12.2
and the following definitions.

Within adaptive logics, proofs are considered to be
chains of subsequent stages. A stage of a proof is a se-
quence of lines obtained by application of the three
generic rules. As such, every proof starts off with the
first stage which is an empty sequence. Each time a line
is added to the proof by applying one of the inference
rules, the proof comes to its next stage, which is the
sequence of lines written so far extended with the new
line.
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Definition 12.2 (Minimal Dab formula at stage s)
A Dab formula Dab.�/ (Dab.�/ is the (classical) dis-
junction of the abnormalities in a finite subset � of the
set of abnormalities ˝) is a minimal Dab formula at
stage s if and only if Dab.�/ is derived on the empty
condition at stage s, and there is no �0 �� for which
Dab.�0/ is derived on the empty condition at stage s.

Definition 12.3 (Set of unreliable formulas Us.� / at
stage s)
The set of unreliable formulas Us.� / at stage s is the
union of all � for which Dab.�/ is a minimal Dab for-
mula at stage s.

Definition 12.4 (Marking for the reliability strategy)
Line i with condition � is marked for the reliability
strategy at stage s of a proof if and only if�\Us.� / 6D
;.

Definition 12.5 (Marking for the simple strategy)
Line i with condition � is marked for the simple strat-
egy at stage s of a proof, if stage s contains a line of
which A 2� is the formula and ; the condition.

Definition 12.6 (Derivation of a formula at stage s)
A formula A is derived from � at stage s of a proof if
and only if A is the formula of a line that is unmarked
at stage s.

Definition 12.7 (Final derivation of a formula at
stage s)
A formula A is finally derived from � at stage s of
a proof if and only if A is derived at line i, line i is
not marked at stage s and every extension of the proof
in which i is marked may be further extended in such
a way that line i is unmarked.

Using the simple strategy, it is not possible that
a marked line becomes unmarked at a later stage of
a proof. Therefore, the final criterion reduces for this
strategy to the requirement that the line remains un-
marked in every extension of the proof.

Definition 12.8 (Final derivability for LArs)
For all � �W� : � `LAr

s
A.A 2 CnLAr

s
.� // if and only

if A is finally derived in an LAr
s-proof from � .

Definition 12.9 (Final derivability for MLAss)
For all � �W� : � `MLAs

s
A (A 2 CnMLAs

s
.� /) if and

only if A is finally derived in a MLAs
s-proof from � .

12.A.2 Semantics

The semantics of an adaptive logic is obtained by a se-
lection on the models of the lower limit logic. For
a more elaborate discussion of the following definitions,
the reader is referred to the original articles and the
aforementioned theoretical overviews of adaptive log-
ics.

Definition 12.10
A CL-model M of the premise set � is reliable
if and only if fA 2˝ jM � Ag ��1 [�2[ : : : with
fDab.�1/;Dab.�2/; : : :g the set of minimal Dab-
consequences of � .

Definition 12.11
A D-modelM of the premise set � is simply all right if
and only if fA 2˝ jM � Ag D fA 2˝ j � `D Ag.

Definition 12.12 (Semantic consequence of LArs)
For all � �W� : � �LAr

s
A if and only if A is verified

by all reliable models of � .

Definition 12.13 (Semantic consequence of MLAss)
For all � �W� : � �MLAs

s
A if and only if A is verified

by all simply all right models of � .

The fact that these two logics are in a standard for-
mat warrants that the following theorems hold.

Theorem 12.1 Soundness and completeness of LArs)
� `LAr

s
A if and only if � �LAr

s
A.

Theorem 12.2 (Soundness and completeness of
MLAss)
� `MLAs

s
A if and only if � �MLAs

s
A.
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13. Abductive Reasoning in Dynamic Epistemic Logic

Angel Nepomuceno-Fernández, Fernando Soler-Toscano, Fernando R. Velázquez-Quesada

This chapter proposes a study of abductive rea-
soning addressing it as an epistemic process that
involves both an agent’s information and the ac-
tions that modify this information. More precisely,
this proposal presents and discusses definitions of
an abductive problem and an abductive solution
in terms of an agent’s information (her knowledge
and beliefs) and the involved epistemic actions
(observation and belief revision). The discussion is
then formalized with tools from dynamic epistemic
logic; under such framework, the properties of the
given definitions are studied, an epistemic ac-
tion representing the application of an abductive
step is introduced, and an illustrative example is
provided. A number of the most interesting prop-
erties of abductive reasoning (those highlighted by
Peirce) are shown to be better modeled within this
approach.
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Within logic, abductive reasoning has been studied
mainly from a purely syntactic perspective. Definitions
of an abductive problem and its solution(s) are given in
terms of a theory and a formula, and therefore most of
the formal logical work on the subject has focused on:

1. Discussing what a theory and a formula should sat-
isfy in order to constitute an abductive problem, and
what a formula should satisfy in order to be an ab-
ductive solution [13.1]; see also Chap. 10

2. Proposing algorithms to find abductive solu-
tions [13.2–6]

3. Analyzing the structural properties of abductive
consequence relations [13.7–9].

In all these studies, which follow the so-called
Aliseda–Kakas/Kowalski–Magnani/Meheus (AKM)-
schema of abduction Chap. 10, explanationism and
consequentialism are considered, but the epistemic
character of abductive reasoning seems to have been
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pushed into the background. Such character is consid-
ered crucial in this chapter, as it will be discussed.

This chapter’s main proposal is an epistemic and dy-
namic approach to abductive reasoning. The proposal is
close to the ideas of [13.10–13] in that it stresses the
key role that agents play within the abductive reason-
ing scenario; after all, at the heart, abduction deals with
agents and their (individual or collective) information.
In this sense, this collaboration is closer to the Gabbay–
Woods (GW)-schema [13.14, 15], see also Chap. 14,
which is based on the concept of ignorance problem
that arises when a cognitive agent has a cognitive target
that cannot be attained from what she currently knows,
and thus highlights the distinctive epistemic feature of
abduction that is key to this chapter’s considerations.
Even so, this presentation goes one step further, as it
fully adopts a dynamic perspective by making explicit
the actions involved in the abductive process; after all,
abduction studies the way agents react epistemically (as
individuals or groupwise) to new observations.

More precisely, this proposal argues (Sect. 13.2)
that abductive reasoning can be better understood as
a process that involves an agent’s information. To this
end, it presents definitions of an abductive problem and
an abductive solution in terms of an agent’s knowledge
and her beliefs as well as a subjective criteria for select-
ing the agent’s best explanation, and outlines a policy
through which the chosen abductive solution can be
integrated into the agent’s information. Then, the dis-
cussed ideas and definitions are formalized using tools
from dynamic epistemic logic (DEL). This choice is not
accidental: classical epistemic logic (EL [13.16, 17])
with its possible worlds semantic model is a powerful
framework that allows to represent an agent’s knowl-
edge and beliefs not only about propositional facts but
also about her own information. Its dynamic extension,
DEL [13.18, 19], allows the representation of diverse
epistemic actions (as diverse forms of announcements
and different policies for belief revision) that make such

information change. Section 13.3 introduces the needed
tools, and then the ideas and definitions discussed in
Sect. 13.2 are formalized in Sects. 13.4, 13.5, 13.6,
and 13.7. The chapter closes with a brief exploration
(Sect. 13.8) of the epistemic and dynamic aspects of
abductive reasoning that are brought to light when non-
ideal agents are considered.

Abductive reasoning The concept of abductive rea-
soning has been discussed in various fields, and this has
led to different ideas of what abduction should consist
of (see [13.20], among others). For example, while cer-
tain authors claim that there is an abductive problem
only when neither the observed � nor its negation fol-
lows from a theory [13.2], others say that there is also
an abductive problem when, though � does not follow,
its negation does [13.1], a situation that has been typ-
ically called a belief revision problem. There are also
several opinions of what an abductive solution is. Most
of the work on strategies for finding abductive solutions
focuses on formulas that are already part of the system
(the aforementioned [13.2–6]), while some others take
a broader view, allowing not only changes in the under-
lying logical consequence relation [13.21] but also the
creation and modification of concepts [13.22].

The present proposal focuses on a simple account:
Abductive reasoning will be understood as a reason-
ing process that goes from a single unjustified fact
to its abductive explanations, where an explanation is
a formula of the system that satisfies certain properties.
Still, similar epistemic and dynamic approaches can
be made to other interpretations of abduction, as those
that involve the creation of new concepts or changes in
awareness [13.23, 24].

Abductive reasoning in dynamic epistemic logic
This contribution is a revised version of a proposal
whose different parts have been presented in diverse
venues. While Sects. 13.2, 13.4, and 13.6 are based
on [13.25], Sects. 13.5 and 13.7 are based on [13.26]
and Sect. 13.8 is based on [13.27].

13.1 Classical Abduction

After Peirce’s formulation of abductive reasoning
(see [13.28] and Chap. 10), he immediately adds [13.29,
p. 231] that:

“[The abductive solution] cannot be abductively in-
ferred, or if you prefer the expression, cannot be
abductively conjectured, until its entire content is
already present in the premises, If [the abductive so-
lution] were true, [the abductive problem] would be
a matter of course.”

According to these ideas, abduction is a process that
is triggered when a surprising fact is observed by an
epistemic agent. Although the process returns an ex-
plicative hypothesis, the genuine result of an abductive
inference is the plausibility of such hypothesis. The
truth of the obtained hypothesis is thereby conjectured
as plausible, which makes abduction an inferential pro-
cess of a nonmonotonic character whose conclusion is
rather a provisional proposal that could be revised in the
light of new information.



Abductive Reasoning in Dynamic Epistemic Logic 13.1 Classical Abduction 271
Part

C
|13.1

When formalized within logical frameworks, the
key concepts in abductive reasoning have traditionally
taken the following form (Chap. 10). First, it is said that
an abductive problem arises when there is a formula that
does not follow from the current theory.

Definition 13.1 Abductive problem
Let ˚ and � be a theory and a formula, respectively, in
some language L. Let ` be a consequence relation on
L:

� The pair .˚; �/ constitutes a (novel) abductive
problem when neither � nor :� are consequences
of ˚ , that is, when

˚ 6` � and ˚ 6` :� :

� The pair .˚; �/ constitutes an anomalous abductive
problemwhen, though � is not a consequence of ˚ ,
:� is, that is, when

˚ 6` � and ˚ ` :� :

It is typically assumed that the theory ˚ is a set of
formulas closed under logical consequence, and that `
is a truth-preserving consequence relation.

Consider a novel abductive problem. The observa-
tion of a � about which the theory ˚ does not have
any opinion shows that ˚ is incomplete. Further in-
formation that completes ˚ making � a consequence
of it solves the problem, as now the theory is strong
enough to explain �. Consider now an anomalous ab-
ductive problem. The observation of a �whose negation
is entailed by the theory shows that the theory contains
a mistake. Now two steps are needed. First, perform
a theory revision that stops :� from being a conse-
quence of ˚ ; this turns the anomalous problem into
a novel one, and now the search for further informa-
tion that completes the theory, making � a consequence
of it, can be performed. Here are the formal definitions.

Definition 13.2 Abductive solution

� Given a novel abductive problem .˚; �/, the for-
mula � is said to be an abductive solution when

˚ [f�g ` � :

� Given an anomalous abductive problem .˚; �/, the
formula � is an abductive solution when it is pos-
sible to perform a theory revision to get a novel
problem .˚ 0; �/ for which � is a solution.

This definition of an abductive solution is often con-
sidered as too weak: � can take many trivial forms, as
anything that contradicts ˚ (then everything, includ-
ing �, follows from ˚ [f�g) and even � itself (clearly,
˚ [f�g ` �). Further conditions can be imposed in or-
der to define more satisfactory solutions; here are some
of them [13.1] (Chap. 10).

Definition 13.3 Classification of abductive solutions
Let .˚; �/ be an abductive problem. An abductive solu-
tion � is

consistent iff ˚; � 6` ?
explanatory iff � 6` �
minimal iff for every other solution �;

� ` � implies � ` �

The consistency requirement discards solutions that
are inconsistent with the theory, something a reason-
able explanation should not do. In a similar way, the
explanatory requirement discards those explanations
that would justify the problem by themselves, since
it is preferred that the explanation only complements
the current theory. Finally, the minimality requirement
works as Occam’s razor, looking for the simplest expla-
nation: A solution is minimal when it is in fact logically
equivalent to any other solution it implies. For fur-
ther details on these definitions, the reader is referred
to Chap. 10.
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13.2 A Dynamic Epistemic Perspective

The present contribution proposes an approach to ab-
ductive reasoning from an epistemic and dynamic per-
spective. Instead of understanding abductive reasoning
as a process that modifies a theory whenever there is
a formula that is not entailed by the theory under some
particular consequence relation, as the traditional def-
inition of an abductive problem does, the proposed
approach understands abductive reasoning as a process
that changes an agent’s information whenever, due to
some epistemic action, the agent has come to know or
believe a fact that she could not have predicted other-
wise.

Such an epistemic and dynamic approach is natu-
ral. First, abduction, as other forms of nonmonotonic
reasoning (e.g., belief revision, default reasoning), is
classified as form of a common-sense reasoning rather
than a mathematical one, and most of its classic ex-
amples involve real agents and their information (e.g.,
Mary observes that the light does not go on; Karen ob-
serves that the lawn is wet; Holmes observes that Mr.
Wilson’s right cuff is very shiny). Thus, even though
abductive reasoning has been linked to scientific the-
ories (as interpreted in philosophy of science), in its
most basic forms it deals with an agent’s (or a set
of agents’) information. Second, abductive reasoning
implies a change in the agent’s information (Mary
assumes that the electricity supply has failed; Karen as-
sumes it has rained; Holmes assumes Mr. Wilson has
done a lot of writing lately), and thus it is essential
to distinguish the different stages during the abductive
process: the stage before the observation, the stage af-
ter the observation has raised the abductive problem
(and thus the one when the agent starts looking for an
explanation), and the stage in which the explanation
that has been chosen is incorporated into the agent’s
information. This describes, of course, a dynamic pro-
cess.

There is a final issue that is crucial for an epistemic
approach to abductive reasoning. From this contribu-
tion’s perspective, abductive reasoning involves not one
epistemic attitude (as is typically assumed in most
approaches) but rather (at least) two: that of those
propositions about which the agent has full certainty;
and that of those propositions that she considers very
likely but she still cannot be certain about. The reason
is that an agent typically tries to explain facts she has
come to know due to some observation, but the chosen
solution, being a hypothesis that might be dropped in
the light of further observations, should not attain the
full certainty status. The use of different epistemic no-
tions also gives more flexibility to deal with a wider
variety of abductive problems and abductive solutions,

making the analysis closer, from the authors’ perspec-
tive, to Peirce’s original formulation.

All in all, the abductive process can be studied by
asking four questions:

1. What is an abductive problem?
2. What is an abductive solution?
3. How is the best solution(s) selected?
4. How does the agent assimilate the chosen solu-

tion(s)?

In the following, answers to these questions are dis-
cussed.

13.2.1 What Is an Abductive Problem?

There are, from an epistemic and dynamic perspective,
two important concepts in the definition of an abductive
problem. The first is what a formula � should satisfy
in order to become an abductive problem. The second
is the action that triggers the abductive problem, that
is, the action that turns a formula � into an abductive
problem.

For the former concept, a formula is typically said
to be an abductive problem when it is surprising. There
are different ways to define a surprising observation
of � (some of them in a DEL setting [13.30]). Most
of the approaches that define this notion in terms of
what the agent knows (believes) understand a surprise
as something that does not follow from such knowledge
(beliefs). In other words, it is said that a given � is sur-
prising whenever the agent does not know (believe) it,
or, more radically, whenever the agent knows (believes)
:�.

Now, note how in the context of abductive reason-
ing it is not reasonable to define a surprising observation
in terms of what the agent knows (believes) after such
epistemic action. The reason is that, after observing �,
an agent would typically come to know (believe) it.
Thus, if the mentioned definitions are followed focus-
ing on the agent’s information after the observation,
no � would be surprising and there would be no ab-
ductive problems at all! It is more reasonable to define
a surprising observation not in terms of what the agent
knows (believes) as a result of the observation, but
rather in terms of what she knew (believed) before it.
More precisely, it will be said that a known (believed)
� is surprising with respect to an agent whenever she
could not have come to know (believe) it.

Of course, the meaning of the sentence the agent
could have come to know (believe) � still needs to be
clarified. This is a crucial notion, as it will indicate not
only when a formula � is an abductive problem (the



Abductive Reasoning in Dynamic Epistemic Logic 13.2 A Dynamic Epistemic Perspective 273
Part

C
|13.2

agent could not have come to know (believe) �), but
also what a formula � needs in order to be an abductive
solution (with the help of �, the agent could have come
to know (believe) �). Here the ability to come to know
(believe) a given formula will be understood as the abil-
ity to infer it, and the simplest way to state this idea
is the following: An agent could have come to know
(believe) � if and only if there is an implication �! �
such that the agent knew both the implication and its
antecedent. Other formulations that do not use the ma-
terial implication ! are also possible (e.g., the agent
may know both:�_� and � to come to know �), but in
the semantic model this contribution uses (Sect. 13.3),
they are logically equivalent to the proposed one.

With respect to the action that triggers an abductive
problem �, this action is typically assumed to be the ob-
servation of � itself. Here a more general idea will be
considered: The action that triggers the abductive prob-
lem will be simply the observation of some formula  .
Thus, though  should indeed be related to � (after all,
� is an abductive problem because the agent comes to
know � by observing ), the agent will not be restricted
to look for explanations of the formula that has been ob-
served: She will also be able to look for explanations of
any formula � she has come to know (believe) through
the observation but could not have come to know (be-
lieve) by herself before. Note how other actions are also
reasonable, as the agent might want to explain a belief
she attained after a belief revision (Sect. 13.4.1).

Here is the intuitive definition of an abductive prob-
lem in full detail:

“Let s1 represent the epistemic state of an agent,
and let s2 be the epistemic state that results from
the agent observing some given  . A formula �
constitutes an abductive problem for the agent at s2
whenever � is known and there is no implication
�! � such that the agent knew both the implica-
tion and its antecedent at s1.”

It is important to emphasize how an abductive prob-
lem has been defined with respect to an agent and stage
(i. e., some epistemic situation). Thus, whether a for-
mula is an abductive problem depends on the formula
but also on the information of that given agent at that
given stage. The definition is given purely in terms of
the agent’s knowledge, but it can also be given purely
in terms of her beliefs, or even in terms of both, as it
will be seen later.

The presented definition could seem very restric-
tive. Even if the reader agrees with the basic idea (� is
an abductive problem for a given agent whenever she
knows � but she could not have come to know (be-
lieve) it), she/he does not need to agree with the way
key parts of it are understood. Nevertheless, as stated

in the introduction, this contribution does not intend
on providing a full account of the many different un-
derstandings of what abductive reasoning does. Rather,
its aim is to show how an epistemic and dynamic per-
spective can shed a new light on the way abductive
reasoning is understood, even when assuming its sim-
plest interpretation.

13.2.2 What Is an Abductive Solution?

In this proposal’s setting, an abductive solution for
a given � will be defined in terms of what the agent
could have been able to infer before the observation that
raised the problem. As mentioned before, it will be said
that � is a solution for the abductive problem � when
the agent could have come to know (believe) � with the
help of �. In this simple case in which the ability to
come to know (believe) a given formula is understood
as the ability to infer the formula by means of a simple
modus ponens step, the following definition is obtained:

“A formula � constitutes an abductive solution for
the abductive problem � at some given state s2 if
the agent knew �! � at the previous state s1. Thus,
the set of solutions for an abductive problem� is the
set of antecedents of implications which have � as
consequent and were known before the observation
that triggered the abductive problem.”

Note how abductive solutions are looked for not
when the agent has come to know (believe) �, but rather
at the stage immediately before it. Thus, � is a solution
when, had it been known (believed) before, would have
allowed the agent to come to know (believe) (to pre-
dict/expect) �.

13.2.3 How is the Best Explanation
Selected?

Although there are several notions of explanation for
modeling the behavior of why-questions in scientific
contexts (e.g., the law model, the statistical relevance
model, or the genetic model), most of these consider
a consequence (entailment) relation; explanation and
consequence go typically hand in hand. However, find-
ing suitable and reasonable criteria for selecting the best
explanation has constituted a fundamental problem in
abductive reasoning [13.31–33], and in fact many au-
thors consider it to be the heart of the subject. Many
approaches are based on logical criteria, but beyond
requisites to avoid triviality and certain restrictions to
the syntactic form, the definition of suitable criteria
is still an open problem. Some approaches have sug-
gested the use of contextual aspects, such as an ordering
among formulas or among full theories. In particular,
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for the latter, a typical option is the use of preferential
models based on qualitative properties that are beyond
the pure causal or deductive relationship between the
abductive problem and its abductive solution. However,
these preference criteria are seen as an external device
which works on top of the deductive part of the explana-
tory mechanism, and as such they have been criticized
because they seem to fall outside the logical frame-
work.

Approaching abductive reasoning from an epis-
temic point of view provides a different perspective.
It has been discussed already how the explanation an
agent will choose for a given abductive problem does
not depend on how the problematic formula could have
been predicted, but rather on how the agent could have
predicted it. In general, different agents have different
information, and thus they might disagree in what each
one calls the best explanation (and even in what each
one calls explanation at all). This suggests that, instead
of looking for criteria to select the best explanation, the
goal should be a criterion to select the agent’s best ex-
planation. Now, once the agent has a set of formulas
that explain the abductive problem from her point of
view, how can she choose the best? This proposal’s an-
swer makes use of the fact that the considered agents
have not only knowledge but also beliefs: Among all
these explanations, some are more plausible than oth-
ers from her point of view. These are precisely the ones
the agent will choose when trying to explain a surpris-
ing observation: The best explanation can be defined in
terms of a preference ordering among the agent’s epis-
temic possibilities. It could be argued that this criterion
is not logical in the classic sense because it is not based
exclusively on the deductive relationship between the
observed fact and different ways in which it could have
been derived. Nevertheless, it is logical in a broader
sense since it does depend on the agent’s information:
her knowledge and, crucially, her beliefs.

13.2.4 How is the Best Explanation
Incorporated Into
the Agent’s Information?

Once the best explanation has been selected, it has to
be incorporated into the agent’s information. One of

the features that distinguishes abductive reasoning from
deductive reasoning is its nonmonotonic nature: The
chosen explanation does not need to be true, and in
fact can be discarded in the light of further informa-
tion. This indicates that an abductive solution cannot
be assimilated as knowledge. Nevertheless, an epis-
temic agent has not only this hard form of information
which is not subjected to modifications; she also has
a soft form that can be revised as many times as it
is needed: beliefs. Therefore, once the best abductive
solution � has been chosen, the agent’s information
can be changed, leading her to believe that � is the
case.

13.2.5 Abduction in a Picture

It is interesting to notice how the stated definitions of
abductive problem and abductive solution rely on some
form of counterfactivity, as in Peirce’s original formu-
lation (and also as discussed in [13.15]): A given � is
a solution of a problem � if it would have allowed the
agent to predict �. This can be better described with the
following diagram.

s2s1

Coming to know χ
s3

Accepting η

Incorporating η
s′2 s′3

Inferring χ

The upper path is the real one: By means of an obser-
vation, the agent goes from the epistemic state s1 to the
epistemic state s2 in which she knows �, and by accept-
ing the abductive solution � she goes further to s3. The
existence of this path, the fact that � is an abductive
problem and � is one of its abductive solutions, indi-
cates that, at s1, the lower path would have been pos-
sible: Incorporating � to the agent’s information would
have taken her to an epistemic state s0

2 where she would
have been able to infer �. Of course, s0

3 is not identical
to s3: In s0

3 both � and � are equally reliable because the
second is inferred from the first, but in s3, � is less reli-
able than � since although the second is obtained via an
observation, the first is just a hypothesis that is subject
to revision in the light of further information.
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13.3 Representing Knowledge and Beliefs

As mentioned, the most natural framework for formal-
izing the discussed ideas is that of DEL, the dynamic
extension of epistemic logic. In particular, with the
plausibility models of [13.34] it is possible to represent
an agent’s knowledge and beliefs as well as acts of ob-
servation and belief revision, all of which are crucial to
the stated understanding of the abductive process. This
section introduces these needed tools; the discussed
definitions will be formalized in Sect. 13.4.

13.3.1 Language and Models

Definition 13.4 Language
Given a set of atomic propositions P, formulas ' of the
language L are given by

' WWD p j :' j ' _ ' j h
i' j h�i' ;

where p 2 P. Formulas of the form h
i' are read as
there is a world at least as plausible (as the current
one) where ' holds, and those of the form h�i' are
read as there is a world epistemically indistinguishable
(from the current one) where ' holds. Other Boolean
connectives (^;!;$) as well as the universal modali-
ties, Œ
� and Œ��, are defined as usual (Œ
�' WD :h
i:'
and Œ��' WD :h�i:' for the latter).

The modalities h
i and h�i, respectively, make it
possible to define the notions of belief and knowledge
within L. The language’s semantic model, a plausibility
model, is defined as follows.

Definition 13.5 Plausibility model
Let P be a set of atomic propositions. A plausibility
model is a tuple M D hW;
;Vi, where:
1. W is a nonempty set of possible worlds
2. 
� .W �W/ is a locally connected and conversely

well-founded preorder, the agent’s plausibility re-
lation, representing the plausibility order of the
worlds from her point of view (w 
 u is read as u
is at least as plausible as w)

3. V WW! }.P/ is an atomic valuation function, in-
dicating the atoms in P that are true at each possible
world.

A pointed plausibility model .M;w / is a plausibility
model with a distinguished world w 2W .

Before proceeding, recall that a relation R� .W �
W/ is locally connected when every two elements that
are R-comparable to a third are also R-comparable. It
is conversely well-founded when there is no infinite R-

ascending chain of elements in W , where R, the strict
version of R, is defined as Rwu iff Rwu and not Ruw .
Finally, it is a preorder when it is reflexive and transi-
tive.

The key idea behind plausibility models is that an
agent’s beliefs can be defined as what is true in the
most plausible worlds from the agent’s perspective, and
modalities for the plausibility relation 
 will allow this
definition to be formed. In order to define the agent’s
knowledge, the approach is to assume that two worlds
are epistemically indistinguishable for the agent if and
only if she considers one of them at least as plausible
as the other (if and only if they are comparable via 
).
The epistemic indistinguishability relation� can there-
fore be defined as the union of 
 and its converse, that
is, as � WD
 [ �. Thus, � is the symmetric closure
of 
 and hence 
 ��. Moreover, since 
 is reflex-
ive and transitive, � is an equivalence relation. This
epistemic indistinguishability relation � should not be
confused with the equal plausibility relation, denoted
by ', and defined as the intersection of 
 and �, that
is, 'WD
 \ �. For further details and discussion on
these models, their requirements and their properties,
the reader is referred to [13.34, 35].

Example 13.1
The following diagram represents a plausibility model
M based on the atomic propositions P WD fl; e; bg. Cir-
cles represent possible worlds (namedw1 up tow5), and
each one of them includes exactly the atomic proposi-
tions that are true at that world (e.g., at w2, the atomic
propositions l and e are true, but b is false). Arrows
represent the plausibility relation, with transitive arcs
omitted (so w4 
 w5 
 w2 
 w1 
 w3, but also w4 

w2, w4 
 w1, w4 
 w3 and so on). Moreover, � is then
the full Cartesian product, that is, for every worlds u
and v in the model, u� v .

l, b

w4

l, e, b

w5

l, e

w2

l

w1 w3

For the semantic interpretation, the two modalities
h
i and h�i are interpreted with the help of their re-
spective relations in the standard modal way.

Definition 13.6 Semantic interpretation
Let .M;w / be a pointed plausibility model with M D
hW;
;Vi. Atomic propositions and Boolean operators
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are interpreted as usual. For the remaining cases,

.M;w /� h
i' iff 9u 2W s.t. w 
 u & .M; u/� '

.M;w /� h�i' iff 9u 2W s.t. w � u & .M; u/� ' :

Defining Knowledge and Beliefs
The notion of knowledge in plausibility models is de-
fined by means of the epistemic indistinguishability
relation in the standard way: The agent knows ' at
some world w if and only if ' is the case in every
world she considers to be epistemically possible from
w . (This makes knowledge a very strong notion, corre-
sponding to an “absolutely unrevisable belief” [13.34]).
The modality Œ�� can be used to this end. For the no-
tion of beliefs, the idea is, as stated before, that the
agent believes ' at a given w if and only if ' is the
case in the most plausible worlds from w . Thanks to
the properties of the plausibility relation (a locally con-
nected and conversely well-founded preorder), ' is true
in the most plausible (i. e., the
-maximal) worlds from
w if and only if, in accordance with the plausibility
order, from some moment onward there are only '-
worlds (see [13.34, 36, 37] for the technical details).
The modalities h
i and Œ
� can be used to this end.
Summarizing,

The agent knows ' K' WD Œ��'
The agent believes ' B' WD h
iŒ
�'

Observe how, since 
��, the formula K'! B' is
valid (but its converse is not).

The dual of these notions, epistemic possibility and
most likely possibility, can be defined as the correspon-
dent modal duals

OK' WD h�i' OB' WD Œ
�h
i' :

Example 13.2
Consider the plausibility model M of Example 13.1,
and take w2 as the evaluation point. Since w2 � u holds
for every possible world u in the model, every world is
epistemically possible from w2’s perspective. But every
world in the model satisfies b! l (the implication is
true at w2, w1, and w3 because the antecedent b is false,
and true at w4 and w5 because the consequent l is true),
so Œ��.b! l/, that is, K.b! l/ is true at w2: The agent
knows b! l at w2. On the other hand, :l is not true
in every world, but it is true in w3, the most plausible
one from w2’s perspective, so h
iŒ
�:l, that is, B:l,
is true at w2: The agent believes :l at w2. Moreover,
observe how b is neither known (it is not true in every

epistemically indistinguishable world) nor believed (it
is not true in the most plausible worlds) at w2. Still, it is
true in some epistemic possibilities from w2 (e.g., w5);
hence, h�ib (i. e., OKb) holds at w2: At that world, the
agent considers b possible.

A more detailed description of this framework,
a number of the epistemic notions that can be defined
within it, its technical details and its axiom system can
be found in [13.34].

Following the DEL idea, actions that modify an
agent’s information can be represented as operations
that transform the underlying semantic model. In the
rest of this section, operations that can be applied over
plausibility models will be recalled, and extensions of
the language that allow to describe the changes such
operations bring about will be provided. These will be
used in Sect. 13.4 to represent and describe abductive
reasoning.

13.3.2 Operations on Models

Update, Also Known as Observation
The most natural operation over Kripke-like semantic
models is that of update. This operation reduces the do-
main of the model, and is typically given in terms of the
formula the worlds should satisfy in order to survive the
operation.

Definition 13.7 Update operation
Let the tupleM D hW;
;Vi be a plausibility model and
let  be a formula in L. The update operation yields the
plausibility model M Š D hW 0;
0;V0i where W 0 WD
fw 2Wj.M;w /�  g, 
0WD 
\ .W 0 �W 0/ and, for
every w 2W 0, V0.w / WD V.w /.

This operation reduces the domain of the model
(preserving only those worlds that satisfy the given  )
and restricts the plausibility relation and the atomic
valuation function accordingly. Since a submodel is
obtained, the operation preserves the (universal) prop-
erties of the plausibility relation and hence it preserves
plausibility models: IfM is a plausibility model, then so
is M Š.

In order to describe the effects of an update within
the language, existential modalities of the form h Ši are
used, for every formula  . Here is their semantic inter-
pretation

.M;w /� h Ši' iff .M;w /�  
and .M Š;w /� ' :

In words, an update formula h Ši' holds at .M;w / if
and only if  is the case (i. e., the evaluation point
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will survive the operation) and, after the update, ' is
the case. The universal modality Œ Š� is defined as the
modal dual of h Ši, that is, Œ Š�' WD :h Ši:'.

In addition to being the most natural operation over
Kripke-like models, an update also has a straightfor-
ward epistemic interpretation: it works as an act of
a public announcement [13.38, 39] or, as it will be
called here, an act of observation. When the agent ob-
serves a given  , she can discard those epistemically
possible worlds that fail to satisfy this formula, thereby
obtaining a model with only worlds that satisfied  be-
fore the operation. More details on this operation and its
modalities (including an axiom system) can be found in
the papers [13.38, 39] or in the textbooks [13.18, 19].

Example 13.3
Consider the modelM in Example 13.1 again. Suppose
the agent observes l; this can be modeled as an update
with l, which yields the following modelMlŠ

l, b

w4

l, e, b

w5

l, e

w2

l

w1

The most plausible world in M has been discarded in
MlŠ. As explained in Example 13.2, the agent believes
:l in M, but after the observation this is not the case
anymore::l does not hold in the unique most plausible
world of the new model MlŠ. In fact, :l does not hold
in any epistemically possible world, and thus after the
observation the agent knows l; in symbols

.MlŠ;w2/� Kl; that is, .M;w2/� ŒlŠ�Kl :

Upgrade, Also Known as Belief Revision
Another natural operation over plausibility-like models
is the rearrangement of worlds within an epistemic par-
tition. Of course, there are several ways in which a new
order can be defined. The following rearrangement,
taken from [13.40], is one of the many possibilities.

Definition 13.8 Upgrade operation
Let the tupleM D hW;
;Vi be a plausibilitymodel and
let  be a formula in L. The upgrade operation pro-
duces the plausibility modelM * D hW;
0;Vi, which
differs from M just in the plausibility order, given now
by


0WDf.w ; u/jw 
 u and .M; u/� g[
f.w ; u/jw 
 u and .M;w /� : g[

f.w ; u/jw � u; .M;w /� : 
and .M; u/�  g :

The new plausibility relation states that after an up-
grade with , all -worlds become more plausible than
all : -worlds, and within the two zones the old order-
ing remains [13.40]. More precisely, a world u will be
at least as plausible as a world w , w 
0 u, if and only
if they already are of that order and u satisfies  , or
they already are of that order and w satisfies : , or
they are comparable, w satisfies : and u satisfies  .
This operation preserves the properties of the plausibil-
ity relation and hence preserves plausibility models, as
shown in [13.35].

In order to describe effects of this operation within
the language, an existential modality h *i is intro-
duced for every formula  ,

.M;w /� h *i' iff .M *;w /� ' :

In words, an upgrade formula h *i' holds at .M;w /
if and only if ' is the case after an upgrade with  . The
universal modality Œ *� is defined as the modal dual
of h *i, as in the update case.

This operation also has a very natural epistemic in-
terpretation. The plausibility relation defines the agent’s
beliefs, and hence any changes in the relation can be in-
terpreted as changes in the agent’s beliefs [13.34, 40,
41]. In particular, an act of revising beliefs after a re-
liable and yet fallible source has suggested  can be
represented by an operation that puts  -worlds at the
top of the plausibility order. Moreover, each one of the
different methods to obtain a relation with former  -
worlds at the top can be seen as a different policy for
revising beliefs. Details on the operation and its modal-
ities (including an axiom system) can be found in the
papers [13.34, 40] or in the textbook [13.19].

Example 13.4
Consider the model MlŠ in Example 13.3, that is, the
model that results from the agent observing l at the
initial model M in Example 13.1. Suppose the agent
performs a belief revision toward b; this can be mod-
eled as an upgrade with b, which yields the following
model .MlŠ/b*:

l, e

w2

l

w1

l, b

w4

l, e, b

w5

The ordering of the worlds has changed, making those
worlds that satisfy b (w4 and w5) more plausible than
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those that do not (w2 and w1), keeping the old order-
ing with these two zones (w5 strictly above w4 and w1

strictly abovew2). InMlŠ the agent believed:b^:e, as
such formula was the case in the model’s unique most
plausible world w1, but this is not the case anymore in
.MlŠ/b*: The unique most plausible world, w5, satisfies

b^ e, and thus the formula is part of the agent’s beliefs.
In symbols,

..MlŠ/b*;w2/� B.b^ e/;
that is, .MlŠ;w2/� Œl*�B.b^ e/ :

13.4 Abductive Problem and Solution

Given the intuitive definitions discussed and the formal
tools introduced, it is now time to formalize the ideas.

13.4.1 Abductive Problem

First, the definition of what an abductive problem is.

Definition 13.9 Abductive problem
Let .M;w / be a pointed plausibility model, and con-
sider .M Š;w /, the pointed plausibility model that
results from observing a given  at .M;w /.

A formula � is an abductive problem at .M Š;w /
if and only if it is known at such stage but it was not
known before, that is, if and only if

.M Š;w /� K� and .M;w /� :K� :
Equivalently, a formula � can become an abductive

problem at .M;w / if and only if it is not known at such
stage but will be known after observing , that is, if and
only if

.M;w /� :K�^ Œ Š�K� :
Note again how the definition of an abductive prob-

lem is relative to an agent’s information at some given
stage (the one represented by the pointed model).

There are two points worth emphasizing. First, note
again how the definition distinguishes between the for-
mula that becomes the abductive problem, �, and the
formula whose observation triggers the abductive prob-
lem,  . Although these two formulas are typically
understood to be the same (� becomes an abductive
problem after being observed), the choice in this con-
tribution is to distinguish between them. One reason
for this is technical: Here the idea is that the agent
will look for explanations of formulas that she could
not have known before the observation but knows after-
ward. However, stating this as the agent knows � after
observing it is restrictive in the DEL setting as not ev-
ery formula satisfies this condition. This is because the
underlying EL framework is powerful enough to talk

about the knowledge an agent has not only about facts
but also about her own knowledge, and so there are for-
mulas expressing situations such as it is raining and you
do not know it (r^:Kr), which can be observed but are
not known afterward (now you know that it is raining!).
Another reason is, as stated earlier, generality: The de-
scribed agent will be able to look for explanations not
only of the formulas she can observe, but also of those
that she can come to know through an observation. Still,
this choice does not imply that the observed formula
and the one that becomes an abductive problem are un-
related: In order for the agent to know � after observing
 , she must have known  ! Œ Š�� before the action.
This is nothing but the reduction axiom for the knowl-
edge modality in public announcement logic

Œ Š�K�$ . ! K. ! Œ Š��// :

Second, the requirements Definition 13.9 asks for
� to be an abductive problem are not exactly the ones
stated in the previous section: The sentence there is no
implication �! � such that, before � became an ab-
ductive problem, the agent knew both the implication
and its antecedent has been replaced by the agent did
not know � before � became an abductive problem. The
reason is that, in DEL, the agent’s knowledge and be-
liefs are closed under logical consequence (still, small
variations of the EL framework allows the representa-
tion of nonideal agents and their abductive reasoning;
see Sect. 13.8), and in such setting the two statements
are equivalent: If there is an � such that the agent knew
�! � and � before � became an abductive problem,
then clearly she knew � too, and if she knew �, then
there was a � such that �! � and � were both known,
namely � itself. In fact, the restatement of the require-
ment emphasizes that it is the observation of  what
causes the agent to know � and hence what creates the
abductive problem.

It is worthwhile to highlight how, although the def-
inition of an abductive problem was given in terms of
the agent’s knowledge, it can also be given in terms of
her beliefs: It also makes sense for her to look for ex-
planations of what she has come to believe!
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“A formula � is said to be an abductive problem
at .M *;w / if and only if .M *;w /� B� and
.M;w /� :B�.”

With this definition, a formula is a problem if it is
believed now but was not believe before a belief revi-
sion with  . But not only that. The agent can also face
abductive problems that combine knowledge and be-
liefs. For example, she can face an abductive problem
with � if she does not know the formula at some stage
but believes it after a belief revision with  :

“A formula � is said to be an abductive problem
at .M *;w / if and only if .M *;w /� B� and
.M;w /� :K�.”
The stated definition allows to describe several

forms of abductive problems, all of which differ in the
strength of the attachment of the agent to the prob-
lematic � (known, strongly believed, safely believed,
believed, etc.) after the epistemic action (update, up-
grade) and the strength of her attachment to the formula
before the action.

13.4.2 Classifying Problems

As mentioned, some approaches classify an abductive
problem � according to whether � or :� follows from
the theory: If neither � nor :� follows, then � is called
a novel abductive problem; if � does not follow but :�
does, then � is called an anomalous abductive prob-
lem. Given the requirement the agent did not know
� before � became an abductive problem (:K�) in
Definition 13.9, one could suggest the agent knew :�
(K:�) as an alternative, but since the definition also
asks for � to be known after the observation in order to
be an abductive problem, such suggestion turns out to
be too strong for propositional formulas: If:� is propo-
sitional and the agent knows it at some stage, then every
epistemic possibility satisfies :�. Thus, since no epis-
temic action can change the (propositional) formula’s
truth value, the only way for the agent to know � af-
terward is for the action to eliminate every epistemic
possibility, making K' true for every formula ' and
thus turning the agent inconsistent. But even though it is
not possible to classify abductive problems in terms of
the knowledge the agent had about the formula before
the observation, it is still possible (and more reason-
able) to classify them by using weaker notions, such as
beliefs. Here is one possibility.

Definition 13.10 Expected, novel and anomalous
problems
Suppose � is an abductive problem at .M Š;w /. Then
� is said to be:

� An expected abductive problem if and only if
.M;w /� B�� An novel abductive problem if and only if .M;w /�
:B�^:B:�� An anomalous abductive problem if and only if
.M;w /� B:�.

Many people would not call the first case an abduc-
tive problem: The observation is a confirmation rather
than a surprise, and thus it does not need to trigger any
further epistemic action. Nevertheless, the case shows
how this proposal allows for such situations to be con-
sidered. In fact, the classification can be refined by
considering further attitudes, such as the safe beliefs
of [13.34] or the strong beliefs of [13.42] (both defin-
able in L).

13.4.3 Abductive Solutions

An abductive solution is now to be defined. Here is
a version that uses only the notion of knowledge.

Definition 13.11 Abductive solution
Let .M;w / be a pointed plausibility model, and con-
sider .M Š;w /, the pointed plausibility model that
results from observing  at .M;w /.

If at .M Š;w / the formula � is an abductive prob-
lem, then � is an abductive solution if and only if the
agent knew that � implied � before the observation, that
is, if and only if

.M;w /� K.�! �/ :

Equivalently, if at .M;w / the formula � can become
an abductive problem, then � will be an abductive solu-
tion if and only if the agent knows that � implies �, that
is, if and only if

.M;w /� K.�! �/ :

Just as in the case of abductive problem, it is also
possible to define an abductive solution in terms of
weaker notions as beliefs. For example, while a very
strict agent would accept � as explanation only when
�! � was known, a less strict agent could accept it
when such implication was only believed.

It is worth emphasizing that, in the stated definition,
a solution for a problem � (at some M Š) is a formula
� such that �! � is known not when the abductive
problem has arisen (at M Š) but rather at the stage im-
mediately before (atM). This is because an explanation
is a piece of information that would have allowed the
agent to predict the surprising observation. In fact, if
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an abductive solution for a problem � were defined as
a formula � such that �! � is known once � is an ab-
ductive problem (at M Š), then every formula ' would
be a solution since (at M Š) K� would be the case (be-
cause � is an abductive problem) and hence so would
be K.'! �/ for every formula '.

Observe also how, again in the stated definition, if
� is a solution for the abductive problem � (at some
M Š), then � could not be known before the observa-
tion that triggered the problem (at M). Otherwise, both
K.�! �/ and K� would be the case at such stage (M)
and hence, by the closure under logical consequence of
knowledge in EL, so would be K�, contradicting the
fact that � is an abductive problem.

Proposition 13.1
Let � be an abductive problem and � be one of its ab-
ductive solutions, both at .M Š;w /. Then, .M;w /�
:K�.

13.4.4 Classifying Solutions

It is common in the literature to classify abductive so-
lutions according to their properties (Chap. 10). For ex-
ample (Definitions 13.2 and 13.3; again, see Chap. 10),
given a surprising observation �, an abductive solution
� is said to be:

� Plain when it is a solution� Consistent when it does not contradict the agent’s
information� Explanatory when it does not explain � by itself.

Similar properties can be described in the present
setting. To begin with, the plain property simply states
that � is an abductive solution; a definition that has been
already provided (Definition 13.11).

For the consistency property, the intuitive idea is for
the solution to be compatible with the agent’s informa-
tion. To this end, consider the following definition.

Definition 13.12 Consistent solution
Let � be an abductive problem and � be one of its ab-
ductive solutions, both at .M Š;w /. It is said that � is
a consistent solution if and only if the agent considers
it possible at .M Š;w /, that is, if and only if

.M Š;w / � OK� :

Thus, a solution is consistent when it is epistemi-
cally possible. Note how this requirement is given in
terms of the agent’s information after the epistemic
action that triggered the abductive problem, and not

before it. In fact, there are formulas that, in a given sit-
uation, are solutions according to the stated definition,
and yet not epistemically possible once the abductive
problem has been raised.

Fact 13.1
Not every abductive solution is consistent.

Proof: Let � and � be propositional formulas, and take
a model M in which the agent considers at least one
.:�^:�/-world to be epistemically possible, with the
rest of the epistemic possibilities being .:�^�/-worlds.
After observing �, :�-worlds will be discarded and
there will be only .:�^�/-worlds left, thus making �
itself an abductive problem (it is not known at M but
it will be known at M�Š) and � an abductive solution
(every epistemic possibility atM satisfies �! �, so the
agent knows this implication). Nevertheless, there are
no �-worlds at M�Š, and therefore OK� is false at such
stage. �

The explanatory property is interesting. The idea in
the classic setting is to avoid solutions that imply the
problematic � per se, such as � itself or any formula
logically equivalent to it. In the current epistemic set-
ting, this idea can be understood in a different way:
A solution � is explanatory when the acceptance of �
(which, as discussed, will be modeled via belief revi-
sion; see Sect. 13.6) changes the agent’s information,
that is, when the agent’s information is different from
.M Š;w / to ..M Š/�*;w / (the model that results after
integrating the solution �). This assertion could be for-
malized by stating that the agent’s information is the
same in two pointed models if and only if the agent
has the same knowledge in both, but this would be
insufficient: The model operation representing an act
of belief revision (the upgrade of Definition 13.8) is
devised to change only the agent’s beliefs (although cer-
tain knowledge, such as knowledge about beliefs, might
also change). A second attempt would be to state that
the agent’s information is the same in two pointed mod-
els if and only if they coincide in the agent’s knowledge
and beliefs, but the mentioned operation can change
a model without changing the agent’s beliefs.

Within the current modal epistemic logic frame-
work, a more natural way of specifying the idea of an
agent having the same information in two models is via
the notion of bisimulation.

Definition 13.13 Bisimulation
Let P be a set of atomic propositions and let M D hW ,

;Vi andM0 D hW 0;
0;V0i be two plausibility models
based on this set. A nonempty relation Z � .W �W 0/
is called a bisimulation between M and M0 (notation:
M$ZM

0) if and only if, for every .w ;w 0/ 2 Z:
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� V.w /D V0.w 0/, that is, w and w 0 satisfy the same
atomic propositions� If there is a u 2W such that w 
 u, then there is
a u0 2W 0 such that w 0 
0 u0 and Zuu0

� If there is a u0 2W 0 such that w 0 
0 u0, then there is
a u 2W such that w 
 u and Zuu0.

Two models M and M0 are bisimilar (notation:
M$M0) when there is a bisimulation between them,
and two pointed models .M;w / and .M0;w 0/ are
bisimilar (notation: .M;w /$.M0;w 0/) when there is
a bisimulation between M and M0 containing the pair
.w ;w 0/.

This notion is significant because, under image-
finiteness (a plausibility model is image-finite if and
only if every world can 
-see only a finite number of
worlds), it characterizes modal equivalence, that is, it
characterises models that satisfy exactly the same for-
mulas in the modal language.

Theorem 13.1
Let P be a set of atomic propositions and let M D hW ,

;Vi and M0 D hW 0;
0;V0i be two image-finite plau-
sibility models. Then .M;w /$.M0;w 0/ if and only if,
for every formula ' 2 L, .M;w /� ' iff .M0;w 0/� '.

Now it is possible to state a formal definition of
what it means for a solution to be explanatory.

Definition 13.14 Explanatory solution
Let � be an abductive problem and � be one of its
abductive solutions, both at .M Š;w /. It is said that
� is an explanatory solution if and only if its accep-
tance changes the agent’s information, that is, if and

only if there is no bisimulation between .M Š;w / and
..M Š/�*;w /.

This definition, devised in order to avoid solutions
that explain the abductive problem per se, has pleas-
ant side effects. In the abductive reasoning literature,
a solution is called trivial when it is logically equiv-
alent to the abductive problem � (i. e., when it is not
explanatory) or when it is a contradiction (to the agent’s
knowledge, or a logical contradiction). Under the given
definition, every trivial solution is not explanatory: Ac-
cepting any such solution will not change the agent’s
information. The reason is that, in both cases, the up-
grade operation will not make any change in the model:
In the first case because, after the observation, the agent
knows the abductive problem formula, and hence every
epistemically possible world satisfies it (as well as ev-
ery formula logically equivalent to the problem); in the
second case because no epistemically possible world
satisfies it. In this way, this framework characterizes
trivial solutions not in terms of their form, as is typi-
cally done, but rather in terms of their effect: Accepting
them will not give the agent any new information.

In particular, this shows how the act of incorporat-
ing a contradictory explanation will not make the agent
collapse and turn into someone that knows and be-
lieves everything, as happens in traditional approaches;
thus, a logic of formal inconsistency (e.g., [13.43]; see
also Chap. 15) is not strictly necessary. This is a conse-
quence of two simple but powerful ideas:

1. Distinguishing an agent’s different epistemic atti-
tudes

2. Assimilating an abductive solution not as knowl-
edge, but rather as a belief.

13.5 Selecting the Best Explanation

Finding suitable and reasonable criteria for selecting the
best explanation is a fundamental problem in abductive
reasoning [13.32, 33], and in fact many authors consider
this to be the heart of the subject. The so-called thesis
of purpose, stated in [13.33], establishes that the aim of
scientific abduction is:

1. To generate new hypotheses
2. To select hypotheses for further examination and

testing.

Hence a central issue in scientific abduction is to
provide methods for selecting. Because the true state
of the world is unknown, selecting the best explanation
requires more than just consistency with the available

information, and there are many proposals of what these
extra criteria should be.

Some approaches are based on probabilistic mea-
surements [13.44–46]. Even Sherlock Holmes advised
that, in order to evaluate explanations, one should “bal-
ance probabilities and choose the most likely” (The
Hound of the Baskervilles), but unfortunately explana-
tions rarely come equipped with probabilities.

In abductive logic programming, a common strat-
egy is to look for abductive solutions at the dead ends of
prolog proofs [13.47]. Sound and complete procedures
can be defined also by using stable models and answer
sets [13.48, 49]. Apart from selection criteria based on
consistency and integrity constraints, it is common to
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start with a set of abducible predicates and select ex-
planations built only from ground atoms using them
(see Chap. 10 for more details on abductive logic pro-
gramming).

There are also approaches that use logical crite-
ria, but beyond the already mentioned requisites to
avoid triviality, the definition of suitable criteria is still
an open problem. One of the most pursued ideas is
that of minimality, a concept that can be understood
syntactically (e.g., [13.3] and [13.5] look for literals),
semantically (a minimal explanations is equivalent to
any other explanation it implies [13.1]), with respect to
the set of possible explanations (the best explanation is
the weakest, i. e., the one that is implied by the rest of
them), and even with respect to the current information
(the best explanation is the one that disrupt less the cur-
rent information).

In fact, most logical criteria are based on restrictions
on the logical form of the solutions but, as mentioned
in [13.1], finer criteria to select between two equally
valid solutions require contextual aspects. With this
idea in mind some approaches have proposed to use an
ordering among formulas [13.10, 50, 51] or among full
theories (i. e., possible worlds [13.52, 53]). In particular,
for the latter, a common option is the use of preferen-
tial models (e.g., [13.54]) in which preferential criteria
for selecting the best explanation are regarded as qual-
itative properties that are beyond the pure causal or
deductive relationship between the abductive problem
and its abductive solution. But these preference criteria
are normally treated as an external device, which works
on top of the logical or deductive part of the explana-
tory mechanism, and thus it has been criticized because
it seems to fall outside a logical framework.

The epistemic approach of this proposal provides
with an interesting alternative. The concepts of an ab-
ductive problem and an abductive solution have been
defined in terms of the agent’s epistemic attitudes, so it
is natural to use such attitudes as a criterion for selecting
the best explanation. Consider, for instance, the follow-
ing elaboration of an example presented in Chap. 10.

“Mary and Gaby arrive late toMary’s apartment; the
light switch is pressed but the light does not turn on.
Knowing that the apartment is old, Mary assumes
a failure in the electric line as the explanation for
the light not turning on. Gaby, on the other hand,
does not have any information about the apartment,
so she explains the light not turning on by assuming
that the bulb is burned out.”

After pressing the switch, both Mary and Gaby ob-
serve that the light does not turn on. There are several
explanations for this: It is possible that the electric line
failed, as Mary assumed, but it can also be the case

that the bulb is burned out, as Gaby thinks, and it is
even possible that the switch is faulty. Then, why do
they choose a different explanation? The reason is that,
though they both observe that the light does not turn
on, they have different background information: Mary
knows that the apartment is old, and hence she consid-
ers a failure in the electric line more likely than any
other explanation, but Gaby does not have that piece of
information, so for her a burned out bulb explains the
lack of light better.

The example shows that, even when facing the
same surprising observation (the light does not turn on),
agents with different knowledge and beliefs may choose
a different best explanation: While Mary assumes that
the electric line has failed, Gaby thinks that the bulb is
burned out. Both explanations are equally logical since
either a failure on the electric line or else a burned out
bulb is enough to explain why the light does not turn on.
What makes Mary to choose the first and Gaby the sec-
ond is that they have different knowledge and different
beliefs. This suggest first, that, instead of looking for
criteria to select the best explanation, the goal should
be a criteria to select the agent’s best explanation.

But there is more. The explanation an agent will
choose for a given abductive problem depends not only
on how the problematic formula could have been pre-
dicted, but also on what the agent herself knows and
what she considers more likely to be the case. It could
be argued that this criterion is not logical in the clas-
sical sense because it is not based exclusively on the
deductive relationship between the observed fact and
the different ways in which it could have been derived.
Nevertheless, it is logical in a broader sense since it
does depend on the agent’s information: her knowledge
and her beliefs. In particular, in the plausibility mod-
els framework, the agent’s knowledge and beliefs are
defined in terms of a plausibility relation among epis-
temic possibilities, so it is natural to use precisely this
relation as a criterion for selecting each agent’s best ex-
planation(s).

This section presents a straightforward use of this
idea. It discusses how the plausibility order among epis-
temic possibilities can be lifted to a plausibility order
among formulas, thus providing a natural criterion to
select the agent’s best explanation. A generalization of
this idea that works instead with all explanations will be
discussed later (Sect. 13.7).

13.5.1 Ordering Explanations

A plausibility model provides an ordering among pos-
sible worlds. This order can be lifted to get an ordering
among set of worlds, that is, an ordering among formu-
las of the language (with each formula seen as the set
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of those worlds that make it true). The different ways
in which such ordering can be defined has been stud-
ied in preference logic (see [13.55–57] or, for a more
detailed exposition [13.58, Chap. 3.3]); this section re-
calls the main ideas, showing how they can be applied
to the task of selecting the best explanation in abductive
reasoning.

In general, an ordering among objects can be lifted
to an ordering among sets of such objects in different
ways. For example, one can say that the lifted order-
ing puts the set of objects satisfying the property  (the
set of  -objects) over the set of objects satisfying the
property ' (the set of '-objects) when there is a  -
object that the original ordering among objects places
above some '-object (a 99 preference of  over '; see
below). But one can be more drastic and say that the
set of  -objects is above the set of '-ones when the
original ordering places every  -object above every '-
one (a 88 preference of  over '). This quantification
combination gives raise to the following possibilities

' 
99  iff there is a '-object w and there
is a  -object u such that w 
 u

' 
89  iff for every '-object w there is a
 -object u such that w 
 u

' 
88  iff w 
 u for every '-object w and
every  -object u

' 
98  iff there is a '-object w such that
w 
 u for every  -object u

The first two orderings can be defined within the
language L

' 
99  WD h�i.' ^ h
i /
' 
89  WD Œ��.'! h
i / :

The first formula indicates that there is a  -world
that is at least as plausible as a '-one, ' 
99  , exactly
when there is an epistemic possibility that satisfies '
and that can see an at least as plausible  -world. The
second one only changes the first quantification (turn-
ing, accordingly, the conjunction into an implication):
For every '-world there is a  -world that is at least as
plausible.

The last two orderings are not immediate. Given the
formulas for the previous two orderings, one could pro-
pose Œ��.'! Œ
� / for the 88 case, but this formula
is not correct: It states that every world that is at least
as plausible as any '-world satisfies  , but it does not
guarantee that every  -world is indeed above every '-
world:

1. There might be a  -world incomparable to some '-
one, and even if all worlds are comparable

2. There might be a  -world strictly below a '-one
(<, the strict version of 
, is defined as w < u if
and only if w 
 u and not u
 w ).

The plausibility order is locally connected (i. e.,
inside each epistemic partition, every world is compa-
rable to each other) so (1) cannot occur. Thus, a formula
defining 
88 only needs to guarantee that no  -world
is strictly below a '-one; in other words, it needs to
express that, given any  -world, every world that is
strictly more plausible satisfies :'. Such formula can
be easily stated in a language that extendsLwith a stan-
dard modality for the relation <

' 
88  WD Œ��. ! Œ<�:'/ :

Finally, the 98 ordering presents a similar situa-
tion. Following the first two cases one could propose
h�i.' ^ Œ<� /, but such formula is not appropriate,
even in the current full-comparability case: It holds
even when there are  -worlds below the chosen '-
one. In order to guarantee the existence of a '-world
that is at most as plausible as every  -world, the for-
mula should state that every world that is strictly less
plausible than the '-world satisfies : . Extending the
language again, this time with a modality for >, makes
such formula straightforward

' 
98  WD h�i.' ^ Œ>�: / :

All in all, the important fact is that among these
four orderings on sets of worlds (i. e., formulas), two
are definable within L and the other two only need sim-
ple extensions. This shows how the plausibility order
among worlds that defines the agent’s knowledge and
beliefs (Sect. 13.3.1) also defines plausibility orderings
among formulas (sets of worlds), and hence provides
a criterion for selecting the best abductive solution for
a given agent. It will now be shown how this criterion
can be used, and how it leads to situations in which
agents with different knowledge and beliefs choose dif-
ferent best explanations.

Example 13.5
Recall Mary and Gaby’s example. Both observe that af-
ter pressing the switch the light does not turn on, but
each one of them chooses a different explanation:While
Mary assumes that the electric line failed, Gaby thinks
that the bulb is burned out. As it has been argued, the
reason why they choose different explanations is that
they have different knowledge and beliefs. Here is a for-
malization of the situation.

The following plausibility models show Mary and
Gaby’s knowledge and beliefs before pressing the
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switch. They involve tree atomic propositions: l stand-
ing for lack of light, e standing for a failure in the
electric line and b standing for a burned out bulb. Again,
each possible world has indicated within it exactly those
atomic propositions that are true in each one of them,
and the arrows represent the plausibility relation (tran-
sitive arrows are omitted).

l, e, bMary

w5

l, b

w4

l, e

w2

l

w1 w3

l, e, bGaby

w5

l, e

w2

l, b

w4

l

w1 w3

Observe how bothMary and Gaby know that both a fail-
ure on the electric line and a burned out bulb imply lack
of light (both e! l and b! l hold in every world). In
fact, the only difference in the models is the plausibility
order between worlds w2 and w4. Mary knows that the
apartment is old so she considers a failure on the line
(e) more likely than a burned out bulb (b), and hence
the situation where the electric line fails but the bulb
is not burned out (w2) is more likely than its opposite
(w4). Gaby, on the other hand, does not know anything
about the apartment, and hence for her a burned out bulb
with a working electric line (w4) is more plausible than
a working bulb and a failing electric line (w2). It is also
assumed that, for both of them, the most likely possibil-
ity is the one in which everything works correctly (w1)
and the least plausible case is the one in which every-
thing fails (w5).

After they both observe that pressing the switch
does not turn on the light, the unique world where l is

not the case, w3, is eliminated, thus producing the fol-
lowing models.

l, e, bMaryl !

w5

l, b

w4

l, e

w2

l

w1

l, e, bGabyl !

w5

l, e

w2

l, b

w4

l

w1

As a result of the observation, Mary and Gaby know
that there is no light (Kl holds in both models), some-
thing that they did not know before. Thus, follow-
ing Definition 13.9, both have an abductive problem
with l.

According to Definition 13.11, both e and b are ab-
ductive solutions for the abductive problem l for both
Mary and Gaby: Both formulas are the antecedent of
implications that have l as a consequent and that were
known before the observation. So, how can each girl
choose her own best explanation? For Mary, the unique
ordering that puts b above e is the weakest one, 99
(there is a b-world, w4, at least as plausible as a e-one,
w5). Nevertheless, from her point of view, e is above b
not only in the weak 99 way (w2 is at least as plausible
as w4) but also in the stronger 89 way (every b-world
has a e-world that is at least as plausible as it). Thus,
one can say that e is a more plausible explanation from
Mary’s perspective. In Gaby’s case something analo-
gous happens: b is above e not only in the weak 99 way
(w4 is at least as plausible as w2) but also in the strong
89 way. Hence, it can be said that, for Gaby, b is the
best explanation.

13.6 Integrating the Best Solution

Once the agent has selected the best explanation for
her, she can incorporate it into her information. As dis-
cussed in Sect. 13.2, even though the nonmonotonic
nature of abductive reasoning indicates that an abduc-
tive solution should not be assimilated as knowledge,
the richness of the present framework allows the possi-
bility to integrate it as a part of the agent’s beliefs. Here
is a modality describing such action.

Definition 13.15 Modality for abductive reasoning
Let .M;w / be a pointed plausibility model and con-
sider again .M Š;w /, the pointed plausibility model

that results from observing  at .M;w /. Every pair of
formulas � and � in L define an existential modality
hAbd�� i', read as the agent can perform an abductive
step for � with � after which ' is the case, and whose
semantic interpretation is as follows

.M Š;w /� hAbd�� i'
iff

.1/.M Š;w /� K� and .M;w /� :K� ;

.2/.M;w /� K.�! �/ ; and

.3/..M Š/�*;w /� ' :
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Equivalently, hAbd�� i'’s semantic interpretation can be
defined as

.M Š;w /� hAbd�� i'
iff

.M;w /� :K�^K.�! �/^ Œ Š�.K�^ Œ� *�'/ :

The definition states that hAbd�� i' is true at
.M Š;w / if and only if:

1. � is an abductive problem at .M Š;w /
2. � is an abductive solution also at .M Š;w /
3. An upgrade (Definition 13.8) with � will make '

true.

The last part makes precise the idea of how an agent
should incorporate the selected explanation: It cannot
be incorporated as knowledge, but it can be incorpo-
rated as a belief.

Example 13.6
Returning to Example 13.5, once Mary and Gaby have
selected their respective best explanation, they can
perform an abductive step. In Mary’s case, worlds sat-
isfying e (w5 and w2) will become more plausible than
worlds that do not satisfy it (w4 and w1); in Gaby’s
case, worlds satisfying b (w5 and w4) will become more
plausible than worlds that do not satisfy it (w2 and
w1). Applying these upgrades to the modelsMarylŠ and
GabylŠ in produces the following models.

l, b(Maryl !)e

w4

l

w1

l, e, b

w5

l, e

w2

l, e(Gabyl !)b

w2

l

w1

l, e, b

w5

l, b

w4

As a result of the abductive step, each agent believes
her own explanation:Mary believes that the electric line
has failed (e is true in her unique most plausible world
w2), and Gaby believes that the bulb is burned out (b is
true in her unique most plausible world w4). That is, for
every w 2 fw1;w2;w4;w5g,

.MarylŠ;w / � hAbdleiBe

.GabylŠ;w / � hAbdlbiBb :

13.6.1 Abduction in a Picture, Once Again

The definitions that have been provided allow more pre-
cision in the diagram of abductive reasoning presented
in Sect. 13.2.5. Here is the updated version for the case
in which the definitions are given just in terms of the
agent’s knowledge. Note how the inferring � step has
been dropped, as it is not needed in an omniscient set-
ting such as DEL. Again, circles represent the agent’s
epistemic states (i. e., full plausibility models) and ar-
rows are labeled with the operations that modify the
agent’s information.

s2s1
ψ!

s3
Abd χη

Kχ
Kχ

K (η χ)
Kη

η!
s′2

Again, the upper path represents what really hap-
pened. After observing  , the agent reaches the epis-
temic state s2 in which she knows �. But before the
observation, at s1, she did not know �, and thus this for-
mula is an abductive problem at s2. Observe how �! �
was known at s1: hence, � is an abductive solution at
s2 and the agent can perform an abductive step with it
to reach state s3. This abductive solution � would have
helped the agent to infer (and hence to come to know)
�, and the lower path represents this alternative situa-
tion. In general, it cannot be guaranteed that the agent
would have known � (or even �) at state s0

2: these for-
mulas could have had epistemic modalities, and hence
the observation could have changed their truth value.
However, if both formulas are propositional,K� andK�
hold at s0

2.

13.6.2 Further Classification

Section 13.4.4 presented an epistemic version of the
the common classification of abductive solutions. But
the current DEL setting allows further possibilities and
hence a finer classification. For example, here are two
straightforward ideas. First, a solution � has been de-
fined as the antecedent of an implication that has � as
a consequent and that was known before the epistemic
action that triggered the problem. Nevertheless, given
that both formulas might contain epistemic operators,
the agent can go from knowing the implication to not
knowing it. Second, it has been stated that the agent
incorporates the selected explanation via a belief revi-
sion (i. e., an upgrade). Nevertheless, since the solution
might contain epistemic operators, the upgrade does not
guarantee that the agent will believe the solution after
the operation.
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Definition 13.16 Adequate solution and successful
solution
Let the formula � be an abductive solution for the ab-
ductive problem � at .M Š;w /. Then:

� � is an adequate solution if and only if the agent still
knows �! � at .M Š;w /, that is, if and only if

.M Š;w /� K.�! �/ :

� � is a successful solution if and only if it is believed
after the abductive step, that is, if and only if

.M Š;w /� hAbd�� iB� :

Here it is a result about the adequacy property.

Proposition 13.2
Every abductive solution is adequate.
Proof: More precisely, suppose that at .M Š;w / the
formula � is an abductive problem and � is one of
its abductive solutions. Since � is an abductive prob-
lem, .M Š;w /� K� and hence .M Š;w /� K.�!
�/. �

Given this result, this property is of little interest
in the current setting. However, it becomes interesting
in settings with nonomniscient agents. In such frame-
works, it is possible for the agent not to know �! �
even when she knows � and she knew �! � before.

Here it is another result, now about the property of
being a successful solution.

Fact 13.2
Not every abductive solution is successful.

Proof: Let PD fp; qg be the set of atomic propositions,
and consider the pointed plausibility models below
(reflexive and transitive arrows omitted) in which the
evaluation points are double circled.

M

w3

q
w2

p, q
w1

Mq! (Mq!) (p  Bp)

q
w2

p, q
w1

p, q
w1

q
w2

Observe how q is an abductive problem atMqŠ since
it is not known at M (there is an epistemically possible
world where q fails, namely, w3) but it is known atMqŠ.
Observe also how p^:Bp is an abductive solution since
K..p^:Bp/! q/ holds at M (it is true at w1 and w2

because q is true in those worlds, and also true at w3 be-
cause p^:Bp fails in this world). Furthermore, p^:Bp
is a consistent solution since it is epistemically possible
inMqŠ (p and :Bp are both true at w1, the latter because
there is a most plausible world, w2, where p is not the
case, and hence the agent does not believe p). Neverthe-
less, after an upgrade with p^:Bp this very formula is
not believed. It fails at the unique most plausible world
w1 because:Bp fails at it: the most plausible world (w1

itself) satisfies p and hence the agent now believes p,
that is, Bp is the case. �

Nevertheless, if a propositional solution � is also
consistent, then it is successful.

Proposition 13.3
Suppose that at .M Š;w / the formula � is an abductive
solution for the abductive problem �. If � is a proposi-
tional and consistent solution, then it is successful.

Proof: If � is a consistent solution, then at .M Š;w /
there is at least one epistemically possible �-world.
Therefore, an upgrade with � will put worlds that satis-
fied � in .M Š;w / on top of the plausibility order. Now,
� is propositional, and hence its truth value depends
only on the valuation of each possible world; since the
upgrade operation does not affect the valuation, then
any world satisfying � in M Š will still satisfy it in
.M Š/�*. Hence, after the operation, the most plausi-
ble worlds will satisfy �, and thus ..M Š/�*;w /� B�
will be the case. This, together with the fact that at
M Š the formula � is an abductive problem and the
formula � is an abductive solution, yield .M Š;w /�
hAbd�� iB�. �

It has been already stated that a solution is ex-
planatory when it changes the agent’s information.
A further classification of abductive solutions can be
provided according to how much they change the
agent’s information, that is, according to the attitude
of the agent toward the solution before it was incorpo-
rated.

Definition 13.17
Suppose that � is an abductive problem at .M Š;w /.
An explanatory abductive solution � is:

� Weakly explanatory when .M Š;w /� B�
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� Neutral when .M Š;w /� :B�^:B:�� Strongly explanatory when .M Š;w /� B:�.

Again, there are more possibilities if further epis-
temic attitudes are considered.

13.6.3 Properties in a Picture

Consider an anomalous abductive problem � (i. e., B:�
holds at s1) whose abductive solution � is consistent
( OK� holds at s2) and successful (B� holds at s3), recall-
ing also that every solution is adequate (so K.�! �/
holds at s2). This extends the diagram of Sect. 13.6.1 in
the following way.

s2s1
ψ!

s3
Abd χη

Kχ
Kη

K (η χ)Kχ
K (η χ)
Kη
B χ

η!
s′2

Bη

Moreover, consider the case in which both � and � are
propositional, the typical case in abductive reasoning in
which the agent looks for explanations of facts, and not
of her own (or, in a multiagent setting, of other agents’)
epistemic state. First, in such case, � should be an epis-
temic possibility not only at s2 but also at s1. But not
only that; it is possible now to state the effects of the ab-
ductive step at s2 (the agent will believe � and will still
know �! �) and of the hypothetical announcement of

� at s1 (she would have known both � and �, and she
would have still known �! �). Therefore,

s2s1
ψ!

s3
Abd χη

Kχ
Kη

K (η χ)

Kχ
Kη

K (η χ)

Kχ
K (η χ)
Kη
B χ
Kη

η!
s′2

Bη
Kχ

K (η χ)

This diagram beautifully illustrates what lies behind
this proposal’s understanding of abductive reasoning.
In the propositional case, if � is a consistent and suc-
cessful abductive solution for the abductive problem �,
then, after abductive reasoning, the agent will know �
and will believe �. In fact, when the observed formula 
is actually the same � that becomes an abductive prob-
lem, the epistemic effect of abductive reasoning, from
knowledge to beliefs, can be described with the follow-
ing validity [13.59],

K.�! �/! Œ�Š�.K�! hAbd�� iB�/ :

What makes � a reasonable solution is the existence
of an alternative reality in which she observed � and,
thanks to that, came to know �. Similar diagrams can
be obtained for the cases in which the definitions of an
abductive problem and an abductive solution are given
in terms of epistemic attitudes other than knowledge.

13.7 Working with the Explanations

The reason why abductive solutions are incorporated as
beliefs and not as knowledge is because the selected ex-
planation (in fact, any explanation) is just a hypothesis,
subject to change in light of further information. Con-
sider the following continuation of theMary and Gaby’s
situation.

Example 13.7
After their respective abductive steps (models
(MaryŠl)e* and (GabylŠ)b* of Example 13.6), Mary
and Gaby take a closer look at the bulb and observe that
it is not burned out (:b). Semantically this is simply
an observation operation that eliminates w4 and w5,
exactly those epistemic possibilities where the bulb is
burned out (i. e., where b holds). The resulting models

are the following.

((Maryl !)e l

w1

l, e

w2

((Gabyl !)b) l, e

w2

l

w1

b!

b!

This observation does not affect Mary’s explanation:
She still believes that the electric line has failed (e is
true in her unique most plausible world w2). But Gaby’s
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case is different: She does not have an explanation for l
anymore. Although she knows it (Kl holds at the model
on the bottom, that is, l is true in every epistemic possi-
bility), she neither knows nor believes the antecedent of
a known implication with l as a consequent (besides, of
course, the trivial ones); she needs to perform a further
abductive step in order to explain it.

There is, nevertheless, a way to avoid the extra ab-
ductive reasoning step. Recall that after applying the
defined upgrade operation (Definition 13.8), all the
worlds satisfying the given formula become more plau-
sible than the ones that do not satisfy it, and within the
two zones the old ordering remains. If the lifted worlds
are not those that satisfy the agent’s most plausible ex-
planation but rather those that satisfy at least one of her
explanations, the resulting model will have two layers:
the lower one with worlds that do not satisfy any ex-
planation, and the upper one with worlds that satisfy at
least one. But inside the upper layer the old ordering
will remain. In other words, the most plausible worlds
in the resulting model (i. e., the most plausible ones in
the upper layer) will be the ones that satisfy at least one
explanation and that were already more plausible than
the rest. Thus, with respect to the most plausible expla-
nation, the same result is achieved: After such upgrade,
roughly, the agent will believe the explanation that was
the most plausible for her.

The difference with respect to the approach of the
previous section is that the worlds that appear below
the most plausible ones are not arbitrary. Worlds on the
second best layer satisfy already some explanation; an
explanation that was not chosen because it was not the
most plausible one. Then, if further observations make
the original best explanation obsolete, once that the cor-
respondent (and now also obsolete) worlds have been
discarded, the ones that will be at the top of the plausi-
bility ordering will be the previously second best. Thus,
an explanation will be already present and no further
abductive steps will be needed.

13.7.1 A Modality

The idea just described is formalized now by intro-
ducing a modality that, given an abductive problem �,
upgrades those worlds that satisfy at least one of its ab-
ductive explanations.

Definition 13.18 Modality for formula-based ab-
duction
Let .M;w / be a pointed plausibility model and consider
again .M Š;w /, the pointed plausibility model that re-
sults from observing  at .M;w /. Every formula � in

L defines an existential modality of the form hAbd�i',
read as the agent can perform a complete abductive step
for � after which ' is the case, and whose semantic in-
terpretation is as follows

.M Š;w /� hAbd�i'
iff

.1/.M Š;w /� K� and .M;w /� :K� ;

.2/..M Š/.
W
˙�/*;w /� ' ;

where˙� is the set of abductive solutions for �, that is,

˙� WD f� j .M;w /� K.�! �/g :
Equivalently, hAbd�i'’s semantic interpretation can be
defined as

.M Š;w /� hAbd�i'
iff

.M;w /� :K�^ Œ Š�.K�^ Œ_˙� *�'/ :
The correspondent universal modality, ŒAbd��, is de-
fined as usual.

The definition states that hAbd�i' is true at
.M Š;w / if and only if (1) � is an abductive problem
at .M Š;w /, and (2) an upgrade with

W
˙� will make

' true. The last part makes precise the idea of work-
ing with all the solutions: ˙� contains all abductive
solutions for �, so

W
˙� is a disjunction characteris-

ing those worlds that satisfy at least one of them and
hence an upgrade with it will move such worlds to the
topmost layer. But inside this layer, the former plausi-
bility order will persist, and hence worlds at the top of it
will be precisely those that satisfy at least one solution
for � and, among them, were already the most plausible
ones.

Remark 13.1
The set ˙� contains, among others, �, �^�, and so
on, and hence

W
˙� is an infinite disjunction. Syntac-

tic restrictions can be imposed in order to avoid such
situations (e.g., asking for solutions that are also mini-
mal conjunctions of literals). Another possibility, closer
to the semantic spirit of this approach, is to work with
finite plausibility models, and then look for solutions
among the formulas that characterize each possible
world.

The following example shows how this new opera-
tion allows the agent to have ready another explanation
in case the initially best one turns out to be incorrect.
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Example 13.8
Let us go back to Mary and Gaby’s example all the way
to the stage after which they have observed that the light
does not turn on (models MarylŠ and GabylŠ of Exam-
ple 13.5, repeated here).

l, e, bMaryl !

w5

l, b

w4

l, e

w2

l

w1

l, e, bGabyl !

w5

l, e

w2

l, b

w4

l

w1

Suppose that, instead of selecting their respective most
plausible explanation and assimilating it (as they did in
Example 13.5), Mary and Gaby work with all their ex-
planations: Instead of an upgrade with e for Mary and
an upgrade with b for Gaby, both of them perform an
upgrade with e_ b. This produces the following mod-
els.

l(Maryl !)(eb)

w1

l, e, b

w5

l, b

w4

l, e

w2

l(Gabyl !)(eb)

w2

l, e, b

w5

l, e

w2

l, b

w4

The worlds satisfying e_ b (w2, w4, and w5) have been
upgraded. As a result of this, both Mary and Gaby have
an explanation for l, but each one of them has her own
explanation: While Mary believes that the electric line

has failed (e is the case in the most plausible world at
the model on the top), Gaby believes that the bulb is
burned out (b holds in the most plausible world at the
model on the bottom).

So far the result of the upgrade is, with respect
to Mary and Gaby beliefs, exactly the same as with
the previous proposal where only worlds that satisfy
the most plausible explanation are upgraded (in both
cases, w2 and w4 are Mary’s and Gaby’s most plausible
worlds, respectively). But note what happens now when
they both observe that the bulb is in fact not burned out
(:b): Such action produces the following situation.

((Maryl !)(eb) l

w1

l, e

w2

((Gabyl !)(eb)) l

w1

l, e

w2

b!

b!

Again, the observation does not affect Mary’s explana-
tion (e still holds in the most plausible world at model
on the top), but it does changeGaby’s since her previous
explanation b is not possible anymore. The difference is
that now she does not need to perform an extra abduc-
tive step because she has already another explanation:
She now believes that the electric line has failed (e holds
in the most plausible world at model on the bottom).

Thus, after an upgrade with all explanations, what
the agent will be lead to believe depends on her plausi-
bility order, just as with the first proposal. Nevertheless,
if further information invalidates such best explanation,
the agent will believe the next to best one without the
need of further abductive steps.

13.8 A Brief Exploration to Nonideal Agents

As most (if not all) proposals for representing a given
phenomena, the presented epistemic and dynamic ap-
proach to abduction has made some assumptions for
the sake of simplicity. One of the most important of
these is the fact that agents whose information is rep-
resented within the plausibility framework are ideal:
Their knowledge and beliefs are closed under logi-
cal consequence. This supposition is not exclusive of
this approach; the classic logical definitions of abduc-
tive reasoning assume not only that the given set of
formulas ˚ , the theory, is closed under logical con-

sequence, but also that ` is the logical consequence
relation.

The present proposal highlights the epistemic nature
of abductive reasoning, and so it is natural to ask how
such reasoning process works for a different kind of
agents, in particular, for those whose information does
not need to have ideal properties and thus are, in that
sense, closer to real computational agents with limited
resources (and also closer to us human beings). This
final section briefly discusses some ideas; further de-
velopments in this direction can be found in [13.60].
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13.8.1 Considering Inference

Suppose Karl is in his dining room and sees smoke
coming out of the kitchen. This seems unjustified at
first, but then he realises that the chicken he placed on
the fire has been there for a long time. Initially Karl
did not have any explanation for the smoke, but after
a moment he realized that such event was actually not
surprising at all.

This case is different from the discussed ones be-
cause Karl is not an ideal agent: He does not have at
hand all logical consequences of his information, and
therefore he did not realize that the information he had
before seeing the smoke was enough to predict it (i. e.,
to infer that there would be smoke). Described in more
technical terms, seeing the smoke raised an abductive
problem for Karl, but such problem arose because he
did not have, at the time of the observation, all the log-
ical consequences of the information he actually had
(otherwise there would have been no abductive problem
at all). Accordingly, in such case the abductive solution
is not necessarily a piece of information that would have
allowed Karl to predict the smoke; it might be a simple
inference step that made explicit what was only implicit
before.

This shows not only how agents whose information
is not closed under logical consequence can face at least
a new kind of abductive problem, but also how such
problems give rise to a different kind of solutions.

13.8.2 Different Reasoning Abilities

In the previous example, the abductive solution was
a simple inference step because Karl had the needed

reasoning tools to infer there is smoke in the kitchen
from the chicken has been on the fire for a long time.
But what if that was not the case? That is, what if, be-
sides not having at hand all the logical consequences of
his information, Karl did not have the required reason-
ing tools to infer some of them?

In such new situation, Karl faces again an abductive
problem, but this time of a different nature. The surpris-
ing observation could have been predicted in the sense
that it is a logical consequence of Karl’s information
the chicken has been on the fire for a long time, just as
in the initial version of this example. The difference is
that such observation is not something that Karl could
have predicted by himself: He did not have the needed
tools. One can say that, even though there is smoke in
the kitchen is objectively derivable from the initial infor-
mation, it is not subjectively derivable in the sense that
Karl could not have done it. To put it in other words,
besides not having at hand all the logical consequences
of her actual information, Karl might not even be able
to reach them.

Accordingly, the simple inference step of before
cannot be a solution to the problem now, as Karl does
not have the needed tools to perform it. One possi-
ble solution is, as in the traditional case, a piece of
information that would have allowed Karl to predict
the smoke from some other previously known fact,
but a more interesting one is some reasoning tool that
would have helped him to predict the fire from the
known fact the chicken has been on the fire for a long
time.

New cases arise when further kinds of agents are
considered. A systematic study of such cases can be
found in [13.61].

13.9 Conclusions

This chapter has proposed an epistemic and dynamic
approach to abductive reasoning, understanding this
form of reasoning as a process that:

1. Is triggered by an epistemic action through which
the agent comes to know or believe certain � that
otherwise she could not have been able to know or
believe

2. Looks for explanations for � in the set of formulas
that could have helped the agent to come to know or
believe �

3. Incorporates the chosen explanation as a part of the
agent’s beliefs.

Besides providing formal definitions of what an ab-
ductive problem and an abductive solution are in terms

of an agent’s knowledge and beliefs, the present pro-
posal has discussed:

1. A classification of abductive problems in terms of
both how convinced the agent is of the problematic
formula after the observation (she knows it, or just
believes it) and how plausible the formula was be-
fore the epistemic action that triggered the problem

2. A classification of abductive solutions based not
only on their deductive relation with the abductive
problem or their syntactic form, but also in terms of
both their plausibility before the problemwas raised
and the way it will affect the agent’s information
once they are incorporated

3. A new perspective that looks not for the best expla-
nation but rather for the agent’s best explanation,
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and the possibility to carry out this search in terms of
which explanations are more likely from the agent’s
point of view, that is, in terms of the agent’s beliefs

4. The possibility of integrating the chosen solution
into the agent’s information as part of her beliefs,
which allows not only to identify trivial solutions
because of their effect rather than their form, but
also to revise and eventually discard solutions that
become obsolete in the light of further information.

Crucial for all these contributions has been the use
of plausibility models and, in general, the DEL guide-
lines, which puts emphasis in the representation of both
epistemic attitudes and the actions that affect them.

It is worthwhile to compare, albeit briefly, the
present proposal to other epistemic approaches to ab-
ductive reasoning. Besides immediate differences in the
respective semanticmodels (while other approaches fol-
low the Alchourrón–Gärdenfors–Makinson (AGM) be-
lief revision, using a set of formulas for representing
the agent’s information, here possible worlds are used),
there are two main points that distinguish the presented
ideas from other proposals. First, here several epistemic
attitudes are taken into account, thus making a clear dif-
ference between what the agent holds with full certainty
(knowledge) and what she considers very likely but still
cannot guarantee (beliefs); this allows to distinguish be-
tween the certainty of both the previous information
and the surprising observation, and the mere plausibility
of the chosen solution (recall the validity K.�! �/!
Œ�Š�.K�! hAbd�� iB�/, briefly discussed at the end of
Sect. 13.6). Second, this approach goes one step fur-
ther by making explicit the different stages of the ab-
ductive process, thus making also explicit the epistemic
actions involved. This highlights the importance of ac-
tions such as belief revision, commonly understood in
epistemic approaches to abduction as the one triggered
by the abductive problem [13.12, 62], and also such as
observation, understood here as the one that triggers the
abductive process.

This chapter presents only the first steps toward
a proper study of abductive reasoning from an epistemic
and dynamic perspective, and several of the current
proposals can be refined. For example, the specific def-
inition of an abductive problem (Definition 13.9) relies
on the fact that, within the DEL framework, agents
are logically omniscient. As it has been hinted at in
Sect.13.8, in a nonomniscient DEL setting [13.35, 63]
the ideas discussed in Sect. 13.2 would produce a differ-
ent formal definition (which, incidentally, would allow
to classify abductive problems and abductive solutions
according to some derivability criteria). Moreover, it
would be possible to analyze the full abductive picture
presented in Sect. 13.2.1, which requires inference steps

in the alternative reality path. These extensions are rel-
evant: They would allow a better understanding of the
abductive process as performed by real agents.

But it is also possible to do more than just follow
the traditional research lines in abductive reasoning,
and here are two interesting possibilities (whose devel-
opment exceeds the limits of this chapter). First, the
DEL framework allows multiagent scenarios in which
abductive problems would arise in the context of a com-
munity of agents. In such setting, further to the public
observation and revision used here, actions that affect
the knowledge and beliefs of different agents in dif-
ferent ways are possible. For example, an agent may
be privately informed about  : If this raises an abduc-
tive problem � for her and another agent has private
information about �! �, they can interact to obtain
the abductive solution �. Second, the DEL frame-
work deals with high-order knowledge, thus allowing
to study cases in which an agent, instead of looking for
an explanation of a fact, looks for an explanation of her
own epistemic state. Interestingly, explanations might
involve epistemic actions as well as the lack of them.

According to those considerations, this logical ap-
proach takes into account the dynamics aspects of
logical information processing, and one of them is ab-
ductive inference, one of the most important forms of
inference in scientific practices. The aforementioned
multiagent scenarios allow to model concrete practices,
particularly those that develop a methodology based on
observation, verification, and systematic formulation of
provisional hypotheses, such as in empirical sciences,
social sciences, and clinical diagnosis. The epistemo-
logical repercussions of this DEL approach is given by
the conceptual resources that it offers, useful to model
several aspects of explanatory processes. If known the-
ories of belief revision, at the last resort, say nothing
about context of discovery, by means of DEL the acces-
sibility of this context to rational epistemological and
logical analysis is extended, further on classical log-
ical treatment of abduction. From the perspective of
game theoretic semantics, for example, now it is eas-
ier to determine what rules are strategic and what are
operatories when abductive steps were given. But ap-
plications should also be considered to tackle certain
philosophical problems. For example, abductive sce-
narios within multiagent settings can be used to study
the implications of different forms of communication
within scientific communities.
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14. Argumentation and Abduction in Dialogical Logic

Cristina Barés Gómez, Matthieu Fontaine

This chapter advocates for a reconciliation of
argumentation theory and formal logic in an
agent-centered theory of reasoning, that is, a the-
ory in which inferences are studied as human
activities. First, arguments in favor of a divorce
between the two fields are presented. Those ar-
guments are not so controversial. However, rather
than forcing a radical separation, they urge lo-
gicians to rethink the object of their studies.
Arguments cannot be analyzed as objects inde-
pendent from human activity, whether it is dealt
with deductive or nondeductive reasoning. The
present analysis naturally takes place in the con-
text of dialogical logic in which the proof process
and the semantics are conceived in terms of argu-
mentative games, which involve the agents, their
commitments and their actions. This work focuses
first on deductive reasoning and then takes ab-
duction as a case of nondeductive reasoning. By
relying on some relevant ideas of the Gabbay–
Woods (GW) schema of abduction and Aliseda’s
approach, a new dialogical explanation of abduc-
tion in terms of concession-problem is proposed.
This notion of concession problem will be defined
thereafter. With respect to the topics of the model-
based sciences, the question of the specificity of
the speech act by means of which a hypothesis is
conjectured is set more specifically.
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14.1 Reasoning as a Human Activity

In this chapter, it is argued against the radical dis-
sociation of formal logic and argumentation advo-
cated by Toulmin [14.1] and Perelmann and Olbrechts-
Tyteca [14.2]. It is proposed to bring formal logic and
argumentation together in the field of dialectical in-
teraction in which the human being and the action of
the agent are given a central role. In this contribution,
a unified theory of reasoning is thus advocated, the
key concept of which is not something as a universal
logic but rather the notion of commitment, that is, what
a speaker is ready to defend on uttering a sentence or

in making use of a particular argument. Indeed, from
the perspective of dialectical interactions, the crucial
question is: What are we committed to when we utter
a sentence in a dialectical interaction? In other words,
when an agent performs a claim, it is never for free,
and further justifications may be demanded for by the
speaker’s argumentative partners. The commitment to
providing further justifications precisely constitutes the
ground in order to distinguish between various kinds
of speech acts relevant for the specification of differ-
ent forms of reasonings. This study takes place within
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the dialogical framework in which the proof is con-
ceived in terms of a dialectical process. The specificity
of deductive and abductive reasonings is clarified by
identifying different kinds of speech acts specific to
each of these forms of reasoning. The aim is to show
that abductive dialogues involve specific speech acts,
namely certain conjectural claims that differ from usual
assertions and questions of deductive dialogues. Amore
exhaustive study of commitment and its role in the
definition of different kinds of speech acts in dialogi-
cal interaction which can also be found in Walton and
Krabbe [14.3]. However, this study focuses here on
some aspects of commitment related to assertions and
questions in deductive dialogues and considers how to
extend the picture to abductive dialogues. The con-
text of this study is first explained. In order to defend
a practical logic to study the fallacies, Woods [14.4]
identifies what he calls third-way reasoning, which op-
erates beyond the usual standards of deduction and
induction. According to Woods, logicians have missed
the target concerning the study of fallacies because they
have failed to invoke the right standards of reasoning.
The mistake is linked to an ostracism with respect to
the human being when the task should be to describe
reasoning. Indeed, in most logical studies of reason-
ing, the human being has simply been left out of the
story! In Woods’ own words, “there are no people in
the models of mainstream mathematical logic” [14.4,
p. 12].

Toulmin [14.1] also reports that logicians left out
the human being while they were modeling reason-
ing. As a solution, he urges for the divorce between
logic and argumentation by claiming that logic was too
narrow to study argumentation. Toulmin was right in
thinking that formal logicians had forgotten the human
being. He was wrong in thinking that the solution was
to dissociate logic and argumentation. Independently
of how some logicians might have led their investiga-
tions, the point of view endorsed in this chapter is that
an agent-centered logic (that is, a logic built around
human activity) is possible. Logic and argumentation
should again be brought together. Human beings play
a fundamental role in third-way reasoning as well as in
deductive reasoning.

A study centered on the role of the agent consti-
tutes the condition of possibility of a unified theory
of reasoning, that is, a theory in which logic and
argumentation are analyzed together. What is to be con-
sidered is not a mere relation of consequence-having
but a relation of consequence drawing. As stressed
by Woods [14.4], while the former is a mere relation
between propositions, the latter is to be linked with
agent-based inferences, that is, actions by means of
which an agent draws conclusions. The latter is the ba-

sis of what has been called an agent-centered logic.
The position defended in this chapter, which is per-
haps stronger than that of Woods, is that focusing on
a consequence-having relation is also a mistake with
respect to deductive reasoning. Reasoning, in general,
must be studied in a general framework in which par-
ticular attention is paid to the action of the agents and
their commitments.

More precisely, it is argued that deductive as well
as nondeductive reasoning should be understood within
argumentative practices, taking into account the inter-
action between agents. This can be achieved by means
of dialogical logic, a semantics based on argumentative
practices and presented as a game between a propo-
nent of a thesis and an opponent to this thesis. More
precisely, dialogical logic is grounded on speech acts
and commitments related to these speech acts. That
is, a dialogue is a sequence of speech acts, questions
and assertions, in order to justify or challenge an initial
thesis. Moreover, utterances are not free of further justi-
fications: When we utter something, we are committed
to providing justification of what we are saying. This is
the basis of the rules which say how to challenge and
how to defend an utterance. Deductive validity is thus
conceived in terms of strategy by means of which a pro-
ponent of a thesis defends her initial claim against every
attack of her opponent.

However, this is just deduction! Is it possible to
generalize the picture to nondeductive reasoning? To
answer this question, abductive reasoning will be con-
sidered as a case of nondeductive reasoning. A relevant
conceptual question is therefore the following: What
is the difference and the specificity of abduction with
respect to other inference kinds? If it makes sense to
talk about abduction as a third kind of inference, it is
because it is neither a deductive nor an inductive infer-
ence.

According to Gabbay and Woods [14.5, p. 192],
“[w]hereas deduction is truth-preserving and induc-
tion is probability-enhancing, abduction is ignorance-
preserving.” An abduction is triggered by an ignorance
problem that arises when a fact cannot be explained
by the current knowledge of an agent. The inability to
solve an ignorance problem is a cause of discomfort,
which Gabbay and Woods [14.5, p. 190] call a cogni-
tive irritant. Such an unpleasant situation is sometimes
overcome by conjecturing a hypothesis on the basis of
which further actions are made possible. Even if such
a conjecture allows the agent to overcome the irritant
situation, it does not constitute a solution to the igno-
rance problem: It is only a defeasible hypothesis. This
precisely grasps the specificity of abduction.

Rather than an explanation in terms of ignorance
problem, the specificity of abduction is set from a di-
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alogical perspective in terms of concession problem.
A concession problem is overcome by a conjecture on
the basis of which the dialogue is continued. In contrast
with the usual deductive dialogues, such a conjecture
is settled in a new kind of move allowed by an addi-
tional rule. The difficulty is thus to specify which kind
of speech act is at stake while performing such conjec-
tural moves. Indeed, under the view endorsed in this
chapter, conjectural moves are performed by means of
speech acts which are neither assertions nor questions
of usual deductive dialogues.

Reasons why Toulmin argues in favor of a radical
separation between formal logic and argumentation are
given in the first section. Although it is true that some
aspects of argumentation such as the role of the agent,
the dynamic of the contexts, and the defeasibility are
to be taken into account, it is not a reason to conclude
that formal logic and argumentation should be studied

separately. First, it is not true that those aspects are
completely missing in formal logic. It is shown in the
rest of this section that numerous formal logics deal
with these aspects, although they have yet to be brought
all together. Second, in this contribution, it is thought
that even deduction is to be understood within argu-
mentative practices. Hence, the dialogical framework is
introduced in the third section, where it is come back to
the key concept of commitment. It is also shown how
dialogical logic enables to grasp the central role of the
agent as well as the dynamics of the contexts in terms
of a pluralist attitude. After having presented abductive
reasoning in the fourth section, the scene for a dialogi-
cal understanding of abduction is set in the fifth section.
All the details of dialogical pluralism, dynamics of con-
texts, and dialogical defeasibility cannot be given here.
However, the relevant related works on each of these
points will be systematically mentioned.

14.2 Logic and Argumentation: The Divorce

Heavy criticism against the formal logic approach to
natural human reasoning has been raised by theoreti-
cians of argumentation who have stressed the impor-
tance of the context, the plausibility and the defeasi-
bility of arguments, the commitments and the actions
of the agents, and so on. Some of the most virulent
of these theoreticians were perhaps Toulmin [14.1] (see
also [14.6] for recent studies about ToulminModel) and
Perelmann and Olbrechts-Tyteca [14.2]. This chapter
focuses on Toulmin, who defined a model of argumen-
tation based on the analysis of microarguments. This
model will be called the Toulmin Model of argumenta-
tion whose general idea is that some data leads to the
claim (or conclusion). The data is supported by a war-

Example (from Toulmin):

Harry was born
in Bermuda

A man born in Bermuda will
generally be a British subject

The following statutes and
other legal provisions ...

Both his parents were
aliens/he has become a
naturalized American ...

presumably Harry is a
British subject

SoD

W

B

R

So Q, C

Since

Since

On account of

Unless

Unless

On account of

D: Data
W: Warrant
Q: Qualifier (probably,
 necessary, etc.)
R: Rebuttal
C: Claim
B: Backing

Fig. 14.1 Toulmin Model

rant. The whole process is qualified by an adverb such
as plausibly, probably, or necessarily, that may be re-
butted. An important insight of Toulmin’s work was
to emphasize the role of the agent and the persuasive
feature of argument. Arguments are used to persuade
someone to believe something. An agent puts forward
an argument in order to defend a thesis and the in-
ferences are defeasible, that is, they might be rebutted
when new information is encountered. Schematically,
the Toulmin Model may be represented as in Fig. 14.1.

This schema represents the process that consists in
defending a claim against a challenger. First, the agent
asserts a Claim (C) and then defends this claim by ap-
pealing to relevant available facts, the so-called Data
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(D). Next, the challenger may ask for the bearing of the
data and this is exactly what is called the Warrant (W).
The warrant influences the degree of force on the con-
clusion it justifies and this is signaled by the qualifying
of the conclusion with the Qualifier (Q): necessar-
ily, probably, or presumably. The qualifier presumably
renders the argument defeasible, and the condition of
Rebuttal (R) should be specified. The process ends in
a question that consists in asking what is thought about
the general acceptability of the argument: what Toul-
min calls Backing (B). In different fields, warrant and
backing might be of different kinds.

According to the Toulmin Model, an argument is
assumed to be used by a practical agent. Inferences
are not conceived in terms of the relationship between
propositions independent from any act. And the act of
inferring is linked with the agent who expresses a claim,
by means of which a commitment to a thesis is in fact
expressed. The underlying methodological thesis is that
the study of reasoning must be related to real-life rea-
soning. This kind of reasoning is never perfect (as in
an ideal model of formal logic) because we never have
all the information needed to defend a claim and we
might always find a rebuttal that changes it. Hence, the
right standard of a good argument cannot be the deduc-
tive standard of validity. An argument succeeds or fails
only in relation to an agent’s target. Toulmin’s schema
enriches the traditional premises–conclusion relation-
ship of the deductive reasoning model of arguments
by distinguishing additional elements, such as warrant,
backing, and rebuttal. It is an interesting fact that the
Toulmin Model and argumentation theory call up not
only the matter of the burden of proof, but also the mat-
ter of the burden of questioning, which is of importance
for the beginning of the process. A consequence of this
action- and agent-centered analysis is that an account
of the defeasibility of reasoning is now required. The
fact that none of these features appeared in formal logic
constituted the core of Toulmin’s criticism, that led him
to consider argumentation theory and formal logic as
radically different disciplines.

There is nothing really controversial in Toulmin’s
critics of formal logic or in his model of argumenta-
tion. Nevertheless, following van Benthem [14.7], in
this chapter, it is believed him to be wrong in pronounc-
ing the divorce of argumentation theory and formal
logic. Indeed, it might be true that classical formal logic
is insufficient to deal with reasoning as a human ac-
tivity. Classical formal logic is not the only way to do
logic, however. Although Toulmin’s work has the virtue
of emphasizing the role of human being, the defeasi-
ble feature of everyday life reasoning, and the dynamic
of argumentative contexts, it is worth noting that those
features were not completely lacking in formal logic.

With respect to the agent, intuitionism initiated by the
Dutch mathematician Brouwer [14.8] is motivated by
the need of taking the importance of the agent into ac-
count. More recently, agent-centered dialogical logic
initiated by Lorenzen [14.9, 10] conceives the notion
of proof itself in terms of interactions between agents.
It remains true that further efforts are still required to
deal with nondeductive reasoning. Before pronouncing
the divorce between logic and argumentation theory,
it should be recognized that many logicians had al-
ready widened the range of argumentative schemas in
formal logic, by adding the agent, thinking otherwise
the premises–conclusion relation, and defining several
kinds of consequence relations.

Certain cognate aspects of reasoning must be
grasped. For example, inference is a process which
involves a flow of information, changes of belief,
knowledge or even desires. Logicians have to take
the “dynamic turn”, in the words of Gochet [14.11].
That is why the agent has sometimes been introduced
explicitly in the object language in order to express
intentional relations by means of specific operators.
The enterprise does not always head in the same di-
rection as an agent-centered analysis (in fact it almost
never goes in that direction) but the enterprise does
provide new tools on how to implement the agent in
the study of reasoning. Hintikka’s explicit epistemic
logic [14.12], and more recently Priest’s intentional
logic [14.13], among others, define useful tools to de-
scribe the intentional states of an agent. In addition,
dynamic approaches, such as the AGM-Belief Revision
Theory [14.14] (and see Chap. 10), are meant to give
an account of how to incorporate new pieces of be-
liefs into an agent’s belief set, conceived as a set of
sentences. In the same spirit, dynamic studies coming
from natural language semantics [14.15–18] and dy-
namic epistemic logic [14.17–19] add operators to deal
with the flow of information and the transmission of
information between groups of agents. The study of dy-
namic inferences is not restricted to model theory and
to the change in information. From a pluralistic point
of view, a change of logic might occur with respect to
a given context of argumentation. For example, dialog-
ical logic is a pluralist enterprise in which the context
of argumentation is defined by means of rules gov-
erning the general organization of a dialectical game
(more precision on this point below). Although this fails
to provide Toulmin with an answer to each critic he
addresses on formal logic, it does reveal how formal
studies are sufficiently rich to consider the possibility of
a more practical logic in which reasoning is conceived
as a human activity.

Another aspect of argumentation stressed by Toul-
min is the imperfect feature of human reasoning, which
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he deals with by means of the notion of rebuttal. Think-
ing of reasoning as defeasible means that an agent
never draws conclusions definitively, that is, whatever
she infers from a given base of information might be
revised when faced with new information. In other
words, the conclusions drawn by an agent might be
defeated. It is worth noting that defeasibility does not
need to be studied in the context of nonmonotonic
logics. If nonmonontonic reasoning is defeasible, the
converse does not hold. Interesting ways of defeasible
cases come from the context [14.20]. What character-
izes defeasible reasoning is the possibility to defeat,
or to change a previously drawn consequence. Again,
this feature cannot be claimed to be completely missing
in formal logic. Indeed, defeasible reasoning has been
studied from various perspectives [14.21]. As already
mentioned, one well-known approach is the epistemic
approach such as that in the context of belief revision
theory. The formal epistemology of Pollock [14.22],
who differentiates between fundamental knowledge and
inferred knowledges, provides another example. In this
theory, inferred knowledge is precisely a knowledge
which might be defeated. Another approach is centered
on the notion of logical consequence, that is, dealing
with defeasibility in the context of nonmonotonic log-
ics (Chap. 10). Some of the most important proposals
are Default Logic by Reiter [14.23] and Circumscrip-
tion byMcCarthy [14.24]. In both of these frameworks,
the conclusion follows defeasibly or nonmonotonically
from a set of premises, just in the case that it will
hold in almost all models that verify the premises.
(For a relevant survey, see for example [14.25–27].
See also the third-way reasoning in [14.4].) It is also
important to mention Batens’ adaptive logic [14.28],
a formal logic in which the application of inference

rules may be subject to conditions with respect to
the context of the proof (e.g., in the context of con-
tradictory premises, disjunctive syllogism might be
rejected).

The three main aspects of the Toulmin Model of
argumentation that have been highlighted are the cen-
tral role of the agent, the dynamics related to the action
and changes of contexts, and defeasibility. In what fol-
lows, it will be argued for a reconciliation of formal
logic and argumentation, and deduction will be also
defined in argumentative practices. Note that it is not
the purpose of this chapter to deal exhaustively with
all the relevant aspects of argumentation. Indeed, every
facet of the dialogical pluralism (although the general
principles are explained and relevant related works are
mentioned) or defeasible reasoning cannot be presented
here. The designation defeasible reasoning gathers to-
gether aspects of default logic, nonmonotonic logics,
truth maintenance systems, defeasible inheritance log-
ics, autoepistemic logics, circumscription logics, logic
programming systems, preferential reasoning logics,
abductive logics, theory revision logics, belief change
logics, and so on. In fact, all of this relates to what is
called by Woods the third-way reasoning [14.4]. Vari-
ous systematic approaches to defeasible argumentation
that make use of formal tools originating from compu-
tational sciences and artificial intelligence can be found
in [14.29].

The main thesis of this contribution is that a unified
study of reasoning may be achieved by focusing on the
key notion of commitment in argumentative interaction.
Indeed, this notion forms the basis for a distinction be-
tween various kinds of speech acts that are significant
for the specification of different kinds of reasonings,
such as deduction and abduction.

14.3 Logic and Argumentation: A Reconciliation

It is true that a study of logic that is not centered on
human activity is not sufficient to deal with reason-
ing in general. However, it is a mistake to conclude
that the divorce between argumentation and logic is
to be pronounced. Logic and argumentation must be
brought together within a general framework in which
a consequence–drawing relation, conceived as a human
practice, is taken into account, and not a consequence-
having relation conceived as a mere calculus between
propositions. In the rest of this section, deduction is
modeled inside an argumentation theory and the stan-
dard (deductive) dialogical logic is defined by giving
the rules for the propositional level.

14.3.1 What is Dialogical Logic?

The dialogical logic referred to in this chapter has its
roots in the works of Lorenzen and Lorenz [14.10], and
more recently in Rahman [14.30] and his collaborators
(see for example Rahman and Keiff [14.31], Fontaine
and Redmond [14.32], and Clerbout [14.33]). Differ-
ent works on dialogical logic have also been developed
by Barth and Krabbe [14.34, 35], among others, and
by the Pragma-dialecticians from an informal point of
view [14.36, 37].

Dialogical logic is considered to be an alternative
semantics, that is neither a model-theoretic semantics
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nor a proof-theoretic semantics, and is grounded in the
argumentative practices. It is a semantics based on the
“meaning is use” of Wittgenstein [14.38, p. 43] and the
description of specific language games governed by the
rules defined below. Although it was first developed
to deal with intuitionist logic, it has since then taken
a pluralist turn. Indeed, different kinds of rules enable
a sharp distinction between different semantic levels
and this enables the definition of a wider range of logics
in a unified framework.

Roughly speaking, dialogical logic is a framework
in which the proof process is conceived as a dialectical
game between two players: the Proponent of a thesis
and the Opponent. The Proponent utters an initial the-
sis and tries to defend it against challenges performed
by the Opponent, who criticizes the thesis. The two
players make moves alternately. Those moves consist
of specific speech acts by means of which they perform
challenges and defences. A thesis is valid if and only
if the Proponent is able to defend it against every at-
tack of the Opponent. In order to criticize an assertion
of her argumentation partner, a move in which a for-
mula has been uttered has to be challenged with respect
to its main connective. Such sequences of utterances,
challenges, and defences are regulated by the particle
rules by means of which the local meaning of the log-
ical constant is given. In addition, structural rules give
the general organization of the dialogue and determine
the global level of semantics. In fact, these structural
rules dictate how the particle rules may be applied and
allow to define different games for different contexts
of argumentation, for different underlying logics. In the
following sections, the particle rules are given, then
the structural rules, and finally, the notion of winning
strategy which is necessary for the definition of the di-
alogical notion of validity is presented.

14.3.2 Particle Rules

In a dialogical games, moves are of two different kinds:
challenges and defences (plus the utterance of the ini-
tial thesis as a special move), and are performed by
means of two kinds of speech acts: assertive utterances
and interrogative utterances. Note that challenges are
not necessarily performed by means of interrogative
utterances (as shown later below). An utterance is chal-
lenged with respect to its main connective. How to
challenge and how to defend an utterance is prescribed
by the particle rules, which therefore gives the local
meaning of logical constants. More precisely, particle
rules are abstract descriptions of how an assertion may
be challenged and defended with respect to its main
connective. They are abstract because they are not re-
lated to any specific context of argumentation and are

defined independently of the identity of P andO (hence
they are defined making use of player variables X and
Y). It is fundamental that when agents perform utter-
ances, they are committed to justify their claims. This
commitment is essential in the characterization of dif-
ferent kinds of speech acts and in giving the meaning of
what is said.

The language used to define the rules of dialogical
logic is defined as follows. Let L be the language of
standard propositional logic:

� Two labels, O and P, stand for the players of the
game: the Opponent and the Proponent, respec-
tively.� To define particle rules, variables X and Y are re-
quired, withX¤ Y, that hold for players (regardless
of their identity with O or P).� Force symbols, Š and ‹, are used to specify the kind
of speech act at stake: Š for declarative utterances,
and ‹ for interrogative utterances.� The conjunction can be indexed yielding ^i, where
i 2 f1;2g, such that ^1 stands for the first conjunct,
and ^2 the second.� r WD n indicates the rank chosen by the player at the
beginning of a dialogue, as pointed out by the rule
[SR0]. For example, n WD 1 means that the rank is
1. (The notion of rank is explained and defined in
Sect. 14.3.3)

A move is an expression of the form X- f -e, where
X is a player variable, f a force symbol, and e is either
a well-formed formula of L or a question of the form ‹_
or ‹^i. Note that the dash � has no meaning, it is used
only in order to distinguish in a clear way the element of
a dialogical expression. A sequence of such moves will
be called a play, and a sequence of plays a (dialogical)
game.

Particle rules (Table 14.1) are abstract descriptions
that consist of sequences of moves such that the first
member of the sequence is an assertive utterance, the
second says how to challenge that utterance with re-
spect to its main connective, and the third says how to
answer the challenge.

Rules are abstract descriptions that are formulated
by making use of variables X and Y (and not O and P).

Table 14.1 Particle rules

Assertion Challenge Defence
X�Š�' ^ Y�‹� ^1

or
Y�‹� ^2,

X�Š�'

or
X�Š� respectively

X�Š�' _ Y�‹�‹_ X�Š�' or X�Š� 

X�Š� :' Y�Š�' No defence
X�Š�' !  Y�Š�' X�Š� 
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They are independent of any specific context of argu-
mentation. They are the same no matter the presup-
posed logic and are applied in the same way by both
players. The formulation of particle rules is symmetric.

Symmetry is an essential feature of dialogical par-
ticle rules and this is the reason why dialogical logic
is immune to trivializing connectives such as Prior’s
tonk [14.39], even if there is no reference to any model
or to any truth condition. Rahman et al. [14.40] and
Rahman [14.41] show that defining a rule for a tonk op-
erator would lead to a formulation of particle rule which
is not symmetric. This would involve player-dependent
rules, which is not possible in dialogical logic because,
at the local level, the identity of the players has not been
yet defined. As rightly stressed by Clerbout [14.33],
it does not even make sense to talk of Opponent and
Proponent at the local level. Indeed, the identity of the
players is defined at the level of structural rules, when
it is said, for example, that the Proponent is the player
who utters the initial thesis.

Note how commitment is essential to the meaning
of an assertion. An agent, on uttering a conjunction, is
committed to give a justification for both of the con-
juncts. Hence the challenger has the choice of which
subformula to defend. That is, if X utters ' ^ , Y
challenges this move by asking either ‹^1 (the first
conjunct) or ‹^2 (the second conjunct). In the case of
a disjunction, it is the defender (X) who chooses. In-
deed, an agent uttering a disjunction is committed to
give a justification for (at least) one of the disjuncts,
that is, Y asks ‹_ and X chooses to answer either '
or  .

Note that a challenge on a negation cannot be an-
swered. The challenge consists in a switch in the burden
of the proof: If a player X utters a formula :', a player
Y challenges that formula uttering ' and has to defend
it thereafter. For the conditional, Y takes the burden
of the proof of the antecedent. It might be said that
when an agent X utters a conditional '!  , then X
is committed to justifying  with the proviso that the
argumentation partner Y concedes '.

14.3.3 Structural Rules

Now structural rules are needed in order to define the
general organization of a dialogue by explaining how
to apply the particle rules, that is, how to start a dia-
logue, who has to play, when, who wins, and so on. The
global level of meaning is defined by these rules, that
is, a level of meaning that arises from the application of
the particle rules in specific contexts of argumentation.

[SR0] [Starting Rule]
Let ' be a complex formula. Every dialogical game

D.'/ starts with the assertion of ' by P (' is called
the initial thesis). O and P then choose a positive
integer called repetition rank.

[SR1-c] [Classical Gameplay Rule]
After the ranks have been chosen, moves are alter-
nately performed by O and P and every move is
either a challenge or a defence. Let n be the repe-
tition rank of a player X: When it is X’s turn to play,
X can challenge a preceding utterance or defend her-
self against a preceding challenge at most n times by
the application of particle rules.

[SR1-i] [Intuitionistic Gameplay Rule]
After the ranks have been chosen, moves are alter-
nately performed by O and P and every move is
either a challenge or a defence. Let n be the repe-
tition rank of a player X: When it is X’s turn to play,
X can challenge a preceding utterance or defend her-
self against the last challenge which has not yet been
defended, at most n times by the application of par-
ticle rules.

[SR2] [Formal Rule]
P is not allowed to utter an atomic formula unless
O uttered the same atomic formula before. Atomic
formulae cannot be challenged.

[SR3] [Winning Rule]
A player X wins the game if and only if the game
is finished and X made the last move. It is said that
a game is finished if and only if there are no more
moves allowed according to the particle rules.

The first rule [SR0] sets the identity of the players
by claiming that the Proponent is the one who utters the
initial thesis and introduces asymmetry. Once the initial
thesis is uttered, the players have to choose a rank of
repetition. That rank of repetition prevents them from
infinitely repeating the same moves. In fact, they indi-
cate how many times a player can challenge or defend
a formula. For example, if a player choses rank 1, then
this player is allowed to challenge a formula at most
once. Ranks are used to ensure that every game ends af-
ter a finite number of moves. Rules [SR1-c] and [SR1-i]
regulate the gameplay and distinguish classical from
intuitionistic games. Note that a game is never played
with both of them. The classical rule [SR1-c] does not
impose any restriction with respect to the defences.
While playing with the intuitionistic rule [SR1-i], it is
forbidden to defend the same move twice or to give
a defence against a challenge that is not the last one.
This is related to the intuitionistic requirement of hav-
ing a direct justification for the uttered formula.

The formal rule, [SR2], might be understood as
a rule that prevents the Proponent frommaking any sup-
position which might be used to win. Without that rule,
dialogues would be trivial and the Proponent would al-



Part
C
|14.3

302 Part C The Logic of Hypothetical Reasoning, Abduction, and Models

ways be in a situation to win. Finally, the winning rule,
[SR3], gives the conditions of victory.

14.3.4 Winning Strategy and Validity

Hitherto, nothing has been said about the notion of va-
lidity. In dialogical logic, validity is not defined in terms
of truth preservation but rather in terms of winning
strategy. It is said that a player has a winning strategy
if and only if she is able to win regardless of the moves
and the choices made by her argumentation partners.
This leads to the strategic level which is not involved at
the level of particle and structural rules. Indeed, noth-
ing in those rules indicate how to play strategically and
in no way do they indicate how to win; neither do they
prevent anybody from playing badly. Note then that it
is not one play of the game which is to be taken into
account to determinate the validity of a formula: The
validity of a formula is determined by the existence of
a winning strategy.

Now, it is reasonable to ask whether a generally
good strategy exists. First a comment about the choice
of rank. As explained by Clerbout [14.33, 42], it is
sufficient to consider the case in which the Opponent
chooses rank 1 and the Proponent rank 2 in order to
obtain a significant range of winning strategies to deal
with deductive validity. Second, trained dialogicians
know in fact that the best way to play is always to let
the Opponent choose first when it is possible and there-
after to repeat the same choices. This is the well-known
copy-cat strategy based on a clever use of the formal
rule.

An illustration of a dialogue is given in Table 14.2
by taking the elimination of double negation principle
::p! p as an example. In Table 14.2, the moves of
the players are written down in the column O for the
O-moves, and in the column P for the P-moves. The
number of a move is indicated in the outer column
whereas those of the challenges moves are indicated in
the inner columns. The game runs by applying the clas-
sical rule [SR1-c].

At move 0, P states the initial thesis. At move 1,
O chooses rank 1 and P chooses rank 2. At move 3;
O challenges the initial thesis uttering the antecedent
of the conditional, namely ::p. P cannot answer im-
mediately by giving the consequent p because P cannot
utter an atomic formula. Therefore, at move 4, P chal-
lenges the double negation ::p by uttering :p. No
defence is allowed andO has to counter-attack by utter-
ing p. P uses that concession to answer to the attack 3
at move 6. Again, P wins. However, this game has been

Table 14.2 Dialogue 1

O P
::p ! p 0

1 r WD 1 r WD 2 2
3 ::p 0 p 6

� � � 3 :p 4
see o 5 p 4 � � �

played with classical rule [SR1-c]. If it had been played
with the intuitionistic rule [SR1-i], Pwould have lost. P
could not have performed move 6 because the last chal-
lenge ofO is 5, not 3 ([SR2]). Thus the dialogue would
have ended at move 5 with a victory by O.

These two different possible gameplays illustrate
the difference between classical and intuitionistic nega-
tion. Quine’s claim “change of logic, change of sub-
ject” [14.43, pp. 80–94] must be thought otherwise.
Indeed, the dialogical setting displays that negation has
the same local meaning in every logic, and its global
meaning is changing according to its use in different
contexts of argumentation. Both the semantic levels are
significant in fully defining the meaning of an expres-
sion.

Beyond the classical and intuitionistic logics, the
sharp distinction between the particle rules and the
structural rules allows a development of dialogical logic
as a pluralistic tool. The pluralistic aspect of dialogical
logic allows us to deal with various kinds of argu-
mentation contexts and their dynamics, the importance
of which has been stressed by argumentation theo-
reticians. Indeed, more expressive languages may be
introduced by means of the introduction of new sym-
bols, the (local) meaning of which will be given by
a particle rule. A language may be used in different con-
texts of argumentation, with various underlying logics.
Dialogically, this means that a language may be used
in different kinds of games distinguished by their struc-
tural rules.

As stated earlier, it is not the purpose of this contri-
bution to present all the varieties of dialogical logics
which nevertheless should be taken into account in
order to deal with the contextual aspect of argumen-
tation. More details on first-order dialogical logic are
to be found in Clerbout [14.42]. With different struc-
tural rules it is also possible to define a dialogical free
logics as in Rahman et al. [14.44], Fontaine and Red-
mond’s paper in [14.45] and an application to the logic
of fiction is to be found in Fontaine [14.46]. For the in-
troduction of modal operators (and explicit contexts of
argumentation) and their use in different modal frames,
see [14.47] and [14.31].
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14.4 Beyond Deductive Inference: Abduction

Within dialogical logic, an analysis of the relation of
consequence–drawing in terms of argumentative games
in which the action of the agents and their interactions
are taken into account has been proposed. Until now,
it has been focused on deductive reasoning. However,
if the aim is to bring together logic and argumenta-
tion, it is necessary to extend the dialogical approach
to nondeductive reasoning. This is performed by taking
abduction as a case of nondeductive reasoning. After
having defined the conception of abduction that will be
defended here, the basis for abductive dialogues will
be described. While relying on existing proposals in
this field, the aim is to offer a new and different un-
derstanding of abduction in the context of a dialogical
interaction.

As explained by Magnani [14.48], the knowledge
assimilation theory of Kowalski [14.49], in which the
assimilation of new information into a knowledge base
is described, might explain the role of the agent in
abduction in terms of the generation of hypotheses.
Aliseda also explores an epistemic study of abduc-
tion in which a more important role would be given
to the agent. She defines abduction in terms of epis-
temic changes in the context of Belief Revision The-
ory [14.50, pp. 179] (see also Chap. 10). The role of
the agents might be strengthened by developing that
approach in the context of dialogical logic, and more
precisely in the context of the dialogical approach to
belief revision of Fiutek [14.51]. In a similar way,Nepo-
muceno et al. [14.52] (see also Chap. 13 by Nepomu-
ceno et al.) define abduction in the context of dynamic
epistemic logic and its public announcement operator.
This might be dialogically understood on the basis of
Magnier [14.53]. However, this is not the path followed
in this contribution, because the agent would be intro-
duced into the language and abduction would still be
understood in terms of consequence-having relation,
despite some kind of interaction in a dialogical re-
construction. Moreover, an epistemic understanding of
abduction would lead to consider hypothetical abduc-
tive solutions as new pieces of knowledge; something
that is not defended in this chapter, as clarified in the
following.

Essentially, the challenge consists in explaining
what is specific to abduction in a dialogue. As shown
below, while studying abduction, the concepts of ab-
ductive problem and abductive solution are fundamen-
tal (Chap. 10). In order to define dialogues based on
these concepts, a new kind of move performed by
means of a specific type of speech act is needed. There-
fore, the problem is to clarify this type of speech act
and the rules which govern it. Again, the key question

is related to commitment: What are we committed to
when we state an abductive problem or an abductive so-
lution? The purpose is to understand abduction in terms
of consequence-drawing and to study the key step of
such an inference in terms of interactions in relation to
the question of commitment. Therefore, although there
exists different approaches to abduction, in this chapter,
the GW schema (following Gabbay and Woods [14.5]),
in which a central role is given to the agent, constitutes
a landmark. This contribution will also rely on Aliseda’s
insights [14.50] when a dialogical reconstruction of ab-
duction is proposed, thereby benefitting from her clear
and formal systematization of this kind of inference.

14.4.1 The GW Model of Abduction

What is characteristic to abduction and is not char-
acteristic to other reasoning kinds, such as deduction
and induction? When is an abduction triggered? Why
does an agent begin an abductive process? How does
an agent draw abductive conclusions and what is the
(cognitive or epistemic) status of those conclusions?
According to Gabbay and Woods [14.5, 54], and more
recently Woods [14.4], abduction is first to be under-
stood as an inference triggered by an ignorance problem
and, second, the relation between the premises and
the conclusion is to be understood as an ignorance-
preserving relation.

Abduction is an inference triggered in response to
an ignorance problem, in particular, there is an igno-
rance problem when, with respect to a (surprising) fact
or state of affairs, there is a question (a problem), Q,
we cannot answer with our present knowledge. We as-
sume that there is a sentence ˛ such that if we knew it,
it would help us to answer Q. With respect to such a Q,
three situations are possible:

� Subduance, that is, new knowledge removes igno-
rance (e.g., by discovering an empirical explana-
tion)� Surrender, that is, we give up and do not look for an
answer� Abduction, that is, we set a hypothesis as a basis of
new actions.

Abduction is thus an inference by means of which
we do not solve the ignorance problem, but we over-
come it in a certain way by setting a hypothesis. This
hypothesis can then be released in further reasoning,
something which allows for specific kinds of actions.
In Woods’ words, abduction “is a response that offers
the agent a reasoned basis for new action in the pres-
ence of that ignorance” [14.4, p. 368]. Therefore, what
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must be grasped here is that the conclusion of an abduc-
tion is not (necessarily) a true sentence or a new piece
of knowledge; it is a hypothesis that can be used in fur-
ther reasoning. The ignorance contained at the level of
the premises is inherited by the conclusion.What is spe-
cific in the relation between premises and conclusions
here is not a gain of knowledge, but rather an ignorance-
preserving relation.

For reasons of clarity, the GW schema is formally
presented following Woods’ latest version in [14.4,
p. 369]. Let T be an agent’s epistemic state at a specific
time, K the agent’s knowledge base at that time, K	 an
immediate successor base ofK, R an attainment relation
for T (that is, R.K;T/means that the knowledge-baseK
is sufficient to reach the target T), a symbol denot-
ing the subjunctive conditional connective, for which no
particular formal interpretation is assumed, and K.H/
the revision of K upon the addition of H. C.H/ denotes
the conjecture of H and Hc its activation. Let TŠQ.˛/
denote the setting of T as an epistemic target with re-
spect to an unanswered question Q to which, if known,
˛ would be the answer. According to the GW schema,
the general structure of abduction is as follows:

1. TŠQ.˛/
2. :.R.K;T// [fact]
3. :.R.K	; T// [fact]
4. H … K [fact]
5. H … K	 [fact]
6. :R.H;T/ [fact]
7. :R.K.H/;T/ [fact]
8. H R.K.H/;T/ [fact]
9. H meets further conditions S1; : : :; Sn [fact]
10. Therefore, C.H/ [subconclusion, 1-7]
11. Therefore, Hc [conclusion,1-8]

The aim, here, is to characterize what is specific to
abductive inference, by taking into account what trig-
gers such an inference, and to describe the subsequent
process. At the beginning, a cognitive target TŠQ.˛/ is
set (1): something we aim to reach in response to an
ignorance problem. The ignorance problem triggers an
abduction because it is a cognitive irritant, that is, it
places us in an unpleasant situation of lack of knowl-
edge which can be overcome by action and reasoning.

Step (2) :.R.K; T// says that the current knowl-
edge is insufficient to attain the cognitive target. This
is essential if we face an ignorance problem. Step (3),
:.R.K	;T//, says that there is no immediate successor
of K by means of which the target would be attained.
This is a crucial step. If there were such a K	, we
would just extend our knowledge by adding new infor-
mation and would refrain from triggering anything such
as an abduction. This would be subduance, that is, new
knowledge would remove the initial ignorance.

If there is no K or K	 relating to the cognitive tar-
get, a hypothesis H is sought by the agent in order to
set a plausible solution to the ignorance problem. Such
a hypothesis is not knowledge, it is a hypothesis. This
is represented in steps (4) and (5). Since it is only a hy-
pothesis, it cannot relate to the cognitive target either,
because it is not a solution. Even combined with the
knowledge set, the cognitive target is not attained. This
is expressed in steps (6) and (7).

What is the purpose of the hypothesis H if it does
not solve the problem? In step (8), it is settled as
a hypothesis that subjunctively relates to the cogni-
tive target in combination with our knowledge base.
What does this mean that it subjunctively relates to the
cognitive target? This is how Gabbay and Woods un-
derstand Peirce’s, hence, in the schema laid down by
Peirce [14.55, 5.189] (see also Chap. 10 for the original
formulation). It means that it is not a true sentence, it is
not a piece of knowledge either, but if it were, it would
give an acceptable solution to the cognitive problem. As
in step (9), some additional conditions should be added
for the acceptability of H.

Having set hypothesis H as a subjunctive solution
of the cognitive problem, abduction first consists in
concluding that we are right in conjecturing that hy-
pothesis. This is the first subconclusion at step (10).
C.H/ means that the hypothesis H is conjectured. It
is important to notice here that abduction does not end
at step (10). Indeed, by taking seriously the fact that
abduction is triggered by a cognitive problem, we trig-
ger an abduction not to conjecture a hypothesis, but
in order to find a possibility of further actions despite
the lack of knowledge. Therefore, the abduction should
not end before step (11), that is, when the conjecture
is released and when the hypothesis is used in further
reasoning as a basis for new action. HC represents the
hypothesis released in a further reasoning, that is, in
a reasoning in which we act on the hypothesisH and the
superscript C indicates the conjectural origin of the hy-
pothesis. Following Woods [14.4, p. 371] an inference
that ends at step (10) will be called a partial abduction,
and an inference continuing with step (11) a full abduc-
tion.

For the purpose of clarity, in step (10) we face two
possibilities. First, we do not test the hypothesis but
we use it in a further reasoning (as in step (11)). This
is precisely what is called full abduction. Second, we
test the hypothesis, by empirical methods, for exam-
ple. This presents us with three possibilities. First, the
hypothesis is confirmed and we obtain a new piece of
knowledge; this would lead to a situation similar to the
K	 situation above. In this case, no full abduction is
triggered, that is, we do not act on the hypothesis in an
ignorance-preserving way. In fact, we would end with
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new knowledge and this is subduance, or hypothetico-
deductive reasoning, induction or even a mix, but this
is not abduction. Second, we do not have confirmation
and give up on the hypothesis: again this would end in
a partial abduction. Third, we do not have confirmation
but we continue with the hypothesis and perform a full
abduction.

This is what leadsWoods [14.4] to claim that abduc-
tion should not be understood as an inference to the best
explanation (that would consist of the first part of the
abduction schema, with respect to certain aspects), but
rather as an inference from the best explanation. That is,
we opt for a hypothesis and make an inference by acti-
vating that hypothesis. The following example of daily
reasoning illustrates this point:

Shahid and Ángel are in Mexico City at the Bar-
ranca del Muerto underground station (Fig. 14.2 ). They
want to go to a conference near Universidad. On their
map, the new line (dotted line on the map) between
Mixcoac and Zapata is missing. They do not know
the existence of this line and decide to travel first to
Tacubaya. During the trip to Tacubaya, they see a work-
mate disembarking the train at Mixcoac. They think
their workmate will be late and they proceed to change
in Tacubaya. There, they board another train to Centro
Médico where they will change again to go to Uni-
versidad. When they arrive at the conference they are
surprised to see their workmate already there. The fact
to be disclosed is now that there is a faster way to
go to Universidad which cannot be explained on the
basis of the information contained on the incomplete
map.

With respect to the previously detailed GW schema,
step (1) TŠQ.˛/ is such that Q is the question of know-
ing how their workmate might have arrived so early.
The cognitive target T would be a situation in which
an ˛ is known such that ˛ would be the answer to that
question. With respect to step (2), their knowledge base
is insufficient to answer the question because their map
does not show any another way to reach Universidad
(:.R.K;T/). In step (3), they receive no further knowl-
edge (e.g., an updated map) to answer the question
(:.R.K	;T/). There are three possibilities: First, they
do not care and follow the same trip as the day before
(surrender). Second, they search for more information
and obtain an updated map in which the line between
Mixcoac and Universidad appears (subduence). Note
that in this last case, no abduction is triggered, a new
piece of information is added to the knowledge base
(such that the new knowledge-base K	 explains why
the workmate went faster the day before – R.K	; T/).
Third, they perform an abduction. That is, they conjec-
ture the existence of the line and, therefore, they can
leave half an hour later the following day. The exis-

Centro Médico
Tacubaya

Mixcoac

M

M M

M

M

M

M

M

M

M

M

M

M

Zapata

Universidad

Barranca
del Muerto

Fig. 14.2 México City Metro

tence of such a line is a hypothesis, H, and is such
that H … K (step (4)) and H … K	 (step (5)), and is not
part of any knowledge set. Therefore, step (6) holds be-
cause H is not an established fact and does not relate
to the target (:R.H;T/). Moreover, step (7) also holds
because even combined with their knowledge-base K,
it does not relate to the cognitive target (:R.K.H/;T/).
Step (8) is crucial because H only subjunctively relates
to the cognitive target, that is, the effective existence
of another line might be such that, when added to the
knowledge-base K, it would allow the cognitive target
T to be reached. However, H is only a hypothesis and
without further information, it does not constitute an ˛
answer to Q that would relate to the cognitive target
T . If H meets further conditions (S1; : : :; Sn/ it might
be considered as a good or plausible explanation, per-
haps the best one, as expressed in step (9), and that
hypothesis would conjectured as in step (10) (C.H/).
The following day, Sahid and Ángel stop atMixcoac as
if they knew the existence of this line, but in fact they
do not. That is, step (11), they release the conjectured
hypothesis (HC/ and act upon it despite their persisting
ignorance with respect to the genuine explanation of the
initial problem.

The fact that an epistemic view of the abductive in-
ference thus described would not grasp the specificity
of abduction has to be emphasized. Indeed, the new
hypothesis is not to be considered as a new piece of
knowledge or belief. It might be accepted as an abduc-
tive conclusion and as a good explanation without being
believed or accepted as the good explanation. What is
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characteristic of an abduction is the conjectural aspect
of its conclusion and the activation of the hypothesis in
further reasoning. What is essential to an abduction is

that the cognitive target is not attained by a definitive
solution of the initial problem at the level of the conclu-
sion.

14.5 Abduction in Dialogical Logic

It is time to propose a dialogical understanding of
abduction and its basic concepts. In previous work,
Keiff [14.56, pp. 200ff] defines abductive problems in
the context of substructural dialogues, namely dia-
logues in which optimal rules to defend a thesis are
sought. Roughly speaking, in the context of substruc-
tural dialogue for modal logic for example, the Propo-
nent is allowed to conjecture the accessibility relations
that are needed for the defence of her thesis, while this
kind of move is forbidden in modal dialogical logic.
The framework now outlined is rather different and
more general, even if some basic problems remain sim-
ilar.

Although some given explanations have their roots
in the GW model and Aliseda’s characterization of ab-
duction, the aim is not to give a faithful dialogical
formalization of these approaches. The point is rather
to identify the general features of abductive dialogues
following these three main questions:

� How can a surprising fact, an abductive problem and
(or) an ignorance problem be characterized?� How can the guessing step, in which a hypothetical
explanation is conjectured, be characterized?� How can the ignorance-preserving feature of abduc-
tion be characterized?

The first question relates to the conditions under
which an abductive problem may be stated in a game,
that is, the triggering of an abductive dialogue must
be described. The second question relates to the possi-
bility of conjecturing an explicative hypothesis during
the dialogue, that is, the act of guessing specific to an
abductive dialogue must be described. The third ques-
tion relates to the conjectural status of the explicative
hypothesis in a dialogue, that is, the question of the
commitment must be asked. Indeed, what are we com-
mitted to when we conjecture a hypothesis? This last
question is more complicated and involves in-depth
considerations about the defeasible aspect of conjec-
tures. In this chapter, this difficulty will be explained
in terms of not-conceded preservation, that is, a hy-
pothesis that has not been conceded by the opponent,
remains not conceded at the end of an abductive dia-
logue even if the Proponent has conjectured it. In fact,
it is the general point of this contribution to propose
a dialogical explanation of abduction in terms of what
is called a concession problem.

The leading idea is to allow the Proponent to claim
I am facing an abductive problem when this agent
has no winning strategy for a thesis ˚ given some
shared knowledge or an accepted theory �. As ex-
plained below, the theory � is represented as a set of
initial concessions of the Opponent.˚ is the thesis that
the Proponent cannot explain on the basis of the ini-
tial concessions, that is, ˚ holds for a surprising fact.
If the Proponent is able to justify which kind of ab-
ductive problem she is being faced, then she triggers
a subdialogue in which she is allowed to conjecture
a hypothetical explanation ˛.

The Proponent then has to show that this conjecture
is such that if it had been conceded, it would have en-
abled her to explain the surprising fact expressed by ˚ .
However, the hypothetical explanation ˛ remains not-
conceded at the end of the dialogue and the Proponent
only subjunctively and defeasibly wins. To parallel the
explanation to the GW model, let the target T of the
Proponent be the situation in which she wins the di-
alogue, the question Q be a set of challenges she is
unable to answer, and ˛ that which would enable her
to defend herself against those challenges. When the
Proponent conjectures a hypothesis ˛, the target is only
subjunctively attained. In other words, the Proponent
is in a situation, such that if ˛ had been conceded,
she would have explained ˚ . The explicative feature
of the conjectured ˛ may thus be interpreted in the
spirit of the subjunctive attainment relation ( ) of
the GW model of abduction. The situation also paral-
lels the :R.H;T/ and :R.K.H/;T/ of the GW model
because the Proponent does not actually reach the tar-
get. Note that this process, which will be described
in this section, is simply partial abduction. In order
to attain a characterization of full abduction, it should
be explained how to release the conjectured hypothe-
sis in a further dialogue and how to act upon it. This
requires in-depth considerations about the specificity
of the speech act by means of which such a hypoth-
esis is conjectured. This issue will be dealt with in
Sect. 14.6.

14.5.1 Triggering

The triggering of an abductive dialogue is characterized
within what is called by Rahman and Keiff [14.31] and
Rahman and Tulenheimo [14.57] material dialogues,
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Table 14.3 Dialogue 2

O P
‚1 A ! B 0
‚2 B ! .C^ :E/ C^ :E
‚3 D ! .C^ :E/
1 m WD 1 n WD 2 2
3 ‹^1

that is, dialogues with the standard rules plus initial
concessions of the Opponent. For example, let � be
a theory or a knowledge base consisting of several sen-
tences, and ˚ be the initial thesis. A material dialogue
begins with O conceding all the formulae contained
in � and with the initial thesis uttered by P. The dia-
logue then runs as usual. The following example, with
� D fA! B; B! .C^:E/; D! .C^:E/g and˚ D
C^:E, is given in Table 14.3.

In Dialogue 2 (Table 14.3), O concedes the for-
mulae of � numbered �1; : : :; �n. P states the initial
thesis C^:E. Both choose a rank. At move 3, O chal-
lenges the initial thesis by asking for the first conjunct.
P cannot answer because the required C is an atomic
formula. There is no winning strategy for P for˚ , given
the initial concessions�1; : : :; �n. If�1; : : :; �n is in-
terpreted as the shared (assumed) knowledge and ˚ as
holding for a fact, then it might be said that ˚ repre-
sents a surprising fact which cannot be explained by the
current knowledge. The idea is now that in such a sit-
uation, P has to be allowed to claim that she is facing
an abductive problem. In fact, as it is clear in the di-
alogue (Table 14.3), an abductive problem is triggered
by a concession problem: P cannot explain her thesis on
the basis of the concessions.

The notion of abductive problem is dialogically
defined following Aliseda’s [14.50, p. 47] definitions
of abductive novelty and abductive anomaly (see also
Chap. 10): P will now be allowed to claim I am fac-
ing an abductive novelty or I am facing an abductive
anomaly, as in the rules [SR-AN] and [SR-AA] below.
In the first case, P is committed to show that neither ˚
nor :˚ is entailed by �. In other words, P has no win-
ning strategy for ˚ nor for :˚ , given �. In the second
case, P is committed to show that˚ is not entailed by�
while :˚ is. That is, P has a winning strategy for :˚
but not for ˚ given �. Here, the technical difficulty is
that the Proponent would need a losing strategy in order
to justify she is facing an abductive novelty or an abduc-
tive anomaly. How strange such a game would be!

Table 14.4 Particle rule for F operator

Assertion Challenge Defence
X�Š�F�˚ � d1 Y�‹F� � d1:i X�Š� :.� !˚/� d1:i

Y opens a subdialogue d1:i.

The difficulty is easily overcome by making use of
the attackability operator F introduced by Rahman and
Rückert [14.58] in their dialogical connexive logic. This
F operator allows the Proponent to claim that under
some conditions, the formula in the scope of that op-
erator cannot be defended. Here a subscript is used in
order to apply this operator in material dialogues. That
is, if X says F�˚ , then she is claiming that ˚ may
be attacked given the premises �. The rule is stated in
Table 14.4.

Note that the rule is formulated with an indication
for what is called section of a dialogue, i. e. main di-
alogue (d1) and subdialogue (d1:i), in accordance with
the following definitions:

[D2] [Main Dialogue d1]
The first section of a game in which P defends an
initial thesis is called main dialogue d1.

[D3] [Subdialogue]
The subdialogue triggered by the challenge of an F
operator in a section d1 or the subdialogue triggered
by an AS�challenge is called subdialogue d1:i. Note
that this rule allows subdialogues of subdialogues
(i. e., a subdialogue d1:i:i triggered in a subdialogue
d1:i, for example in the case of an AS�challenge, as
defined in the next section).

The main idea is that X justifies F�˚ by show-
ing that ˚ cannot be justified, given �. This supposes
a device that allows switches of the burden of proof, in
addition to the particle rule for theF operator. This pre-
supposes a generalization of the formal rule by means
of a structural rule which says that the player who
plays formally (i. e., the player who cannot introduce
atomic formula) is the player who challenges an F
operator (or the player who defends an AS-move). In
other words, the argumentation partner who challenges
a formula such as F�˚ will have to take the burden
of the proof by defending ˚ under the formal restric-
tion.

[SR2.1] [Formal Restriction]
Let dn be a section of a dialogue (main dialogue or
subsection): If X plays under formal restriction in
dn, then X is not allowed to utter an atomic formula
unless Y uttered the same atomic formula before in
the same section dn.

The rule governing the application of the formal
restriction is now defined as follows:
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Table 14.5 Dialogue 2.1

O P
d1

. . . . . . . . . . . . . . . . . .
3 ‹^1

F�.C^ :E/^F�:.C^ :E/ 4
5 ‹^1 4 F�.C^ :E/ 6

d1:1
7 ‹F� 6 :.� ! .C^ :E// 8
9 � ! .C^ :E/ 8 � � �
11 C^ :E 9 � 10
. . . . . . . . . . . . . . . . . .

[SR2.2] [Application of the Formal Restriction]
The application of the formal restriction is regulated
by the following conditions:

1. In the main dialogue d1, if X D P, then X plays
formally.

2. If X opens a subdialogue d1:i by challenging an F
operator, then X plays formally.

3. If X opens a subdialogue d1:i by challenging an
AS-move, then Y plays formally.

Now, structural rules that allow the Proponent to
claim she is facing an abductive problem are added.
She has the choice between the two kinds of abductive
problems previously defined:

[SR-AN] [Utterance of Abductive Novelty]
When P loses a game playing deductively (i. e., with
the standard rules of dialogical logic), then P is
allowed to claim that she is facing an abductive nov-
elty by saying F�˚ ^F�:˚ .

In the same way, the Proponent is allowed to
choose between the claim that she is facing an abduc-
tive novelty or an abductive anomaly. The following
rule is therefore added:

[SR-AA] [Utterance of Abductive Anomaly]
When P loses a game playing deductively (i. e.,
with the standard rules of dialogical logic), then P
is allowed to claim that she is facing an abductive
novelty by saying F�˚ ^:˚ . Note here that the
second conjunct does not trigger any subdialogue
di:i and that :˚ has to be defended in the same con-
text as the initial thesis, namely when the concession
of � is given by O.

Without going into excessive details, this point
is explained with an example based on Dialogue 2,
(Table 14.3).

In Dialogue 2.1 (Table 14.5), P loses and now
claims she is facing an abductive novelty at move 4.
O challenges that move at move 5, P answers by giv-
ing the first conjunct.O then challenges the F operator

at move 7 by opening a subdialogue in which she now
plays formally. P answers by saying:.�! .C^:E//,
where � is the same set of initial concessions as be-
fore, and the dialogue runs as usual. It is easy to verify
that O will lose (for the same reasons P lost in Dia-
logue 2, Table 14.3). In the same way, O will lose even
if she challenges the second conjunct in move 4, and
P will have justified that she was facing an abductive
novelty.

14.5.2 Guessing

After having shown she was facing an abductive prob-
lem, the Proponent has to guess what is missing in
order to solve it. The Proponent has to be allowed
to conjecture a hypothetical abductive solution. Such
a conjecture is made by means of a subjunctive speech
act, that is, a speech act that does not rely on the con-
cessions of the Opponent. In fact, such a move should
be rendered as a defeasible move. Note that it will not
be explained how an abductive solution is generated or
chosen. Instead, the present proposal will be to describe
the conditions under which such a conjectural move is
performed.

This contribution relies again on Aliseda [14.50]
who proposes a calculus for abduction, based on the se-
mantic trees of deductive logic, but with some nuances
with respect to the status of the abductive explanation.
Roughly speaking, the idea is to construct the tree for
�! ˚ and identify its open branches together with
such formulae that may close those branches (in a con-
sistent way). Several formulae may do the job. These
formulae are called by Aliseda abductive solutions to
abductive problem consisting of the pair �; ˚ . There-
fore, an abduction consists in guessing (or discovering)
what the possible abductive solutions are. To put it in
Aliseda’s own words, consistent abductions are those
formulae which “if they had been in the theory be-
fore, they would have closed those branches that remain
open after :˚ is incorporated into the tableau” [14.50,
p. 110].
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Table 14.6 AS-challenge 1

Utterance Challenge Defence
X�Š� SA W ˛� d1:i Y�‹�‹PlainAS � d1:i:i X�Š� .�^˛/!˚ � d1:i:i

Y opens a subdialogue d1:i:i

Table 14.7 AS-challenge 2

Utterance Challenge Defence
X�Š� SA W ˛� di:i Y�‹�‹ExplanatorySA � di:i:i X�Š� ..�^˛/! ˚/

^.:.� ! ˚/_ .˛ ! ˚/� di:i:i
Y opens a subdialogue d1:i:i

Even if, from a dialogical viewpoint, it is not looked
for any true formula, what is an abductive solutionmay
be defined following a similar process. Indeed, after
having shown that she was facing an abductive prob-
lem, the Proponent should be allowed to put forward
a hypothesis. What the Proponent has to look for is
a formula, not conceded by the Opponent, that enables
her to win the dialogue previously lost. Therefore, a rule
that allows the Proponent to conjecture the hypothesis
of an explanation called abductive solution is added:

[SR-SA] [Abductive Solution Rule]
When the Proponent has won the subdialogue trig-
gered by the challenge of the F operator, whether
it be novelty or anomaly, the Opponent is allowed
to ask her ‹AS (i. e., she claims do you have an ab-
ductive solution to propose?). If so, the Proponent
answers AS W ˛ (i. e., she claims ˛ is my abductive
solution).

What does it mean that ˛ is an abductive solution
for the Proponent, and why is that abductive solution
the conjecture of a hypothesis? In fact, this move con-
sists in claiming that there is a plausible explanation
to the surprising fact ˚ given �. This specific move,
AS W ˛, is the move that forces to reconsider dialogi-
cal games to fit in with abductive reasoning. Indeed,
it may consist of the utterance by the Proponent of an
atomic formula not previously conceded by the Oppo-
nent. Nevertheless, the introduction of this new piece
of information is to be understood as a subjunctive ex-
planation. That is, the Proponent introduces ˛ as she
would say if you had conceded me ˛, I would have
been able to explain ˚ . In no way is ˛ introduced as
anO-concession to be incorporated into� or into a�0,
a successor of � containing the initial concessions and
the other concessions made during the dialogue. ˛ is
a new formula that may be used in further reasoning,
but only temporarily, and that temporarily nature re-
quires further justification. Indeed, as a hypothesis, ˛
is defeasible, that is, it is a conclusion faute de mieux
guessed by the Proponent. If it is shown later that this is
not a good explanation or if a counter-example is en-
countered, then ˛ will be defeated and removed. Its

conditions of use are not the same as the usual as-
sertions of the standard dialogical logic because it is
subject to further justfication, no matter whether it is an
atomic or a complex formula: Would it be a new kind
of utterance?

14.5.3 Committing

The dialogues defined here only describe a partial
abduction, that is, an abductive problem is set and
a plausible answer is guessed. However, in order to
characterize a full abduction, it should be explained
how the conjecture might be released in a further dia-
logue and how the players might act upon it. As already
explained, Gabbay and Woods characterize abduction
as an ignorance-preserving inference. It has been shown
that abductive dialogues are not-conceded-preserving:
The explicative conjecture remains not-conceded and
the Proponent only gives a subjunctive explanation for
the surprising fact. The difficulty at this point involves
the clarification of the commitment carried by such con-
jectural moves, which are rather different from the usual
assertions.

Even if the question of the commitment of the
conjectural move is very complex (it might even vary
according to the argumentation contexts), a rule to deal
with the consequence requirement of the type of abduc-
tion called “plain abduction” by Aliseda [14.50, Part II]
can be defined. In a dialogue, this consists in adding
the possibility of a challenge on the AS-move, called an
AS-challenge. The Opponent makes the request to jus-
tify that it is sufficient to consider the conjunction of �
and ˛ to derive ˚ by means of the rule in Table 14.6.

Under this rule, the challenger opens a subdialogue
in which the defender will have to defend the condi-
tion .�^ ˛/! ˚ . The act of Y opening a subdialogue
means that X will play under formal restriction. The for-
mal restriction is applied in accordance with the rules
[SR2.1] and [SR2.2] given earlier. More kinds of such
challenges should be defined to complete the picture.
Adding the explanatory character of ˛ might also be
required. Thus, the possibility to chose another attack
against an AS-move is offered to Y (Table 14.7).
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Other requirements, such as consistency (�;˛ ²
?), minimality and so on (Chap. 10), might be added
in the same way. It would also be possible to rely on
these rules in order to deal with the defeasibility of AS-
moves. Indeed, if a player is not able to answer the
AS-challenges performed by her argumentation part-
ner, then her conjectural move should be removed and
considered as null. In the same way, if some counter-
examples or a better explanation are found, the AS-
moves should also be cancelled. However, defeasibility
is a very wide topic and cannot be dealt with in detail
in this chapter. A nonmonotonic account of abduction
that makes use of adaptive logic is given byMeheus and
Batens [14.59] and Beirlaen and Aliseda [14.60] (see
also Chap. 12 by Gauderis). For a dialogical study of
defeasible reasoning, see the work of Nzokou [14.61].
For a nonmonotonic treatment of inconsistencies in the
context of an adaptive dialogical logic, see Rahman and
Van Bendegem [14.62] .

What has been characterized in this section is only
partial abduction. In order to attain a full abduction, the
framework over which dialogues are obtained and in
which the hypothesis ˛ is released in the defence of

another thesis as if it had been conceded, should be
developed. Indeed, full abductive dialogue should be
not-conceded-preserving, that is, the agents act upon
the hypothesis although it has not been conceded by
the Opponent. This is the dialogical understanding of
ignorance-preservation in the GW model of abduction
defended in this contribution. In the GW schema, it was
said that neither R.K.H/;T/ nor R.K	.H/;T/ were the
case. Here, this parallels the fact that P does not actually
attain the target. P only encounters something similar to
a subjunctive winning strategy, a strategy which would
lead to the victory if O had conceded ˛; similarly in
the GW model, it is only a subjunctive attainment rela-
tion expressed byH R.K.H/;T/. Now, the challenge
faced in order to complete the picture and to define
the conditions of use of a hypothetical explanation ˛
in a full abduction, consists in providing an in-depth
analysis of the commitment carried by such a conjec-
ture. This relates to the following question: What kind
of speech act is at stake when a hypothesis is conjec-
tured? Without a precise answer to this question, no
precise rule of victory for abductive dialogues can be
yet formulated.

14.6 Hypothesis: What Kind of Speech Act?

In the previous section, a new kind of move specific to
abductive dialogues, the so-called AS-move, by means
of which a hypothetical abductive solution is conjec-
tured, has been introduced. Such a move is considered
as a subjunctive move, that is, a move stated hypothet-
ically with an assumption such as if you had conceded
me ˛, I would have been able to justify ˚ . The con-
ditions under which it is possible to conjecture an
abductive solution and how such a hypothetical abduc-
tive solution might be challenged have been clarified.
However, by means of what kind of speech act is an
AS-move performed? What kind of speech act is the
conjecture of a hypothetical abductive solution if ˛ can
be used in the defence of another thesis (in a full abduc-
tion)?

An epistemic explanationmight have seemed attrac-
tive, relying for example on the notion of subjunctive
knowledge defined by Rückert [14.63]. Subjunctive
knowledge is defined in a modal frame as the knowl-
edge people of another world would have about the
actual world. Abduction might thus be thought of in
terms of subjunctive epistemic change, namely if some
people of another world had the knowledge of what
is expressed by the hypothesis, they would be able
to explain a surprising fact in the actual world. This
would smartly explain the subjunctive status of the

explanatory relation conjectured in a hypothetical ab-
ductive solution. However, it would have ended up in
an account explicitly involving the epistemic states of
the agents instead of taking into account their actions.
Moreover, such an account would yield an excessively
strong commitment on the part of the agent with re-
spect to the belief or the knowledge of the truth of the
hypothetical abductive solution. However, as explained
earlier, this is not necessary. An abductive solution can
be conjectured as being plausible without any commit-
ment to the belief of the truth of what is expressed.

This last point brings back the problem of the status
of an AS-move. Is it an assertive speech act? How could
it be? An assertive speech act is usually characterized
by the commitment (of the speaker) to its truth. In his
theory of speech acts, Searle [14.64, p. 12] defines the
class of assertive speech act as follows:

“The point or purpose of the members of the as-
sertive class is to commit the speaker (in varing
degrees) to something being the case, to the truth
of the expressed proposition.”

Although, in dialogical logic, the commitment to
the truth is irrelevant in the characterization of an
assertion, assertion can be thought of in terms of com-
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mitment to justify what is said (by defending it against
further challenges or by relying on the concessions of
the Opponent). What about the AS-move? It is conjec-
tured and might be released in another dialogue without
being conceded by the Opponent or fully justified by
the Proponent. Therefore, is the conjecture of a hypoth-
esis an assertive utterance in the dialogical sense of the
term? In Searle’s terms, is conjecturing an assertive act?
It seems that it cannot be. Answering these questions
is crucial if the aim is to succeed in introducing the
AS-move defeasibly and to release the conjectures in
further reasoning in the same way as in the GW schema
of abduction in a dialogical framework.

If the speech act, by means of which a hypothetical
abductive solution is conjectured, is not an assertion,
would it be a commissive speech act? Beyond the ques-
tion of the commitment to the truth or to belief, or even
to the acceptance of what is uttered, an abductive so-
lution commits the speaker to a subsequent series of
actions. First, the speaker is committed to answer the
AS-challenges. Second, the use of the hypothesis in
a full abduction without knowing whether it is true or
not, might be seen as a peculiar kind of commitment.
Does such a peculiar commitment relate to what Searle
has called the commissive speech acts? More precisely,
Searle defines the commissives as “those illocutionary
acts whose point is to commit the speaker (again in var-
ing degree) to some future course of action” [14.64,
p. 14]. In the dialogical approach, which has been out-
lined in the previous section, the underlying idea is that
the Proponent conjectures a hypothetical abductive so-
lution which is such that, if it had been conceded, it
would have explained the surprising fact. However, this
should not be the end of the story because the aimwould
be to release the hypothesis in a further reasoning: in
another dialogue in which the Proponent defends an-
other thesis by acting on the hypothesis at stake. That
is why the commitment carried out by the speech act,
by means of which an AS-move is performed, indicates
that it could be understood in terms of a commissive
speech act. In addition to further justification, it also
commits the agent to further dialectical actions. Nev-
ertheless the commissives are usually speech acts in
which the agents commit themselves to an action over
which they have full control. That is to say, the com-
missive speech act commits to something that depends
only on the agents, as it happens in the case of promises
and oaths. However, the agent who performs an abduc-
tion does not have full control of the explanatory force
of an abductive solution. Indeed, while in the first case

the failure of the promise is dependent upon the agent
herself, the failure of an abductive explanation includes
a wider range of factors which do not exclusively de-
pend on the agent activity. So, it does not seem that
the speech act by means of which an AS-move is per-
formed, is a commissive speech act.

If it consists in neither an assertive nor a commissive
act, would a conjectural move be a fictional speech act?
Indeed, according to Searle [14.65], fictional discourse
is not composed of genuine assertions but instead of
pretended assertions. The point is that in fiction, even
if the author is not committed to the truth of what she
says, she does not have the intention to lie. Therefore,
the author does not tell the truth but neither is the author
lying. The author tells a story doing as if she were as-
serting. When a player performs an AS-move and uses it
in a further reasoning, she does as if it were conceded.
She does not have to believe what she says but neither is
she trying to mislead the interlocutor. However, beyond
the fact that Searle’s theory of fictionality is not share by
this contribution, it is thought that abduction has a prac-
tical dimension, which is not necessary to the fictional
discourse. Hence, in this chapter, it is not believed that
the hypothetical speech act should be explained in terms
of fictional discourse. Moreover, what is to be explained
while studying fiction is its double aspect, the fact that
while we know it is not true we react to such a discourse
without experiencing any kind of cognitive dissonance.
Also there is no such tension to be explained in the con-
jecture of a hypothetical abductive solution. (For more
details on these points, see [14.66–68].)

An alternative, though tentative solution, would be
to reconsider the taxonomy of speech acts. For ex-
ample, Bach [14.69] defines the wider category of
constatative, which the conjecturing act would be part
of. Other inspirations might be found in the work of
Barés Gómez [14.70] who distinguishes between dif-
ferent kinds of assertions in natural language (assevera-
tive paradigm, negative paradigm, and evidentiality) by
making use of Dynamic Epistemic Logic and by focus-
ing on the transmission of information. These different
kinds of assertions might also be understood as differ-
ent types (talking thus about hypothetical judgement);
see the recent work of Rahman and Clerbout [14.71],
on Constructive Type Theory in the context of dialogi-
cal logic follows in this respect. The question is left as
a challenge for further investigations. Is a hypothetical
speech act a particular kind of assertive or commissive
act? Is it a mix of both? Is it a completely new kind of
speech act?
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14.7 Conclusions
In this chapter, it is first advocated for a reconcilita-
tion of argumentation theory and formal logic in an
agent-centered theory of reasoning, that is, a theory in
which inferences are studied in terms of human activ-
ities. More precisely, the dialogical approach to logic,
in which reasoning is studied through a dialectical in-
teraction between the Proponent of a thesis and the
Opponent of it, is defended. In this context, the ne-
cessity of taking into account, not only the actions of
the agents, but also the importance of the notion of
commitment is stressed. Beginning with deductive di-
alogues, the picture has been extended to abduction,
which is considered as a case of nondeductive reason-
ing.

The starting point to deal with abduction is the
agent-centered analysis of the GW model. While Gab-
bay and Woods identify abduction as an ignorance-
preserving inference triggered by an ignorance prob-
lem, abductive dialogues have been defined here as
not-conceded-preserving dialogues triggered by a con-
cession problem. The specificity of abductive dialogues
has been identified at the level of the so-called AS-
moves by means of which hypothetical abductive so-
lutions are conjectured. To allow such moves, new
rules have been put forward. The challenge for dialo-
gicians now consists in exploring the release of such
hypotheses in further dialogues in which they remain
not-conceded. However, the difficulty of defining the

nature of such a hypothetical speech act is being faced,
which leads to the key question of commitment. What
are we committed to when we conjecture a hypotheti-
cal explanation of a surprising fact and when we release
such a hypothesis in further reasoning? A definite an-
swer to this question is let for further investigations.
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15. Formal (In)consistency, Abduction and Modalities

Juliana Bueno-Soler, Walter Carnielli, Marcelo E. Coniglio, Abilio Rodrigues Filho

This chapter proposes a study of philosophical and
technical aspects of logics of formal inconsistency
(LFIs), a family of paraconsistent logics that have
resources to express the notion of consistency in-
side the object language. This proposal starts by
presenting an epistemic approach to paraconsis-
tency according to which the acceptance of a pair
of contradictory propositions A and :A does not
imply accepting both as true. It is also shown how
LFIs may be connected to the problem of abduc-
tion by means of tableaux that indicate possible
solutions for abductive problems. The connection
between the notions of modalities and consis-
tency is also worked out, and some LFIs based on
positive modal logics (called anodic modal logics),
are surveyed, as well as their extensions supplied
with different degrees of negations (called ca-
thodic modal logics). Finally, swap structures are
explained as new and interesting semantics for
the LFIs, and shown to be as a particular impor-
tant case of the well-known possible-translations
semantics (PTS).

15.1 Paraconsistency ................................ 315

15.2 Logics of Formal Inconsistency........... 316
15.2.1 mbC: A Minimal LFI ............................ 318
15.2.2 A Logic of Evidence and Truth ............. 321

15.3 Abduction ........................................ 322
15.3.1 mbC-Tableaux ................................... 324
15.3.2 Quantification ................................... 326

15.4 Modality........................................... 327
15.4.1 The Anodic System K˙ ........................ 328
15.4.2 The Logic mbC� ................................. 329
15.4.3 Extensions of mbC� .......................... 330

15.5 On Alternative Semantics for mbC ...... 331

15.6 Conclusions ...................................... 333

References ................................................... 334

15.1 Paraconsistency

Paraconsistency is the study of logical systems in which
the presence of a contradiction does not imply triviality,
that is, logical systems with a nonexplosive negation :
such that a pair of propositions A and :A does not (al-
ways) trivialize the system. In paraconsistent logics the
principle of explosion does not hold

A;:A° B : (15.1)

But what would be the reason for devising a paraconsis-
tent logic? Or more precisely, if avoiding contradictions
is a fundamental criterion of thought and reason, what
is the point of a formal system that tolerates contra-
dictions? It will be argued here that to have available
a logical formalism capable of dealing with contradic-
tions does not imply any sympathy with the thesis that

there are true contradictions, nor that reality is, in some
sense, contradictory.

It is a fact that contradictions appear in a number of
real-life contexts of reasoning. From databases to scien-
tific theories, we often have to deal with contradictory
information. There are several scientific theories, how-
ever successful in their areas of knowledge, that yield
contradictions, either by themselves or when combined
with other efficacious and compelling theories [15.1,
Chap. 5]. The presence of contradictions is not a suf-
ficient condition for discarding interesting theories. In
order to deal rationally with contradictions, explosion
cannot be valid without restrictions, since triviality,
that is, a circumstance such that everything holds, is
obviously unacceptable. Given that, in classical logic,
explosion is a valid principle of inference, the underly-
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ing logic of a contradictory context of reasoning cannot
be classical.

Indeed, the occurrence of contradictions in both sci-
entific theories and everyday contexts of reasoning is
being increasingly recognized. Notice that, as a general
rule, these theories have been successful in describing
and predicting a wide range of phenomena. The realist
(and naive) assumption that scientific theories provide
correct descriptions of reality would unavoidably im-
ply that there are ontological contradictions, but this
would be a careless and hasty conclusion, since these
contradictions are better taken as provisional [15.2, p.
2]. If contradictions are provisional, they should not
be taken as true contradictions. From a strictly logical
point of view, the problem is how to formulate an ac-
count of logical consequence capable of identifying, in
contradictory contexts, the inferences that are allowed,
distinguishing them from those that must be blocked.
It is clear that such an account of logical consequence
must be paraconsistent.

The question about the nature of contradictions ac-
cepted by paraconsistent logics is where a great deal
of the debate on the philosophical significance of para-
consistency has been concentrated. In philosophical
terminology, we say that something is ontological when
it has to do with reality, with the world in the widest
sense, and that something is epistemological when it
has to do with knowledge and the process of its ac-
quisition. A central question for paraconsistency is the
following: Are the contradictions that paraconsistent
logic deals with ontological or epistemological? Do
contradictions have to do with reality proper? Or do
contradictions have to do with knowledge and thought?
Contradictions of the latter kind, called here epis-
temological contradictions, have their origin in our
cognitive apparatus, in the failure of measuring instru-
ments, in the interactions of these instruments with
phenomena, in operations of thought, or even in sim-
ple mistakes that in principle could be corrected later
on.

15.2 Logics of Formal Inconsistency

There are two different but classically equivalent no-
tions of consistency with respect to a deductive system
S with a negation�. S is consistent if and only if:

1. There is a formula B such that °S B;
2. There is no formula A such that `S A and `S �A.

What (1) says is that S is not trivial; and (2) says
that S is noncontradictory. In classical logic both are
(provably) equivalent.

A theory is a set of propositions (or sentences, if
one prefers) closed under logical consequence. Given
a set of propositions � in the language of a given logic
L, let T D fA: � `L Ag be the theory whose nonlogical
axioms are the propositions of � and the underlying
logic is L. Suppose the language of T has a negation�.
We say that T is:

� Contradictory: if and only if there is a proposition
A in the language of T such that T proves A and T
proves �A;� Trivial: if and only if for any proposition A in the
language of T , T proves A;� Explosive: if and only if T trivializes when exposed
to a pair of contradictory formulas – i. e., for all A
and B, T [ fA;�Ag ` B.
A theory whose underlying logic is classical is con-

tradictory if and only if it is trivial. But it is the case
precisely because such a theory is explosive, since the
principle of explosion holds in classical logic. It is clear,

then, that it is contradictoriness together with explosive-
ness that implies triviality. The obvious move in order
to deal with contradictions is thus to reject the unre-
stricted validity of the principle of explosion by means
of adopting a nonexplosive negation (that is, a negation
: such that A;:A° B). This is a necessary condition if
one wants a contradictory but nontrivial theory.

For classical negation � the following conditions
hold

A^�A � ; (15.2)

� A_�A : (15.3)

According to (15.2), there is no model M such that
A^�A holds in M. Equation (15.3) says that for every
model M, A_�A holds in M. A negation is para-
complete if it disobeys (15.3), and is paraconsistent if
it disobeys (15.2). Now, given classical consequence,
A_�A follows from anything, and anything follows
from A^�A. From the point of view of rules of infer-
ence, the duality is not between noncontradiction and
excluded middle, but rather between explosion and ex-
cluded middle.

The principle of noncontradiction is usually taken
as a claim that there can be no contradictions in reality.
But we may well understand the principle of explosion
as a stronger way of saying precisely the same thing:
A and �A cannot hold together, otherwise we get triv-
iality. From the above considerations, it is clear that in
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order to give a counterexample to the principle of ex-
plosion, we need a weaker negation and a semantics in
which there is a model M such that A and :A holds
inM.

In classical logic the values 0 and 1 are understood
respectively as false and true, but in nonclassical log-
ics this does not need to be the case. It is not necessary
that a paraconsistent logic takes a pair of formulas A
and :A as both true. The semantic value 1 attributed
to a formula A may be read as A is taken to be true, A
is possibly true, A is probably true, or perhaps better as
there is some evidence that A is true in the sense of there
being reasons for believing that A is true. Thus, the attri-
bution of the value 1 to a pair of propositions A and :A,
does not need to be understood as if both propositions
are true in the sense that there is something in the world
that makes them true. Rather, it is better to consider that
A and :A are both being taken in a sense weaker than
true, perhaps waiting for further investigations that will
decide the issue, and discard one of them.

Logics of formal inconsistency are a family of para-
consistent logics that have resources to express the
notion of consistency inside the object language by
means of a sentential unary connective: ıA means
(informally) that A is consistent. As in any other para-
consistent logic, explosion does not hold in LFIs. But
this is handled in a way that allows distinguishing be-
tween contradictions that can be accepted from those
that cannot. In LFIs, negation is explosive only with re-
spect to consistent formulas

A;:A°LFI B; while ıA;A;:A `LFI B : (15.4)

An LFI is thus a logic that separates the propositions
for which explosion holds from those for which it does
not hold. The former are marked with ı. For this reason,
they are called gently explosive.

In the Cn hierarchy, introduced by da Costa
in [15.3], the so-called well-behavedness of a formula
A, in the sense that it is not the case that A and
:A hold, is also expressed inside the object language.
However, in C1, Aı is an abbreviation of :.A^:A/,
which makes the well-behavedness of a proposition A
equivalent to saying that A is noncontradictory. A full
hierarchy of calculi Cn, for n natural, is defined and
studied in [15.3].

The first step in paraconsistency is the distinction
between triviality and contradictoriness. But there is
a second step, namely, the distinction between consis-
tency and noncontradictoriness. In LFIs the consistency
connective ı is not only primitive, but it is also not
always logically equivalent to noncontradiction. This
is the most distinguishing feature of the logics of for-
mal inconsistency. Once we break up the equivalence

between ıA and :.A^:A/, some very interesting de-
velopments become available. Indeed, ıA may express
notions different from consistency as freedom from
contradiction.

The circumstance in which both A and :A receive
the value 1 may be understood as the presence of si-
multaneous but nonconclusive evidence that A is true
and :A is true. Evidence for A in the sense proposed
here are reasons to believe in A. One may be justified
in believing that A is true inasmuch one has evidence
available that A is true. But of course it may be that
there are also reasons for believing :A, and in this case
the evidence is not conclusive.

Suppose that according to some empirically testable
criteria, an atomic proposition A is true if and only if
a condition c is fulfilled and on the other hand, there
is also a condition d, independent of c, such that ob-
taining d implies the truth of :A. In some critical
circumstances, it may happen that both criteria c and d
are obtained [15.4, pp. 9–10]. Although c and d have
been conceived initially as criteria of truth, it seems
far more reasonable at this point to not draw the con-
clusion that A and :A are both true. It is better to be
more careful and to take the contradiction as a provi-
sional state, a kind of excess of information that should,
at least in principle, be eliminated by means of fur-
ther investigation. The criteria c and d provide reasons
for believing (i. e., provide evidence) that A and :A
are true, but do not establish conclusively that both are
true. Thus, a counterexample for explosion is straight-
forward: there may be nonconclusive evidence for both
A and :A, but no evidence for some B.

This intuitive interpretation for the paraconsistent
negation justifies the invalidity of explosion. However,
it is not possible yet to express that some proposition
is true, because the notion of evidence is weaker than
truth. With the help of the consistency operator this
problem can be solved. The following intuitivemeaning
for the consistency operator is proposed: ıA means in-
formally that the truth value of A has been conclusively
established. Now one has resources to express not only
that there is evidence that A is true but also that A has
been established (by whatever means) as true: ıA^A.
Notice that how the truth or falsity of a proposition is
established is not a concern of logic. The establishment
of the truth of a given propositionA comes from outside
the formal system.

A very good example of a provisional contradiction
in physics, better understood in terms of conflicting evi-
dence rather than truth, is the problem faced by Einstein
just before he formulated the special theory of relativ-
ity. It is well known that there was an incompatibility
between classical Newtonian mechanics and Maxwell’s
theory of electromagnetic field. This is a typical case of
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two (supposedly) noncontradictory theories that yield
contradictory results.

A friendly presentation of the problem may be
found in Einstein [15.5] and Feynman et al. [15.6].
Briefly, with respect to the same hypothetical situation,
with c being the velocity of light in vacuum and w
the velocity of light in a particular circumstance [15.5,
Sects. 6 and 7], Newtonian mechanics and Maxwell’s
theory provide that :.w D c/ and w D c respectively.
So, combining the two theories yields a contradiction,
and if the underlying logic is classical, triviality fol-
lows.

In such a scenario, two contradictory propositions
hold in the sense that both may be proven from theo-
ries that were supposed to be correct. This fact may be
represented by the attribution of the semantic value 1
to both :.w D c/ and w D c. But clearly, the meaning
of this should not be that both are true – actually, we
know it is not the case, and nobody has ever supposed
that it could be the case. The meaning of the simultane-
ous attribution of the value 1, as we suggest, is that at
that time there was evidence for both in the sense, men-
tioned above, of some reasons for believing that both
were true, because there was evidence that the results
yielded by both classical mechanics and theory of the
electromagnetic field were true. The contradiction has
been solved (roughly speaking) in the following way:
As velocity grows, time slows down and space short-
ens. So, the relation between space and time that gives
velocity remains the same, because both have decreased
(for details, see [15.6, Sect. 15]). This is an example of
what we call epistemic contradictions. We want to call
attention to the fact that the general logical framework
Einstein was working in was not classical. He had two
different theories at hand: classical mechanics and the
theory of electromagnetic field, which, when combined,
yielded a nonexplosive contradiction. Later, according
to the special theory of relativity, the contradiction dis-
appeared. Although there were some reasons to believe
that both :.w D c/ and w D c were true, only one,
the latter, has been established as true. The value 1 at-
tributed to :.w D c/ later became 0.

15.2.1 mbC: A Minimal LFI

Let us present mbC, a basic LFI. This name stands for
a minimal logic with the axiom bc1, and bc stands for
basic property of consistency. mbC is an extension of
classical positive propositional logic (CPLC) enriched
with a nonexplosive negation and a consistency opera-
tor, the unary operator ı. mbC is interesting because it
has a minimal apparatus and several technical proper-
ties that illustrate the main features of logics of formal
inconsistency. As we shall see, mbC:

i. Permits us to define classical negation, and thus can
be seen as an extension of classical logic

ii. Permits recovering classical consequence by means
of a derivability adjustment theorem (DAT)

iii. Distinguishes the consistency of a formula A from
the noncontradiction of A, i. e., ıA and :.A^:A/
are not equivalent

iv. Is gently explosive in the sense that it tolerates some
pairs of formulas A and :A, while it is explosive
with respect to others; and

v. Has a sound and complete bivalued semantics.

The Syntax of mbC
Let L1 be a language with a denumerable set of sen-
tential letters fp1; p2; p3; : : :g, the set of connectives
fı;:;^;_;!g, and parentheses. The consistency op-
erator ı is a primitive symbol and : is a nonexplosive
negation. The set of formulas of L1 is obtained recur-
sively in the usual way; and Roman capitals stand for
metavariables for formulas of L1.

The logic mbC is defined over the language L1 by
the following Hilbert system:

Axiom-schemas:

Ax.1. A! .B! A/ ;

Ax.2. .A! .B! C//! ..A! B/! .A! C// ;

Ax.3. A! .B! .A^B// ;
Ax.4. .A^B/! A ;

Ax.5. .A^B/! B ;

Ax.6. A! .A_B/ ;
Ax.7. B! .A_B/ ;
Ax.8. .A! C/! ..B! C/! ..A_B/! C// ;

Ax.9. A_ .A! B/ ;

Ax.10. A_:A ;
Ax.bc1. ıA! .A! .:A! B// ;

Inference rule: modus ponens.

Positive classical propositional logic, CPLC, is given
by axioms Ax. 1 to Ax. 9 plus modus ponens. mbC is
thus an extension of CPLC.

The definition of a derivation of A from a set of
premises � (� `mbC A) is the usual one: a finite se-
quence of formulas B1 : : :Bn such that A is Bn and each
Bi, 1 
 i
 n (that is, each line of the proof) is an ax-
iom, a formula that belongs to � , or a result of modus
ponens. A theorem is a formula derived from the empty
set of premises.

Lemma 15.1
The logic mbC satisfies the following properties:

P1. Reflexivity: if A 2 � , then � `mbC A;
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P2. Monotonicity: if � `mbC B, then �;A `mbC B, for
any A;

P3. Cut: if � `mbC A and �;A `mbC B, then �; � `mbC

B;
P4. Deduction theorem: if �;A `mbC B, then � `mbC

A! B;
P5. Compactness: if � `mbC A, then there is�� � , �

finite, � `mbC A.

Proof: The properties P1, P2, P3 and P5 come directly
from the definition of � `mbC A. The deduction theo-
rem comes from axioms Ax. 1 and Ax. 2 plus modus
ponens. �

Since the properties P1, P2 and P3 hold,mbC is thus
a standard logic [15.7, p. 6]. Due to the axiom bc1,mbC
is gently explosive, that is

For some A and B:

A;:A°mbC B ;

ıA;A°mbC B ;

ıA;:A°mbC B ;

While for every A and B: ıA;A;:A `mbC B :

Thus, the formal system is able to distinguish the con-
tradictions that do not lead to explosion from those that
do. The axiom bc1 is also called the gentle explosion
law, because it is explosive only with respect to formu-
las marked with ı.

Classical logic may be recovered in mbC in two
ways: by defining a negation that has the properties of
the classical negation and by means of a derivability ad-
justment theorem (DAT).

Fact 15.1
Classical negation is definable in mbC.

Proof: We define? defD ıA^A^:A and�A defD A!?.
Now, we get explosion, A! .�A! B/, as a theorem,
in a few steps from bc1. From the axiom 9, excluded
middle is obtained, A_�A. Classical propositional
logic (CPL) is obtained by axioms 1–8 plus explosion,
excluded middle and modus ponens. �

The general purpose of a derivability adjustment
theorem is to establish a relationship between two log-
ics, L1 and L2, in the sense of restoring inferences that
are lacking in one of them. The basic idea is that some
information has to be added to the premises to restore
the inferences that are lacking. DATs are especially in-
teresting because they show what is needed to restore
the classical consequence in a paraconsistent scenario.

For the sake of precisely stating the DAT between
mbC and CPL, we need to take into account the differ-

ence between the respective languages. The first step is
to translate one language into another. Let L2 be a lan-
guage with the set of connectives f�;_;^;!g. Instead
of a paraconsistent negation :, L2 has classical nega-
tion �.

Fact 15.2
Let t be a mapping that replaces � by :. Then, the fol-
lowing holds:
For all � and for all B, � [fBg � L2, there is a�,��
L1 such that � `CPL B iff tŒ� �; ı� `mbC tŒB�, where
ı�D fıA W A 2�g.

Proof: From left to right, suppose there is a deriva-
tion D of � `CPL B (in the language L2 of CPL). If
we simply change the classical negations � to :, such
a derivation does not hold in mbC. We need to be con-
cerned only with occurrences of explosion. The relevant
point is that some information must be available in or-
der to reconstruct classical reasoning. An occurrence of
a line:

1. A! .�A! B/

in the derivation D has to be substituted by the follow-
ing lines, obtaining a derivation D0:

2. ıA
3. ıA! .A! .:A! B//
4. A! .:A! B/.

From right to left, suppose there is a derivation D0 of
tŒ� �; ı� `mbC tŒB�. We get a derivation D of � `CPL B
just by deleting the occurrences of ı and changing :
to �. �

The reader should notice the difference between
restoring classical consequence by means of a defini-
tion of a classical negation inside mbC and by means
of a DAT. In the latter case, the central issue is the in-
formation that has to be available to restore classical
reasoning. In each occurrence of classical explosion,
A! .�A! B/, the information needed from the view-
point ofmbC is the consistency of A, represented by ıA.

A Semantics for mbC
The sentential connectives of classical logic are truth
functional. This means that the truth-value of a molec-
ular formula is functionally determined by its structure
and by the truth-values of its components, which reduce
to the truth-values of the atomic formulas. Truth func-
tionality as a property of the semantics of certain logics
is a mathematical rendering of the principle of compo-
sitionality, which says that the meaning of a complex
expression is functionally determined by the mean-
ings of its constituent expressions and the rules used
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to combine them. This principle is also called Frege’s
principle, since it has been traced back to Frege. The
truth-value of molecular formulas may be determined
by using the familiar matrices (truth-tables) that any
logic student is familiar with. These matrices have only
two values (true and false, or 1 and 0) in the case of
classical propositional logic, but the idea can be gener-
alized to any number of truth-values.

A logic can be truth functional even if it is charac-
terized semantically by a finite, or even by an infinite,
number of truth-values. Indeed, in most many-valued
logics the truth-value of a molecular formula is also
functionally determined by the values of the atomic for-
mulas.

However, instead of talking about truth-values, it
would be better to talk about semantic values, since, as
we have argued earlier, the values 0 and 1 attributed to
formulas need not be always interpreted as false and
true. The point is that we do not want to commit our-
selves from the start to just the values true and false
attributed to formulas.

Now let us put things in a more neutral and pre-
cise way. Let us say that a semantics for a logic L is
called matrix functional (instead of truth functional) if
the semantic value of a formula of L is functionally de-
termined by means of a finite matrix. This is the case for
classical logic, but not for intuitionistic logic, as Gödel
has proven in [15.8], nor is the case for mbC. In fact,
not only mbC but all logics of the da Costa hierarchy
Cn, and most LFIs, are not characterizable by finite ma-
trices [15.7, theorem 121].

A non-matrix-functional semantics for paracon-
sistent logics was proposed by da Costa and Alves
in [15.9]. There, a bivalued semantics for the logic C1 is
found. The semantic clause for the paraconsistent nega-
tion has only half of the clause for classical negation:
if v.:A/D 0, then v.A/D 1. The idea is that it cannot
be the case that A and :A simultaneously receive the
value 0. But the possibility is open for both to receive
the value 1. This kind of semantics is described by the
so-called quasi-matrices. The quasi-matrix for negation
is as follows

A :A
1 0

1
0 1

It is clear that the semantic value of :A is not func-
tionally determined by the semantic value of A: when
v.A/D 1, v.:A/may be 1 or 0. For this reason, this se-
mantics is clearly nonfunctional, and in this case we say
also that the semantics is nondeterministic. A bivalued
sound and complete semantics for mbC, is as follows:

Definition 15.1
An mbC-valuation is a function that assigns the values
0 and 1 to formulas of the language L1, satisfying the
following clauses:

(i) v.A^B/D 1 iff v.A/D 1 and v.B/D 1
(ii) v.A_B/D 1 iff v.A/D 1 or v.B/D 1
(iii) v.A! B/D 1 iff v.A/D 0 or v.B/D 1
(iv) v.:A/D 0 implies v.A/D 1
(v) v.ıA/D 1 implies v.A/D 0 or v.:A/D 0.

A valuation v is a model of a set � if and only if ev-
ery proposition of � receives the value 1 in v , and v is
a model of a proposition A if and only if A receives the
value 1 in v .

The notion of logical consequence is defined as
usual: A formula A is an mbC-consequence of a set �
(� �mbC A), if and only if for every valuation v , if v is
a model of � , then v is a model of A (when there is
no risk of ambiguity, we simply write � and ` without
subscripts).

Soundness and completeness proofs for the seman-
tics above are to be found in [15.7, pp. 38ff]. Notice that
the clauses for ^, _ and! are exactly the same as in
classical logic. By clause (iv), the system is paracon-
sistent but not paracomplete, since the excluded middle
(for paraconsistent negation) holds. We suggest that the
values 0 and 1 are not to be understood as false and true
respectively, but rather as absence and presence of evi-
dence. Accordingly: v.A/D 1 means there is evidence
that A is true; v.A/D 0 means there is no evidence that
A is true; v.:A/D 1 means there is evidence that A is
false; and v.:A/D 0 means there is no evidence that
A is false. The same counter example invalidates explo-
sion and disjunctive syllogism: v.A/D 1, v.B/D 0 and
v.:A/D 1. Noncontradiction is also invalid: v.A/D
v.:A/D 1, hence v.A^:A/D 1, but v.:.A^:A//
may be 0. Due to clause (v), it may be the case that
v.A/D 1, v.:A/D 0 (or vice versa) but v.ıA/D 0. In
this valuation, v.:.A^:A//D 1, hence the nonequiv-
alence between ıA and :.A^:A/. Also, due to clause
(v ), it is clear that mbC does not admit a trivial model,
i. e., a model such that v.A/D 1 for every formula A.

We would like to make some comments with re-
spect to the validity of the excluded middle in mbC,
given the intended interpretation in terms of evidence.
Indeed, in some circumstances there may be a situa-
tion such that there is no evidence at all, neither for the
truth nor for the falsity of a proposition A, but this sce-
nario cannot be represented in mbC. In fact, in the next
section, it will be shown that mbC may be easily mod-
ified in order to be able to represent such a situation.
On the other hand, the validity of the excluded middle
may be justified when one, by default, attributes evi-
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dence for A or for :A when there is no evidence at all.
This happens, for instance, in a criminal investigation
in which one begins by considering everyone (in some
group of people) not guilty until proof to the contrary
(see Example 15.5 in Sect. 15.3.1). In fact, any context
of reasoning such that a final decision must be made in
a finite amount of time demands that A or :A, or even
both, have to be in some sense accepted. Whether the
excluded middle should be valid from the start, or be
recovered once some information has been added may
be seen as a methodological decision that depends on
the reasoning scenario we want to represent.

15.2.2 A Logic of Evidence and Truth

The logic mbC may be slightly modified to be able
to express a scenario such that no evidence is avail-
able. The duality between the principles of explosion
and excluded middle that corresponds to a duality be-
tween paraconsistency and paracompleteness has been
mentioned in Sect. 15.2. Now, in a way analogous to
that by which we recover the explosion with respect to
a formula A, in a paracomplete logic, the validity of the
excluded middle with respect to a formula A may be
recovered by means of the following axiom

Ax. bd1. ıA! .A_:A/ :

A semantic clause for the axioms bc1 and bd1 is defined
as follows:

(vi) if v.ıA/D 1; then Œv.A/D 1 iff v.:A/D 0� :

If the excluded middle holds for A, we say that A is
determined. bd stands for basic property of determined-
ness (bd). A system in which both bd1 and bc1 holds is
thus paracomplete and paraconsistent. It is better to call
ı, in this context, not a consistent operator but rather
a classicality operator, since ıA recovers classical truth
conditions with respect to A. But ıA still may be infor-
mally understood as meaning that the truth value of A
has been conclusively established. In fact, the basic idea
of restricting the validity of the principle of explosion
may be generalized. The validity of some inference rule
(or axiom) may be restricted in such a way that some
logical property does not hold unless some informa-
tion is added to the system. In particular, the excluded
middle may be restricted in a way analogous to the re-
striction imposed to the explosion.

Now, with bd1 and bc1, we have the resources to
express the following situations, besides nonconclusive
evidence; no evidence at all: v.A/D v.:A/D 0 and
conflicting evidence: v.A/D v.:A/D 1. The system
obtained by adding the axioms bd1 and bc1 to CPLC
is called mbCD, a minimal logic of inconsistency and

undeterminedness. mbCD is correct and complete with
respect to a bivalued semantics defined by clauses (i) to
(iii) of Def. 15.1 plus the clause (vi) above.

Although mbCD is able to express also the absence
of evidence, the negation still may be improved to bet-
ter represent the deductive behavior of the notion of
preservation of evidence. The logic LETK (the logic of
evidence and truth based on CPLC) is thus obtained by
adding to mbCD the axioms 11 to 14 below

Ax. 11. A$::A ;
Ax. 12. :.A^B/$ .:A_:B/ ;
Ax. 13. :.A_B/$ .:A^:B/ ;
Ax. 14. :.A! B/$ .A^:B/ :

The axioms above fit the intuitive meaning of the simul-
taneous attribution of the value 0 or the value 1 to a pair
of propositions A and :A as absence and presence of
evidence respectively. Let us consider axiom 12. It is
reasonable to conclude that if there is some evidence
that a conjunction is false, that same evidence must be
evidence that one of the conjuncts is false. On the other
hand, if there is some evidence that A is false, that same
evidence must be evidence that A^B is false, for any B.
Analogous reasoning applies for disjunction and impli-
cation.

A bivalued complete and correct semantics for
LETK is obtained by adding to the semantics of mbCD
the following clauses

(vii) v.A/D 1 iff v.::A/D 1 ;
(viii) v.:.A^B//D 1 iff v.:A/D 1 or v.:B/D 1 ;
(ix) v.:.A_B//D 1 iff v.:A/D 1 and v.:B/D 1 ;
(x) v.:.A! B//D 1 iff v.A/D 1 and v.:B/D 1 :

The logic LETK can be proven without much trou-
ble to be sound and complete with respect to the
semantics above. The proof needs only to drop the
clauses related to Ax. 10 and to extend the soundness
and completeness proofs for mbC [15.7, pp. 38ff] to the
new axioms and semantic clauses, which can be done
without difficulties. In LETK, a DAT holds as in mbC
and a classical negation is definable in the same way as
in mbC, thus LETK may be also seen as an extension of
propositional classical logic. It is worth noting that ac-
cording to the intuitive interpretation proposed, LETK

like mbC does not tolerate true contradictions: indeed,
a true contradiction yields triviality, as in classical logic.
If A is simultaneously true and false, this is expressed
by .ıA^A/^ .ıA^:A/; that, in its turn, is equivalent
to ıA^A^:A; but the latter is nothing but a bottom
particle ?, i. e., a formula that alone implies triviality:
for any B, ? ` B.
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15.3 Abduction

The problem of abduction has been formulated by
Peirce as the process of forming hypotheses with ex-
planatory purposes. It is, thus, a kind of a reversed
explanation [15.10, CP 7.202]:

“Accepting the conclusion that an explanation is
needed when facts contrary to what we should ex-
pect emerge, it follows that the explanation must be
such a proposition as would lead to the prediction of
the observed facts, either as necessary consequences
or at least as very probable under the circumstances.
A hypothesis then, has to be adopted, which is likely
in itself, and renders the facts likely. This step of
adopting a hypothesis as being suggested by the
facts, is what I call abduction.”

The basic idea may be expressed as follows: When
some fact is discovered that is not explained by the
available theory (i. e., is not a consequence of the
available theory), a set of new premises is added as
a hypothetical solution to the problem. However, the act
of adding something before using it as an explanation
poses a second problem: how is it possible to gener-
ate an abductive explanans? First, we have to recognize
that characterizing the concept of explanation is one of
the greatest challenges in the philosophy of science.
This problem is even harder in logic and mathemat-
ics, where explanations are sometimes confused with
proofs [15.11].

Although we are not suggesting that explaining can
be reduced to deducing, it is certainly acceptable that
the idea of explanation in deductive sciences includes
the query for missing hypotheses; it is in this context
that the general abductive process can be formulated
as the process of generating new hypotheses within ar-
bitrary deductive systems, and afterwards using them
in deductive terms. The former task (generating new
hypotheses) is referred to here as creative abduction,
while the latter (using such new hypotheses) as explica-
tive abduction. The term explicative is here understood
under the following proviso: A missing link in a deduc-
tion certainly does not exhaust the need for an explana-
tion, but does constitute the first necessary step towards
explaining a surprising (i. e., not yet deducible) fact.

Two natural assumptions about explanations that
can be posed are the following: First, there can be
various explanations for the same surprising fact, and
second, there can be explanations of various degrees for
the same surprising fact. For example, searching for the
ultimate scientific explanation as to why the grass of
your garden is wet in the morning and discovering that
the sprinkler was left on all night may be two different
things. Both explain the fact, but responding to different

needs. The question is analogous to the one in automatic
theorem proving: finding any proof is one thing, while
finding a philosophically interesting proof is another.
In the same manner as automatic theorem proving is
satisfied with the first level of proofs, so automatic ab-
duction will be satisfied with a first-level explanation.
We are mainly interested here in abductions with no
obvious explanations, particularly those in which con-
tradictions may be involved.

Let ` be a deductive relation; if � ° A, the creative
abductive step consists of finding an appropriate � so
that � [� ` A. In this case, the discovered� performs
the explicative abductive step. Obviously, there must be
some constraints, otherwise�D f?g would be a trivial
solution for the abduction problem in most deduction
relations. Usually, if the underlying logic is explosive
(e.g., classical or intuitionistic), another constraint is
that � ° :A, for this would imply that any explicative
� would be a trivial explanation. This restriction, how-
ever, will not be necessary in our case, as the following
developments and the examples will make clear.

From the point of view of general argumentation
(and not only deduction), abduction concerns the search
for hypotheses or the search for explanatory instances
that support reasoning. In this sense, it can be seen as
a complement to argumentation, in the same manner
that in the philosophy of science, the context of discov-
ery is a complement to the context of justification. And
moreover, further pursuing the analogy, the question of
the logical possibility of creative abduction lies on the
same side of the famous question of the logical possi-
bility of scientific discovery.

A renewed interest in abduction acquired impetus
due to the factual treatment of data and the question
of virtual causality in the information age. The enor-
mous amount of data stored on the World Wide Web
and in complex systems, as well as the virtual rela-
tionship among such data, continuously demands new
tools for automatic reasoning. These tools should incor-
porate general logical methods which are at the same
time machine-understandable, and sufficiently close to
human semantics as to perform sensible automated rea-
soning.

An example wherein abductive inference is highly
relevant is the model-based diagnosis in engineering
and AI (artificial intelligence). Suppose that a com-
plex system, such as an aircraft, is being tested before
a transatlantic flight. The electronic circuitry permits
the testers to predict certain outputs based on specific
input tests. If the instruments show something distinct
from the expected, it is a task of model-based diagnosis
to discover an explanation for the anomaly and use it to
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separate the components responsible for the problem,
instead of disassembling the whole aircraft.

Another example occurs in the process of updating
in the so-called datalog databases. Suppose we have
a logic program (see introductory chapter for a brief
overview of abduction in logic programming) com-
posed of the following clauses, where desc.x; y/ means
x is a descendent of y, parent.y; x/ means y is a parent
of x and ˇ ˛ means that the database contents plus ˛
produce (or answer) ˇ

desc.x; y/ parent.y; x/ ;

desc.x; y/ parent.z; x/; desc.z; y/ :

There is a subtle difference between inserting informa-
tion in the database in an explicit versus implicit man-
ner: information of the form y is a parent of x is a basic
fact, and can be inserted explicitly, while information of
the form x is a descendent of y is either factual knowl-
edge or is a consequence of the machine reasoning (as
simple as it can be). If one wishes to insert a piece of
implicit information, it is necessary to modify the set of
facts stored in the database in such a way that this in-
formation can be deduced: this is an example of creative
abduction and of explicative abduction at the same time.
For instance, if we have stored desc.Zeus;Uranus/
and parent.Uranus;Cronus/, for implicitly inserting
desc.Aphrodite;Uranus/ there are two different ways:
wemay either insert parent.Zeus;Aphrodite/ or alterna-
tively insert desc.Aphrodite;Cronus/. These two alter-
native additions are examples of abductive explanations
for desc.Aphrodite;Uranus/. In fact, logic program-
ming uses this abductive mechanism for answering
queries, in the form: Is the fact desc.Aphrodite;Uranus/
compatible with the program clauses and data? or Is
there any x such that desc.x;Uranus/? The whole pro-
cedure is creative as much as it can be automatized.
Therefore it is evident that a useful abductive mecha-
nism for databases should be based on first-order logic,
and not merely on propositional logic.

Moreover, abductive approaches are also used to
integrate different ontologies and database schemes,
or for integrating distinct data sources under the
same ontology, as for example [15.12], where an
abductive-based application for database integration
is developed. Suppose that, while a query is being
processed by a user, another data source had in-
serted desc.Uranus;Aphrodite/ in our database, plus
a constraint of the form: For no x and y, simul-
taneously desc.x; y/ and desc.y; x/ can be main-
tained in the database. If parent.Zeus;Aphrodite/ had
been inserted for one data source, the insertion of
desc.Uranus;Aphrodite/ by the second data source
would cause a collapse in view of the constraint. What

can be done? The alternative of deleting all data seems
inconceivable, and the one of having all queries be
answered positively (since a database established on
classical logic grounds would deduce anything from
a contradiction) is of course intolerable. Thus a legit-
imate logic to ground this process would have to be
a first-order logic that sanctions useful reasoning in the
presence of contradictions.

Proposals from this perspective have been investi-
gated in [15.13]. A first-order LFI, QmbC, that is an
extension of the logic mbC, has been presented and in-
vestigated in [15.14]. We will argue here that simple
yet powerful techniques for automatic abduction can
be usefully implemented by means of tableau proof-
procedures for the logic mbC, which may be extended
to QmbC.

Although a wide-scoped study of tableaux and ab-
duction was offered by [15.15] in 1997, the quite
natural idea of using the backward mechanism of
tableaux for gaining automatic explanations occurred
earlier: [15.16] in 1992 already proposed a fully
detailed treatment for the question of completing
a database in a way as to deduce (in classical propo-
sitional logic) a previously undeducible formula. In the
same year a tableau proof system for da Costa’s logicC1

was proposed in [15.17], and several examples of using
such tableau systems for automatic solving dilemmatic
situations were extensively discussed. Even though nei-
ther of these references explicitly mentions the concept
of abduction, these papers undoubtedly proposed ways
to solve the abductive problem, for classical propo-
sitional logic and for the propositional paraconsistent
logic C1 respectively. In [15.18], tableau systems for
LFIs were proposed, and this logical formalism was
used as a method to devise database repairs in [15.13].
Such methods are based upon many-valued semantics,
or upon bivalued semantics.

The question of abduction thus involves two inde-
pendent, but complementary problems:

1. Finding a method to automatically perform abduc-
tion (and, if possible, to automatically generate
abductive data), and

2. Doing this within a robust reasoning environment,
in a such a way as to keep running and providing
reasonable output even in the presence of the possi-
ble contradictions that this search would engender.

Any contradictions found in the process of pro-
ducing lucid outputs are a condemnation of the whole
process if the underlying logic is classical, so, the ab-
ductive experience can sometimes appear to be lethal.
We argue here, however, that very simple and natural
logical models can be designed for dealing with abduc-
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tion, by means of defining them in terms of refutation
procedures based on LFIs.

It is well accepted that abduction does not go in the
forward direction of deduction. It is not difficult to ac-
cept, either, that abduction cannot coincide with any
backward form of classical deduction, but it does not
follow that another form of backward deduction would
not work. In this sense, some LFIs are good candidates.
Let us take as example mbC: it does not prove anything
that classical logic would not prove; it tolerates con-
tradictions, but, nonetheless, it can encode the whole
of classical reasoning. Backwards proof procedures for
LFIs indeed constitute a suitable approach for abduc-
tion, and we intend to show how this approach can be
programmed and treated on a natural basis departing
from a very simple formalism.

We have already seen here that it is typical that
cognitive situations can enter into a situation of (pre-
sumably temporary) contradictory state. Of course, in
a situation where we have serious theories competing
around a contradiction, there is little sense in rejecting
one of them a priori just to save the principle of ex-
plosion. It seems to be out of question that it is more
convenient to tame the logic, rather than to sacrifice
a precious (and possibly correct) theory.

This is not only the case for scientific theories.
A single digit in a database can of course be extremely
valuable than to be just thrown away, and it is already
widely recognized that no automated reasoning is pos-
sible without means of controlling logical explosion.
What is yet not clear is whether the act of guessing
is involved in the discovery context of abduction, and
furthermore under such conditions, can be the subject
of logic. Although it seems that Peirce maintained the
negative, we argue that in many interesting cases the
process of guessing can be solved semi-automatically
by means of careful manipulation of the concept of con-
sistency, viewed as a primitive notion independent from
the concept of contradiction, as shown in Sect. 15.2.1
above. In this way we can obtain a reasonably effi-
cient and conceptually simple method for discovering
new logical hypotheses that will serve as explanans for
a given explanandum.

15.3.1 mbC-Tableaux

The beginnings of automatic heuristics by means of
paraconsistent tableaux can be traced back to [15.17],
although the logic used there is da Costa’s C1. As ar-
gued in the preceding sections, an important LFI is the
logic mbC. A relevant feature of mbC is that it can
be defined by means of refutative tableau-type proof
procedures. Such backward proof procedures are very
convenient for formalizing abductive routines. The ba-

sic idea is that the open branches may be seen as
a heuristic device that helps indicate the formulas that
would close the tableau, and these formulas are then
taken as the explicative hypotheses.

We present below a definition of the notion of an
abductive explanation:

Definition 15.2
Let � , � be finite sets of sentences and A be a sentence
in the language of a given logic L. � and A form an
abductive problem and � is an abductive explanation
for the abductive problem if:

1. (Abductive problem): The context � is not suffi-
cient to entail A, that is, � ° A

2. (Abductive solution): The enriched context � plus
� is sufficient to entail A, that is, �;� ` A

3. (Nontriviality of solution): The enriched context �
plus � is nontrivial, that is, there exists B such that
�;�° B

4. (Vocabulary restriction of solution): Var.�/�
Var.� /[Var.A/

5. (Minimality of solution): by lack of any other crite-
ria, a mathematically minimal � is a good explana-
tion (in the sense, for example, that it is composed
of a set with minimal cardinality and with formulas
of minimal length).

While conditions (1) and (2) just define what is an
abductive problem and what is a solution, conditions
(3), (4) and (5) impose restrictions for a solution to be
considered relevant: condition (3) avoids, for instance,
that � be taken as the collection of all formulas, or as
a single bottom particle (which would entail any other
formulas). Since the compactness theorem holds for
mbC, � and � can always be taken as finite sets.

Below, we present a tableau system for mbC,
based on the bivaluation semantics presented in Defi-
nition 15.1 [15.7, p. 48]. We use 0 and 1 as syntactic
labels to represent the semantic values 0 and 1.

R1
0.:X/
1.X/

R2
1.ıX/

0.X/ j 0.:X/
R3

1.X/ j 0.X/
R4

1.X1 ^X2/

1.X1/; 1.X2/

R5
0.X1^X2/

0.X1/ j 0.X2/
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R6
1.X1_X2/

1.X1/ j 1.X2/

R7
0.X1 _X2/

0.X1/; 0.X2/

R8
1.X1! X2/

0.X1/ j 1.X2/

R9
0.X1! X2/

1.X1/; 0.X2/

A branch is closed when it contains a couple of
labeled formulas 1.X/ and 0.X/, or when it contains
a triad of labeled formulas 1.X/, 1.:X/ and 1.ıX). The
rule R3 could in principle be eliminated, but it is con-
venient to keep it in the system. The results proven
in [15.19] guarantee that the tableau system is sound
and complete for mbC.

Now, making use of the tableau system above, we
can illustrate how an abduction mechanism based on
the logic mbC works. Let us consider, first, an example
from the folklore; a theory � containing the follow-
ing sentences: � D fA! C;B! Cg, where A means
It rained last night, B means the sprinkler was left on,
and C means the grass is wet. If we observe that the
grass is wet, and we want to explain why this is so,
It rained last night is an explanation, but the sprinkler
was left on is another competitive (though not incom-
patible) explanation. Tableaux allow for automatically
computing nontrivial explanations. After we have such
explanations, we may employ some criteria to discard
some explanations or choose the best one among com-
petitors. For instance, the hypothetical explanation that
the sprinkler was left on may be true, but canceled by
the fact that the main water register was known to be
off. In any case, some choices may be necessary in
order to implement a preference policy for ranking mul-
tiple explanations – facts may have precedence over
hypothetical explanations, and likelihood may be used
to classify explanations. Although this is an important
part of the whole question that will affect the useful-
ness of the automatic explanations produced, it is not
part of the abduction problem as originally posed. It is
worth noting that the position we are holding here does
not require a nonmonotonic logic. The logic used here
to produce the abductive output, mbC, is monotonic.
Nonmonotonic reasoning, if necessary, may be used in
further steps.

Example 15.1
A case where mbC-tableaux and classical tableaux give
the same result:
Let � D fA! C;B! Cg; of course � ° C. Running
an mbC-tableau for 1.� /[f0.C/g produces an open
branch containing 0.A/ and 0.B/. Clearly, this branch

would be closed by 1.A/ or 1.B/, which indicates that
there are three possible abductive solutions: �1 D fAg,
�2 D fBg and �3 D fA;Bg.

In the example above, by principle, we consider that
a � minimal provides a better explanation. However,
in real-life contexts of reasoning, the choice between
these solutions is a problem that may depend on data
and criteria to be established by the user of the system.

Example 15.2
Let � D fA! B;B! Cg; clearly, � ° C. Running an
mbC-tableau for 1.� /[f0.C/g produces a open branch
containing 0.A/ and 0.B/. Again, it indicates the same
three possible abductive solutions:�1 D fAg,�2 D fBg
and �3 D fA;Bg.

Example 15.3 Impossible Explanations Explained
Suppose that we know that, if it rained last night, then
the grass is wet; we know that the grass is wet, but
we also know (or have been informed, or have inde-
pendent evidence for it) that it did not rain. How can
we explain that the grass is wet? Let the situation be
represented as � D fA! B;:Ag; here, � ° B, but no
classical tableau is able to find an explanation, since
the only possible candidate, A, has to be ruled out by
clause (3) of Definition 15.2 as it entails triviality. How-
ever, mbC-tableaux will be able to provide a solution.
In situations like this, common sense suggests that rain
may be accepted as an explanation, if the information
suggesting that it did not rain is uncertain or dubious.
Running an mbC-tableau yields an open branch con-
taining 1.A/. Clearly, �D fAg would close the branch,
but classically it would not be a solution, since the set
of premises contain a formula:A. But A is indeed a so-
lution, that also indicates the proposition:A is not well
established as true – that is, is not consistent. In fact,
in mbC, A;:A ` :ıA. For this reason, this explanation
does not violate Definition 15.2. Notice that this sce-
nario cannot be represented by a classical tableau.

Example 15.4 Explanations that Avoid Hasty Con-
clusions
We know that taking certain drugs has beneficial con-
sequences for health, but also the same drugs, under
certain conditions, will produce undesirable effects on
our health. Represent this situation as A! B and A!
:B. Under classical reasoning (using classical tableaux,
or any other classical inference mechanism) an imme-
diate conclusion would be :A, that is, we should not
take these drugs. However, the negative effects could
be explained by inappropriate doses, or by different
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health conditions in different people, and so on. Using
mbC-tableaux, however, this case turns out to be an in-
teresting abduction problem, since in mbC A! B;A!
:B° :A, as can be checked by the reader, by consult-
ing the semantics given in Sect. 15.2.1, A Semantics for
mbC. We are thus invited to look for an abductive ex-
planation: this explanation, automatically produced by
the mbC-tableau, is that the drug is to be banned only
if the contradictory effects are undeniable, that is, if
ıB. Indeed, in mbC A! B;A!:B; ıB ` :A. Hence,
�D fıBg is an explanation: the resulting mbC-tableau
is closed.

Example 15.5 Whodunit?
A diamondwas stolen in a hotel room and only two peo-
ple had entered the room on two different days, Bob
and Alice. Since there is only nonconclusive evidence
against them and the standard of a proof in a criminal
trial must be so strong that there should be no shadow
of doubt, the police initially consider that they are not
guilty, but certainly one of them is guilty, that is, the
evidence basis contains � D f:A;:B;A_Bg where A
and B stand, respectively, for Alice is guilty and Bob
is guilty. At this point, � ° A and � ° B, so we have
two abductive problems. Now, by running the respective
mbC-tableaux, we easily see that either ıA (meaning
that the initial supposition about Alice’s innocence was
indeed consistent) or ıB (meaning, alternatively, that the
initial supposition about Bob’s innocence was indeed
consistent) would decide the question. Indeed, in mbC,

A_B;:A;:B; ıA ` B and

A_B;:A;:B; ıB ` A
The presumed innocence of exactly one of them must
be revised. Defending the innocence of one of them
amounts to the culpability of the other. Notice that they
cannot be both innocent – if this were the case, we get
triviality.

These examples illustrate the fact that employing
logics of formal inconsistency in the general problem
of abduction has interesting consequences, automati-
cally producing meaningful explanations that would be
imperceptible within the classical environment. mbC is
not the only choice, and other LFIs would play a sim-
ilar role. It is worth noting that mbC is decidable, and
the complexity of its satisfiability problem is no worse
than that of the classical satisfiability problem.

15.3.2 Quantification

The extension of the ideas of obtaining abductive ex-
planations by means of tableaux to the first-order case

is not only quite natural, but expected in real applica-
tions. Although there are some technical complications,
from the tableau-proof-theoretical standpoint, all the
grounding constructions are already at our disposal: the
logic QmbC, first-order extension of the propositional
mbC, has been studied in detail in [15.14]. We recall the
main ideas about QmbC and show how the underlying
tableau procedure can be used in abductive problems.
Let ˙ be the language of mbC enriched with 8 and 9,
and Var be a set of variables. The formulas of QmbC
are defined as usual in first-order logics; all the famil-
iar syntactic notions of free and bound variables, closed
formulas (sentences), substitution etc., are defined as
usual. From the semantic side, sentences of QmbC are
interpreted by adding the following to the semantics of
mbC:

i. v.9xA/D 1 iff v.AŒx=t�/D 1 for some term t in L
ii. v.8xA/D 1 iff v.AŒx=t�/D 1 for all t in L
iii. If A is a variant of B, then v.A/D v.B/

We say that A is a variant of B (and vice versa) if A
can be obtained from B by means of addition or deletion
of void quantifiers, or by renaming bound variables. It is
a theorem of classical first-order logic that if A and B are
variants of each other, then A and B are logically equiv-
alent. However, in QmbC the clause (3) above has to be
postulated to solve some technical problems that will
not be considered in detail here, but the reader can find
in [15.14]. From a syntactical perspective, what inter-
ests us here for the sake of abduction, a tableau system
for QmbC is obtained by adding to the tableau rules of
mbC the following rules for the quantifiers

R10
1.8xA/
1.A.x=t//

R11
1.9xA/

1.A.x=s//

R12
0.8xA/
0.A.x=s//

R13
0.9xA/

0.A.x=t//

R14 If B is variant of A W
1.A/
1.B/

and
0.A/
0.B/

The rules above are subjected to the following restric-
tion: t is an arbitrary term and s is a new term with
respect to 8xA, i. e., it does not appear in any branch
containing 8xA (respectively for 9xA).

The method introduced here for obtaining auto-
matic explanations can thus be extended to first-order
theories. Of course, this involves some additional com-
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plications, because QmbC-tableaux, as much as their
classical counterparts, are not a decision procedure for
QmbC-validity – indeed, QmbC is undecidable. Let us
see an example below.

Example 15.6
Consider the following set of propositions: � D
f8x.Cx! Bx/;8x.Gx! Bx/;:Cag. Here, � ° Ba.
Running an mbC-tableau for 1.� /[ f0.Ba/g produces
an open branch containing 0.Ca/, 1.:Ca/ and 0.Ga/.
Classically, the only candidate to be an abductive ex-
planation is Ga. But from the point of view of QmbC,
we obtained two possible explanations, since 1.Ca/ also
closes that branch. In the latter case, a further con-
clusion is that Ca is not consistent, i. e., is not well
established as a true proposition. Thus, this explanation
does not violate Definition 15.2.

To the extent that LFIs permit fine control of rea-
soning in the presence of inconclusively established hy-
potheses, particularly under contradictions, the mech-
anism presented here is thus capable of proposing
solutions for an extensive class of abductive problems.
As we have seen, the mbC-tableaux increase the range
of options provided by classical reasoning. The issues
discussed here have much in common with belief re-
vision, default reasoning, the closed-world assumption,
and negation as failure of logic programming, as well
as databases with evolutionary constraints, thus making
our proposal valuable for several applications. Abduc-
tion, however, can also be regarded, from a much more
abstract standpoint, as a companion for argumentation
(see chapter by Barés and Fontaine, this section, for
a proposal in this direction). From this perspective, any
attempt to make abduction somewhat closer to deduc-
tion is welcome.

15.4 Modality

Modal logics and paraconsistent logics are cousins. In
1948, while attempting to answer a question posed by
J. Lukasiewicz, S. Jaśkowski presented the first formal
system for a paraconsistent logic with his discussive
logic. Interestingly enough, his logic was framed in
terms of modalities, and later on it was proven to be
a particular case of the family of LFIs [15.7]. However,
it was only in 1986 that the first modal paraconsistent
systemwas proposed in [15.20], with the aim of dealing
with deontic paradoxes. That system was a modal ex-
tension of da Costa’s paraconsistent logic C1. This ap-
proach has been extended by means of deontic modali-
ties combined with LFIs, as developed in [15.21, 22].

Paraconsistent negation can be regarded as a kind of
modal operator, considering the fact that the classical
negation for possibility (and, a fortiori, for necessity)
has a paraconsistent behavior. Namely, the operator :,
defined as

:A defD ˙�A;

is a paraconsistent negation where, as usual, � de-
notes the classical negation. This relationship has been
studied in [15.23], both with respect to the standard
modal logic S5 and to four-valued modal logics [15.24].
It is worth noting that the fact that ˙�A defines
a paraconsistent negation was already observed in 1987
in [15.25], when a Kripke-style semantics was proposed
for Sette’s logic P1 based on Kripke frames for modal
logic T.

One of the interests in paraconsistent modal log-
ics is the potential of dealing with, or even avoiding,

some modal paradoxes. Moral dilemmas are a typical
situation in which paraconsistent modal logics provide
a tool to handling contradictions without triviality. Let
us take as an example the well-known dilemma, posed
by [15.26], of the man in occupied France who, on the
one hand, wants to fight the Nazis but, on the other,
must take care of his mother. He believes that each al-
ternative is a moral obligation, but doing one implies
not doing the other. Let A and B be, respectively, fight
the Nazis and take care of his mother. Let the symbols
O and P mean, respectively it is obligatory that and it
is permitted that (as usual � means necessity and ˙
means possibility). From the premises

OA;OB;�˙.A^B/ ;
plus the following principles of deontic logic

�.A! B/! .OA! OB/ ;

OA!�O�A ;
and given that in classical modal logic �˙.A^B/
is equivalent to �.A!�B/, a contradiction may be
obtained in a few steps. On the other hand, a paraconsis-
tent modal logic may handle the contradiction without
triviality.

Another example is Urmson’s paradox. In this case,
the modal paradox is just avoided. Consider the follow-
ing proposition

(X) It is optional that you attend my talk or not;

but your choice is not indifferent.
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It is clear that the notions optional (Opt) and indifferent
(Ind) must be distinct in (X). Again, let P and O mean
permitted and obligatory. It is natural in modal logic to
formalize Opt and Ind as

Opt.A/
defD PA^P�A :

Ind.A/
defD �OA^�O�A :

In classical modal logic a contradiction occurs because
� is a classical negation andOA is equivalent to�P�A.
Hence, it is easy to see that Opt and Ind are equivalent.
So, attending the talk is simultaneously optional and not
optional. On the other hand, if a nonexplosive negation
: is available, it can be used to express the notions Opt
and Ind. In this way, no paradox occurs becauseOA and
:P:A are no longer equivalent.

Paraconsistent deontic logics have also been stud-
ied in the literature for quite a some time [15.20],
and deontic counterparts of LFIs, the logics of de-
ontic (in)consistency (LDIs), have been introduced
in [15.21]. These logics are shown to be able to han-
dle deontic paradoxes, as the well-known Chisholm’s
paradox. Since contradictory obligations do not trivial-
ize such LDIs, several paradoxes involving conflicting
obligations are dissolved [15.22].

It is important to note, however, that the potential of
combining paraconsistency and modalities extends far
beyond deontic issues. Not only can some problems, de-
scribed in [15.27], be thought in paraconsistent terms,
but also certain problems and paradoxes in epistemic
and doxastic logics gain new insight when regarded
from paraconsistent perspective.

A detailed investigation of the relationship between
LFIs and their modal versions is carried out in [15.28],
where the so-called anodic systems (purely positive
modal systems) introduced in [15.29] are extended by
adding certain paraconsistent axioms based on LFIs,
defining a class of modal systems called cathodic sys-
tems (modal systems involving degrees of negations).
For an explanation of the terms anodic and cathodic
see [15.29]. A semantic interpretation of cathodic sys-
tems is given in [15.28], where it is shown that the
cathodic systems can be semantically characterized in
two different ways: by means of Kripke-style semantics
and by means ofmodal possible-translations semantics.

In the following sections we start by presenting
a positive (i. e., anodic) modal system, that can be en-
hanced with degrees of negation, as shown in [15.7], so
as to obtain a family of cathodic systems. We start with
the anodic modal system K˙, a negationless fragment
of the well-known modal system K.

The first paraconsistent modal system we shall con-
sider is mbC�, which will be obtained as an extension

of the anodic modal system K˙. Then, we show how
paraconsistent modal logics that are fragments of the
familiar systems T, S4 and S5 may be obtained, as ex-
tensions of mbC�. Correct and complete semantics are
presented for all of these systems.

15.4.1 The Anodic System K˙

In this section, a purely positive bimodal system K˙

will be defined in a negationless language that is both
an extension of CPLC and a fragment of K. The only
modal axioms are positive versions of the distribution
axiom (K) (namely, (K), (K1), (K2) and (K3)) together
with the usual necessitation rule (Nec).

The language L2 of K˙ has the following set of
connectives: f_;^;!;�;˙g. Notice that both modal
operators are needed as primitive because one cannot
be defined in terms of the other, given that no negation
is available. The set of formulas of K˙ is obtained as
typically done in modal logic. The formulas of K˙ are
represented by Roman capital letters, and sets of for-
mulas are represented by uppercase Greek letters �;�
etc. The definition of a derivation of A from a set of
premises � (� `K˙ A) is the usual one: a finite se-
quence of formulas B1 : : :Bn such that A is Bn and each
Bi, 1
 i 
 n is an axiom, a formula that belongs to � ,
or a result of an inference rule. A theorem is a formula
derived from the empty set of premises. When there is
no risk of ambiguity, we write just ` instead of `K˙ .

Definition 15.3
The anodic modal system K˙ is defined by adding to
CPLC the following modal axiom-schemas and modal
rule:

(K) �.A! B/! .�A!�B/
(K1) �.A! B/! .˙A!˙B/
(K2) ˙.A_B/! ˙A_˙B
(K3) .˙A!�B/!�.A! B/
(Nec) ` A implies `�A

A modal system is called normal if it contains the
distribution axiom (K) and the necessitation rule (Nec)
among its axioms and rules, and minimal if it has only
(K) as a modal axiom and (Nec) as a modal rule. K˙ is
minimal and normal. In addition, it is not difficult to see
that K˙ is a fragment of the system K, since the axioms
(K1)-(K3) can be derived in the system K, as the reader
can verify as an exercise (remember that K is obtained
by adding to CPLC the axiom K and the necessitation
rule). As well as mbC, K˙ satisfies the properties of re-
flexivity, monotonicity, cut and compactness. Besides,
the deduction theorem is also valid.
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A Semantics for K˙

Now a Kripke-style semantics forK˙ will be presented,
or in other words, a possible world semantics. Such
a semantics has two basic and primitive notions: (i) the
notion of possible world, usually understood as a way
things in the world might have been, and (ii) the notion
of accessibility, or relative possibility, between worlds.
The basic idea of (ii) is that it may be the case that
some alternative worlds are not possible with respect
to a given world. These intuitions are expressed as fol-
lows:

Definition 15.4
An anodic frame is a birelational structure FD hW;
R�;R˙i. W is a nonempty set (a set of possible
worlds), and R� and R˙ are any binary relations on
W (accessibility relations between worlds).

Notice that the definition above needs two binary re-
lations because� and ˙ are not interdefinable. Frames
play a central role in modal logic because the condi-
tions imposed on the accessibility relation are placed
on frames. In K˙, as well in K, there is no condition
on the relations R� and R˙. F is said to be a frame for
a modal system S if every theorem of S is valid on F. It
will became clear throughout this section.

Amodel for a modal system S is defined by specify-
ing what formulas receive the semantic value 1 in which
worlds. The following definition specifies what a model
for the anodic system K˙ is:

Definition 15.5
A model for K˙ is a pair MD hF; vi where F is
a frame for K˙ and v W Var�W �! f0; 1g is a function
satisfying:

(i) v.p;w /D 1 or v.p;w /D 0
(ii) v.A! B;w /D 1 iff v.A;w /D 0 or v.B;w /D 1
(iii) v.A^B;w /D 1 iff v.A;w /D 1 and v.B;w /D 1
(iv) v.A_B;w /D 1 iff v.A;w /D 1 or v.B;w /D 1
(v) v.�A;w /D 1 iff v.A;w 0/D 1, for all w 0 2W

such that wR�w 0

(vi) v.˙A;w /D 1 iff v.A;w 0/D 1, for some w 0 2W
such that wR˙w 0.

A sentence A is said to be satisfied in a model M,
if there is a w 2W such that v.A;w /D 1 (notation:
M;w � A). A sentence A is said to be valid in a model
M, if v.A;w /D 1 for all w 2W (notation: M � A).
A sentence A is said to be valid in a frame F, if A is
valid in all modelsM based on F (notation: F� A).

A special class of frames F is the collection of
frames that satisfy some condition imposed on the re-
lation R. Examples are the special class of reflexive

frames, where R is reflexive, and the class of general
frames, where there is no condition imposed on R. Re-
member that there is no condition on the accessibility
relations in K˙.

A sentence A is a semantic consequence of � with
respect to the class F of frames if F � � then F � A,
for each F 2F , where F� � means thatF � B for all
B 2 � .

Notice that the semantics in the clauses above, (i) to
(iv) are classical in the sense that, in each world w , the
propositional connectives behave classically. This is ex-
pected, since K˙ is an extension of CPLC. The system
K˙ can be proven sound and complete with respect to
the semantics given above. The proof is a bit compli-
cated, and requires some technical details [15.30].

15.4.2 The Logic mbC�

Cathodic systems can be obtained by extending K˙,
adding to its language a paraconsistent negation : and
the consistency operator ı plus specific paraconsistent
axioms. The modal paraconsistent logic mbC� is de-
fined by adding to K˙ the following axioms

Ax. bc1. ıA! .A! .:A! B// ;

Ax. 10. A_:A :
It is clear that mbC� is both an extension of mbC and
of K˙. Notice that the properties of reflexivity, mono-
tonicity, cut and compactness hold for mbC�, as well
as the deduction theorem. Given that it is possible to de-
fine a classical negation � in mbC, then the possibility
operator ˙ can be defined from the necessity operator
� as usual in modal logic.

˙A DefD���A (15.5)

Hence, the axioms (K1)–(K3) are innocuous in mbC�,
since they can be easily proven as theorems, as the
reader can verify.

A Semantics for mbC�

Definition 15.6
A frame is a relational structure FD hW;Ri, where
W ¤¿ is a universe and R is a binary relation on W
(notice that now we need only one relation that covers
both ˙ and�).

A bivalued relational model for the cathodic system
mbC� is defined as follows:

Definition 15.7
A bivalued relational model M for mbC� is a pair
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hF; vi where F is a frame and v W Var�W �! f0; 1g
is a bivalued modal assignment satisfying the condi-
tions:

(i) v.p;w /D 1 or v.p;w /D 0;
(ii) v.A! B;w /D 1 iff v.A;w /D 0

or v.B;w /D 1
(iii) v.A^B;w /D 1 iff v.A;w /D 1

and v.B;w /D 1
(iv) v.A_B;w /D 1 iff v.A;w /D 1 or v.B;w /D 1
(v) v.A;w /D 0 implies v.:A;w /D 1
(vi) v.�A;w /D 1 iff 8w 0.wRw 0/; v.A;w 0/D 1
(vii) v.˙A;w /D 1 iff 9w 0.wRw 0/; v.A;w 0/D 1
(viii) v.ıA;w /D 1 implies v.A;w /D 0

or v.:A;w /D 0.

The notion of validity in a frame is defined as usual.

15.4.3 Extensions of mbC�

From mbC�, stronger systems may be defined. The
well-known modal systems D, T, S4, B and S5 are ob-
tained by adding one or more of the following axioms
to system K

.D/�A!˙A I

.T/�A! A I

.4/�A!��A I

.B/ A!�˙A I

.5/ ˙A!�˙A :

Now, axiomatic systems for the modal logics listed be-
low are obtained as follows

D
defD KC .D/

T
defD KC .T/

S4
defD KC .T/C .4/

B
defD KC .T/C .B/

S5
defD KC .T/C .5/

Sound and complete semantics can be obtained for the
systems above by imposing appropriate conditions on
frames. A frame F is

Reflexive iff for every w 2W;wRw I
Symmetric iff for every w ;w 0 2W;
wRw 0 implies w 0Rw I

Transitive iff for every w ;w 0;w 00 2W;
wRw 0 and w 0Rw 00 implies wRw 00 I

Serial iff for every w 2W there is some w 0 2W :

such that wRw 0

The modal logics K, K˙ and mbC� have no condition
on frames – that is, they have no condition on the rela-
tion R of accessibility between worlds. Starting from K,
the systems D, T, S4, B and S5 are obtained imposing
the following condition on frames

D W serial;
T W reflexive;
B W reflexive and symmetric;

S4 W reflexive, transitive;
S5 W reflexive, symmetric, transitive.

Now,mbC� may be extended, obtaining paraconsistent
modal systems that are both extensions and fragments
of each of the systems above.

mbCD defD mbC�C .D/ ;
mbCT defD mbC�C .T/ ;
mbCB defD mbC�C .T/C .B/ ;
mbCS4 defD mbC�C .T/C .4/ ;
mbCS5 defD mbC�C .T/C .5/ :

Kripke-style semantics for the above paraconsistent
modal systems may be obtained by just adding clauses
corresponding to the respective restrictions on frames
to the semantics for mbC�.

The modal logic S5, where the relation is reflex-
ive, symmetric and transitive, or in other words every
possible world may access every possible world, is
usually accepted as the system that better expresses
the intuitive idea of Leibniz according to which pos-
sibility amounts to truth in some possible world and
necessity amounts to truth in every possible world.
Kripke has refined the basic intuition of Leibniz, in-
genuously providing complete and sound semantics for
the axiomatic systems that were already available. S5 is
also taken as the strongest propositional modal system
among those presented here. Besides, it is claimed, al-
though not without dispute, that S5 is the system that
better expresses the notion of logical necessity. It is
worth noting that the system mbCS5 may be seen an
extension of S5, since a classical negation is definable
in it. Hence, mbCS5 presents itself as a very powerful
paraconsistent modal system, capable of expressing ev-
erything that is expressed by S5 plus the resources of
the paraconsistent logic mbC. Applications of mbCS5
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in philosophical issues in modal logic, as well as the
possibility of enhancing it in order to fit some con-
texts of reasoning or philosophical problems related to
modalities in general are topics that deserve further at-
tention.

Although a large class of anodic and cathodic multi-
modal logics can be shown to be complete with respect
to Kripke frames, an interesting point about anodic
and cathodic modal logics is that some incomplete
systems can be found in both families. Bueno-Soler
in [15.31] shows that some classes of cathodic mul-
timodal paraconsistent logics (that is, logics endowed
with weak forms of negation) are incompletable with

respect to Kripke semantics. The meaning of this kind
of incompleteness is also discussed in [15.31], but, sur-
prisingly, the phenomenon of modal incompleteness is
also found among purely positive (multi)modal log-
ics: Bueno-Soler in [15.30] obtains some examples
of Kripke-incompletable purely positive modal logics,
demonstrating that modal incompleteness is a result of
the interaction of modalities, independent of negation.
The incompleteness in the case of cathodic modal log-
ics, however, does not obtain with respect to possible-
translations semantics, marking a distinction between
this kind of semantics and Kripke semantics for modal-
ities.

15.5 On Alternative Semantics for mbC

The semantic characterization of nonclassical logics in
general is not an easy task. As it was proven in [15.7],
mbC, as well as the majority of LFIs, cannot be charac-
terized by a finite logical matrix. Moreover,mbC cannot
be algebraizable, even in the wide sense of Blok and
Pigozzi [15.32]. These restricting results also hold for
several LFIs extending mbC, and for the logics of the
Cn hierarchy. Being so, these systems lie outside stan-
dard semantic analysis such as categorical or algebraic
semantics. Because of this, the development of alterna-
tive semantic techniques for these kinds of LFIs is an
important and challenging task.

This section briefly describes some alternative se-
mantic approaches to mbC and many other LFIs. All
these semantics have an intrinsic nondeterministic char-
acter, suggesting that nondeterminism is the correct
perspective for this kind of logics.

Let us begin by recalling the valuation seman-
tics for mbC introduced above (Definition 15.1). The
clauses for the binary connectives!, _ and ^ are the
same as for classical logic. However, as we have seen,
the clauses for the paraconsistent negation : and the
consistency operator ı give the following (nondeter-
ministic) quasi-matrices

A :A ıA
1 1 0 v1

0 1 v2
0 v3

0 1 1 v4
0 v5

Accordingly, there are five possible valuations for
mbC concerning propositions A, :A and ıA, namely v1
to v5, such that v1.A/D v1.:A/D 1 and v1.ıA/D 0;
v2.A/D v2.ıA/D 1 and v2.:A/D 0, and so on. Ob-

serve that, if v.A/D v.:A/D 1, then v.ıA/ is forced
to be 0, by the gentle explosion law (bc1). Otherwise,
when v.A/¤ v.:A/ the value of v.ıA/ is arbitrary.
As Avron observed in [15.33], simultaneously taking
into account the semantic values of A, :A and ıA
instead of taking these values separately, five seman-
tic values derived from the five valuations v1–v5 can
be obtained, namely B5 D ft; T; t0; F; f0g, where tD
.1; 1; 0/, T D .1; 0; 1/, t0 D .1;0; 0/, FD .0;1; 1/ and
f0 D .0; 1; 0/. This allows a semantic characterization
of mbC in terms of nondeterministic matrices (see be-
low).

This approach, however, can be traced back to Fi-
del’s ideas, already presented in his definition of the
notion of twist structures in [15.34] (independently of
Vakarelov in [15.35]). Indeed, in his PhD thesis [15.36],
Fidel claims that, by considering n-tuples of a given
class of algebras (for some n� 2), it is possible to ana-
lyze the structure of the algebraic models of other non-
classical logics. Besides twist structures for Nelson’s
logic (where nD 2), he introduces in [15.36, Chap. 4]
a new semantics for the logic of Ockham algebras P3;1

by considering triples of elements of distributive lat-
tices. Any triple .a;b; c/ is such that a represents the
value of a formula A, while b and c represent the values
of :A and ::A, respectively.

These ideas from Fidel inspired [15.37], wherein
the notions of snapshots and swap structures for mbC
(and some LFIs extending it) were introduced.

Definition 15.8
Let AD hA;^;_;!; 0; 1i be a Boolean algebra, and
let BA D f.a;b; c/ 2 A�A�A W a_bD 1 and a^b^
cD 0g: A swap structure for mbC over A is any mul-
tialgebra BD hB;^;_;!;:; ıi such that B� BA and
where the multivalued operations satisfy the following
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conditions, for every .a;b; c/ and .a0; b0; c0/ in B, and
for each # 2 f^;_;!g:
(i) .a; b; c/#.a0; b0; c0/

defD f.a00; b00; c00/ 2 B W a00 D a#a0g;
(ii) :.a; b; c/ defD f.a00; b00; c00/ 2 B W a00 D bg;
(iii) ı.a;b; c/ defD f.a00; b00; c00/ 2 B W a00 D cg.

The elements of a given swap structure are called
snapshots. Intuitively, a snapshot xD .a;b; c/ simulta-
neously keeps track of the value a of a given formula
A, the value b of :A, and the value c of ıA. Because
of this, a_ bD 1 by the principle of excluded middle,
and a^b^cD 0 by the gentle explosion law, which are
both valid in mbC.

The binary operations (cf. clause (i)) kept fix the
first coordinate of the given snapshots: the second and
third coordinates of the output do not depend on the
given data. It reflects the fact that the binary connectives
are classical, but the truth value of :.A#B/ and ı.A#B/
are unrelated to the truth values of A, B, :A,:B, ıA and
ıB. With respect to the unary connectives (cf. clauses
(ii) and (iii)), the negation :x of a snapshot x is the
set of snapshots with the second coordinate of x on the
first place. Accordingly, the consistency ıx of x has the
third coordinate of x in the first place. This reflects the
intuitive meaning of the components of a snapshot, as
mentioned above. As in the case of (i), the second and
third coordinates of :x are independent from x, since
::A and ı:A are independent from A, :A and ıA. The
same observation holds for ıx.

Swap structures are multialgebras defined over suit-
able subsets of A3, for any Boolean algebra A. Hence
they naturally determine a family of nondeterministic
matrices in the sense of Avron and Lev (see below)
which semantically characterize mbC and other LFIs.

Any swap structure B for mbC determines a non-
deterministic matrix M.B/ defD hB;DBi such that DB D
fx 2 B W x1 D 1g is the set of designated truth values
(here, x1 denotes the first coordinate of the snapshot
x). Let K be the class of such nondeterministic matri-
ces, and define the semantic consequence with respect
to swap structures for mbC as follows: � ˆK A iff
� ˆM.B/ A, for every swap structure B for mbC (the
consequence relation on each nondeterministic matrix
is defined by means of valuations in the sense of Avron
and Lev, see below). Then, the following result can be
proven [15.37]:

Theorem 15.1 Soundness and Completeness
Let � [fAg be a set of formulas in mbC. Then, � `mbC

A if and only if � ˆK A.

The last result can be strongly improved: Let A2

be the two-elements Boolean algebra, and let K2 be
the nondeterministic matrix M.B/ induced by the
unique swap structure B for mbC over A2 with do-
main BA2 . Observe that BA2 coincides with the set
B5 D ft; T; t0; F; f0gmentioned at the beginning of this
section (with the notation introduced therein). Then, the
following result can be proven [15.37]:

Theorem 15.2 Soundness and Completeness with
Respect to A2
Let � [fAg be a set of formulas in mbC. Then, � `mbC

A if and only if � ˆK2 A .

Theorem 15.2 is nothing more than the seman-
tic characterization of mbC by means of Nmatrices
obtained in [15.33]. The notion of nondeterministic ma-
trices (or Nmatrices) was proposed by Avron and Lev
in [15.38], and afterwards studied by Avron and his
collaborators. Basically, an Nmatrix is a logical matrix
MD hA;Di such that each operation in the algebra
A is multivalued, that is, if cM is an n-ary operator
of A (interpreting a connective c) and .a1; : : : ; an/ 2
An (where A is the domain of the multialgebra) then
cM.a1; : : : ; an/ is a finite, nonempty subset of A. The
valuations are mappings v assigning to each formula
of the logic being interpreted by M an element of
A in a coherent way, as follows: v.c.A1; : : : ;An// 2
cM.v.A1/; : : : ; v.An//. The semantic consequence is
defined as in the case of standard logical matrices,
namely: A follows from a set � of formulas if, for ev-
ery valuation v , v.A/ 2 D (the set of designated truth
values) whenever v.�/ 2 D for every � in � .

As observed above, the Nmatrices for mbC con-
sidered by Avron were defined by means of a notion
equivalent to snapshots in B5, with the same mo-
tivations described here. Swap structures propose a
generalization of this approach to arbitrary Boolean
algebras (instead of taking the two-valued Boolean
algebra). From this, some interesting perspectives to
study LFIs from the point of view of multialgebras
arise, by adapting appropriate techniques from alge-
braic logic.

Finally, the possible-translations semantics
paradigm will be briefly surveyed here. The possible-
translations semantics (PTS) were introduced by
Carnielli in 1990 [15.39] as an attempt to offer a more
palatable interpretation, from the philosophical point
of view, for some nonclassical logics, and especially
for paraconsistent logics. PTSs are based on the notion
of translations between logics (that is, mappings that
preserve consequence relations). Using an analogy with
natural languages, translations can be are thought of as
different world views, and the concept of PTSs is a way
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of interpreting a given logic L as the combination of all
possible world views, represented by an appropriate set
of translations of the formulas of L into a class of logics
with known consequence relation. By choosing an ade-
quate collection of such translations, the object logic L
acquires a semantic meaning throughout the logics into
which it is translated (the so-called traducts). When
the translations and traducts are decidable, PTSs offer
a decision procedure.

In formal terms, a possible-translations semantics
for a logic L is a pair of families hfLigi2I ; ffigi2Ii such
that each Li is a logic and each fi is a mapping from L
to Li such that � `L A if and only if fiŒ� � `Li fi.A/, for
every i 2 I.

In [15.40] it was shown that possible-translations
semantics are able to express Nmatrices, which implies
that the latter is a particular case of the former. On the

other hand, from the viewpoint of the consequence rela-
tion, and leaving aside algebraic aspects, swap-structure
semantics is nothing more than a semantics defined by
a family of nondeterministic matrices. Therefore, it can
be seen as a particular case of possible-translations se-
mantics, as pointed out above.

From the previous considerations, it can be seen
that possible-translations semantics is a semantic tool
having a wide scope of applications and a high degree
of generality. On the other hand, Nmatrices and swap
structures offer semantic interpretations with a more
algebraic-oriented perspective, thus being more in-
tuitive. In particular, swap structures offer not only
a promising way to study mbC and other LFIs from the
point of view of algebraic logic, but also a new angle
for understanding why such logics matter for the analy-
sis of reasoning.

15.6 Conclusions

Classical logic is a very powerful tool for modeling both
informal and scientific reasoning. However, the fact that
it is not able to handle contradictions is an important
constraint. Although paraconsistent logics have been
gaining an increasingly relevant place in contempo-
rary philosophical debate, there is still some resistance
against recognizing their philosophical significance, and
it is likely that this reluctance is primarily related to the
awkwardness of the claim that there are meaningful con-
tradictory propositions about reality which are true. An
epistemological interpretation of the acceptance of con-
tradictions by paraconsistent logics has been presented
and defended here. It has also been argued that the logics
of formal inconsistency are capable of expressing con-
tradictions as conflicting evidence, a notion weaker than
truth that occurs in several contexts of informal reason-
ing and scientific research. The unary operator ı initially
had the purpose of representing the metatheoretical no-
tion of consistency within the object language. But the
idea has been further developed in such a way that it
may receive alternative meanings. Actually, any logi-
cal property may have its validity restricted to a group
of propositions, depending on the context of reasoning
one wants to represent. This has been done in the log-
icsmbCD and its extension LETk, which restrict not only
explosion but also excluded middle.

In Sect. 15.3 we have argued that the logicmbC, and
its first-order extension QmbC, are naturally connected
to the general question of finding solutions for (respec-
tively, sentential and quantified) problems of abduction.
Although the use of tableaux in abductive contexts is not
a novelty, paraconsistent tableaux do represent an ad-

vance, due to the problem of contradictory character of
certain abductive solutions. The subject of abduction is
currently investigated, and employed, in several fields
such as artificial intelligence research, formal systems of
law and norms, diagnostic expert systems and databases.
In such cases, theory and practice rely more andmore on
the paraconsistency paradigm. In this way, logic-based
abduction, regarded from a paraconsistent perspective,
acquires special interest. Taking into account, for in-
stance, that probabilistic abductive reasoning as a form
of taking decisions is already extensively used in areas of
higher degree of uncertainty such as medical diagnoses
and pharmaceutical tests, further investigation on para-
consistent probabilistic methods combined with tableau
would open a new research window, adding interest to
the type of approach here expounded.

With respect to the paraconsistent modal logics sur-
veyed in the Sect. 15.4, it is worth noting that the
epistemological interpretation of contradictions in rea-
soning scenarios can be naturally combined with modal
logics. The informal interpretation here suggested, ac-
cording to which a pair of contradictory propositions A
and :A means that there is conflicting evidence about
A, and that ıA means that the truth value of A has been
conclusively established, can be combined with modal-
ities with interesting new aspects. For example, ı�A
may be understood as meaning that the question about
whether or not A is necessary has been conclusively es-
tablished, and�ıAmay be understood as meaning that
necessarily the truth value of A will be conclusively es-
tablished, assigning thus a realistic determinism on the
proposition A. The mere possibility of performing this
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separation by means of cathodic and anodic modalities
already seems to offer new logical perspectives to some
modal dilemmas, although this is not the appropriate
place to develop such analysis. In all cases, the ideas
here surveyed certainly offer new tools for philosophers
and logicians.

Finally, in Sect. 15.5, some alternative semantics
were discussed for mbC (and for nonclassical logics in
general). The fact that mbC lies outside the scope of
the traditional algebraic methods has furthered the de-
velopment of new kinds of semantics. Three paradigms
were briefly surveyed, and their interrelations were dis-

cussed: swap structures, nondeterministic matrices and
possible-translations semantics. These paradigms are
bounded nondeterministic in nature, in the sense that
the result of an input by the semantic procedure can
produce more than one single output, but within a pre-
viously determined set of values. This strongly suggests
that bounded nondeterminism is a suitable approach
when studying mbC as well as other logics of the same
kind. Besides characterizing mbC, the formal properties
of such semantics deserve future studies. In particular,
the algebraic properties of swap structures constitute an
instigating topic of research.
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The chapters contained in Part D, Model-Based Rea-
soning in Science and the History of Science, provide
conceptual tools that allow us to understand model-
based-reasoning in current science and the history
of science and akin notions such as similar system-
based inferences. On the one hand, they give ana-
lytic frames – cognitive, historical, and methodological
ones – (Chaps. 16–19) to help us understand that kind of
scientific reasoning in any domain or across the social
sciences. On the other hand, they address specific forms
of model-based reasoning: a paradigm of model-based
diagnostic reasoning, supported by a formal theory of
diagnostic reasoning (Chap. 20) and a review of the de-
bate on thought experiment (Chap. 21).

Chapter 16 proposes an interpretative frame based
on cognitive science to understand the effects mathe-
matical representations may have on scientists’ model-
based reasoning, specifically on that of physicists. This
frame is constituted by the concept of model-based rea-
soning, the concept of metaphorical processes founded
on embodied cognition and on more basic conceptual
spaces, and the concept of long-term working mem-
ory. Ryan Tweney defends this proposal on the basis of
three claims: (i) that mathematical representations used
in physics exemplify model-based-reasoning, (b) that
the working of such models depends on acquired
metaphors and conceptual blend, and (c) that the acqui-
sition of these metaphorical grounds can be explained
by developing long-term working memory. He illus-
trates the argument that the above-mentioned cognitive
schemes can be understood as the basis of mathemati-
cal representations in physics, developing the analysis
of one part of J.C. Maxwell’s field theory of electro-
magnetism.

Chapter 17 seeks to clarify and underline the mer-
its of the cognitive-historical approach elaborated by
Nancy Nersessian, an environmental perspective within
cognitive studies of science, with which a central as-
pect of model-based reasoning in science is treated:
a process to solve representational problems generating
historically creative ideas. In order to achieve this goal,
Nora A. Schwartz introduces the main problems and so-
lutions provided using the cognitive-historical method.
Accordingly, the chapter consists of three parts: ques-
tions about the creation of the scientific concepts, epis-
temic virtues of the cognitive-historical analysis, and a
hypothesis about the creation of scientific concepts. The
first one is focused on the nature of cognitive processes
implied in the creation of ideas and the search of an
account for their effectiveness in achieving successful
results. The second one exhibits the epistemic virtues of
the historical and cognitive dimensions of the method.
The last one introduces the dynamic hypothesis of cog-

nitive processes implicated in scientific change and also
develops the argument that model-based reasoning is
effective to create new candidate representations be-
cause it facilitates the changes of constraints.

Chapter 18 helps to improve the understanding and
appreciation of the notion of physically similar systems
in the philosophy of science. Susan Sterrett character-
izes this concept as it is understood currently, based on
the article by Edgar BuckinghamOn Physically Similar
Systems: Illustrations of the Use of Dimensional Equa-
tions. Then she draws a path from the earliest precursors
of the concept in the Renaissance to its plain articula-
tion in the twentieth century, bringing out, on the one
hand, the key ideas of function, which was developed in
the eighteenth century, and, on the other hand, the idea
of a coherent system of units, which was developed in
the late nineteenth century. Also, Sterrett discusses the
role that the notion has in reasoning and drawing infer-
ences: The concept of similar systems has been useful
in developing methods to draw inferences about values
of specific quantities in a system, based on observations
in other systems. Sterrett emphasizes that the success
of this approach in physical chemistry promoted the ex-
tension of a similar system approach to electromagnetic
theory and gas kinetic theory.

Chapter 19 focuses on the distinctive features of the
method of hypothetical modeling in social sciences by
treating it as one style of reasoning: abstract or theo-
retical model-based reasoning. With this goal, Caterina
Marchionni, Alessandra Basso, and Chiara Lisciandra
compare this method with other styles of reasoning
employed in social science: experiments and computer
simulations. Differences between hypothetical model-
ing and experiments are found, and the consequences
they have for making inferences about the world are
explored. Considered closely, computer simulations are
also viewed as a different style of reasoning from that
of analytical models, in that they are particularly apt
for dealing with complex systems. Also, the legitimacy
of hypothetical modeling as a way of learning about
social scientific phenomena is examined. From recog-
nizing the little philosophical agreement on the issue,
the discussion is rebuilt by organizing the different per-
spectives around the function of models that is taken as
primary.

Chapter 20 presents model-based-diagnostic rea-
soning, understood as a paradigm of diagnostic infer-
ence aimed to give rational explanations of some faulty
behavior of the system under discussion. The main idea
of this paradigm is the comparison between the be-
havior of the observed system and the one which can
be predicted using knowledge about the system model.
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The model-based diagnostic approach is placed within
knowledge engineering methods from the artificial in-
telligence domain and is based on the formal theory
of diagnostic reasoning by R. Reiter. Antoni Ligeza
and Bartlomiej Górny illustrate the method in detail
with applications; particularly they mention the dy-
namic system of three tanks.

Chapter 21 is structured in five parts. In the first
one, Margherita Archangeli introduces in a historical
context a sample of examples of thought experimenta-
tion with the purpose of giving a precise idea of the
issues under discussion. In the second part, she refers to
the more relevant steps in the history of thought exper-
iments: the beginning, when the term was coined, and
the two phases into which the debate can be divided, the
classic one and the contemporary one. In the last three

sections, Archangeli tackles the following questions:
what is a thought experiment? What is the function of
thought experiments? How do they achieve their func-
tion? She reviews what has been said about thought
experiment definitions placed within an experimental
domain and within a theoretical domain and, finally, she
refers to the main features that should help us to iden-
tify thought experiments. Further, she deals with the
central epistemological questions treated in the litera-
ture on thought experiments: what kind of knowledge
do thought experiments produce? To what extent are
thought experiments a reliable source of information?
What role do thought experiments play in the processes
of rational choice? Finally, she reviews what has been
said about the cognitive underpinnings of thought ex-
perimentation and focuses on the role of imagination in
thought experiments.
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16. Metaphor and Model-Based Reasoning
in Mathematical Physics

Ryan D. Tweney

The role of model-based reasoning in experimen-
tal and theoretical scientific thinking has been
extensively studied. However, little work has been
done on the role of mathematical representations
in such thinking. This chapter will describe how the
nature of mathematical expressions in physics can
be analyzed using an extension of the metaphoric
analysis of mathematics. In Where Mathematics
Comes From, Lakoff and Núñez argued that em-
bodied metaphors underlie basic mathematical
ideas (e.g., the concept of number is based on
the embodied operations of collecting objects),
with more complex expressions developed via
conceptual blends from simpler expressions (e.g.,
addition as combining collections). In physics,
however, the need to represent physical processes
and observed entities (including measurements)
places different demands on the blending pro-
cesses. In model-based reasoning, conceptual
blends must often be based on immediately avail-
able embodiments as well as highly developed
mathematical expressions that draw upon expert
use of long term working memory. Thus, Fara-
day’s representations of magnetic fields as lines
of force were modeled by Maxwell as vectors. In
this chapter, we compare Faraday’s experimental
investigation of the magnetic field within a mag-
net to Maxwell’s mathematical treatment of the
same problem. Both can be understood by un-
packing the metaphoric underpinnings as physical
representations. The implications for analogical
and model-based reasoning accounts of scientific
thinking are discussed.
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Mathematics is central in science; it is frequently used
as the basis for calculation, as a means of derivation
of new expressions, and – the focus of this chapter –
as a means of representation. Oddly, however, there
are few attempts to deal with the power of mathemat-
ics as a representational medium in science, in spite of

extensive work on the psychological and cognitive un-
derpinnings of scientific thought in general [16.1].

To clarify what is meant by representation, consider
the following. Isaac Newton, in his Principia Mathe-
matica [16.2] formulated a law of universal gravitation
which is usually today expressed with the following



Part
D
|16

342 Part D Model-Based Reasoning in Science and the History of Science

equation

F DG
m1m2

r2
: (16.1)

The equation gives the force F between two bodies of
mass m1 and m2, separated by the distance r; G is the
universal gravitational constant. About a century after
Newton, Lagrange [16.3] showed that there was an al-
ternate way to represent the dynamics among a system
of bodies

LD T �U : (16.2)

Here L, now known as the Lagrangian, is given as
the difference between the kinetic energy T and the
potential energy U, quantities which can be defined
for every point in the space between two (or more)
objects. Lagrange showed that his formulation could
solve all the same problems as Newton’s equations
and in many cases was easier to use; it possessed
calculation advantages and led to new derivational pos-
sibilities.

In fact, however, the two expressions, Newton’s
and Lagrange’s, are fundamentally different in the way
they represent the same physical reality. Newton’s equa-
tion is based on an action at a distance view; it
tells the relation between the masses in terms of the
distance between them, but says nothing about the
intervening space; the gravitational attraction just hap-
pens across empty space. Lagrange’s equation, how-
ever, is defined at every location between the masses.
Thus, where Newton’s equation is nonlocal in char-
acter, Lagrange’s equation is local. In this sense, it is
more compatible with a field-like conception of the
gravitational forces. As representations, therefore, the
two expressions convey something entirely different
about the dynamics of gravitational attractions. Fur-
thermore, given this difference, it is appropriate to ask
what effects the differing representations might have
on the way in which physicists reason about gravi-
tation. In particular, how might such representational
differences affect the model-based reasoning of a physi-
cist?

It is a commonplace to say that different kinds of
mathematics are needed to deal with different kinds
of physics. Thus, an Aristotelian world view, which is
focused upon a world of objects, is associated with Eu-
clidean geometry, an extremely powerful way of deal-
ing with object shape and size. During the seventeenth
century, and the emergence of analytic geometry, it be-
came easier to talk about the relations among objects.
For example, one could readily determine the intersec-
tion between two curved lines or surfaces. The physics
that emerged as the result of the Galilean/Newtonian

world view, in turn, drove the development of calculus
as a means of determining and describing the motion
of objects, and, more generally, of changing quantities
in general. The eighteenth century saw extensive devel-
opment of the tools of calculus (Lagrange’s work being
just one example), a development that continued in the
nineteenth century [16.4].

But the nineteenth century brought a new kind of
physics on the scene, one based on field theory, as ex-
emplified by the work of Michael Faraday and James
Clerk Maxwell. New ways of thinking required new
kinds of mathematics, the mathematics of space filling,
vectorial, expressions. Field theories require attention
to the entire space surrounding objects (and even, as we
shall see, inside the objects) and gave new meaning to
Lagrange’s approach. For field theories, Euclidean for-
mulations are inadequate, and even analytic geometric
methods can be tedious and unilluminating. Develop-
ments in the calculus during the eighteenth century
overcame these limitations to a larger extent; in partic-
ular, as partial differential equations became available,
it became easier to represent phenomena that were not
tied to the object-centered world of objects and mo-
tion [16.5].

Note that in speaking of the representational power
of mathematical expressions, the use of mathematics
in science is really being talked about, rather than
of mathematics as such. Both Newton and Maxwell,
for example, were powerful mathematical thinkers, but
they were also finely tuned to the representational use
of mathematical expressions. For Newton, this centered
on a geometric mathematics; for modern readers, his
Principia Mathematica [16.2] is difficult to read (in
part) because we have lost the feel for how his physics
can be represented in this way. Translated into the
(today) more familiar Leibnizean notation for the cal-
culus; however, the underlying representations become
more transparent. For Maxwell, the notation is more
familiar (to those who have had a physics course in
electricity and magnetism). While some translation is
still needed [16.6], Maxwell’s field-like use of integral
and differential vector expressions, as exemplified in his
Treatise on Electricity and Magnetism of 1873 [16.7] is
still important.

Newton’s mechanics, especially as it was under-
stood after Newton, assumed that the fundamental prin-
ciple of motion depended upon forces that acted at
a distance. Two masses attract each other because the
gravitational force centered on each produces the mo-
tion. Throughout the eighteenth and most of the nine-
teenth centuries, similar action at a distance forces were
presumed to be responsible for electric and magnetic
actions. Just as gravitational force obeys an inverse
square law (as in (16.1)), so also did the attractive or



Metaphor and Model-Based Reasoning in Mathematical Physics 16.1 Cognitive Tools for Interpretive Understanding 343
Part

D
|16.1

repulsive force between two magnets or two electric
charges. The action at a distance account was chal-
lenged by Michael Faraday, who instead argued that
electric and magnetic forces depended upon lines of
force; the first true field theory in physics. By the end
of his life, Faraday believed he had demonstrated the
physical reality of the lines as immaterial but real cen-
ters of power [16.8].

Faraday was mainly well-known for his many ex-
perimental researches and discoveries, but his theo-
retical account had almost no adherents – except the
young Maxwell. For Maxwell, Faraday’s account was
a seminal one, and he set about to translate it into math-
ematical expressions. Eventually, he was able to show
that the prevalent action at a distance theories of elec-
tromagnetic effects were less tenable than a true field
theory (although this account also was slow to gain ac-
ceptance, as Hunt has shown [16.9]).

In this chapter, using a part of Maxwell’s account,
it will be shown how cognitive science can provide an
analytic framework for an understanding of the role
of mathematics in physics. Maxwell’s reformulation of
classical physical ideas can thus be understood in cog-
nitive terms, using recent formulations of model-based
reasoning in science, and recent analyses of the under-

lying metaphoric bases of mathematics. The argument
is based on three claims:

1. That mathematical representations can serve in
model-based reasoning, and

2. That an understanding of how they are used requires
attention to the embodied metaphoric understand-
ings of the expressions. The metaphoric bases are
in turn

3. Dependent upon automated cognitive processes re-
lated to the employment of long term working
memory (LTWM).

In this way, the external representation in the form
of a mathematical expression is coordinated with an in-
ternal representation.

One terminological point is needed. In distinguish-
ing between metaphors and analogies, an unconven-
tional division between two terms often seen as in-
terchangeable is used. In the present usage (follow-
ing [16.10]), Metaphor is used to signal a taken-for-
granted, tacit, comparison. I use analogy to signal
a comparison between a source and a target that must
be explicitly argued. In the particular case of Maxwell’s
physics, there have been many studies of his use of anal-
ogy in this sense, but little about his use of metaphor.

16.1 Cognitive Tools for Interpretive Understanding

Each of the three cognitive claims has a somewhat dif-
ferent epistemic grounding. Here the first claim has
been taken to be given. That is, abundant research and
scholarship, some reflected in the other chapters of
this volume, have shown that model-based reasoning
is ubiquitous in science – this will not be argued as
such in this chapter. On the other hand, the embodied
metaphoric claim is an extension of a current approach,
one which is not without controversy.While we will not
review the pros and cons, nor claim sides, we do hope to
convince the reader that the use of a metaphoric analysis
of the tacit, taken-for-granted, aspects of mathemati-
cal physics can illuminate the representational power
of mathematics. The embodiment of metaphor will be
assumed here, and is important to the notion of model-
based reasoning as a species of abduction [16.10–14].
Note also that Simpson [16.15, 16], while emphasiz-
ing the rhetoric of Maxwell’s Treatise, is advancing
a similar argument. Finally, we use recent research on
expertise and long termworking memory as an explana-
tory tool, a way of justifying the metaphoric analysis
and of suggesting ways in which such model-based
reasoning can be learned and acquired as a working
tool.

16.1.1 Model-Based Reasoning

Model-based reasoning rests on the claim that scien-
tific thinking is largely a matter of the development
of mental models of a richly varied sort; models that
are involved in constructive and manipulative activities
and that draw upon information in various formats, in-
cluding linguistic and imagistic simulations, as well as
external representations [16.14]. The traditional cogni-
tive views of mental models [16.17], which centered
on linguistic and propositional reasoning, have been ex-
tended in their application to scientific thinking. Thus,
Nersessian [16.14], drawing partly on Maxwell’s use
of analogy, described a model-based reasoning pro-
cess which included the mental simulation of complex
physical systems (see also [16.18]). Clement [16.19]
emphasized the recursive character of model-based rea-
soning, arguing for a Generate-Evaluate-Modify cycle.
As with Nersessian’s approach, Clement emphasized
the way in which scientific models are successively
modified and tested. By studying both scientists and ad-
vanced college students in real time, Clement was able
to track these processes from their initial formulations
to the final, tested and justified, model.
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16.1.2 Metaphoric Processes

In recent years, linguists and cognitive scientists have
explored the metaphoric underpinnings of language.
The claim is that common expressions like falling in
love, or building an argument are actually based on
the specific metaphors of physical falling or of building
construction. This has been argued as a way to connect
the abstractness of language with sensori-motor cogni-
tion, and of embodied cognition in general [16.20].

Lakoff and Núñez [16.21] argued that even the
most abstract of mathematical formulations are also
grounded in basic cognitive embodiments via the use
of metaphor. For example, the arithmetical operation of
addition is related to the elementary cognitive opera-
tions of collecting objects. Thus, Object collection as
source is mapped onto Arithmetic as target. Collections
of objects of the same size are mapped onto Numbers,
Putting collections together onto Addition, and Taking
a smaller collection from a larger one onto Subtrac-
tion [16.21, p. 55]. Arithmetic itself can then become
the source for further extensions to new target domains.
Grounding metaphors according to Lakoff and Núñez
are linked directly to sensori-motor experience (as in
the examples), and these are then the source for further
conceptual metaphors.

Turner [16.22] has argued that conceptual integra-
tion, the blending of disparate conceptual spaces is
a basic cognitive operation that underlies the emergence
of new meaning. Thus, in the metaphor, The surgeon is
a butcher, the spaces corresponding to the source and
target of the metaphor each contribute some meanings
to the blend, but the emergent meaning of the whole
is something not characteristic of either of the parent
spaces. Turner has shown how non-Euclidean geometry
can be interpreted as a conceptual blending from Eu-
clidean geometry [16.22, Appendix C, pp. 163–168].
In this fashion, as Lakoff and Núñez also argue, the
seemingly abstract spaces of mathematics can be un-
wrapped by showing their origins in successively more
basic conceptual spaces. The approach is general; for
example, Núñez [16.23] has used it to interpret the his-
torical case of the development of transfinite cardinal
numbers by Georg Cantor.

The conceptual theory of metaphor and its role
in science has been the subject of some controversy
(see, e.g., the critiques by Murphy [16.24, 25] and
Weiskopf [16.26] and the reply by Gibbs Jr. [16.27]).
Still, for present purposes, in which the approach is
used to structure an interpretive framework, the out-
come of the controversy is not directly relevant. For
the present analysis, what counts is the ability of the
approach to provide a tool for the untangling of what
is usually implicit in mathematical physics. Note also

that my approach differs from accounts that regard
metaphor as a somewhat loose use of similarity, while
analogy has been regarded as founded on more severe
constraints; thus Gentner and Jeziorski [16.28] adopt
such a view. By contrast, we are using the two terms
in unconventional fashion, with metaphor referring to
implicit comparisons and analogy to those drawn ex-
plicitly.

16.1.3 Long Term Working Memory

Cognitive scientists have long distinguished between
(1) short term memory (STM), which holds a limited
amount of new information for a brief time, (2) long
term memory (LTM), a larger, more permanent, store,
and (3) WM which holds material recently retrieved
from LTM as needed in a specific task. Ericsson and
Kintsch [16.29] extended the concept of WM by noting
that, among experts, specific kinds of processes seemed
to be taking place when domain-specific material was
retrieved. Referring to this as (4) LTWM, Ericsson and
Kintsch suggested that many of the results of expertise
can be explained by the emergence of LTWM. In par-
ticular, rather than relying upon specific retrieval cues,
experts have acquired structured retrieval mechanisms
to bring domain-relevant material and skills into WM.
In the case of mathematical reasoning in science, a dif-
ferential equation, say, can be thought of as entraining
a series of other components of the knowledge of cal-
culus into LTWM.

Ericsson and Kintsch showed that expert read-
ers (but not inexpert readers) can keep the thread of
a book’s argument in mind long after the contents of
ordinary (short term) WM have been replaced by new
information. In effect, LTM remains immediately ac-
cessible. Experts thus have a specific set of retrieval
structures that make this possible. The relevant skill
is more than simply possession of a set of retrieval
cues. The expert retrieval structures also imply an an-
ticipatory element that flags what might be relevant
in the near or far distant future. Such structures are
domain specific and develop only after extensive delib-
erate practice. In the case of expert reading, the larger
gist of text remains available across long stretches of
text. The same is true for differential equations in
physics [16.30]; in addition to a specific cue, the skills
required to use and interpret such equations become au-
tomatic.

For Ericsson and Kintsch, LTWM is acquired as an
aspect of the acquisition of expertise and comes about
via the extended deliberate practice characteristic of
the highest levels of expertise. Thus, physics profes-
sors perform differently than physics graduate students
on problems where both have the same specific con-
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tent knowledge, as Chi et al. [16.31] have shown (see
also [16.32]). The professor subjects have developed
such LTWM retrieval structures centered around the ba-

sic principles of physics, while the graduate students
are still acquiring them and are more dependent upon
surface-level cues.

16.2 Maxwell’s Use of Mathematical Representation

In the previous section, three cognitive concepts have
been outlined; these will serve as the interpretive frame-
work for the following discussion. We will argue

1. That the mathematical representations used in
physics exemplify model-based reasoning

2. That the functioning of such models depends upon
acquired metaphors and conceptual blends, and

3. That the acquisition of such metaphoric foundations
can be explained by the development of LTWM.

To illustrate the argument, we will develop an analy-
sis of one part of Maxwell’s field theory of electromag-
netism, a mini case study. To provide context, we will
give a brief account of experimental work by Faraday
which is directly relevant.

16.2.1 From Faraday to Maxwell

In a conventional view that finds its way into many
textbooks, Michael Faraday (1791–1867) was one of
the greatest experimental scientists of the nineteenth
century, responsible for a long string of discoveries,
most famously in electricity and magnetism. Still, his
theoretical ideas were couched in a nonmathematical
language that did not, by and large, appeal to his con-
temporaries. By contrast, as the conventional view has
it, James Clerk Maxwell (1831–1879), was one of the
greatest of the mathematical physicists of the century.
His translation of Faraday’s theory into mathemati-
cal expressions and his subsequent extension of those
theories was the ultimate triumph of classical physics.
A good brief introduction to Faraday’s work is [16.33].
For Maxwell, a good beginning is [16.34].

The conventional view, while broadly correct,
misses the nuances of the relation between Faraday’s
and Maxwell’s theory. In particular, Maxwell saw in
Faraday an intuitive mathematician of the highest or-
der [16.7, Vol. 1, p. ix]:

“As I proceeded with the study of Faraday, I
perceived that his method of conceiving the phe-
nomena was also a mathematical one, though not
exhibited in the conventional form of mathematical
symbols.”

In the case described below, this will become more
clear.

Across thousands of experiments, Faraday devel-
oped by 1850 a coherent theory of electric and magnetic
fields and the relation between the two [16.8, 35, 36].
Centering on the notion of lines of force, which he
conceptualized as space-filling immaterial entities pos-
sessing dynamic properties, he argued that these were
physically real and that his experiments had proved
their existence and determined many of their proper-
ties. Faraday acknowledged the incompleteness of the
theory, in part because it was not possible to determine
the velocity with which such fields moved. And, while
he had shown by experiment [16.37] a possible relation
between electromagnetic fields and light (in the form
of a rotation of the direction of polarization of light
when traversing a dense transparent glass subjected to
a strong magnetic field), he could only speculate on the
physical nature of the relationship.

Thomson (later Lord Kelvin) [16.38, 39] was the
first to attempt a mathematical treatment of Faraday’s
lines of force. Thomson showed that there was an anal-
ogy between the equations describing the distribution of
electric and magnetic force and the equations describ-
ing the distribution of heat within a solid. In developing
the analogy, Thomson took no position on the reality
of the lines of force, although he later claimed that the
equations constituted “a full theory of the characteris-
tics of the lines of force” [16.38, p. 1, footnote added in
1854].

Maxwell began his account of Faraday’s theory in
a series of three papers in 1855–1856, 1861–1862, and
1864, and summarized the final state of his theory in
the 1873 Treatise on Electricity and Magnetism [16.7].
The development across the three early papers has been
extensively analyzed (see especially [16.40, 41]). In the
course of the three papers, Maxwell did in fact trans-
late Faraday’s theory into mathematical form (as the
conventional view has it), but there were significant
changes along the way. Beginning, like Thomson, with
an analogy, Maxwell considered the lines of force in
Faraday’s theory as if they were tubes carrying an in-
compressible fluid, then developed a mechanical model
(based on vortex wheels in a mechanical ether, again,
as an analogy), and finally re-expressed Faraday’s no-
tion of force into a new form, one based on a dynamical
theory with energy as the focus; this last view was
then fully developed in the Treatise. Maxwell’s famous
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derivation, suggesting that light was an electromagnetic
manifestation, appeared initially in the second paper,
was re-expressed in the third paper, and finalized at the
end of the Treatise.

Maxwell’s Treatise is a complex work with multi-
ple goals. Conceived as a textbook, it includes much
material on the fundamental empirical facts of elec-
tricity and magnetism, accounts of experiments and
measuring devices, and a dialectical development of
the final theory [16.6, 15, 16]. In its modern form,
Maxwell’s final account is summarized as Maxwell’s
equations, four vector equations that represent the elec-
tric and magnetic fields and the relation between the
two. I have outlined how the four equations can be
tied metaphorically to primitive embodied notions of
stress and strain [16.10]. Here, I compare one aspect
of Maxwell’s treatment of magnetism to a parallel
case examined experimentally by Faraday. This, in
turn, will allow an account of how the three cognitive
schemas outlined in the previous section can be under-
stood as the bases of mathematical representations in
physics.

16.2.2 Faraday: Magnetic Lines
Within a Magnet

The year 1846 was a crucial one for the develop-
ment of Faraday’s theory of magnetism. In that year,
he published three papers on the nature of magnetic
interactions, first with light [16.37], then with matter
(a brief account is in [16.36] and a more thorough ac-
count in [16.8]). Confirming his belief that magnetic
lines of force extended through all of space, even pene-
trating into material bodies, he argued that lines of force
were conductedwithin the substance of material bodies,
thus establishing that diamagnetic substances (such as
bismuth or glass), as well as paramagnetic substances
(such as iron) were subject to magnetic influence. Fur-
ther, by showing the rotation of a polarized light beam
in a magnetic field, he was able to argue that magnetic
lines of force were perhaps implicated in the nature of
light.

Still, he needed to show that the lines of magnetic
force could be observed even within the substance of
a magnet and that they were closed curves [16.42]. To
do this, he conducted an interesting series of experi-
ments in which two long bar magnets of equal strength
were placed side by side, with a small gap between
(thus acting as a single, thicker, magnet). These were
mounted on a shaft within an apparatus that allowed
their rotation (Fig. 16.1).With commutators on the shaft
of the rotating apparatus, he could then run a wire
alongside or within the slot between the magnets, and
the wire could be rotated together with or independent
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Fig. 16.1a–c Faraday’s experiments on the lines of force
within a magnet. (a) The apparatus used; F and G are two
identical magnets mounted on a shaft with a small gap be-
tween. Commutators are shown at H, I, and O. (b) The wire
separated from and entirely outside the magnet. (c) The
wire run through the inside of the magnet. Segments a-d
and b-d can be rotated independently, or together with b-c.
No current is produced by the entire loop, or by a-d alone,
but current is produced by b-d alone or by c-b alone (in the
opposite direction) (after [16.42, pp. 333, 338])

of the magnets (which were equivalent to a single mag-
net with a slot down the middle). Connecting the ends
of the wire to a galvanometer, he was able to detect any
induced currents in the wire.

Faraday tried a variety of configurations (I sim-
plify his many arrangements in this description), first
rotating the wire and magnet together (no current was
produced), then the wire alone or the magnet alone (as
in Fig. 16.1b, again no current was produced). He then
separated the wire at the point b (Fig. 16.1c), which
permitted the segments to be rotated separately while
maintaining electrical contact. He found that rotating
the magnet with the segment b-d and without the seg-
ment b-c did produce a current, and rotating the wire
segment c-b without the segment b-d also produced
a current, but in the opposite direction. He argued that
the segment of the wire from b to d was cutting all
the lines of force when revolved, as did segment b to
c. Further, the size of the current produced was the
same in both cases. Because the currents were in op-
posite directions, when the whole wire (a-d-b-c) was
revolved and the magnet kept stationery, no current was
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observed: Each wire was cutting all the lines of force
but the generated currents were in opposite directions,
thus cancelling each other. This was the result he was
after: the lines of magnetic force ran through the mag-
net, out at one end, curved around through space, and
re-entered at the other end of the magnet. Magnetic
lines of force are closed curves.

16.2.3 Maxwell: Magnetic Lines
Within a Magnet

Maxwell’s Treatise is divided into four parts, with the
fourth part developing the final form of his theory of
electromagnetism and the third presenting his account
of magnetism. The first chapter of the third part con-
sidered the magnetic potential at any point outside of
a nearby magnet, showing that the force on a unit
magnetic pole is equal to the gradient of the potential
(rV, where V is a scalar function), that is, to the rate
of change of the potential in the direction of greatest
change. In Chapter II, Maxwell considered the forces
within a magnet. In contrast to Faraday, however, he did
not here conduct experiments, nor replicate Faraday’s
(although they are cited). Instead, he conducted a series
of thought experiments.

He began by imagining a cylindrical hollow cavity
within a bar magnet (Fig. 16.2). Taking its length as
2b and its radius as a, he then imagined a unit mag-
netic pole centered within the cavity. Such a pole is an
imaginary object, since magnetic monopoles do not ex-
ist (that is, if you break a magnet into two pieces, each
piece will have a North and South pole, breaking them
again, each piece will have two poles, and so on). Still,
were such a thing to exist, it is possible to represent the
forces it would experience. There are two sources; first
the forces due to magnetic induction from the ends of
the cavity. Since the field lines are parallel to the walls
of the cylinder, the walls play no role, only the circu-
lar ends are involved. Second, there are forces due to

P
N S

b

a
(S) (N)

Fig. 16.2 Maxwell’s thought experiment: a bar magnet
with a cavity inside. The cavity is cylindrical, of length
2b and with faces of radius a. Note that the polarity of the
faces is the reverse of the polarity of the nearest end of the
magnet

the potential field within the cavity. That is, there is an
overall field because the cavity is within a magnet and
a specific field due to the surface distribution of mag-
netism on the ends of the cylindrical cavity. Note that
the forces due to the circular surfaces are of opposite
polarity to the ends of the magnet.

Maxwell first considered the field due to the sur-
face distribution on the cylinder ends, claiming that the
forces on the monopole are equal and in the same di-
rection (because the monopole will be attracted by one
surface and repelled by the other). This force will be

RD 4 I
�
1� bp

a2C b2

�
; (16.3)

where R is the force and I is the intensity of magnetiza-
tion. Because the dimensions of the cavity are involved,
the force is dependent upon the shape of the cavity. In-
terestingly, Maxwell does not show how this equation
is obtained, taking for granted that the reader will know
how to do this (while not lengthy, I will not carry this
out – see [16.6, the comment on 396.2] and the discus-
sion that follows).

With this in hand, Maxwell now asked the reader
to consider two cases. In the first, imagine that a is
very small, that is, shrink the diameter of the cylinder
cavity. From (16.3), note that R will approach 0 as a ap-
proaches 0. In the second case, let the cylinder shrink in
length. As b approaches 0, then R approaches 4 I. This
means that, in the first case, a long and thin cylinder,
the force will simply be that due to the overall field;
it will be the gradient of the potential. Maxwell calls
this magnetic force within the magnet and symbolized
it as a vector,H (here using bold-face, to indicate a vec-
tor). In the second case, which becomes a flat disk as
the cylinder length shrinks, the force is dependent on R
and is compounded of 4 I and H. He symbolizes this
new quantity as B and calls it the magnetic induction.
The two terms are related by a simple equation, via the
overall intensity of magnetization, I, which, written as
a vector, is

BDHC 4 I : (16.4)

Note from (16.4) that the distinction between B and
H will hold only within a magnet; in the absence of
a surrounding magnet, that is, when I = 0, the two are
identical (Fig. 16.3).

Maxwell used the relation between B andH to clar-
ify a paradox in Faraday’s notion of lines of force. The
paradox arose because the directions of B and of H dif-
fer. That is, the magnetic force due to H always goes
from the North Pole of the magnet to the South Pole –
both inside and outside the magnet! As a result, they
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Fig. 16.3 Showing the lines of force within and without
a bar magnet; the North Pole is to the left. Solid lines are
lines of induction, B; dashed lines are lines of H. On the
outside of the magnet, the two fields are identical

meedst head on, as it were, at the South Pole, which
then constitutes a termination. But Faraday’s lines of
force are continuous closed curves and do not meet;
they run from the North Pole to the South Pole when
outside the magnet and continue from the South Pole
to the North Pole inside the magnet, thus constituting
closed curves. The magnetic lines due to B have the
needed property – they run from north to south outside
and from south to north inside. For this reason [16.7,
Vol. 2, p. 28]:

“All that Faraday says about lines of force [. . . ] is
mathematically true, if understood of the lines [. . . ]
of magnetic induction.”

Thomson [16.43] had considered a problem simi-
lar to Maxwell’s, in determining the force on a unit
pole placed within a small cavity in a magnet. How-
ever, he did not resolve the directional paradox between
the directions of what were later called B and H by
Maxwell. Smith and Wise [16.44] describe Thomson’s
approach and indicate that he did not fully publish his
results.

Maxwell’s clarification of the difference between
B and H was highly consequential. In particular, it
allowed him to distinguish between magnetic effects
which were mechanical in nature and those which were
involved in the production of currents in a nearby
conductor. In the case of H, one is speaking of the
magnetic force, and this is purely mechanical and
can be manifested by the effect on a compass nee-
dle or an iron filing. In the case of B, the magnetic
induction, the force can be manifested as an elec-
tromotive force, that is, as one producing a current
in a conductor. For Maxwell (mathematically), as for
Faraday (experimentally), these corresponded to two
different ways to detect the presence of magnetic
field.

Faraday initially mapped magnetic fields by using
a small magnetized needle suspended from a thread;
such a needle will orient itself along lines of force.
He later used a small loop of wire attached to a sen-
sitive galvanometer. When moved in a field, a current
would be generated in the loop, a current detectable by
a sensitive galvanometer at a distance. Thismoving wire
became his favored method, mapping, in Maxwell’s
terms, the lines of induction. In subsequent chapters
of the Treatise, Maxwell developed the mathematical
representation of such mappings in great detail, arguing
that the magnetic induction and not the magnetic force
is the physically significant quantity.

16.3 Unpacking the Model-Based Reasoning

How do we use the cognitive framework sketched in
the first part of this chapter to understand the case
study? Maxwell, like Faraday, used model-based rea-
soning in the example, as should be clear. Like Faraday,
Maxwell described for the reader a series of actively
used constructions to make the argument for forces
within a magnet. Faraday described actual experiments,
inviting the reader to construct a mental model of
the apparatus, procedures, and results. Maxwell used
a thought experiment in the same way; that is, his reader
was asked to construct a mental model of an exper-
iment that could be done only in the mind’s eye and

not in reality. That is not to say that actual experiments
were entirely absent in Maxwell’s account, rather, they
were presumed to be present in the reader’s knowledge,
based, in part, on the previous chapters of the book and
in the references to Faraday’s experiments.

Still, it is not the case that we can make a one-to-one
mapping between the kinds of knowledge that under-
lies Faraday’s reasoning and that of Maxwell. This is
because Maxwell also had to rely upon a kind of knowl-
edge base not used by Faraday. In particular, Maxwell
relied upon the metaphoric understandings embedded
within the mathematical expressions used. For exam-
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ple, consider (16.3) from the previous section

RD 4 I

�
1� bp

a2C b2

�
;

As noted earlier, Maxwell did not provide a derivation
of this result, instead assuming that his readers would be
able to recognize it. To show its metaphoric nature, first
consider the term a2Cb2. From Fig. 16.2, it is apparent
that this is related, via the Pythagorean theorem, to the
length of the hypotenuse of the triangle with sides a and
b. If we take the square root and call this r, then we can
simplify (16.3)

RD 4 I

�
1� b

r

�
; (16.5a)

This, in turn, becomes

RD 4 I � 4 I b
r
: (16.5b)

Now suppose that a shrinks (Maxwell’s first case).
Then b=r goes to 1 and R goes to 0. And if b shrinks
(Maxwell’s second case), then R goes to 4 I.

The attentive reader can now see how the
metaphoric underpinnings worked in the discussion of
this equation. For, in fact, what has been asked of you
to do is what Maxwell (with, to be sure, more exten-
sive metaphors assumed) asked of his readers! That is,
we drew upon your knowledge of the Pythagorean the-
orem and upon your metaphoric sense of what happens
when geometric terms like a and b change. Further, how
the sense of algebraic equations can be modified, as in
going from (16.3) to (16.5a) and (16.5b), was also in-
volved. These did not need to be specifically argued
because, as Lakoff and Núñez [16.21] argued, these
have been acquired on the basis of long practice – they
are conceptual blends with metaphoric groundings. On
my account, they are not analogies, because the links
between source and target are implicit and assumed to
be known among his readers. This is whyMaxwell does
not explicate (16.3).

However, (16.3) is not yet fully explicated for our
purposes. Where does the 4 I come from? In the pre-
vious section, Maxwell had considered the force on
a small magnet due to the distribution of a surface of
magneticmatter (like the imagined cavity and the mag-
netic monopole, this is another convenient fiction). That
discussion, in turn, relied upon results achieved in the
first volume of the Treatise, in which he showed that
the surface distribution of an electric charge on a con-
ductor exerted a force near to the conductor equal to
4 ¢ , where ¢ is the surface distribution of charge. In
the present case, I is equivalent to the charge in the

earlier case. In particular, both charge and magnetic en-
tities exert force according to an inverse square law, that
is, inversely as the square of the distance. Thus, 4 I,
unlike the other part of (16.3) is an analogy, albeit it-
self grounded in the mathematics of earlier parts of the
book [16.7, Vol. 2, p. 5]:

“Since the expression of the law of force between
given quantities ofMagnetism has exactly the same
mathematical form as the law of force between
quantities of Electricity of equal numerical value,
much of the mathematical treatment of magnetism
must be similar to that of electricity.”

Maxwell is able to carry over the expression for the
magnetic surface density from the equivalent expres-
sion for electric surface density: he does not need to
repeat the derivation (which is also built on metaphoric
grounds and hence can be taken as given), he only needs
to have shown the analogy.

We can again obtain an informal understanding by
asking where the multiplier 4  comes from. Note first
that the monopole at point P is subjected to an attrac-
tive force from one face of the cylindrical cavity and
a repelling force from the other face. Both forces are in
the same direction, so any one face is contributing 2 
to the result. But 2  is the circumference of a circle of
radius 1. Here, it appears as if Maxwell is relying upon
a previous result from the first volume of the Treatise,
namely Stokes’s theorem, which states that the surface
integral of a function describing a surface is equal to
the line integral of the curve bounding that surface. Ex-
plaining this would go beyond the scope of this chapter,
but it implies in the case of the circular face of the cavity
that the force due to the face can be construed as either
based on the density of magnetization of the surface or,
equivalently, as based on a circulation around the closed
curve (the circle) that bounds it. Thus, 2  emerges!

Note that for Maxwell’s readers Stokes’s theorem
would have been assumed knowledge (it is explained
in a preliminary chapter [16.7, Vol. 1, p. 29]. For the
present purpose, however, it is enough to catch some
glimpse of how the factor emerges; in the following
chapter, Maxwell uses Stokes’s theorem to make a more
explicitly physical representation. There, he shows that
a magnetic shell (a surface bounded by a closed curve)
can be represented equivalently by an electric current in
a conductor that follows the same closed curve.

One final point: Maxwell’s Treatise is notable in
part for its use of vectors as representational entities. In
the selection here, these appear asH, B, and I. We have
previously discussed the metaphoric basis of vector rep-
resentations [16.10]. For the present case, it needs only
to be noted that vectors are quantities that represent both
magnitude and direction. They can be grounded on el-
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ementary notions of muscular force and direction, and
can then be conceptually blended with other mathemat-
ical concepts. Throughout the Treatise, Maxwell uses
them (and the vector calculus) as part of his overall rep-

resentation of fields (as in Fig. 16.3). The introduction
of such vector analysis was an important milestone in
mathematical physics generally, one that continues to
be used today [16.5, 45].

16.4 Cognition and Metaphor in Mathematical Physics

This chapter has presented a sketch of a mode of anal-
ysis that has important implications for understanding
how mathematical representations have gained such
great importance in science. There have been many
analyses of the role of analogy in model-based reason-
ing, even extending to accounts of Maxwell’s physics.
However, the metaphoric aspect of mathematical repre-
sentations holds the key to understanding how the tacit
knowledge embedded within mathematical expressions
can become an active part of model-based reasoning.

Three points were discussed in the introduction
of this chapter: That mathematical physics does in-
volve model-based reasoning, that metaphor underlies
the representational use of mathematics, and that such
metaphoric grounding is tacit and acquired (via LTWM)
through the acquisition of expertise. We will discuss
each in the reverse order.

Since the role of LTWM in Maxwell’s case [16.46]
has already been discussed, only brief comment is
needed here. Maxwell wrote the Treatise partly intend-
ing it as a text for the new Tripos exam in Natural
Philosophy at Cambridge University (he had been ap-
pointed to the newly established professorship of nat-
ural philosophy in 1871 [16.47, 48]). Maxwell’s own
education in science and mathematics (primarily at
Edinburgh and Cambridge, but beginning even in his
childhood) provided him with an extensive knowledge
of the mathematics and physics that he took for granted
in the book, and it is likely that he expected his stu-
dents would have similar knowledge. He was writing
the Treatise for those with the kind of retrieval struc-
tures that are fundamental to expertise. In recasting the
case study for my readers, we have also made some as-
sumptions; for example, that the reader would know the
formula for the circumference of a circle, have algebraic
skills, and know at least something about electricity and
magnetism. Access to all of these relies upon a sim-
ilar LTWM capacity; the cognitive underpinnings for
Maxwell’s students and my readers were not different
in principle.

We have also previously spelled out the role of
metaphors in the understanding of mathematical phy-
sics, using the modern form of Maxwell’s equa-
tions [16.10]. For the present case study, we have in-

stead relied more closely on the actual text written
by Maxwell. Although closer to Maxwell’s argument,
much has been left out. Further, the analysis is informal
and adapted to my readership, not Maxwell’s. In this
sense, what we have provided is not an analysis of the
actual historical materials, but rather a reconstruction
of a possible world. It is interesting to note the similar-
ity of this maneuver to that used by Lakatos in Proofs
and refutations, which used a similar ploy to discuss
the nature of discovery in mathematical proof [16.49].
Even so, it should be possible to see the way in which
metaphors and conceptual blends play a role in the ar-
guments made by Maxwell. The analytic task here is
to work backward from the argument as presented by
Maxwell to the underlying structure of the mathemati-
cal representations.

While a great deal has been written aboutMaxwell’s
use of analogy (especially [16.14, 41]), we believe our
analyses are the first attempts to use metaphor and con-
ceptual blends to describe the tacit knowledge which
Maxwell brought to bear on his arguments (see, for
a similar attempt, not rooted in metaphor in the same
fashion, [16.50]). It has been argued that, from a cog-
nitive point of view, there is no inherent difference
between analogy and metaphor. Indeed, the terms, anal-
ogy and metaphor, have had a flexible boundary in
much of the writing about their use in science. Thus,
for example, much of what Bradie [16.51] has written
about metaphor applies equally to analogy. The best-
known such argument is due to Gentner [16.52]. Her
structure mapping theory of analogy and metaphor is
based on the processes involved in mapping relations
from a source to a target, and there is much evidence
to suggest that this correctly captures many of the
phenomena. Nersessian has extended this, describing
(using Maxwell, in part) how analogies can participate
in the creation of new conceptual content in science. In
turn, this chapter supplements and extends all of these
accounts.

Model-based reasoning is an integral part of all nat-
uralistic accounts of science, and this chapter is no
exception. That Maxwell used it in presenting his anal-
ysis of the magnetic field within a magnet should be
clear, even from the brief segment considered. The
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thought experiment he presents is fundamentally an-
chored in the reader’s ability to follow the claims made
via the construction of a model and via the implementa-
tion of the mathematical representations involved. Note
that they lead up to the expression of an identity, not
an equation in the usual sense. That is, (16.4), BD
HC 4 I, is presented, not because it has calculational
uses but because it shows the reader the relationships
among key terms and because, by using vector notation
for the first time in the section, it reiterates the direc-
tional character of the lines of induction, of force, and
of magnetic intensity. It is important because of its rep-
resentational character.

As noted earlier Faraday represented magnetic lines
of force experimentally, by constructing apparatus that

enabled the detection of the lines within a magnet.
Maxwell achieved the same thing using a thought ex-
periment, a move that allowed him to distinguish be-
tweenH and B, thus identifying B as the physically sig-
nificant quantity. The two approaches complement each
other in an interesting fashion. Thus, Faraday’s science
is replete with hand-eye-mind representations [16.13];
for him, the lines of force were physically real to
the extent that he could observe their effects and ma-
nipulate their character. For Maxwell, the observation
and manipulation were based, not on experiment di-
rectly, but on the expression of a mental model and
its extension via the metaphoric underpinnings of the
mathematical representations. It, too, had a hand-eye-
mind character.

16.5 Conclusions

Ultimately, then, this is the true fashion in which Fara-
day and Maxwell can be seen as similar: both were
doing science in a style dependent upon a fundamen-
tal embodiment of the conceptual representations they
created. For both, this was, in fact, a conscious goal.
When Faraday is seeking the physical reality of his lines
of force, he is doing just what Maxwell was doing in
identifying the vector B as the physically significant
quantity. That they followed different pathways, that
Faraday’s was experimental and Maxwell’s mathemati-
cal, is not, in the end, the most important aspect for an
understanding of their creative achievements.

Beyond these two cases, however, there is a more
general point to be made. That model-based reason-
ing is ubiquitous in science should be clear to the
reader of this volume. What case studies of the type of-
fered here can provide is a method of discovery of the
finer points with which such reasoning is carried out.
While not every scientist will resemble either Faraday
or Maxwell in the way in which they employ such rea-
soning, still, the nuances may be quite general across
cases. In particular, the importance of distinguishing be-
tween those aspects of model-based reasoning that are
tacit (and hence unargued – what we have referred to
as metaphorical in nature) versus those that are explicit
(i. e., analogical in nature) is central to any understand-
ing of scientific thinking. That is why determining the
role of expertise and of long-term WM is so helpful in
understanding the particularities of a case – any case.

The case studies also reflect a challenge to the
common view that science deals with increasingly

abstract entities, particularly in situations in which
mathematical representation is involved. In fact, how-
ever, the presence of arcane symbols and equations
do not mean that, for the scientist, these are neces-
sarily abstract, however they appear to the uninitiated.
In the present chapter, we have tried to show how
both Faraday and Maxwell were anchored in quite con-
crete representations of their respective models of the
electromagnetic field within a magnet. Those represen-
tations depended for their utility on the highly skilled
and easily accessible expertise that each investigator
possessed. The presence of such expertise is the nec-
essary cognitive grounding of creative achievement in
science.
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17. Nancy Nersessian’s Cognitive-Historical Approach

Nora Alejandrina Schwartz

Nancy Nersessian raises questions about the cre-
ation of scientific concepts and proposes answers
to them based on the cognitive-historical ap-
proach. These problems are mainly about the
nature of the cognitive processes involved in the
generation of ideas fundamentally new in hu-
man history and the efficacy of those mechanisms
in achieving successful results. In this chapter, I
intend to show the epistemic virtues that make
this method a useful tool for establishing the dy-
namic hypothesis about the creation of knowledge
in science. I also point out that, compared to
other methods of cognitive studies on the cre-
ation of scientific knowledge – ethnography, in
vivo observation, and laboratory experiments –
the cognitive-historical approach turns out to be
primary. I analyze Nersessian’s idea that scien-
tists often employ model-based reasoning, in an
iterative way, in order to solve representational
problems in the target domain. Additionally, I
examine her claim that model-based reasoning
facilitates the conceptual change. This hypothesis
involves a representation of concepts illustrated by
the dynamic frames theory about concepts.
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Nancy Nersessian has studied the creation of scientific
concepts from a naturalized perspective in the philoso-
phy of science: the cognitive historical approach. Why
did she do this? What properties does this method pos-
sess that justify such employment? The main purpose
of this chapter is to clarify the way in which she under-
stands this method and to underline its merits. In order
to achieve this goal, I will introduce the main problems
about the issue she deals with by this method, and, on
the other hand, I will mention the solutions to these
questions that she has been able to provide using the
cognitive-historical method.

This chapter consists of three parts. The first,
Sect. 17.1 Questions About the Creation of the Sci-
entific Concepts, highlights that, within Nersessian’s
recasting of the problem of conceptual change, there
lies a fundamental question related to the creation of

scientific concepts, and that yet another question arises
from this one. The basic question is about the nature of
cognitive processes implied in the generation of ideas
fundamentally new in human history, which leads to the
assessment of their effectiveness in achieving success-
ful results. First, I will introduce Nersessian’s review of
the way in which logical positivism and the historicist
philosophy of science have framed the problem of con-
ceptual change, as well as her critical evaluation of this
matter.

The second part, Sect. 17.2 Epistemic Virtues of the
Cognitive-Historical Analysis, deals with Nersessian’s
conception of the cognitive-historical method, empha-
sizing those qualities that make it a useful tool for
answering the open questions about the creation of sci-
entific concepts. In addition, it is pointed out here that,
compared to other approaches to the creation of scien-
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tific knowledge, the cognitive-historical method can be
considered primary for it is the one that establishes the
generative mechanisms of creative concepts in a histor-
ical sense.

The last part, Sect. 17.3 Hypothesis About the Cre-
ation of Scientific Concepts, has two sections. The first
one introduces the dynamic hypothesis proposed by
Nersessian to give a solution to the problem of the na-
ture of practices that generate new scientific concepts.
Mainly, it will be observed that, through her cogni-

tive-historical investigations, Nersessian confirms that
scientists often employ model-based reasoning in an it-
erative way until they solve representational problems
in the target domain. The second section presents the
general conception of the meaning or the representation
of concepts that Nersessian proposed in the first place
so as to understand the change of conceptual structures,
and the one that she has more recently suggested, in
order to explain the effectiveness of model-based rea-
soning for creating new concepts.

17.1 Questions About the Creation of Scientific Concepts

This section will elucidate the questions about the cre-
ation of scientific concepts that have motivated Nerses-
sian’s investigation. For this I will show that, to a large
extent, they arise from the need to find a suitable answer
to the problem of conceptual change, and, in turn, from
the assumption that such an answer depends on a recast-
ing of the problem itself. Nersessian suggests posing
this question from the naturalistic point of view in the
philosophy of science, that is, the historical-cognitive
method. We will see that her questions regarding con-
cept formation are a core part of this new way of
understanding the problem of conceptual change, or
else, that they are further questions derived from the
given answers to this problem.

In Sect. 17.1.1, I will deal with the way in which
the problem of conceptual change has been presented
by logical positivism and by the historicist philoso-
phy of science, and I will also treat the evaluation of
this formulation by some naturalistic scholars of sci-
ence. In Sect. 17.1.2, I will examine the proposal of
tackling the problem of conceptual change from a nat-
uralistic point of view. In Sect. 17.1.3, I will present
the new naturalistic casting of this problem, particularly
its historical-cognitive version. I mention here that it is
a core part of this casting to try to determine the nature
of the cognitive processes that generate new concepts.

17.1.1 The Problem of Conceptual Change

The problem of conceptual change in science has been
interpreted and faced in several ways. Although a cru-
cial issue can be identified in it – “How, if in any manner
at all, are successive scientific conceptualizations of
a domain related to one another?” [17.1] – Nersessian
revises the specific manner in which it has been posed
and faced by logical positivism and by the historicist
philosophy of science, and she refers to how some natu-
ralistic researchers, including herself, have viewed this.
Regarding the first, she considers that they understood

the problem by focusing on the terms of the change,
that is, on the concepts, and that they analyzed those
terms as linguistic structures. The neo-positivists faced
the problemwith the idea that the new conceptual struc-
tures are logical extensions of the previous ones; that is
why they thought of conceptual change as continuous
and cumulative; Kuhn, on the other hand, tackled it by
introducing the idea that conceptual change is abrupt
and discontinuous, which he developed in his thesis on
incommensurability.

Nersessian, like other scholars of science, consid-
ers that both positions – the logical positivism’s and
Kuhn’s – are unsatisfactory. Particularly, the thesis of
the incommensurability seems to them anti-intuitive
and contrary to historical evidence. In fact, they pointed
out that, according to the results of individual studies on
scientific creativity made by historians of science, con-
ceptual change is continuous and noncumulative [17.2].
Nersessian highlighted that the answers of these two
great philosophical movements of the twentieth century
are based on an unsuitable treatment of the question,
and that this was due to two main reasons:

1. That most of the philosophers of logical positivism
assumed that the analysis of science is done in two
contexts, the context of justification and the context
of discovery; and that they were convinced that the
context concerning philosophy of science is the jus-
tification one, and not the discovery one.

2. That the group of science philosophers and histori-
ans of which Kuhn was part, together with Hanson
and Feyerabend, in spite of having taken the initia-
tive to study the context of discovery, did not have
the analytical tools necessary to investigate in depth
the scientific activities that it seeks to comprehend.

I will give a further explanation of these two points.
Regarding the first reason mentioned, Nersessian re-
counts that the neo-positivists worked within what they
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called the justification context. This means that they
tended to make rational reconstructions of science, in
particular artificial maps of the logical relationships be-
tween concepts [17.3, p. x]. They analyzed scientific
concepts as linguistic structures and considered that
logical and conceptual studies were enough to under-
stand the meaning of the scientific theories, not study-
ing the real scientific activity [17.4, p. 4]. With respect
to the second reason why she thinks that the treatment
of scientific change has been unsatisfactory, Nersessian
highlights the fact that, though Kuhn and Feyerabend
resorted to scientific knowledge in order to understand
conceptual change, the Gestalt psychology available
then did not give them the suitable tools for that [17.1,
p. 6]. She points out that the perceptive metaphor of
change of Gestalt, which Kuhn took from the Gestalt
psychology, had an adverse effect [17.1, p. 6].

“[. . . ] By emphasizing the endpoints of a conceptual
change (e.g., Newtonian mechanics and relativistic
mechanics) [. . . ], the change of Gestalt was made to
appear artificially abrupt and discontinuous.”

Moreover, Nersessian wrote that, as a philosopher
of science, Kuhn neglected the processual aspect of
conceptual change [17.1, p. 7].

“Significantly, although Kuhn does talk about dis-
covery as an extended process [17.5, pp. 45ff] and,
in his role as historian of science, has provided de-
tailed examinations of such processes, in his role
as philosopher of science he identifies conceptual
change with the last act when the pieces fall to-
gether [17.6].”

Regarding the discussion of the problem of concep-
tual change in the second half of the twentieth century,
Arabatzis and Kindi [17.4], Andersen and Nerses-
sian [17.7], and Thagard [17.8] can be consulted.

17.1.2 The Naturalistic Approach to Science:
Revision of the Problem

During the 1980s and 1990s, Nersessian, Paul Thagard
and Hanne Andersen, and Peter Barker and Xiang Chen
concurred in revising the Kuhnian idea of a radical and
sudden conceptual change in science, and they real-
ized that something like that would be, at the most,
exceptional. Thus, Thagard proposed that to think of
changes as gestaltic ones “[. . . ] makes it hard to see how
conceptual change can take place” [17.8, p. 49]; see
also [17.9]. The conviction that a naturalist scientific
approach would enable facing the problem in a suitable
way began to impose itself. That is why several scholars

of science further developed such an approach which
had been started by the historicist philosophers. From
this developed a methodological form of naturalism,
which defends the need to appeal to science in order to
understand science [17.10, Introduction]. Methodologi-
cal naturalism is one of the various kinds of naturalistic
philosophy that have been proposed. Nersessian’s ap-
proach, like Ronald Giere’s, belong to this position.
Usually this one is attributed toKuhn in The Structure of
Scientific Revolutions [17.5], but was pioneered by Lud-
wick Fleck in Genesis and Development of a Scientific
Fact [17.11]. Within the domain of philosophy of sci-
ence, Fleck insisted on studying the practice of science
instead of propounding rational reconstructions of the
logics of the investigation. Therefore, the real subject
of the science is an issue of methodological natural-
ism concern [17.10, p. 3]. Ronald Giere characterized
the stance as “[. . . ] the vision that all human activities
should be understood entirely as natural phenomena,
as are activities of chemicals or animals” [17.12, p.
8]. As for the naturalistic studies of science, he de-
scribes them as the perspective of “[. . . ] using science
in the attempt to understand science itself” [17.13, p.
145]. Nersessian bases her own research of science
on a naturalistic approach that, to understand scien-
tific knowledge, philosophical theories need to have the
best scientific information available on the human sub-
ject and about the practices for constructing knowledge
used by scientists; she also holds the view that empir-
ical methods are admissible in developing and testing
philosophical hypothesis [17.14, pp. 4–5].

17.1.3 The Naturalistic Recasting

With the adoption of the naturalistic approach to sci-
ence, the presentation of the problem of conceptual
change is modified. The contrived logical reconstruc-
tions of science are replaced by the study of effective
scientific practices aiming at explaining the continu-
ous and noncumulative character of conceptual change.
Kuhn conceived normal scientific cognition in terms of
practices of solving puzzles guided by solutions to ex-
emplar problems [17.15, Chap. 6]. The post-Kuhnian
group of cognitive orientation holds that interest in
scientific activity, focusing, specifically, on the prac-
tices of formation and changing of scientific concepts.
In general, scientific practices can be understood as
procedures carried out by scientific agents. For exam-
ple, David Gooding characterizes the notion of pro-
cedure implied in such practices as “[. . . ] a sequence
of acts or operations whose inferential structure is
undecided” [17.16, p. 8]. An overview of the philo-
sophical discussions related to scientific practices can
be found in the work of Joseph Rouse [17.17]. Although



Part
D
|17.1

358 Part D Model-Based Reasoning in Science and the History of Science

Cognitive sciences

Cognitive
sciences of

ordinary
knowledge

Cognitive
studies of

science and
technology

Traditional
view of

cognition

Environmental
view of

cognition

Cognitive
sciences of

science

Studies of science
and

technology

Socio-cultural
programmes

Fig. 17.1 Participation of the environmental cognitive studies of sci-
ence within the cognitive sciences of science and within the studies
of science and technology

a scientific procedure is a singular process, two comple-
mentary aspects can be distinguished within it:

1. The experimental practice, that is, the manipulation
of objects, tools, and experience

2. The intellectual or theoretical practice, that is, the
manipulation of concepts, models, propositions, and
formalisms.

Nersessian presents the problem of conceptual
change in the following way: “[. . . ] how it is that scien-
tists build on existing structures while creating genuine
novelty” [17.1, p. 9]. Unlike the logical positivists,
the naturalistic researchers of science understand the
question in a way focused on the practices developed
by scientists. Thus, they incorporate the context of
discovery in epistemology. Nersessian even came to
appreciate the need to demarcate a new domain of in-
vestigation, different than both the justification context
and the discovery one, which she called context of de-
velopment [17.1, p. 6].

“The context of development is the domain for in-
quiry into the processes through which a vague
speculation gets articulated into a new scientific
theory, gets communicated to other scientists, and
comes to replace existing representations of a do-
main.”

I interpret that her goal in doing this was to em-
phasize that her investigative interest did not focus on

sudden acts of innovation and conceptual change, but
on long-lasting processes.

In particular, Nersessian develops a naturalistic ap-
proach with which she recasts the problem and tries to
explain it: the cognitive-historical approach. She says
that [17.1, p. 8]:

“In cognitive-historical analysis the problem of con-
ceptual change appears as follows. It is the prob-
lem of understanding how scientists combine their
human cognitive abilities with the conceptual re-
sources available to them as members of scientific
communities and wider social contexts to create and
communicate new scientific representations of a do-
main.”

So her presentation aims at understanding how the
cognitive abilities that scientists have as human beings
within an environment – and which they share with
people who have ordinary knowledge – enable them
to construct new concepts. These underlying abilities
behind scientific practices are integrated within the cul-
tural, material, and social context, and this environment
provides them with conceptual resources [17.14, p. 5].
Although I will analyze the cognitive-historical method
in the next section, here I will place it within the cog-
nitive studies of science and technology, one of the
naturalistic perspectives of science (Fig. 17.1).

Cognitive science – a confederation of disciplines
that includes philosophy, cognitive psychology, arti-
ficial intelligence, neurology, cognitive anthropology,
and many other areas of study – does research on the
cognitive processes and structures implied in ordinary
knowledge. It also examines the cognitive mechanisms
and the representations involved in scientific knowl-
edge. The contemporary cognitive science of science is
a naturalist perspective that began to be elaborated in
the 1980s and which Nersessian, together with Ronald
Giere, Lindley Darden, and other philosophers, pro-
moted within the field of philosophy [17.18, p. 2]. One
of their main objectives is to explain how scientists
construct science naturally. Giere describes this pur-
pose as the aim to reveal how scientists manage to
interact with the world when they make science. He
points out that scientists, as human beings, have sev-
eral cognitive abilities, biologically founded, to make
that possible [17.12, p. 5].

Within the cognitive science of science, there is
a variety of approaches. Some of them, denominated
cognitive studies of science or cognitive studies, con-
sider it relevant to take into account the cultural and
social dimensions of scientific practice. These ap-
proaches, besides being part of the cognitive science of
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science, also participate in the studies of science and
technology (STS), together with the social–cultural pro-
grams. Some of the methods of the cognitive studies
of science use the traditional view of cognitive science.
This means that they assume that cognition is a pro-
cessing of symbols that occurs within the individual
minds of humans. Therefore, the cultural and social
dimensions of scientific practice are not an integral
part of their analysis. On the other hand, other ap-
proaches of cognitive studies, the environmental ones,
recognize that material, cultural, and social environ-
ments in which science is practiced, are crucial to
understand scientific cognition. Nersessian argues that,
in order to give accounts which capture the fusion of
the cultural-cognitive-social dimensions in the practices
producing scientific and engineering knowledge, it is
convenient to use the view of environmental perspec-
tives in cognitive science. Nersessian [17.19] provides
an overview of the environmental analysis lines of re-
search that have been delineated between the 1980s and
the year 2000. The environmental paradigm emphasizes
that sociocultural and body factors have a substan-
tial role in cognitive processes [17.19, 20]. Although
it should be pointed out that researchers in cognitive
science that study science based on the environmen-
tal perspective resist the view of those who think that

all the aspects relevant to science can be explained
in terms of sociocultural factors. Nersessian consid-
ers that this view is a form of reductionism which is
manifested, for example, in the declaration of a 10
year moratorium on cognitive science studies, which
was initiated by Bruno Latour and Stephen Woolgar in
1986 [17.21].

In short, the cognitive-historical method is an en-
vironmental approach inscribed within the cognitive
studies of science with which Nersessian interprets the
problem of conceptual change. The new version of the
problem of conceptual change contains a basic question
related to the creation of scientific concepts: Which sit-
uated cognitive processes, that is, integrated within their
environment, do scientists develop in order to come to
articulate new concepts from vague notions? As will
be treated in Sect. 17.2, this issue has led to inves-
tigations that indicate the sought-after processes are
model-based reasoning. This conclusion, in turn, im-
pelled the posing of new questions, and one among
them that stands out for its relevance and potential to
determine why this kind of reasoning affords an ap-
propriate medium to generate new scientific concepts
is: “What features of model-based-reasoning make it
a particularly effective means of conceptual innova-
tion?” [17.14, p. 186].

17.2 The Epistemic Virtues of Cognitive Historical Analysis

Nersessian studies scientific practices from the perspec-
tive of the cognitive-historical approach, aiming at pro-
viding suitable answers to the questions related to the
creation of scientific concepts mentioned in Sect. 17.1.
Here, I will analyze the way in which she conceives
of this method, highlighting the advantages it offers to
carry out such investigations about science.

In Sect. 17.2.1, I will characterize the cognitive-
historical approach in a general way, and will present
a brief overview of its expressions and of the conception
Nersessian has about it. In Sect. 17.2.2, the dimen-
sions that constitute the cognitive-historical method
highlighting the virtues that enable it to provide knowl-
edge about the creation of scientific concepts will be
analyzed. In Sect 17.2.3, the cognitive-historical anal-
ysis with other approaches used to study the creation
of scientific knowledge, for example, ethnography, in
vivo observation, and laboratory experiments will be
compared. These contrasts will highlight a distinctive
property that deserves to be considered a primary ap-
proach to the study of the creation of scientific concepts
with a historical impact.

17.2.1 The Cognitive–Historical Approach

Nersessian mentions several approaches to cognitive
studies of science provided by the various disciplinary
fields within them – in particular philosophy of science,
history, cognitive psychology, and cognitive anthro-
pology – from which perspectives creative scientific
practices are investigated. She states that ([17.22, p.
127]; [17.18, Chap. 1])

“In contemporary cognitive studies of science,
the methodologies employed in investigating the
practices scientists use in creating knowledge are
ethnography, in vivo observation, laboratory exper-
iments, and cognitive-historical analysis.”

Among these methodologies, she evaluates one of
them as particularly advantageous in order to undertake
the investigation of those creative practices: cognitive
historical analysis. What characteristics does it have?
A broad way of describing it is that it is the result
of the combination of cognitive and historical meth-
ods [17.23, p. 42]. It was Nersessian who coined the
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term cognitive history: “Recently a research frontier I
call cognitive history has emerged within the history
of science and is finding its place in this confederation
(Cognitive science)” [17.24, p. 194]. However, this kind
of mixed approach was used by other authors, at least
since the 1970s. Tweney [17.25] presented an overview
of its versions that includes the contributions published
principally since the1980s. He restricts his attention to

“those studies that are truly cognitive-historical,
that is, to those studies that have used cogni-
tive frameworks for the understanding of historical
episodes in such a way that the methodological
niceties of both history and cognitive science are re-
spected.”

They comprise:

1. The application of the solving-problem approach to
scientific discoveries by Herbert Simon and his col-
leagues, understanding the solving of problems as
the search within a space of problems which fol-
lows heuristic principles, for example, Kulkarni and
Simon [17.26, 27]

2. Kuhn’s appeal to cognitive psychology in order
to understand the change in paradigms in The
Structure of Scientific Revolutions and the work
on Kuhnian psychology of science by De Mey
regarding conceptual change in The Cognitive
Paradigm [17.28]

3. The use of the Piagetian theory in the cognitive
biography of Charles Darwin by Howard Gru-
ber [17.29] and the use of some Piagetian ideas
to explore the development of concepts in modern
physics byMiller [17.30]

4. The cognitive formalization of some aspects of
Kuhn’s theory about scientific change with the pur-
pose of understanding cases in the history of science
by Andersen et al. [17.9]

5. The research by Nersessian on the psychological
nature of change of meaning in science, particularly
of the notion of electromagnetic fields in theoretical
physics [17.3], and its subsequent elaborations

6. The use of tools provided by cognitive sciences
in order to interpret scientific work by Faraday by
Tweney [17.31]

7. The reconstruction of experiments made byMichael
Faraday and the design of conceptual maps of the
process by which his vague interpretations became
concrete, conveyable scientific concepts by David
Gooding; as well as his conception of the emer-
gence of scientific concepts as a process where
“hand, eye, and brain” interact [17.16]

8. The cognitive-historical replications by Tweney
[17.32] and by Cavicchi [17.33, 34].

The way in which Nersessian understands the cog-
nitive-historical method constitutes a kind of philosoph-
ical analysis that integrates several contributions from
philosophy, history, and psychology. This is not a purely
formal analysis like the ones exalted by logical pos-
itivism and questioned by the philosophy of science
of the mid-twentieth century. It is, by contrast, an in-
terpretation of historical scientific practices in terms
of contemporary cognitive science with the purpose
of elaborating a philosophical conception of specific
conceptual developments ([17.35, p. 3] and [17.36, p.
163]). A particularity of this approach, as underlined
by Nersessian, is its reflexiveness [17.1, p. 7]. This
means that, from this perspective, the methods, theories,
and cognitive categories are used to interpret histori-
cal cases and that they are also objects of examination
themselves. In fact, these tools may be inadequate to
understand the complexity of science, and it is nec-
essary to pay attention to this, in order to identify
which changes need to be done on them. Such changes
do not only affect the cognitive science of science,
but also the cognitive science of ordinary cognition.
Consequently, through cognitive-historical analysis, the
studies on scientific cognition feedback to the field of
cognitive science, thus forming the base for additional
cognitive research [17.14, p. 7].

17.2.2 Epistemic Virtues and Dimensions
of this Approach

References to the dimensions of the cognitive-histori-
cal method can be found in multiple articles and books
by Nersessian [17.1, 14, 22, 24]. I will analyze these
dimensions with the purpose of deriving the character-
istics that make this perspective an advantageous one to
answer the questions related to the creation of scientific
concepts. It will be seen that, on the historical side of
the method, they are: to enable the epistemic access to
conceptual change, and therefore, to the practices of the
creation of scientific concepts with historical impact; to
enable a deep, detailed study of scientific cognition; to
satisfy the requirement of ecological validity, that is,
of not altering the studied phenomenon by placing it
in an artificial situation; and to retrieve data from the
scientific practices in a way that exceeds the verbal ac-
counts. On the cognitive side, one attribute stands out:
Making possible interpretations of historical practices
in a manner that general conclusions about their nature
and function can be drawn.

The historical dimension of this method is under-
stood in a wide sense. On the one hand, it is a temporal
perspective, that is, it seeks to recover the way in which
representational, methodological, and reasoning scien-
tific practices are developed during a long period of
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time. Some examples of practices approached in this
way are [17.24, p. 194]:

“[. . . ] devising and executing real-world and
thought experiments, constructing arguments, in-
venting and using mathematical tools, creating con-
ceptual innovations, devising means of communi-
cating ideas and practices, and training practition-
ers.”

This temporal feature of the method is valuable
because it makes it possible to obtain knowledge on
conceptual change, a scientific phenomenon that is dif-
ficult to capture because it is exceptional and it usually
implies long lapses. The historical component of the
analysis does not constitute a historical narrative, but
a detailed investigation of microstructures and micro-
processes, more specifically, of representational prac-
tices and practices of problem solving [17.1, 14, 24]. On
the other hand, the historical dimension of the method
is a contextual perspective, that is, it takes into account
the community where the scientific practices have been
carried out and the cultural resources implied therein.
This point of view has the virtue of satisfying the ob-
jective of preserving the essence of the phenomenon
under investigation pursued by the ecological approach
in the psychological investigation. One of the ways to
access long-term scientific activities is through histori-
cal records. Among the sources are: diaries, laboratory
notebooks, publications, correspondence, experimental
equipment, drawings, diagrams, lecture notes, and texts.
In the case that the investigated procedures are long
term and extend into the present, data about them can
be obtained in other ways, for example, using field
observation and other ethnographic methods (see the
next section). Here the main sources of information
are the cognitive tools employed in scientific activities
and the artifacts produced by them. Consequently, an-
other benefit of the cognitive-historical method is that
the information about the practices embedded in the
conceptual change is not restricted to scientists’ verbal
accounts.

The cognitive dimension of the method is inscribed
in the tradition of psychological epistemology, includ-
ing works by Locke, Hume, and Quine [17.1, p. 5].
It refers to the employment of cognitive sciences for
understanding the scientific practices involved in the
creation and change of concepts. It postulates that re-
sults, interpretations, and relevant debates on cognitive
science would help to understand such scientific prac-
tices [17.14, p. 6]. As has been previously mentioned,
the cognitive approach adopted by Nersessian is the en-
vironmental one, and this implies considering scientific
and engineering thought as a complex system that com-

prises material, cultural, and social aspects [17.19]. The
continuum hypothesis justifies that the achievements
of cognitive sciences can be employed to understand
scientific practices. This hypothesis refers to the hu-
man cognitive capacities and mechanisms of those who
make science. It maintains that they are basically the
same as those of ordinary humans. Therefore, to a great
extent, what scientists do, and the constraints they
experience, derive from their human cognitive condi-
tion [17.1]:

“The underlying presupposition is that the problem-
solving strategies scientists have invented and the
representational practices they have developed over
the course of the history of science are very sophisti-
cated and refined outgrowths of ordinary reasoning
and representational processes.”

The continuum hypothesis does not negate the fact
that there are great differences between scientific and
the ordinary cognition. Indeed, scientists have a vast
knowledge of a specific domain, have a methodologi-
cal training, and have learned to metacognitively reflect
on and refine the use of cognitive capacities that give
them the ability to reason scientifically in carrying out
the necessary cognitive functions [17.37, p. 2]. Ners-
essian defends this hypothesis by pointing out that it
is not speculative, it is not an a priori conjecture, but
that it is, on the contrary, a claim based on psycho-
logical facts. She also suggests that the understanding
of the investigated scientific practices consists in at-
tributing to them a sense which transcends the specific
characteristics of the case. This appears to derive from
the fact that this sense would be similar to, if not the
same as, the one that makes ordinary cognitive prac-
tices generalizable. Therefore, the possibility to make
general descriptions about the nature and processes
of scientific activities is opened. In fact, Nersessian
affirms that such regularities can be abstracted from
the thick descriptions of the particular case ([17.38,
Chap. 1]; [17.14, p. 9]). Thick description is a con-
cept from qualitative investigation. It is thought to have
been introduced for the first time by Gilbert Ryle. For
Ryle [17.39], the thick description implied assigning
intentionality to one’s behavior. The thick descrip-
tion interprets behavior within the context and assigns
thought and intentionality to the observed behavior. So,
for Ryle the thick description implies understanding and
absorbing the context of the situation or the behavior.
Also it signifies assigning current and future inten-
tionality to behavior. Geertz borrows this philosophical
term from Ryle in order to describe the ethnography
work [17.40]. In this way, abstracting regularities about
scientific activities, the problem that historicist philoso-
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phers have to face is solved: the one of how to go from
a case study to a more general conclusion, avoiding
the risks of making a hasty generalization [17.1, p. 35].
The cognitive-historical approach, therefore, is satisfac-
tory for understanding the nature of scientific practices
and surmounting conclusions established for particular
cases.

17.2.3 Cognitive Methods to Investigate
Conceptual Innovation

Nersessian asserts that the primary method to inves-
tigate practices of conceptual innovation in science
is cognitive-historical analysis (Fig. 17.2). She agrees
with other cognitive researchers of science that none of
the approaches in use is sufficient by itself to understand
those practices and considers, like them, that those
methods must be complemented in order to understand
the complexity of scientific cognition. For example, Si-
mon and Klahr assert that [17.41, p. 531]:

“[. . . ] the fundamental thesis in this article is that
the findings from these diverse approaches, when
considered in combination, can advance our under-
standing of the discovery process more than any
single approach;”

a similar position is taken by Thagard [17.18, Chap. 1].
However, at the same time, she considers that not all the
employed methodologies are necessarily equal. There
is a central feature in cognitive-historical analysis that
makes Nersessian consider it fundamental and that dis-
tinguishes it from the other methodologies: It enables
acquisition of knowledge about the mechanisms that
have had a historical impact in science. This quality will
be properly understood after examining the other ap-
proaches and highlighting in them a characteristic they
all share, and which contrasts with the one just men-
tioned as distinct from cognitive-historical analysis.

Ethnographic studies are based on field work and,
in particular, studies about science are usually based

Cognitive studies of the creation
of scientific knowledge

Observation
in vivo

EthnographyCognitive-
historical
analysis

Laboratory
studies

Fig. 17.2 Cognitive approaches of the creation of scientific
knowledge

on research made in scientific laboratories [17.42].
Ethnography of science started at the beginning of the
1980s with the sociology of scientific knowledge (SSK)
considered as part of social studies of science and
technology (STS) – with the work of Latour and Wool-
gar [17.21] and Knorr-Cetina [17.43], among others.
But ethnography of science also is deemed as among
the cognitive studies pursued to investigate cognition
and its context in mutual relation ([17.44–46]; [17.19,
p. 38]). Thus, Nersessian points out that both the way in
which scientists understand the problems and the tools
they use to solve them depend on a sociocultural con-
text [17.14, p. 7,9]. Specific ethnographic methods are
qualitative: They include field observation, collection of
artifacts, and field interviews. Each of them is useful to
investigate the heuristic of discovery that scientists fol-
low in their daily scientific practice, as they carry it out,
that is, in real time and, therefore, to study scientists’
cognitive mechanisms when creating new concepts.

In vivo observation is a method suggested by Dun-
bar [17.47, 48]. It arises from the premise that scientists
forget many of the important thought processes they
use, and that, consequently, there is no record of them
in their notes or laboratory notebooks. So he argues
that it is necessary to investigate living scientists in
order to have information about these processes, that
is, by observing them while they perform their work.
During observational studies, important activities at the
laboratory are recorded, and then the data are codified
and interpreted within the frame of psychological con-
structs.

Laboratory experiments are studies of the processes
for solving problems of people in artificial situations
with the purpose of isolating one or more relevant as-
pects of science from the real world. In general, they are
performed in a psychology laboratory. The experimen-
tation on discovery processes is carried out employing
nonscientists as experimental subjects. The principal
roles for this experimentation are two: being tools for
testing the hypothesis already posed, and being ex-
ploratory tools. In this latter case, the experiments are
conducted to make certain phenomena appear [17.41,
pp. 526–527].Klahrmaintains that the experimentation
on the discovery processes enables a detailed analysis
of the processes of solving problems and that they can
be entirely identified and recorded [17.49].

Ethnography, in vivo observation, and laboratory
experiments have in common that they all provide infor-
mation about the activities performed at the scientists’
own laboratories, or at laboratories of cognitive sci-
ences during normally brief sessions: hours or days.
However, the ethnographic studies mixed with the cog-
nitive-historical method can be extended for years, each
of them providing relevant information. An example
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of this is Nersessian’s and her collaborators’ own re-
search in biomedical engineering laboratories. In this
case [17.44, p. 2],

“Ethnographic studies tell us what BME practition-
ers do in the context of their research and cognitive-
historical studies provide insight into how and why
these cognitive practices have evolved.”

What is more important is that these approaches are
characterized by revealing the creative mechanisms that
underlie the practices performed when learning, tak-
ing ownership of, and employing existing concepts. In
other words, they inform about the scientists’ cogni-
tive mechanisms that are psychologically creative, that
is, mechanisms that produce a conceptual novelty for
them.

Unlike these approaches, the cognitive-historical
method is the only one that can provide information
about cognitive practices that are extended in time, thus
revealing the mechanisms generating creative concepts
in a historical sense, that is, of those concepts previ-
ously nonexistent and that have, consequently, histori-
cal impact [17.50]. Nersessian adoptsMargaret Boden’s
distinction between psychologically creative ideas and,
on the other hand, historically creative ideas. While the
first ones “[. . . ] are surprising, or even fundamentally
novel, with respect to the individual mind which had
the idea [. . . ],” the historically creative ideas have not
been previously thought by anyone [17.50, p. 43]. This
is the reason why Nersessian considers the cognitive-
historical method necessary to understand conceptual
innovation. Besides, she has in mind that historically
creative mechanisms are also psychologically creative,
for they generate not only novelties for humanity, but
also novelties for the scientists themselves. For this,
she considers that ethnography, in vivo observation, and
laboratory experimentation are necessary, although in
a secondary way, for studying conceptual change. In
fact, as these three approaches provide knowledge about
scientists’ psychologically creative mechanisms, they

can improve the cognitive interpretations of historical
episodes in scientific change provided by the cognitive-
historical analysis [17.22].

An objection that might be made to the employ-
ment of the cognitive-historical method to investigate
scientific practices of the creation of concepts is re-
lated to a question that any proposal to naturalize the
philosophy of science should answer: whether it is le-
gitimate to use scientific knowledge in order to develop
a theory of scientific knowledge. A general argument
contrary to such a proposal comes from traditional phi-
losophy of science. It states that the use of scientific
methods to investigate science is necessarily circular,
that it supposes a petitio principii, or leads to a regres-
sion [17.51, p. 333]. Nersessian defends the use of the
cognitive-historical method to develop a theory of the
production of scientific knowledge from the argument
of circularity. She adopts a point of view similar to the
one of the philosophers who practice a naturalized an-
tifundamentalist epistemology, such as Ronald Giere,
who maintains that [17.12, p. 11]

“The [Cartesian] program of trying to justify sci-
ence without appeal to any even minimally scien-
tific premises has been going on without conspic-
uous success for 300 years. One begins to suspect
the lack of success is due to the impossibility of the
task.”

The circularity implied in the naturalized concep-
tion of science, therefore, seems to be inherent to
humans and insurmountable for them. But this does not
mean that such circularity is vicious. Nersessian sup-
ports a virtuous circularity, which could be obtained by
putting cognitive and historical interpretations in a state
of reflective equilibrium. As has been pointed out ear-
lier, she considers that this reflexivity is a particularity
of the cognitive-historical analysis [17.1, p. 7]. There-
fore, the studies on scientific cognition provide feed-
back for the field of cognitive science, thus forming the
basis for additional cognitive investigation [17.14, p. 7].

17.3 Hypothesis About the Creation of Scientific Concepts

With the cognitive-historical approach, Nersessian in-
vestigates the cognitive processes that create scientific
concepts and succeeds in posing a hypothesis that in-
tegrates the dynamic area of a cognitive theory of
conceptual change [17.1, p. 5]. This part of the the-
ory explains the phenomenon of conceptual change in
terms of mechanisms, in a similar way to how dynamics
explains movement in physics. This dynamic investiga-

tion requires some representation of scientific concepts,
and more broadly, of concepts in general, and, all the
more, if one expects to understand why certain mech-
anisms are very effective in generating them. This is
a meta-theoretical question considered as a central one
in another of the areas of a cognitive theory of concep-
tual change, namely, kinematics. This one deals with
describing the conceptual changes that have occurred
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throughout the history of science, in a way similar
to that in which in kinematics describes movement in
physics.

In Sect. 17.3.1, I will expatiate the dynamic hy-
pothesis proposed by Nersessian to solve the problem
of the nature of the practices that create new scientific
concepts from the cognitive-historical perspective. In
Sect. 17.3.2, I will cite how she understands the power
of modeling to generate scientific concepts and refer to
her proposal on how to consider the representation of
concepts in elaborating this position.

17.3.1 Dynamic Hypothesis

The cognitive-historical analysis proceeds by bootstrap-
ping, that is, enables the establishment of hypotheses
about conceptual structures and cognitive processes
implied in historical cases of scientific investigation,
which in turn, serve as support to make new historical
studies and cognitive interpretations that provide addi-
tional knowledge. Let us see how Nersessian employs
it when she poses the dynamic hypothesis to solve the
problem regarding the nature of the cognitive processes
that scientists elaborate in order to articulate new con-
cepts.

The historical studies of several episodes that have
led to a conceptual change in science provide infor-
mation which, according to Nersessian, supports the
following conclusion: Conceptual innovation does not
occur suddenly, but results from extended problem-
solving processes [17.52, pp. 13–14]:

“[. . . ] If one examines their deeds [of scientists] –
their papers, diaries, letters, notebooks – these
records support a quite different interpretation in
most cases. As I have been arguing for some years,
conceptual change results from extended problem-
solving processes.”

This way of interpreting historical information fits
with the reality that Nersessian includes herself within
an epistemological tradition constituted by Dewey,
Mead, and Popper, by which science is seen precisely
as a problem-solving process. However, in spite of her
closeness to these authors, she assumes some distance
from them, for their view has a limited range, that is,
it does not include the scientific phenomenon of con-
ceptual change [17.1, p. 12]. Nersessian articulates the
basic interpretative scheme of the cases of conceptual
change as problem-solving processes in psychological
terms and, in its elaboration, she uses some concepts
that come from Gestalt theory and also from cognitive
psychology. A brief reference to them will help to clar-
ify her interpretation.

R. E. Mayer reminds us that, in the psychological
literature, a problem consists of a given state, a state
of destination, and a set of operators. The problem oc-
curs, according to Gestalt theory, when a situation is in
one state, the solver wants it to be in another state, and
there are obstacles that prevent a fluid transition from
one state to the other. In addition, Mayer asserts that,
from a cognitive perspective, the solution of problems
is “[. . . ] directed, cognitive processing aimed at finding
a way to achieve a goal” and that two phases can often
be distinguished in it: the representation of the problem
and the solution of the problem. The represented prob-
lem may be of various kinds, one of them – of particular
relevance for our explanation – is the one of represen-
tational problems. There are usually two different ways
of finding and carrying out the solution of problems:

1. The sudden appearance of the solution (insight
leap), which occurs immediately after a sudden and
more suitable restructuring of the representation of
the problem – this kind of solution often comes
along with the aha! or Eureka experience, a subjec-
tive feeling of surprise.

2. The process of step-by-step solution – also called
the analytic method – which consists of finding
a strategy and executing a sequence of actions in
order to generate a solution to the problem [17.53,
pp. 112–113].

Weisberg categorizes step-by-step problem solving
as an analytic method: “[. . . ] we can categorize the
various modes of solving problems that are based on
degrees of specificity of knowledge about a problem as
analytic methods” [17.54, p. 282].

By means of these psychological conceptual tools,
Nersessian interprets that, basically, the kind of prob-
lem that occurs in conceptual change is a representa-
tional one, and that the solution implied is a step-by-
step one. This means that, on the one hand, this problem
consists of a given situation in which a certain phe-
nomenon escapes understanding and the solver does not
know how to obtain the new conceptual resources to un-
derstand it [17.14, p. xii]; and that, on the other hand,
the solution to the representational problem of concep-
tual change is reached through an heuristic strategy that,
as will be immediately apparent, consists of a bootstrap-
ping cycle of modeling, understood as a kind of creative
reasoning [17.14, p. 184].

Let us go back to the bootstrapping employment
Nersessian’s cognitive-historical method. She realizes
that the historical studies of specific cases of concep-
tual change show, in a ubiquitous way, that scientists
use analogy, visual representation, and thought exper-
iments to solve representational problems. She points
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out that these three practices have in common that they
are ways of modeling, that is, of the construction and
manipulation of models. For example, when examining
the development of the current concept of the electro-
magnetic field, she indicates that Faraday articulated the
notion of “continuous, progressive transmission of the
action” with the help of the concrete visual image of in-
duction “cutting” the strength lines, and with the help
of vague analogies between the electric and magnetic
actions and known progressive phenomena [17.3, pp.
144–145]. Again, Nersessian interprets historical data
with cognitive tools and considers that the modeling
practices, with which new concepts are constructed, are
kinds of reasoning. In doing this, she uses a broad rea-
soning notion that comes from cognitive psychology,
particularly from Johnson-Laird’s semantic conception
of reasoning.

Unlike the philosophical traditional notion of rea-
soning, which only comprises deductive and inductive
arguments, Johnson-Laird’s conception enables includ-
ing kinds of creative reasoning. According to this, much
of human reasoning is done through mental modeling.
When referring to deductive reasoning, Johnson-Laird
et al. assert that [17.55, p. 3]:

“On the other side, there are those, such as ourselves
(see also Johnson-Laird and Byrne [17.56]) who
claim that it is a semantic process that depends on
mental models akin to the models that logicians in-
voke in formulating the semantics of their calculi.”

Following Johnson-Laird, Nersessian maintains that
humans retrieve or construct models through which
they make inferences about a target problem. The rep-
resented structure is supposed to contain parts that can
possess an analogous model that also is made of parts.
The nature of mental models is, in Peirce’s words,
iconic.

The idea that modeling is a kind of reasoning may
be applied both to scientific contexts and to ordinary
contexts. As she focused on scientific reasoning tasks,
Nersessian finds that she needs to extend Johnson-
Laird’s conception by widening the domain of mental
models. She understands that models are interpretations
intended to satisfy the salient constraints of a phys-
ical system, process, phenomenon, or situation. This
implies that mental models not only comprehend the
structural analogues of what is modelled, that is, models
which embody representations of spatial, temporal re-
lations, and causal structures, but that they also include
functional analogues which are also dynamic in nature.
Through her conception of mental modeling, she does
not intend to participate in the numerous debates that
have been sparked by this notion. That is the reason

why she calls her own hypothesis minimalist [17.52, p.
12]:

“To carry out an analysis of model-based reasoning
in conceptual change requires only that we adopt
a minimalist version of a mental modeling hypoth-
esis: that in certain problem solving tasks humans
reason by constructing an internal model of the sit-
uations, events and processes that in dynamic cases
provide the basis for simulative reasoning.”

A property of scientific model-based reasoning is
that it does not guarantee the production of a solution,
that is, it is not an algorithmic procedure and, because
of this, Nersessian understands it as heuristic [17.57,
pp. 325–326]. The difficulty to produce solutions
would be that the models used for reasoning may be
unsatisfactory, that is, they may not embody the rele-
vant constraints of the target situation, and not so much
that the reasoning may be incorrect [17.52, p. 14].

“In the case of science where the situations are more
removed from experience and the assumptionsmore
imbued with theoretical assumptions, there is less
assurance that a reasoning process, even if correct,
will yield success. In the evaluating process, a ma-
jor criterion for success remains the goodness of
fit to the phenomena, but success can also include
such factors as enabling the construction of a viable
mathematical representation.”

Let us continue with the iterative application of
the cognitive-historical method. According to the his-
torical studies of scientific practices, being able to
have a model that satisfies the constraints of the tar-
get problem frequently involves a cycle of construc-
tion, manipulation, evaluation, and adaptation of in-
termediate models. This is a bootstrapping process.
This means that each intermediate model that is con-
structed achieves a higher satisfaction of the constraints
of the target domain, and contributes to constructing
the subsequent model. Intermediate models are hy-
brid, that is, they embody not only the constraints
of the target domain, but also those of the respective
source domains [17.52, p. 21]. Through the process
of construction of satisfactory models, the solution to
the representational problems implied in conceptual
change cases is achieved. Nersessian compares this
kind of extended-in-time process with organic phenom-
ena wherein a perfect innovation emerges [17.14, p.
ix]:

“Rather, such conceptual innovation, like perfect or-
chids and flavorful grapes, emerges from lengthy,



Part
D
|17.3

366 Part D Model-Based Reasoning in Science and the History of Science

organic processes, and requires a combination of
inherited and environmental conditions to bud and
bloom and reach full development.”

An important feature of the bootstrapping process
of creating a model with such reasoning is that it
implies selectivity. By means of abstraction and evalua-
tion processes, the irrelevant features are left aside, and
attention is focused on the relevant ones according to
the problem-solving context. These historical findings
differ from those established by the current cognitive
theories of analogy. According to them, the models
to reason with are already provided by the target
source [17.1, p. 20]. Therefore, in order to understand
the iterative character of the construction of analogue
models in science, it is necessary to modify those cog-
nitive theories. In this way, the reflexive nature of the
cognitive-historical method becomes evident. Nerses-
sian deeply analyzes a case that exemplifies the idea that
there are modeling processes that generate conceptual
innovation. Those are the modeling processes that led
Maxwell to make the first derivation of field equations
for electromagnetic phenomena. Figure 17.3 shows the
contribution of the target, source, and model constraints
to these processes of reasoning [17.14, Chap. 2].
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Fig. 17.3 Maxwell’s model-
ing process (after [17.14, p.
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The thesis of scientific cognition as model-based
reasoning has been developing over more than the last
thirty years, due not only to Nersessian’s work, but also
to the contribution of authors such as Ronald Giere,
Lorenzo Magnani, and Paul Thagard. L. Magnani en-
riched Nersessian’s analysis of model-based reasoning
with the reference to the problem of abduction in cre-
ative reasoning, also taking advantage of the recent
cognitive research on distributed cognition [17.58]. It
is fitting to point out the fact that N. Nersessian, since
1998, in collaboration with L. Magnani and P. Tha-
gard, created and promoted the MBR Conferences on
Model-Based Reasoning, realizing its seventh convo-
cation in 2015. One of the problems that the thesis of
scientific cognition as model-based reasoning presents
is that the notion of mental modeling implies that of rep-
resentation, and the latter has been questioned within
the cognitive sciences by the dissenters of the dogma of
cognitivism. This doctrine of cognitivism is integrated
within the representational and the computational the-
ories of the mind [17.59]. As I have mentioned before,
Nersessian adopts a moderate environmental perspec-
tive that places her on those dissenters’ side. From this
environmental approach, she defends the idea of mental
modeling, but conceives of it as a procedure carried out
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by a cognitive system constituted by internal represen-
tations, frequently coupled with resources from the real
world [17.60]. Moreover, together with Lisa Osbeck,
she suggests a conception of representations organized
in models as practices. These representational practices
may be interpreted as distributed, that is, they can be ex-
panded through internal–external traditional domains.
These representations are [17.61, Introduction]:

“[. . . ] created and used in the cooperative practices
of persons as they engage with natural objects, man-
ufactured devices, and traditions, as they seek to
understand and solve new problems.”

In their description of the distribution of repre-
sentation in scientific cultures, Nersessian and Osbeck
employ a languagewith which they try to convey the co-
constitutive nature of culture and cognition, that is, the
relation between these two domains in a unique system.
In it, the concepts of cognitive partnering, internal–
external representational coupling, and enactment are
central [17.59, 61].

17.3.2 The Power of Model-Based
Reasoning

Summing up what was written in the previous part
about the hypothesis that Nersessian managed to estab-
lish in relation to the creation of scientific concepts, let
us say they explain that this scientific practice is based
on mechanisms consisting of a modeling iteration. The
modeling series ends with the construction of a satisfac-
tory model from which to draw inferences about a target
problem. Once she has reached this conclusion about
the process of the creation of scientific concepts, Ners-
essian poses another question. She tries to explain the
efficiency of model-based reasoning for creating sci-
entific concepts and, with this in mind, she decided to
stipulate a particular concept of concept.

During the 1980s, Nersessian dedicated her stud-
ies primarily to the issue related to how to represent
concepts in order to understand that conceptual change
in science is continuous, gradual, and noncumulative.
In this way, she came to describe the representation of
a type of concepts as “a set of family resemblances ex-
hibited in its ‘meaning schema’.” But more recently,
in [17.14], mentioning the state of the art of the concept
representation issue, she stated that there is no agree-
ment either in cognitive science or in philosophy of
science about how to conceive of a concept. As it is
necessary to have some conception about it in order
to explain the power of model-based reasoning in the
creation of scientific concepts, she propounds one that
does not require answer to other problems in debate. In

what follows, I will review the way in which Nersessian
treated this issue in order to show the relation it has with
her conception of the role of models in creative reason-
ing.

Nersessian considers the meta-theoretical problem
of the representation of concepts as a central theme of
the kinematics of conceptual change. This area of the
theory of conceptual change aims at determining the
form of conceptual change, that is, the differences exist-
ing between conceptual structures as time goes by, both
between conceptual systems and between individual
concepts. This task presupposes that a particular rep-
resentation of concepts is available. On the one hand,
the kinds of change that took place between different
conceptualizations, the first conceptual structures just
mentioned, refer to changes in the form of the organi-
zation of the concepts that integrate them. A conceptual
system can be analyzed as a network of nodes, where
each node corresponds to a concept and each line within
the network corresponds to a link between concepts.
Within conceptual networks, concepts are organized
through links such as kind, property, and relation. These
links can be characterized as connections, which indi-
cate that a concept is a kind of another concept, that
an object has a property and which express relations,
respectively [17.8, pp. 30–31]. Accordingly, the re-
structuring of the conceptual systems supposes changes
related to the concepts that integrate them, and these
changes have impact on the other concepts. For in-
stance, changes of hierarchy, changes from properties to
relations, and the addition and suppression of concepts.
These changes are coordinated, that is, since concepts
are interlinked, changes related to a concept have an im-
pact on other concepts.

Nersessian recounts a relevant case of change of
conception in the history of science, the one that refers
to the representation of movement. She analyzes vari-
ous phases of this change – the medieval philosophers’,
Galileo’s, and Newton’s conceptions of movement –
pointing out how some concepts attained a new or-
ganization, for instance, the concepts of movement,
vacuum, and space, and how the new concept of the
force of gravity was built. Let us consider a represen-
tative sample of the way in which she carries out her
examination. She indicates that: movement changes in
hierarchy within the medieval conceptual structure it is
a kind of process, while, within the Galilean concep-
tion, it is a state; gravitas changes from a property to
a relationship – within the medieval mechanics heavi-
ness is a property of bodies, while, on the other hand,
within Newtonian physics it is a force which acts on the
bodies and, as such, a relationship between them; within
the Galilean conception, the medieval conception of the
distinction of natural/violent movement is abandoned;
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and, finally, within the Newtonian conceptual structure,
the principle of inertia is added to the theory of me-
chanics.

Nersessian adopted a system of representation of
knowledge, conceptual maps, in order to facilitate the
analysis of the changes happening in the various phases.
These maps contain conceptual nodes and links be-
tween them. For instance, in [17.62, pp. 171–173], she
drew three conceptual maps, reproduced in Figs. 17.4–
17.6, which represent salient parts of the conceptual
structures of the medieval, Galilean, and Newtonian
theories of movement. It should be mentioned that
Nersessian has made valuable contributions regarding
the applicability of knowledge about the way in which
conceptual systems in science change to teaching and
learning in the field of science [17.62, p. 166].

On the other hand, the difference in form that occurs
throughout time (in this case not related to complete
conceptions, but to an individual concept) refers to the
change in meaning between its instances. This kind of

Place

K

Natural

State

MotionK

Rest

Natural

K

K

Pr Pr

Is in

Towards
K

Free fall

Body

ImpetusMover

Prime Projector ClosedFinite

Occupied
Gravitas

Circular

K

K K

K

R

Pr Pr

Causes

Causes

Causes

Heavenly

Local

K

K

KK

Takes
  place
   in

Keeps
  in

Keeps
  in 

Violent

Process

K

Change

Space

K

Empty

Fig. 17.4 Partial conceptual
structure of the medieval the-
ory of motion (after [17.62, p.
171])

change can be exemplified with the concept of an elec-
tromagnetic field. Nersessian derived that this concept
has undergone three phases. The first one, which she
calls heuristic guide, encompasses the contributions of
Faraday and the first two papers by Maxwell: On Fara-
day’s Lines of Force and On Physical Lines of Force;
the second one, which she calls elaborative, comprises
the subsequent contributions of Maxwell and those of
Lorentz; and the third one, which she calls philosoph-
ical, that is, a critical reflection on its foundations,
encompasses the contributions of Einstein.

To determine the change of an individual con-
cept supposes that a general conception of meaning is
available that justifies the existence of an identifiable
line of descent among the instances of a concept. In
this way, the meta-theoretical problem of establishing
the representation or meaning of a concept emerges.
Nersessian’s early proposal for a general conception
of meaning [17.3, Chap. 7] is the following: All the
instances of an individual concept fulfill an explana-
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tory/descriptive role in scientific theories. The meaning
of a concept or scheme of meaning can be understood
as a two-dimensional array based on those roles: the
dimension that contains a summary of the features of
each instance, which can be subsumed under the fol-
lowing factors: thing, function, structure, and causal
power; and the dimension that contains the develop-
ment of these features of each instance with the passage
of time, which enables one to identify a line of descent
between those instances.

In other words, the instances of a concept can be
represented in both a synchronic and a diachronic way.
Nersessian refers to the synchronic representation of the
instances of a concept as a vector composed of their
salient features. On the other hand, she describes the
diachronic representation of the cases of an individual
concept as a vector expanded to an array. Within the
array, it is shown how each of the components of the
concept’s meaning changes over time [17.36, p. 166].
From the representation of the instances can arise the
representation of a type of concept, which, as I antic-
ipated, is “a set of family resemblances exhibited in

its ’meaning schema’.” The representation of a type of
concept is an adaptation of the notion of the prototype
of a concept. Nersessian writes [17.63, p. 161]:

“I have adapted a prototype notion of a concept, as-
sociated with the work of Eleanor Rosch, to develop
a schema representation of a scientific concept as an
overlapping set of features.”

The notion of prototype was elaborated on the basis
of the empirical research about concepts carried out by
Rosch and her collaborators beginning in 1970. Ners-
essian found this cognitive view appealing because it
enables one to represent the development, the conti-
nuity, and the change of concepts in general and of
scientific ones in particular [17.36, p. 168]. In fact,
the notion of prototype makes it possible to establish
a familiarity relationship between the earlier and the
later forms of a concept. The probabilistic or prototypes
theories about concepts propose that human beings rep-
resent a concept by a prototypical example, which is
the typical representation of a concept. A prototype in-



Part
D
|17.3

370 Part D Model-Based Reasoning in Science and the History of Science

Motion

State

Natural

Free fall
Constant
velocity

Rectilinear

Space

Vacuum Open Infinite

Circular

Force

InactiveActive

Impressed

Gravity

Body
Centripetal

Inertia

Mass Weight

Rest

Planetary

Causes

Causes
Causes

Causes

Relation
 between

K

K

K

K K

K

R

R

PrPr

Pr

K

Pr

K

K

K

K

K

K
K

K K

Takes
 place
  in

Keep
in

Violent

Accelerated

Fig. 17.6 Partial conceptual
structure of the Newto-
nian theory of motion
(after [17.62, p. 173])

cludes a list of the features that most probably describe
the exemplars of the concept. Some instances of a given
concept are better examples than others, depending on
the degree in similarity of the object in question to other
instances of the concepts or to the prototypical instance.
That is why there is a reference to the graduated struc-
tures of the concepts. Rosch follows Wittgenstein, as,
in her conception, a concept is represented by a set
of family resemblances among the instances placed in
the category [17.64]; [17.65, pp. 151–166]. Continu-
ing with the analysis of the example of the concept
of electromagnetic field, in the three phases of its de-
velopment, the concept fulfills the role of describing
the transmission of electric and magnetic forces and
the role of explaining how such continuous and pro-
gressive action is possible. On this basis, Nersessian
managed to reconstruct the scheme of meaning of the

concept, as summarized in Table 17.1 . Here it can be
observed that each instance of the concept is linked
to the next through chains of reasoning connections
(COR) (Nersessian borrows this notion from Dudley
Shapere [17.66]).

In later analyses dealing with the creation of scien-
tific concepts in [17.14], Nersessian discussed briefly
the state of the art with respect to the representation of
concepts. She wrote that there is no agreement about
that, thus [17.14, p. 187]:

“For the present analysis, the format issue can be
bypassed by stipulating only that whatever the for-
mat of a concept, concepts specify constraints for
generating members of a class of models.”

Nersessian’s stipulation that concepts specify con-
straints seems to come from the frame theory about con-
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Table 17.1 Concept of electromagnetic field (after [17.3, p. 158])

Stuff Function Structure Casual power
Force in region of space (lines are
substances? states of aether?)

Transmits electric and magnetic
actions (light? gravity?)

Unknown Certain electric and magnetic
effects

C
O
R

C
O
R

C
O
R

C
O
R

Mechanical processes in quasi-
material medium (aether)

Transmits electric and magnetic
actions (now including light)

Maxwell’s equations All electric and magnetic effects,
optical effects, radiant heat, etc.

C
O
R

C
O
R

C
O
R

C
O
R

State of immobile aether (nonme-
chanical)

Same Same plus Lorentz force Same

C
O
R

C
O
R

C
O
R

C
O
R

State of space Same Same but relativistic
interpretation

Same

C
O – chain-of-reasoning connection
R

cepts. According to this, the frame of a concept is a the-
oretical representation that organizes all the possible
information related to a given concept within a speech
community. There are various versions of this concep-
tion and one of them is Lawrence Barsalou’s dynamic
frames approach. Nersessian judges that this frame per-
spective has been used successfully in many analysis of
the change of taxonomic concepts, but she points out
that “[. . . ] the case of science is complicated by the ex-
istence of many nontaxonomic concepts, such as ‘force’
and ‘mass”’ [17.67, p. 183]. The distinction of taxo-
nomic and nontaxonomic concepts corresponds to the
Kuhnian classification between basic and theoretical
concepts [17.68] and, later, to the classification between
normic and nomic concepts [17.69]. While taxonomic,
basic or normic concepts are learned by pointing out
many of their instances, theoretical or nomic concepts
are learned by pointing out complex problem situations
to which a law is applied [17.70]. Nersessian consid-
ers that Barsalou’s approach helps to illustrate precisely
the idea that concepts specify constraints [17.70]. Ac-
cording to Barsalou, a frame is a set of attributes with
a multiplicity of values, integrated by structural con-
nections. In general, these attributes hold relationships
with each other that are given through the majority of
the exemplars of a concept. Barsalou calls these struc-
tural invariants to these relationships. Furthermore, the
values of frame attributes are linked with each other
through relationships of dependency. These relations
are constraints. “Instead, values constrain each other in
powerful and complex manners” [17.71, p. 37]; [17.72].

Nersessian uses the case expounded by Hanne An-
dersen et al. [17.9, Chap. 4] where, precisely, they
employ the notion of dynamic frame – in order to il-
lustrate the idea that concepts specify constraints. The
case refers to the representation of the concept of bird.
This one appears in various ways in the successive tax-
onomies of Ray, Sundevall, and Gadow. In each one,
the corresponding frame of the concept of bird reflects
a different set of attributes and different constraints
between their values. Figures 17.7–17.9 illustrate the
difference of conceptual representation in those three
ornithological taxonomies.

Based on her idea that concepts specify constraints,
Nersessian describes the concept formation and change
as a process of generating new constraints or modify-
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ing the existing ones. This construct paved the way to
answering philosophical questions such as: How is it
that model-based reasoning generates new conceptual
representations? And how do models figure in this rea-
soning and facilitate the reasoning about phenomena?

Model-based reasoning is effective to create new
candidate representations because it facilitates the

changes of constraints. By means of the processes of
abstraction and integration of constraints from multiple
domains in a hybrid model, new combinations of con-
straints can emerge, and these ones may fit structures
and behaviors not represented previously. When scien-
tific change is produced, concepts without precedent in
the history of science emerge [17.14, Chap. 6].
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17.4 Conclusions
From a cognitive-historical approach, Nersessian poses
problems relevant to the creation of scientific concepts,
thus introducing within the philosophy of science an
issue that was traditionally considered not pertinent.
Among them, two questions stand out:

1. A fundamental one asks which are the cogni-
tive processes integrated within the environment
that scientists develop in forming concepts without
precedent in history.

2. The other, derived from the previous one, refers to
the reasons that make those mechanisms efficient
means to generate new scientific concepts.

As a result, the adoption of a cognitive-histori-
cal perspective creates a formulation of the problem
that can produce a satisfactory answer. Throughout the
chapter, it has been demonstrated that cognitive-histori-
cal analysis gathers together features that make it a very
valuable tool for that: It makes it possible to obtain
information about innovative historical scientific prac-
tices; it enables one to study cognitive processes and
structures implied in those practices; it aims to inves-
tigate creative processes within their own context to
avoid distortion; it retrieves data from various kinds of
sources; it establishes general conclusions about cre-
ative scientific practices; and, finally, it is the method –
within cognitive studies – that gives information about
historically innovative processes that evolve over long
periods of time.

It is possible to appreciate the fertility of the ap-
proach through the examination of certain hypothesis
about the creation of scientific concepts that Nerses-
sian succeeded in establishing. She obtains information

about historically creative scientific activities and inter-
prets that information in terms of the cognitive sciences.
So, on the one hand, she establishes that, through
a cycle of bootstrapping modelings, scientists solve
representational problems; those modeling processes
are genuinely kinds of creative reasoning about a tar-
get problem; and model-based reasoning is a heuristic
strategy. On the other hand, based on a conception of
concepts that stipulates that these specify constraints,
she states that the concept formation and change are
processes of constraint generation or modification, and
she defends the hypothesis that proves that model-
based reasoning is effective for creating new candidate
representations because they facilitate the change of
constraints.
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18. Physically Similar Systems –
A History of the Concept

Susan G. Sterrett

The concept of similar systems arose in physics
and appears to have originated with Newton in
the seventeenth century. This chapter provides
a critical history of the concept of physically sim-
ilar systems, the twentieth century concept into
which it developed. The concept was used in the
nineteenth century in various fields of engineering
(Froude, Bertrand, Reech), theoretical physics (van
der Waals, Onnes, Lorentz, Maxwell, Boltzmann),
and theoretical and experimental hydrodynamics
(Stokes, Helmholtz, Reynolds, Prandtl, Rayleigh). In
1914, it was articulated in terms of ideas developed
in the eighteenth century and used in nineteenth
century mathematics and mechanics: equations,
functions, and dimensional analysis. The termi-
nology physically similar systems was proposed
for this new characterization of similar systems
by the physicist Edgar Buckingham. Related work
by Vaschy, Bertrand, and Riabouchinsky had ap-
peared by then. The concept is very powerful in
studying physical phenomena both theoretically
and experimentally. As it is not currently a part
of the core curricula of science, technology, en-
gineering, and mathematics (STEM) disciplines or
philosophy of science, it is not as well known as it
ought to be.
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The concept of similar systems is one of the most pow-
erful concepts in the natural sciences, yet one of the
most neglected concepts in philosophy of science today.
The concept of similar systems was developed specifi-
cally for physics, and its use in biology has generally
been in terms of plant and animal physiology; hence,
the term physically similar systems is often used. It re-
mains an open research question whether, and how, the
concept of similar systems might be applied to sciences
other than physics, such as ecology, economics, and an-
thropology.

This chapter is devoted to providing a history of the
concept of physically similar systems. It also aims, in
doing so, to increase the understanding and apprecia-

tion of the concept of similar systems in philosophy. In
addition to being neglected in philosophy of science,
the concept of similar systems is also often not fully
understood even when it is mentioned.

The concept of similar systems has been useful in
developing methods for drawing inferences about the
values of specific quantities in one system from obser-
vations on another system. Some know of the concept
only in this derivative way, via applications to specific
questions in physics, biology, or engineering.

The fact that it has such useful applications has
sometimes led to an underappreciation of the funda-
mental nature, immense power, and broad scope of the
concept. Yet, its utility in practical matters of determin-
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Fig. 18.1 Newton seems to have been the first to use the
term similar systems in his Principia Mathematica, but
Galileo seems to have employed a closely kin idea in his
reasoning in Two New Sciences

Helmholtz On a
theorem...
in German 1873

Some important works in the history of the concept of
physically similar systems to 1904

Newton′s
Principia
mathematica
(in Latin)
1686/7

Newton′s
Principia transl.
into English
(Motte 1728/9
and French (du
Chatelet 1759)

1600 1700 1800 1825 1850 1875 1900 1925

van der Waals Law of corr.
states 1881/Onnes gen
Theory of liquids 1881
in Dutch

Vaschy Sur les loi de
similitude in French 1892

Reech, Cours
de mécanique
in French 1852

Lorentz On a
theorem...
in English 1900

Bertrand Sur la
similitude
mechanique
in French 1847

Stokes On the
effect of the
internal friction
of fluids...
in English 1850

Galileo Two new
sciences
(in Latin) 1638
Transl. into
English
(Salusbury 1665)–
most copies
perished in 1666

Galileo′s Two
new sciences
Transl. into
English
(Thomas
Weston 1730)

Bertrand On
the relative
proportions
in English
1847

Froude On
the rolling
of ships in
English
1862

J Thomson
Comparison of
similar
structures...
in English 1875

Reynolds An
experimental
investigation in
English 1883

Prandtl On
the motion
of fluids in
German
1904

Mach′s Science of
mechanics in German
1883; in English 1893
(discusses Newton′s
use of similar systems)

Fig. 18.2 This timeline (not to scale) illustrates that the concept of similar systems is credited to Renaissance era thinkers
Galileo and Newton, and was revived in the second half of the nineteenth century, when it was extended to chemistry,
electromagnetic theory, heat, and thermodynamics

ing or predicting the value of a particular otherwise
unobservable quantity is an important feature of the
concept. It is due at least in part to the utility of methods
involving the concept of similar systems in providing
answers to some otherwise intractable problems that
natural philosophers in the Renaissance such as Galileo
Galilei and Isaac Newton reasoned using some ver-
sion of the concept (Fig. 18.1), and, later, in the late
nineteenth and early twentieth centuries, that scientists
further developed it. Thus, the understanding of the
concept developed over centuries (Figs. 18.2; 18.3). I
will use the twentieth century understanding of similar
systems to characterize the concept first, then go back to
some early precursors from which it was developed and
follow the path up to the twentieth century characteriza-
tion of it. This history of the concept, though admittedly
not exhaustively complete, should help clarify its role in
reasoning and drawing inferences.
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Some important works in the history of the concept of
physically similar systems 1905–1914

Riabouchinsky
Methode des
variables de
dimension zero
in French

New English
transl. of Galileo′s
Two new
sciences makes it
available in
English (February)

Buckingham
Interpret. of
model expts.
(May) and
Physically
similar systems
(June)

Buckingham
On
physically
similar systems
in English
(October)

1905 1911 1912 1913 1914-1 1914-2 1914-3 1914-4

Stanton & Pannel
Similarity of
motion... in
English (January)

J. Thomson′s
Comparison of
similar
structures...
is republished in
a collection of
his works in
English

Rayleigh′s Fluid
motions in English in
several venues (March,
June)

Tolman′s The principle
of similitude in
English (April)

Fig. 18.3 This timeline (not to scale) shows there was a lot of discussion about and interest in issues regarding similarity
in 1914 and the years immediately preceding. In 1914 the term physically similar systems comes into use

18.1 Similar Systems, the Twentieth Century Concept

The landmark year in clarifying and articulating the
concept of physically similar systems was 1914. There
were two papers with Physically Similar Systems in the
title that year by Edgar Buckingham: one in July (Phys-
ically Similar Systems) in the Journal of the Washington
Academy of Sciences [18.1] and another in October
1914 (On Physically Similar Systems: Illustrations of
the Use of Dimensional Equations) in Physical Re-
view [18.2]. Though the latter one is well known and
highly cited, and the former one little known, I think
that it is the former, that is, the much shorter July 1914
piece, that represents a crucial link or advance, concep-
tually speaking. The October 1914 Buckingham paper
is often credited for the theorem it contains, which is
ironic: as Buckingham emphasized numerous times in
later papers, a version of the theorem itself had been
proven years before. His articulation and discussion of
the notion of physically similar systems, however, were
unusually reasoned and more general than any others
accompanying the proof of the theorem.

For now, I just wish to characterize the concept as it
is currently understood; for that, we look to the well-
known October 1914 Physical Review paper [18.2].
The paper opens with a section “The Most General
Form of Physical Equations,” which is about describ-

ing a relation that holds among physical quantities of
different kinds, by an equation. This is followed by
a section introducing and making use of the principle
of dimensional homogeneity, entitled “Introduction of
Dimensional Conditions.” After exhibiting those points
in an example, comes “The General Form to Which
Any Physical Equation is Reducible” which states as
“a general conclusion from the principle of dimensional
homogeneity” that [18.2, p. 350]

“If a relation subsists among any number of physi-
cal quantities of n different kinds, and if the symbols
Q1, Q2, . . . , Qn represent one quantity of each
kind, while the remaining quantities of each kind
are specified by their ratios r0, r00, . . . , etc., to the
particular quantity of that kind selected, then: any
equation which describes this relation completely is
reducible to the form

�.˘1; ˘2; : : : ;˘i; r0; r00; : : :/D 0:”

As this form of the equation will be key in defin-
ing the notion of similar systems, let us give it a proper
name; I’ll call it the Reduced Relation Equation of
1914. The number of ˘ ’s in this equation is the dif-
ference between:
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“the number of fundamental units required in an ab-
solute system for measuring the n kinds of quantity,
and n, the kinds of quantity [involved in the rela-
tion].”

The function � is not defined in this form of the
equation, but that is perfectly fine; we still consider it
an equation – it’s just an equation in which the form of
the function is not specified. The equation states, basi-
cally, that such a function relating the ˘ ’s and r’s does
exist, and the conclusion is that this equation, the Re-
duced Relation Equation of 1914, is another form of
the original physical equation, that is, that any physi-
cal equation can be reduced to this form. Next follows
a short section illustrating how this conclusion can be
applied to the same example given earlier in the paper
to determine the relationships between some specific
quantities in an elegant and particularly useful way. All
this is done prior to, and independently of, defining the
notion of physically similar systems.

It is in the section entitled “Physically Similar Sys-
tems,” the sixth section of the paper, that the notion
of similar systems is first presented. Referring to the
equation in his paper shown above, which I have called

the Reduced Relation Equation of 1914, Buckingham
writes that “we may develop from it the notion of simi-
lar systems;” he develops it as follows [18.2, p. 353]:

“Let S be a physical system, and let a relation sub-
sist among a number of quantities Q which pertain
to S. Let us imagine S to be transformed into another
system S0 so that S0 corresponds to S as regards
the essential quantities. There is no point of the
transformation at which we can suppose that the
quantities cease to be dependent on one another:
hence we must suppose that some relation will sub-
sist among the quantities Q0 in S0 which correspond
to the quantitiesQ in S. If this relation in S0 is of the
same form as the relation in S and is describable by
the same equation, the two systems are physically
similar as regards this relation.”

This is the notion of physically similar systems still
currently in use today. It was first articulated in 1914
by the physicist Edgar Buckingham. But it did not
arise from Buckingham’s cogitations out of the blue.
For its precursors, we have to go back to the Renais-
sance.

18.2 Newton and Galileo

18.2.1 Newton on Similar Systems

Newton seems to have been the first to use the term sim-
ilar systems. He uses it more than once, but the text usu-
ally associated with the concept of similar systems is in
Book 2, Proposition 32, where he writes [18.3, p. 327]:

“Suppose two similar systems of bodies consist-
ing of an equal number of particles, and let the
correspondent particles be similar and proportional,
each in one system to each in the other, and have
a like situation among themselves, and the same
given ratio of density to each other; and let them
begin to move among themselves in proportional
times, and with like motions (that is, those in one
system among one another, and those in the other
among one another.) And if the particles that are in
the same system do not touch one another, except
in the moments of reflection; nor attract, nor repel
each other, except with accelerative forces that are
inversely as the diameters of the correspondent par-
ticles, and directly as the squares of the velocities: I
say, that the particles of those systems will continue
to move among themselves with like motions and in
proportional times.”

In his Science of Mechanics, Mach refers to New-
ton’s concept of similar systems in the context of his own
discussion of oscillatory motion [18.4, p. 203]. Mach’s
critical-historical work on mechanics was written to be
accessible to the nonspecialist; his critique is informa-
tive of the understanding of similarity and similar sys-
tems at that time. After generalizing one of his own con-
clusions, Mach remarks: “The considerations last pre-
sented may be put in a very much abbreviated and very
obvious form by a method of conception first employed
by Newton.” He does not quite accept Newton’s use of
the term similar system there, though [18.4, p. 166]

“Newton calls those material systems similar
that have geometrically similar configurations and
whose homologous masses bear to one another the
same ratio. He says further that systems of this kind
execute similar movements when the homologous
points describe similar paths in proportional times.”

Mach admires Newton’s methodology here, but he
points out an issue with Newton’s use of the term simi-
lar [18.4, p. 166]:

“Conformably to the geometrical terminology of the
present day we should not be permitted to call me-
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chanical structures of this kind (of five dimensions)
similar unless their homologous linear dimensions
as well as the times and the masses bore to one an-
other the same ratio.”

I gather that what Mach is saying is that the notion
of similar in use at the time he is writing is the notion
of geometrical similarity, in which there is a kind of
shrinking or enlarging of every linear quantity of each
dimension by the same ratio (for geometrical similarity,
there would usually not be more than three dimen-
sions). That is, I believe he means that, if we are talking
about a three-dimensional machine, similarity amounts
to shrinking or enlarging quantities of each linear di-
mension by the same ratio while keeping the machine
and all its parts exactly the same shape, that is, while
preserving every ratio of linear quantities within the
same machine. Now, of course, areas and volumes will
bear a different ratio to their homologues than quanti-
ties of the linear dimensions do (e.g., if the ratio is 1 W 3
for the linear dimension, it will be 1 W 9 for an area and
1 W 27 for a volume), but the similarity can be defined
in terms of the linear dimensions alone. That is how
geometrical similarity works. Mach says, I think that
a strict application of the notion of geometric similar-
ity would require that the ratio between a quantity and
its homologous quantity be the same for all five of the
dimensions that Newton mentions for his case, and that
the situation imagined in Newton’s proposition does not
satisfy that constraint.

However – and what is significant and interesting –
Mach does not say that Newton is wrong here; rather,
what he says is that what Newton was doing is better
understood in Mach’s day in terms of affine transfor-
mations [18.4, p. 204]:

“The structures might more appropriately be termed
affined to one another.

We shall retain, however, the name phoronom-
ically [kinematically] similar structures, and in the
consideration that is to follow leave the masses en-
tirely out of account.”

It is clear that Newton was interested in more than
this, that he wanted to employ the notion of similar
systems to reason about forces, too; in fact, he does
so in the remarks that follow the quote above ([18.3,
pp. 327–328], [18.5, pp. 766–768]). However, in leav-
ing the masses out of the account, Mach picks out from
Newton’s work what he wishes to endorse, and shows
how the points he endorses ought to be understood in
the terminology of the nineteenth century. Mach shows
how to understand phoronomically (kinematically) sim-
ilar structures for the topic of oscillation he has been
discussing [18.4]:

“In two such similar motions, then,
let the homologous paths be s and ˛ s,
the homologous times be t and ˇ t;
whence the homologous velocities are v D s=t and
˛v D ˛=ˇ s=t,
the homologous accelerations � D 2s=t2 and "� D
˛=ˇ22s=t2.

Now all oscillations which a body performs un-
der the conditions above set forth with any two
different amplitudes 1 and ˛, will be readily rec-
ognized as similar motions.”

Thus, in spite of noting that similar generally means
geometrically similar at the time he was writing, Mach
indulges Newton in the use of the adjective similar to
indicate phoronomically (kinematically) similar struc-
tures, which are, properly speaking (in the terminology
of Mach’s day), not related by similarity but by affinity
(that is, by affine transformations). After showing how
elegantly theorems about centripetal motion can be ob-
tained by such means, he remarks [18.4, p. 205]:

“It is a pity that investigations of this kind respect-
ing mechanical and phoronomical affinity are not
more extensively cultivated, since they promise the
most beautiful and most elucidative extensions of
insight imaginable.”

Thus, Mach sees the great power of the notion of
similar systems. In terms of clarification of the notion
itself, though, which is the topic of this article, Mach’s
attention in his critique of Newton is on the similar in
similar systems; he does not here discuss criteria for
something counting as a system.

Newton is recognized for the concept today, as he
has been throughout all of the nineteenth and twentieth
centuries. In their Similarity of Motion in Relation to
the Surface Friction of Fluids paper in early 1914, Stan-
ton and Pannell credit George Greenhill with pointing
out that the idea that relations “applicable to all fluids
and conditions of flow” existed was “foreshadowed by
Newton in Proposition 32, Book II of the Principia”
[18.6, p. 199]. Zahm’s 1929 report Theories of Flow
Similitude [18.7] also credits Newton for a method of
“dynamically similar systems,” citing Newton’s Propo-
sitions 32 and 33. Also, in many more recent works,
including [18.8, p. 86ff], [18.9, pp. 39–41], and [18.5,
p. 766].

18.2.2 Galileo

Although Newton seems to have been the first to use the
term similar systems,Galileo’s reasoning certainly used
a notion of similar systems akin to, if not prescient of,
Newton’s in discussing not only the motions of the bob
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of a pendulum, but also the more complicated behavior
of machines and structures with mass; this is especially
clear in his Dialogues Concerning Two New Sciences.
Galileo’s dialogue begins with Salviati (usually taken to
be the voice of Galileo), recounting numerous examples
of a large structure that has the same proportions and ra-
tios as a smaller structure but that is not proportionately
strong. In these opening pages of the dialogue, Salviati
explains to a puzzled Sagredo that “if a scantling can
bear the weight of ten scantlings, a [geometrically] sim-
ilar beam will by no means be able to bear the weight of
ten like beams” [18.10, m.p. 52–53]. The phenomenon
of the effect of size on the function of machines of
similar design holds among natural as well as artifi-
cial forms, Salviati explains: “just as smaller animals
are proportionately stronger or more robust than larger
ones, so smaller plants will sustain themselves bet-
ter” [18.10, m.p. 52–53].

Perhaps the most well known of Salviati’s illustra-
tions is about giants [18.10, m.p. 52–53]:

“I think you both know that if an oak were two hun-
dred feet high, it could not support branches spread
out similarly to those of an oak of average size. Only
by a miracle could nature form a horse the size of
twenty horses, or a giant ten times the height of
a man – unless she greatly altered the proportions
of the members, especially those of the skeleton,
thickening the bones far beyond their ordinary sym-
metry.”

Although Galileo’s work opens with the wise par-
ticipant in the dialogue reminding the others of the
reasons for the lack of giant versions of naturally occur-
ring life forms, it soon proceeds to the case of a valid
use of a small (artificial) machine to infer the behav-
ior of a large (artificial) machine. But the basis for
the similarity is not merely geometric similarity. Later
in this same work of Galileo’s, Sagredo makes use of
Salviati’s statement that the “times of oscillation” of
bodies [18.10, m.p. 139] suspended by threads of differ-
ent lengths “are as the square roots of the string lengths;
or we should say that the lengths are as the doubled ra-
tios, or squares, of the times.” From this, Sagredo uses
one physical pendulum to infer the length of another
physical pendulum [18.10, m.p. 140]:

“Then, if I understood correctly, I can easily know
the length of a string hanging from any great height,
even though the upper attachment is out of my sight,
and I see only the lower end. For if I attach a heavy
weight to the string down here, and set it in oscil-
lation back and forth; and if a companion counts
a number of its vibrations made by another move-

able hung to a thread exactly one braccio in length, I
can find the length of the string from the numbers of
vibrations of these two pendulums during the same
period of time.”

The reasoning that Sagredo uses to infer the length
of one pendulum (the larger) from another (the smaller)
is based upon the constancy of the value of a certain ratio
involving the length and the frequency of a pendulum’s
oscillations. What Sagredo derives from the constancy
of that ratio for all pendulums is a law of correspon-
dence telling him how to find the corresponding length
in the large pendulum from the length of the small (or
vice versa) and the number of oscillations of the two
pendulums observed during the same time period. (The
time period itself during which the oscillations are ob-
served is not needed; what is needed is only the (square
of the) ratio of the number of oscillations of the two pen-
dulums.) He works out an example [18.10, pp. 140]:

“[. . . ] let us assume that in the time my friend has
counted twenty vibrations of the long string, I have
counted two hundred forty of my thread, which is
one braccio long. Then after squaring the numbers
20 and 240, giving 400 and 57 600, I shall say that
the long string contains 57 600 of those units [mis-
ure] of which my thread contains 400; and since my
thread is a single braccio, I divide 57 600 by 400 and
get 144, so 144 braccia is the length of the string.”

Salviati (the voice of Galileo) responds approvingly
to Sagredo’s claim that this method will yield the length
of the string: “Nor will you be in error by a span, espe-
cially if you take a large number of vibrations.” This is
reasoning much like Newton’s use of similar systems,
in that one pendulum is regarded as being similar to an-
other pendulum, so that the period of oscillation and
length of one of the pendulums is homologous to the
period of oscillation and length of the other.

Of course, Galileo’s reasoning here is not presented
as a general method, as it is specific to pendulums,
whereas Newton’s notion of similar systems is. Nor do
we find in Galileo’s discussion here any explicit criteria
for something being a machine that could serve to delin-
eate the sorts of things on which this kind of reasoning
could be used. However, Galileo’s discussion does
make clear that the two quantities that are considered
homologous – the time of vibration and the length of
the pendulum string – are fixed features of a pendulum,
in contrast to other quantities such as the amplitude of
the oscillations, or the weight of the bob [18.10, p. 141]:

“Take in hand any string you like, to which a weight
is attached, and try the best you can to increase or
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diminish the frequency of its vibrations; this will be
a mere waste of effort. On the other hand, we con-
fer motion on any pendulum, by merely blowing on
it [. . . ] This motion may be made quite large [. . . ]
yet it will take place only in accord with the time
appropriate to its oscillations.”

Thus, each of the two quantities – length of the
string, time of vibration – of a given pendulum deter-
mines the other. The point germane to the topic of the
history of similar systems, though, is this: every pen-
dulum is related to every other pendulum by a law
of correspondence. The law of correspondence relates
each of these two quantities in one pendulum to its
homologue in another pendulum. I think that we can
see this as akin to how Newton conceived similar sys-
tems to be related: by a law of correspondence between
quantities in one system and their homologous quan-
tities in the similar system. Only the length of the
string and the time of vibration show up as homolo-
gous properties in comparison of the two pendulums.
Thus, Galileo makes a point of distinguishing between
quantities that characterize a given pendulum (length of
string; time of oscillation) and quantities that do not
(amplitude of oscillation; weight of bob), in addition
to making the point about how some behaviors of all

pendulums are related to each other by a law of corre-
spondence.

Because the point is so often missed, it may be help-
ful to state it a slightly different way. Clearly, Galileo
sees that in a pendulum’s behavior, the quantities that
characterize a pendulum’s behavior are related to each
other in a fixed (though nonlinear) relation, as evi-
denced by his remarks about the time of oscillation of
a pendulum being determined by the length of its string.
Yet, rather than illustrating that one can use this rela-
tion to figure out the value of one quantity associated
with a certain pendulum by measuring another quantity
associated with that same pendulum, what Galileo is
doing here is using a completely different method of in-
ference: establishing a law of correspondence between
two different pendulums. Then, from an observation of
one quantity obtained experimentally on another pen-
dulum chosen or constructed for the purpose, the law
of correspondence he has established is invoked to infer
the value of the homologous quantity in the pendulum.
(In the passage from Galileo quoted above, the method
was used to infer the length of one pendulum from the
length of another pendulum.) It is the articulation of
this method that justifies including Galileo along with
Newton in a history of the concept of physically similar
systems [18.11].

18.3 Late Nineteenth and Early Twentieth Century

By the late nineteenth century, mechanics and the
mathematics used in it had changed dramatically from
Newton’s – at least in terms of many of the mathemati-
cal methods used. The concept of mechanical similarity
survived these major changes, though, and quite easily
accommodated itself to the more advancedmathematics
developed for mechanics. In fact, the notion of me-
chanical similarity was developed further, and more
rigorously, into different kinds of similarity in mechan-
ics – geometrical, kinematical, and dynamical – and
extended to other areas of physics that had become
quantitative, such as heat and electricity. The concept
of similar systems survived, too, sometimes explicitly,
sometimes only implicitly and in practice. More prob-
lematically, during the nineteenth century, the term was
sometimes used to refer to something other than the rig-
orous notions associated with the term that were being
developed in physics.

The advances in mathematics and physics to which
the concept of similar systems and, along with it, the
concept of similarity, were rather easily incorporated
were not merely superficial matters such as the use of
a different notation for calculus. By the late nineteenth

century, there was widespread use of the more advanced
mathematical methods that had been developed: partial
differential equations and associated analysis methods
for continuum mechanics, hydrodynamics, gas theory,
electricity, and magnetism. During the eighteenth cen-
tury, there had been many advances in mathematics and
mechanics that transformed the methods of inquiry used
into ones we would be at home with even today. The
question of what constitutes a system shifts from ask-
ing not only how to decide when a configuration of
bodies constitutes a system (Newton and Galileo seem
to have thought in terms of systems of that sort), to
also being able to ask what features of a function (or
equation) indicate that the relations between quantities
that it expresses have also delineated a system. For, it
is functions that the eighteenth century gave mechan-
ics, and functions represented or expressed “relations
among quantities in nature,” as Hepburn puts it [18.12,
p. 129]. As noted in Sect. 18.1, when Buckingham ar-
ticulated the concept of physically similar systems in
1914 [18.2], he did so by providing the “most general
form of an equation,” and, as seen in the excerpt quoted
above, he did so by describing that form in terms of an
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equation using an unknown function

�.˘1;˘2; : : : ; ˘ i; r0; r00; : : :/D 0;

that is, the equation I have called the Reduced Relation
Equation of 1914.

Buckingham did his doctoral work at the very end of
the nineteenth century. Where were people employing
or talking about the notion of similar systems during the
late nineteenth century? By then, some notion of similar
systems was known in theoretical physics, where it was
occasionally explicitly discussed using the term similar
systems, as well as in many branches of engineering,
where it was involved, albeit sometimes implicitly or
obliquely, in experimental investigations. Then, too,
there were activities and investigations that did not fit
neatly into one or the other of these categories, or strad-
dled them. How did various thinkers producing these
works think about and express the concepts associated
with mechanical similarity and similar systems?

18.3.1 Engineering and Similarity Laws

Similar Structures
In engineering and science of the nineteenth century,
the main notion invoked when reasoning with simi-
lar machines or systems was that of a similarity law
or a similarity principle. James Thomson (1822–1892)
(brother of William Thomson, Lord Kelvin (1824–
1907)) gave an influential paper in 1875 entitled Com-
parison of Similar Structures as to Elasticity, Strength,
and Stability [18.13] that tried to identify and lay out
the methodology involved in the engineering design of
structures such as bridges and buildings, but he used
some other interesting examples such as obelisks and
umbrellas, too. Thomson’s examples are often about
how to vary some quantity such that two structures of
different sizes are similar in one of these respects I
refer to as behavioral: that is, elasticity, strength, or sta-
bility. Thomson’s paper was built upon and expanded
in 1899 (by Barr [18.14]) and again in 1913 (by Tor-
rance [18.15]).

The principle James Thomson identified was meant
to be general. Yet, there were still different kinds of
comparisons. In his 1875 paper, which became more
widely available when his collected works were pub-
lished in 1912, Thomson distinguished between two
kinds of comparisons of similar structures, which, he
said, were “very distinct, and which stand remarkably in
contrast each with the other.” One kind of comparison
of similar structures is “in respect to their elasticity and
strength for resisting bending, or damage, or breakage
by similarly applied systems of forces.” The other, con-
trasting kind was “comparisons of similar structures as

to their stability, when that is mainly or essentially due
to their gravity [weight] or, as we may say, to the down-
ward force which they receive from gravitation” [18.16,
p. 362].

Thomson offered a “comprehensive but simple and
easily intelligible principle” for the first kind of com-
parison: Similar structures, if strained similarly within
limits of elasticity from their forms when free from ap-
plied forces, must have their systems of applied forces,
similar in arrangement and of amounts, at homologous
places, proportional to the squares of their homolo-
gous linear dimensions. His reasoning in establishing
this principle is a deductive argument special to solid
mechanics, the mechanics of deformable bodies. To es-
tablish this we have only to build up, in imagination,
both structures out of similar small elements or blocks,
alike strained, with the same intensity and direction of
stress in each new pair of homologous elements built
into the pair of objects [18.16, pp. 362–363]. These
small elements or blocks are imagined to be so small in
relation to the overall body that the stresses in them can
be considered homogenous throughout the element or
block. This is how the principle is derived, but the point
of emphasis for both scientific understanding and engi-
neering practice was that “similar structures of different
dimensions must not be similarly loaded [. . . ] if they
are to be stressed with equal severity.” In saying that the
structures must not be similarly loaded, he draws atten-
tion to the part of the principle that says that the loads
in the two similar structures must vary by the squares of
their linear dimensions, rather than by the simple mul-
tiplicative factor that the linear dimensions do.

This was commonly what was meant at the time by
a similarity principle or, sometimes similarity law or
law of similarity. Each one covered a certain class of
cases. The point of the principle was usually to state
how one variable – for example, density, stiffness – was
to be varied as another, such as length, was varied. One
form such reasoning took was to show how the ratio of
variables of one type varied as a ratio of another type of
variable did: for instance [18.17, p. 136],

“If the scale ratio for any two orifices, i. e., the ratio
of any two corresponding linear dimensions, is S,
the ratio of the areas of corresponding elements of
the orifices will be S2 , while if similarly situated
with respect to the water surface, their depths are
proportional to S.”

However, sometimes the similarity law or principle
for a certain kind of behavior was stated simply
as a ratio, the implication being that that ratio was
invariant for similar systems; setting the ratio equal to
1 and rearranging terms yielded the relations between
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quantities that must be maintained in order to achieve
the similarity of that type.

Similar Interactions: A Law of Comparison
for Model Ships

One of the most well-known engineering advances em-
ploying similarity and, implicitly, the notion of similar
systems, was William Froude’s (1810–1879) solution
of significant, urgent, and previously unsolved prob-
lems in ship design for the British Admiralty ([18.18,
p. 279], [18.5, 19, 20]). In the design of ships for sta-
bility and speed, not only does gravitational force enter
into the consideration of a structure’s behavior, but the
ship’s interaction with the water in which it is sitting or
moving must also be considered.

Froude’s reasoning about the stability of ships in-
volved examining the motion of a pendulum in a resis-
tive fluid [18.21, pp. 5ff, 15ff, 61]: the same question
Newton addressed when he presented the proposition
in which he introduced the idea of similar systems.
Schaffer points out that, although the statement does
not appear in the final version of the Principia, New-
ton had written that “if various shapes of ships were
constructed as little models and compared with each
other, one could test cheaply which was best for nav-
igation” [18.22, p. 90].

Unlike Newton, Froude does not seem to analyze
the notion of similar systems in thinking about a pendu-
lum in a resistive medium. However, the idea of relating
quantities in one physical situation to those in another is
predominant in Froude’s work; it is, in fact, the topic of
his main contributions to the problem of the efficient
design of large ships driven by propellers. As Zwart
has pointed out [18.5], the naval architect John Scott
Russell had already constructed and tested many small
models, but his experience had convinced him that
the little models, though they had provided him with
much pleasure, could provide no help in determining
how large ships behaved. The exchange between Rus-
sell and Froude following Froude’s reading of his 1874
paper was recorded in a transcript and so is available
today [18.23], showing that the problem of how to ex-
trapolate observations on the behavior of small models
of ships when placed in water to the behavior of full size
ships was considered unsolved when Froude took it on
([18.5, p. 15], [18.20, pp. 128–130], [18.19, 23]). Ha-
gler also notes that Froude’s confidence that the smaller
model ships (some of which were over 20 feet long)
could be used to infer the behavior of larger full-scale
ships was based in part on Rankine’s investigations
on streamlines. Froude explicitly discusses Rankine’s
work in his 1869’s “The State of Existing Knowledge
on the Stability, Propulsion and Seagoing Qualities of
Ships” [18.20]. He convinced the Admiralty to fund

the construction of an experimental water tank to carry
out the experiments he proposed. His methods for ex-
trapolating from smaller, scale models of ships in his
water tank to the full size ship were vindicated when
the Admiralty conducted full-scale tests on the HMS
Greyhound and Froude was able to compare the mea-
surements taken on the full size Greyhound with those
he had taken on his 1=16 model of the HMS Greyhound
in his experimental tank. His Law of Comparison was
soon adopted for all further ship design not only by the
British Admiralty, but also by the US Navy, which con-
structed the Experimental Model Basin in Washington,
DC in the 1890s. The Experimental Model Basin was
constructed under the leadership of David Watson Tay-
lor.Hagler [18.20] provides a good discussion of David
Watson Taylor’s writings on ship design; Taylor shows
how the methodology used by the US in almost all its
naval design work in the first half of the twentieth cen-
tury is ultimately traceable to this work Froude did in
the nineteenth century.

Froude similarity was developed specifically for the
purpose of using model experimentation for ship de-
sign. As with the similarity laws in mechanics, Froude
similarity can be expressed in terms of a ratio, the
Froude number, which is a dimensionless parame-
ter. Though no notion of similar systems is defined,
a nascent notion of similar systems was involved in
practice, since the similarity of situations is established
when the Froude numbers for each of the two situa-
tions are equal. One formulation of the Froude number
is v=

p
gL, where v is a velocity, L is a length, and

g is the gravitational acceleration. The application of
Froude similarity requires expertise; which velocity and
characteristic length are relevant depends on the phe-
nomenon being investigated. We can see from the form
of the Froude dimensionless ratio, however, that quan-
tities do not all scale linearly, much less by the same
linear factor. Another point of note is that, as Froude
similarity compares homologous forces as well as ho-
mologous motions, it is a kind of dynamic similarity,
not merely a kinematic similarity.

Bertrand and Reech: The French Connection
Between Newton and Froude

Many have pointed out that Froude took over results
due to others, naming in particular French engineering
professor Ferdinand Reech and French mathematician
Joseph Bertrand, both of whom wrote on similarity
methods in mechanics ([18.24, p. 141ff], [18.25, p.
381], [18.26, p. 15], and [18.18, p. 279]). The extent
to which this is true has been debated [18.24], but none
deny that Froude holds a unique place as an experimen-
talist whose accomplishments advanced both the field
of hydraulics and the industry of marine architecture.
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Ferdinand Reech (1805–1884) publishing in 1852 on
topics he had lectured about much earlier, explicitly
followed Newton’s approach, discussing and deriving
principles about how to relate observations of velocities
and motions of one ship to other ships of different sizes.
Like Newton, he considered bodies and forces on them,
though he employed the term similar system in his dis-
cussions when deriving laws of comparison [18.27]. It
is Joseph Bertrand who seems to have taken a concep-
tual step beyond Newton, though he heaps quite a great
deal of credit for his work upon Newton, as though he
is doing little more than showing the consequences of
Newton’s theorems about similar systems.

Joseph Bertrand (1822–1900) produced many text-
books and treatises, including Sur la similitude en
mecanique. He also published, in English in 1847, a sort
of manifesto advocating that “persons occupied with
the study of mechanics” attend to the theorem about
similitude he derives using nineteenth century methods
in mechanics, but for which he credits Newton. Of New-
ton’s theorem about similar systems in the Principia, he
writes [18.28, p. 130]

“This theorem constitutes a real theory of simili-
tude in mechanics. It will be seen, that any system
being given, there exists an infinite number of pos-
sible systems, which may be regarded as similar to
it; and that, instead of a single kind of similitude,
as in geometry, we may suppose four, viz., those of
length, time, forces, and masses; each of these is,
according to Newton’s theorem, a consequence of
the other three.”

Bertrand then went on in that same paper of 1847
to explain that he had

“endeavoured to substitute [. . . ] a proposition
founded upon dynamic equations, and which does
not differ mainly from the form employed by M.
Cauchy to deduce from the equations of the move-
ment of elastic bodies the laws of the vibrations of
similar bodies, [. . . ] but this theorem of M. Cauchy,
although analogous to that of Newton, cannot be re-
garded as a corollary of the same;”

using this instead, he deduces applications to laws
of oscillation, centripetal force, speed of propagation
of sound in various gases, and “a theorem relating to
turbines” [18.28, p. 130]. Bertrand’s concern seems to
be twofold: (i) to get people in the field of mechanics
to appreciate the power of the theory (or principle) of
similitude in providing solutions to otherwise insolu-
ble problems, and, (ii) to get people who use model
experiments to understand the appropriate precautions
that must be taken in designing experiments using small
models to prevent errors that can be anticipated us-

ing the theory. He explains how the notion of similar
systems, though it may look rather limited, is in fact
sometimes indispensible, that is, for problems not sus-
ceptible to a mathematical solution [18.28, p. 131]:

“It is true that only proportional results can be de-
duced from [the principle]; and that, consequently,
it will only serve to solve a question, when an-
other of an analogous nature and of an equivalent
analytical difficulty shall have been solved. It may,
however, be of great utility to determine in certain
cases the analogy which exists between the move-
ments of the two systems, even supposing each of
them not to be susceptible of strict theoretical deter-
mination.”

He gives an example of the usefulness of the prin-
ciple: the performance of “experiments on a small
scale” to ascertain “the value of a mechanical inven-
tion, which is too expensive to put in operation on
a large scale” [18.28, p. 131]. What is interesting is
that in this same paper where he is advocating the use
of the principle, he also discusses the kind of conun-
drums that arise in attempting to apply it to complicated
cases such as a small-scale model of a locomotive; he
cites an example of “an error which it is impossible
to avoid, but which it is very essential to know.” This
1847 paper published in England is, thus, a call to im-
proving engineering practice by attending to theoretical
derivations in mechanics, that is, the theory of simil-
itude. (Bertrand refers to it in the 1847 paper as the
Cauchy theorem, which seems rather modest, for Ca-
jori describes Bertrand as deriving “the principle of
mechanical similitude” from “the principle of virtual
velocities” [18.25, p. 380]. I mention Bertrand’s 1847
paper here for its use of late eighteenth and nineteenth
century mechanics.)

18.3.2 Similar Systems in Theoretical
Physics: Lorentz, Boltzmann,
van der Waals, and Onnes

Mechanical similarity held an important place among
some researchers in theoretical physics in the late nine-
teenth century as well. The notion of similar systems
was often employed in theories about the relationship
of microscopic configurations to macroscopic phenom-
ena, sometimes explicitly. Sometimes the term similar
systems was extended beyond the normal use it had had
up to that time, too.

Lorentz
By the turn of the century, Henrik Lorentz (1853–1928)
would note that “The consideration of similar systems
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has already proved of great value in molecular the-
ory,” as it had allowed Kamerlingh Onnes “to give
a theoretical demonstration of van der Waals’s law of
corresponding states” [18.29]. The experimental confir-
mation of that law, Lorenz wrote, “has taught us that
a large number of really existing bodies may, to a cer-
tain approximation be regarded as similar.”

Lorentz had already developed a notion of corre-
sponding states for use in electrodynamics by 1900.
The context in which he made the observation above,
though, was his paper The Theory of Radiation and
the Second Law of Thermodynamics, in which he was
concerned with the question of the similarity in the
structure of different bodies that would be mandated by
thermodynamics [18.29, p. 440]. It would take us too
far afield to explain everything that Lorentz was trying
to do in this paper; here we restrict our discussion to
what concept of similar systems Lorentz employed or
seems to have had in mind.

Lorentz’ idea of similar systems involves starting
with one system and then constructing a second one
from the first. Lorentz writes of “comparing two sys-
tems”; what he says is that the systems he compares
are: “[. . . ] in a wide sense of the word, similar, that
is, such that, for every kind of geometrical or physical
quantity involved, there is a fixed ratio between its cor-
responding values in the two systems, [. . . ]” [18.29].
It is not clear on what basis he justifies being able to
say that “We shall begin by supposing that, in passing
from one system to another, the dimensions, masses and
molecular forces may be arbitrarily modified,” as this
seems to require a certain kind of independence among
the things being modified. He argues that “if the sec-
ond system, as compared with the original one, is to
satisfy Boltzmann’s and Wien’s laws,” that “we shall
find that the charges of the electrons must remain unal-
tered.”

He first describes a certain system S that includes
a “ponderable body” enclosed in a space. Some of the
features of S are delineated (he ascribes an “irregular
molecular motion” and the “power of acting on one
another with certain molecular forces” to the particles
making up the body, for instance, and adds that some
are electrically charged) but other features are not (there
may be other (molecular) forces of another kind, acting
on the electron) [18.29, p. 443]. The description of the
“really existing” system S is meant to pick out some-
thing that actually exists, in contrast to the system S0,
which “perhaps will be only an imaginary one” [18.29,
p. 444]. To complete the description of the state of S0,
“we indicate, for each of the physical quantities in-
volved, the number by which we must multiply its value
in S, in order to obtain its value in S0 at corresponding
points and times.” He then explores the constraints on

these numbers; some are constrained by laws of mo-
tion, but others are not. This leaves him free to “imagine
a large variety of systems S0, similar to S, and which
must be deemed possible as far as our equations of mo-
tion are concerned” [18.29, p. 445].

Lorentz uses the notion of similar systems to ex-
plore the constraints on theory, as opposed to using
theory to state how one can construct a system S0 to
be similar to a certain system S, in order to make infer-
ences about one of the systems based upon observations
about the other. This seems a different use of the notion
than Galileo or Newton made of it; it also allows the
contemplation of unprecendented kinds of similarity. It
may, Lorentz realizes, even give rise to systems of a dif-
ferent ontological status; he explains why that, too, may
be useful [18.29, pp. 447–448]:

“It might be argued that two bodies existing in na-
ture will hardly ever be similar in the sense we have
given to the word, and that therefore, if S corre-
sponds to a real system, this will not be the case with
S0. But this seems to be no objection. Suppose, we
have formed an image of a class of phenomena, with
a view to certain laws that have been derived from
observation or from general principles. If, then, we
wish to know, which of the features of our picture
are essential and which not, i. e., which of them are
necessary for the agreement with the laws in ques-
tion we have only to seek in how far these latter will
still hold after different modifications of the image;
it will not at all be necessary that every image which
agrees in its essential characteristics with the one we
have first formed corresponds to a natural object.”

Thus, Lorentz’s exploratory use of similar systems
in fields beyond mechanics was motivated by the ex-
ample of van der Waals’ and Onnes’ highly successful
results using mechanical similarity to derive new theo-
retical results.

Van der Waals and Onnes
In his 1881 General Theory of Liquids, Onnes ar-
gued that van der Waals’ “law of corresponding states”,
which had just been published the previous year, could
be derived from scaling arguments, in conjunction with
assumptions about how molecules behaved. Van der
Waals was impressed with the paper, and a long friend-
ship between the two ensued (Fig. 18.4). Van der Waals
was awarded the Nobel Prize in Physics in 1910 for
“The equation of state for gases and liquids” [18.30],
and Onnes was awarded it in 1913 [18.31], for “Inves-
tigations into the properties of substances at low tem-
peratures, which have led, amongst other things, to the
preparation of liquid helium.” In his lecture delivered for
the occasion,Onnes highlighted the connection between
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Fig. 18.4 Heike Kamerlingh Onnes and Johannes Dederik
van der Waals in the laboratory with the helium liquefac-
tor. Onnes used the theory of corresponding states along
with experimental data on one substance to predict the con-
ditions at which helium would liquefy

his investigations into properties of substances at low
temperatures and similarity principles [18.32, p. 306]:

“[. . . F]rom the very beginning [. . . ] I allowed my-
self to be led by van derWaal’s theories, particularly
by the law of corresponding states which at that time
had just been deduced by van der Waals.

This law had a particular attraction for me be-
cause I thought to find the basis for it in the
stationary mechanical similarity of substances and
from this point of view the study of deviations
in substances of simple chemical structure with
low critical temperatures seemed particularly im-
portant.”

What is special about the low temperatures Onnes
needed to achieve in order to liquefy helium is that,
according to the kinetic theory of gases on which van
der Waals’ equation of state was based, there would
be much less molecular motion than in the usual kinds
of cases considered. Onnes’s approach in looking for
the foundation of the law of corresponding states has
a slightly different emphasis than the kinetic theory of
gases. Boyle’s law (often called the ideal gas law) and
van der Waals’ equation were based on investigating
the relationship between the microscale (the molecular
level) and the macroscale (the properties of the sub-
stance, such as temperature and density). But Onnes
was instead looking at the foundation for the similarity
of states. Like van der Waals, he looked to mechanics
and physics for governing principles, but Onnes pointed
out that it was also useful to look at principles of sim-

ilarity. At low enough temperatures, where the motion
of the molecules was not the predominant factor, the
relevant principles of similarity would be principles of
static mechanical similarity, as opposed to dynamical
similarity.

The criterion for similarity Onnes developed arose
out of investigations into the transition from one regime
to another. This had been the case in work in hydro-
dynamics, too. In Osborne Reynolds work, discussed
below, it was the critical point at which fluid flow un-
derwent a transition from laminar to turbulent flow
(or, in his terminology, from “lamellar” to “eddying”
flow [18.6, p. 200]) that led to the identification of the
dimensionless parameter that later became known as the
Reynolds number. The Reynolds number is in a way
a criterion of similarity, in that fluid systems with the
same Reynolds number will be in the same flow regime,
regardless of the fluid. So it was with thermodynamics,
Onnes showed: the critical point at which a substance
undergoes a transition from the gaseous state to the
liquid state led to the identification of a criterion of sim-
ilarity of states that held for all substances.

Van der Waals was interested in the continuity of
states and used the critical values of pressure, volume,
and temperature in a brilliant way to normalize them.
He defined “reduced pressure”, “reduced volume”, and
“reduced temperature” to yield an equation of state
in which none of the parameters that are characteris-
tic of a particular substance appear. As Levelt Sengers
notes [18.33, p. 25], “This is a truly remarkable result.”
The equation of state is [18.33, p. 25]:

“universal; all characteristics of individual fluids
have disappeared from it or, rather, have been hid-
den in the reduction factors. The reduced pressures
of two fluids are the same if the fluids are in
corresponding states, that is, at the same reduced
pressure and volume.”

This is an important part of the history of similar
systems in that the principle of corresponding states
allowed the production of curves (Fig. 18.5) representa-
tive of all substances from experiments on a particular
substance [18.33, p. 26]:

“The principle of corresponding states [. . . ] frees
the scientist from the particular constraints of the
van der Waals equation. The properties of a fluid
can now be predicted if only its critical parameters
are known, simply from correspondence with the
properties of a well characterized reference fluid.
Alternatively, unknown critical properties of a fluid
can be predicted if its properties are known in a re-
gion not necessarily close to criticality, based on the
behavior of the reference fluid.”



Physically Similar Systems – A History of the Concept 18.3 Late Nineteenth and Early Twentieth Century 389
Part

D
|18.3

Methane
Ethylene
Ethane
Propane
n-Butane

Isopentane
n-Heptane
Nitrogen
Carbon dioxide
Water

0 0.5 1 1.5

1

1.1

1.2

1.3

1.5

TR = 2

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

z = Pῦ/RT

Reduced pressure PR

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Fig. 18.5 This graph of
empirical results illustrates
the theory of corresponding
states that van der Waals
presented in 1880; fluids in
corresponding states have the
same reduced pressure: the
data for different substances
all fall on top of each other.
Onnes later derived it using
a law of mechanical similarity
he ascribed to Newton

Onnes used this insight about corresponding states
to set up an experimental apparatus to liquefy helium,
which has an extremely low critical temperature. What
is so exciting about his story is that he had to rely on the
law of corresponding states to estimate the critical tem-
perature so that he would know where to look – that is,
so that he would know what conditions to create in or-
der for helium to liquefy. What is especially relevant to
the history of the notion of physically similar systems is
that he did more than just use van derWaals’ law of cor-
responding states. He also gave a foundation for it that
was independent of the exact form of van der Waals’
equation and did not depend on results in statistical me-
chanics. Instead, he used mechanical similarity [18.33,
p. 30]:

“Kamerlingh Onnes’s (1881) purpose is to demon-
strate that the principle of corresponding states can
be derived on the basis of what he calls the prin-
ciple of similarity of motion, which he ascribes
to Newton. He assumes, with van der Waals, that
the molecules are elastic bodies of constant size,
which are subjected to attractive forces only when
in the boundary layer near a wall, since the attrac-
tive forces in the interior of the volume are assumed
to balance each other [. . . ] He realizes this can be
valid only if there is a large number of molecules
within the range of attraction [. . . Onnes] consid-
ered a state in which N molecules occupy a volume
v , and all have the same speed u (no Maxwellian
distribution!). The problem is to express the external
pressure p, required to keep the system of moving

particles in balance, as a function of the five param-
eters. He solves this problem by deriving a set of
scaling relations forM, A, v , u, and p, which pertain
if the units of length, mass, and time are changed.”

Onnes provides a criterion for corresponding states
based on these scaling relations, along with assump-
tions about what the molecular-sized objects are like.
Levelt Sengers remarks [18.33, p. 30]:

“Two fluids are in corresponding states if, by proper
scaling of length, time and mass for each fluid, they
can be brought into the same “state of motion.” It is
not clearly stated what he means by this, but he must
have had in mind an exact mapping of the molecular
motion in one system onto that of another system if
the systems are in corresponding states.”

Levelt Sengers illustrates what being in the same
“state of motion” means “in modern terms” [18.33, p.
30]:

“[. . . ] suppose a movie is made of the molecular
motions in one fluid. Then, after setting the initial
positions and speed of the molecules, choosing the
temperature and volume of a second fluid appropri-
ately, and adjusting the film speed, a movie of the
molecular motion in a second fluid can be made to
be an exact replica of that in the first fluid.”

Appeal to such imagined visual images is very
much in keeping with nineteenth century science, and
one can see here an attempt to generalize Newton’s use
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of similar systems in the Principia to thermodynam-
ics. Onnes used the principle of corresponding states
for more than visualizing, though, and, even, for more
than theorizing; he used it to show how one could make
a prediction about one fluid from knowledge about an-
other.Wisniak explains [18.34, p. 569]

“Kamerlingh Onnes proposed to use the law of
corresponding states to examine the possibility of
cooling hydrogen further by its own expansion. He
then used this law to predict from the known expe-
rience with oxygen what was to be expected from
the apparatus for the cooling of hydrogen: [quoting
Onnes:] But let us return to the thermodynamically
corresponding substances. If two such substances
are brought in corresponding engines and if these
engines are set in motion with corresponding veloc-
ities, then they will run correspondingly as long as
there is given off a corresponding quantity of heat
in the corresponding times by the walls of the ma-
chine.”

Thus, Onnes has introduced not just correspond-
ing motions and times, as in mechanical similarity, but
also corresponding quantities of heat. Wisniak contin-
ues [18.34, p. 569]

“He [Onnes] then introduced the notion of ther-
modynamically corresponding operations to argue
that if then in a model, working with oxygen, af-
ter a given time a given volume of liquid oxygen
is found, there will be obtained in the correspond-
ing hydrogen apparatus after the corresponding time
a corresponding volume of liquid hydrogen.”

By model here, Onnes clearly means physical
model, and the model includes the contained gases
such as oxygen and hydrogen. The model is an actual
physical model: a physical setup, an actual, physical
machine. By the end of the nineteenth century, the
physics of machines included the thermodynamics of
machines. And, as in Newton and Galileo’s day, one
could talk both about imagined similar systems, and
about actual similar machines.

Maxwell and Boltzmann
As several scholars have noted, Ludwig Boltzmann
(1844–1906) mentioned similar systems in his inves-
tigations into the theory of gases, too. It’s been noted
that, in his 1884 and 1887 papers, Boltzmann [18.35,
pp. 56–57]:

“tried to deepen the foundation of the new theory
[that was to become known as statistical mechanics]
by introducing the concept of Ergoden – meaning
a collection (ensemble) of similar systems (of gas

molecules) having the same energy but different ini-
tial conditions.”

Stephen G. Brush, also citing Boltzmann’s 1884 and
1887 papers, remarks that [18.36, pp. 75–76]:

“There has been considerable confusion about what
Maxwell and Boltzmann really meant by ergodic
systems. It appears that they did not have in mind
completely deterministic mechanical systems fol-
lowing a single trajectory unaffected by external
conditions; [. . . ]

In fact, when Boltzmann first introduced the
words Ergoden and ergodische, he used them not
for single systems but for the collections of sim-
ilar systems with the same energy but different
conditions. In the papers published in 1884 and
1887, Boltzmann was continuing his earlier analy-
sis of mechanical analogies for the Second Law of
Thermodynamics, and also developing what is now
(following J. Willard Gibbs) known as ensemble
theory. Here again, Boltzmann was following a trail
blazed by Maxwell, who had introduced the ensem-
ble concept in his 1879 paper. But while Maxwell
never got past the restriction that all systems in the
ensemble must have the same energy, Boltzmann
suggested more general possibilities, and Gibbs ul-
timately showed that it is most useful to consider
ensembles in which not only the energy but also the
number of particles can have any value, with a spec-
ified probability.”

What these commentators on Boltzmann are re-
ferring to in mentioning the influence of Maxwell are
Maxwell’s remarks in his On Boltzmann’s Theorem on
the average distribution of energy in a system of mate-
rial points [18.37]. There, Maxwell wrote, speaking of
the case “in which the system is supposed to be con-
tained within a fixed vessel” [18.37, pp. 715ff]:

“I have found it convenient, instead of consider-
ing one system of material particles, to consider
a large number of systems similar to each other in
all respects except in the initial circumstances of the
motion, which are supposed to vary from system to
system, the total energy being the same in all. In the
statistical investigation of the motion, we confine
our attention to the number of these systems which
at a given time are in a phase such that the variables
which define it lie within given limits. [Emphasis in
italic added.]

If the number of systems which are in a given
phase (defined with respect to configuration and ve-
locity) does not vary with the time, the distribution
of the systems is said to be steady.”
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It is not clear how the use of the notion of similar
systems here, i. e., in forming ensembles in thermo-
dynamics in order to study their behavior statistically,
might be related to either Newton’s notion of similar
systems or the notion involved in the principle of corre-
sponding states. It is certainly a use of similar systems
that is very different from using one system experimen-
tally to infer the values of quantities in another. So, if,
as Brush’s comment implies, Boltzmann was thinking
of more general kinds of similar systems, it seems he
was no longer restricting the notion of similar systems
to systems that are behaviorally similar to each other
with respect to motions, and he was not restricting its
use to the use of one system or machine to infer the
behavior of another.

Yet Boltzmann’s departure from Newton’s use of
the term similar systems was almost certainly not a mat-
ter of confusion on Boltzmann’s part about the notion
in the sense Newton had used it, for Boltzmann’s en-
cyclopedia entry on models [18.38] shows that he was
well aware of, and respected the distinctive nature of,
the use of experimental models of machines, in which
one machine is specially constructed in order to infer
the behavior of another. Boltzmann, in fact, associates
the latter kind of model with Newton’s insights.

On the approach in which physical models con-
structed with our own hands are acatually a continua-
tion and integration of our process of thought, Boltz-
mann says in that encyclopedia article (Model) [18.38]:

“physical theory is merely a mental construction of
mechanical models, the working of which we make
plain to ourselves by the analogy of mechanisms we
hold in our hands.”

In contrast, Boltzmann explicitly described experi-
mental models as of a different sort than the kind with
which he was comparing mental models, and explained
why they must be distinguished [18.38]:

“A distinction must be observed between the mod-
els which have been described and those experimen-
tal models which present on a small scale a machine
that is subsequently to be completed on a larger,
so as to afford a trial of its capabilities. Here it
must be noted that a mere alteration in dimensions
is often sufficient to cause a material alteration in
the action, since the various capabilities depend in
various ways on the linear dimensions. Thus the
weight varies as the cube of the linear dimensions,
the surface of any single part and the phenomena
that depend on such surfaces are proportionate to
the square, while other effects – such as friction, ex-
pansion and condition of heat, etc., vary according

to other laws. Hence a flying-machine, which when
made on a small scale is able to support its own
weight, loses its power when its dimensions are in-
creased. The theory, initiated by Sir Isaac Newton,
of the dependence of various effects on the linear di-
mensions, is treated in the article Units, Dimensions
Of.”

The use of a flying machine to illustrate the point
was not incidental; in his On Aeronautics, Boltzmann
urged research into solving the problem of flight, and
expressed his opinion that experimentation with kites
was the appropriate approach. The complexities of air-
flow over an airplane wing, he said, were too difficult
to study using hydrodynamics [18.39, p. 256]. Yet,
the basis for extrapolating from experiments on a kite
or flying machine from one observed situation to an-
other, unobserved, situation (even with a machine of
the same size) owes something to hydrodynamics. The
dimensionless parameters yielding the appropriate cor-
respondences between homologous quantities for kites
and flying machines were provided by Helmholtz’s in-
novative use of the equations of hydrodynamics.

18.3.3 Similar Systems in Theoretical
Physics

Stokes and Helmholtz
Hermann von Helmholtz (1821–1894), like Ludwig
Boltzmann and so many other physicists of the nine-
teenth century, contributed to the scientific literature on
research into flight. Some of these contributions took
the form of investigations concerning the earth’s at-
mosphere. Six of the 20 papers in the important and
selective 1891 anthology The Mechanics of the Earth’s
Atmosphere: A Collection of Translations by Cleve-
land Abbe [18.40] were by Helmholtz; one of these
was his 1873 On a Theorem Relative to Movements
That Are Geometrically Similar in Fluid Bodies, To-
gether with an Application to the Problem of Steering
Balloons [18.41, 42]. It is the only one of Helmholtz’s
papers in that volume that explicitly addresses an appli-
cation to the problem of flight. What is relevant to the
history of the concept of similar systems is the kind of
reasoning he uses in the paper.

Helmholtz’s starting point is “the hydrodynamic
equations” which, he argues, can be considered “the
exact expression of the laws controlling the motions
of fluids” ([18.41, p. 67], [18.42]). What about the
well-known contradictions between observations and
the consequences of the equations? Those, he argues,
are only apparent contradictions, which disappear once
the phenomenon of “surfaces of separation” is no longer
neglected [18.41, p. 67]; his On Discontinuous Motions
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in Liquids [18.43, 44], also included in the same collec-
tion of translations, aims to establish their existence.

The Discontinuous Motions paper [18.43] is an ex-
traordinarily interesting contribution to the methods of
reasoning by analogy between fluid currents, electrical
currents, and heat currents. For, the paper begins by
pointing out that “the partial differential equations for
the interior of an incompressible fluid that is not sub-
ject to friction and whose particles have no motion of
rotation” are precisely the same as the partial differ-
ential equations for “stationary currents of electricity
or heat in conductors of uniform conductivity” [18.43,
p. 58]. Yet, he notes, even for the same configurations
and boundary conditions, the behavior of these differ-
ent kinds of currents can differ. How can this be? It
would be easy to assume that the difference is a matter
of the equations being, in the case of hydrodynamics,
an “imperfect approximation to reality,” possibly due to
friction or viscosity. Yet, Helmholtz argues, various ob-
servations indicate that this is not plausible. Instead, he
proposes, the difference in behavior between fluid cur-
rents on the one hand and electrical and heat currents
on the other is due to “a surface of separation” that ex-
ists or arises in the case of the fluid. In some situations,
“the liquid is torn asunder,” whereas electricity and heat
flows are not. Though the main point of the paper is
to propose his detailed account of what happens in the
liquid to cause this difference (the pressure becomes
negative), it is interesting, especially in the context of
nineteenth century, that Helmholtz discusses a case in
which physical entities described by the same partial
differential equations do not behave in the same way.
Yet, once the existence of discontinuous motions in flu-
ids is recognized, Helmholtz says, the contradictions
that “have been made to appear to exist between many
apparent consequences of the hydro-dynamic equations
on one hand and the observed reality on the other” will
then “disappear” [18.41, p. 67].

The problem with the hydrodynamic equations is
not that they are wrong, for they are not; they are “the
exact expressions of the laws controlling the motions of
fluids”. The problem is that [18.41, p. 67]

“it is only for a relatively few and specially sim-
ple experimental cases that we are able to deduce
from these differential equations the corresponding
integrals appropriate to the conditions of the given
special cases.”

So, the hydrodynamic equations are impeccable; it’s
their solution that is the problem. Simplifying is not go-
ing to work, either, since in some cases “the nature of
the problem is such that the internal friction [viscosity]
and the formation of surfaces of discontinuity can not
be neglected.” These surfaces of discontinuity present

a very fundamental problem to finding a neat solution,
too, for [18.41, p. 67]

“The discontinuous surfaces are extremely variable,
since they possess a sort of unstable equilibrium,
and with every disturbance in the whirl they strive
to unroll themselves; this circumstance makes their
theoretical treatment very difficult.”

Theory being of very little use in prediction
here, [18.41, p. 68]

“we are thrown almost entirely back upon experi-
mental trials, [. . . ] as to the result of new modi-
fications of our hydraulic machines, aqueducts, or
propelling apparatus.”

That was how things stood but, Helmholtz says,
there is another method, one that is neither a matter of
prediction from theory nor an experimental trial of the
machine whose behavior one wishes to predict. His de-
scription deserves to be read closely [18.41, p. 68]:

“In this state of affairs [the insolubility of the hy-
drodynamic equations for many cases of interest]
I desire to call attention to an application of the
hydro-dynamic equations that allows one to transfer
the results of observations made upon any fluid and
with an apparatus of given dimensions and veloc-
ity over to a geometrically similar mass of another
fluid and to apparatus of other magnitudes and to
other velocities of motion.”

The method Helmholtz is referring to, which he pre-
sented in this now-classic paper in 1873, thus differs
from deducing predictions from theory in the same way
that Newton’s notion of similar systems and Galileo’s
use of one pendulum to inform him about another dif-
fer from deducing predictions from theory: theory is
involved in the inference, but the way that theory is
involved is to allow someone to “transfer the results
of observations” made on one thing (system, machine,
mass of fluid, apparatus) over to another thing (system,
machine, mass of fluid, apparatus).

The way Helmholtz proceeds to establish this dif-
ferent “application of the hydro-dynamic equations”
appeals to a formalism not available to either Galileo
or Newton, though: “[t]he equations of motion in the
Eulerian form introducing the frictional forces, as is
done by Stokes.” Although Helmholtz does not use the
term “similar system” here, Stokes did use it, in his On
the Effect of the Internal Friction of Fluids on the Mo-
tion of Pendulums, presented in 1850 [18.45, p. 19].
In that paper, before attempting a solution of some
flow equations, Stokes first examined “the general laws
which follow merely from the dimensions of the sev-
eral terms which appear in the equations.” To do this,
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Stokes had employed “similar systems” [18.45, pp. 16–
17]:

“Consider any number of similar systems, com-
posed of similar solids, oscillating in a similar
manner in different fluids or in the same fluid. Let
a, a0, a00 . . . be homologous lines in the different
systems; T , T 0, T 00 . . . corresponding times, such
for example as the times of oscillation from rest to
rest. Let x, y, z be measured from similarly situated
origins, and in corresponding directions, and t from
corresponding epochs, such for example as the com-
mencements of oscillations when the systems are
beginning to move from a given side of the mean
position.”

Then, Stokes says that the form of the equations
shows that the equations being satisfied for one system
will be satisfied for all the systems, if certain rela-
tions between the quantities in those equations are met,
which he lays out. He adds the condition needed in or-
der for the systems to be dynamically similar; then, if
we “compare similarly situated points,” the motions in
the systems will also be similar, and the “resultants [of
pressure of the fluids on the solids] in two similar sys-
tems are to one another” in a certain ratio that he shows
how to obtain. Stokes does not end there; the paper
contains further discussion about establishing similar-
ity between the two systems, having to do with how the
fluids are confined. This much about Stokes should give
a general idea of how he conceived of and used the no-
tion of “similar systems” [18.45, p. 19].

Helmholtz’ approach probably owes much to
Stokes; David Cahan’s study Helmholtz and the British
Scientific Elite: From Force Conservation to Energy
Conservation identifies Stokes as one of the British
elites with whom Helmholtz built a relationship dur-
ing the 1850s and 1860s [18.46]. Helmholtz does refer
to Stokes, to be sure, but there is also something cre-
ative in what he does in his own paper. Helmholtz turns
the idea of how the Eulerian equations for flow are re-
lated to similar systems around, so that he sees how one
might, in principle at least, use the equations in con-
junction with model experiments on ships to inform us
about how to predict and direct the motions of balloons
(dirigibles).

The discussion and derivation of the conclusions
Helmholtz reached for all the cases he considered in his
1873 paper [18.41] are too long to summarize here, but
a few points can be mentioned:

1. Helmholtz’s strategy is to consider two given flu-
ids and use the hydrodynamic equations to infer
the way or ways in which their quantities must
be related. For the first fluid, the directions of its

coordinate axes are designated x, y, and z; the
components of velocity associated with them are
designated u, v , and w . The time t, fluid density
", pressure p, and coefficient of friction k (viscos-
ity) are also named, which allows him to construct
the equations of motion of the first fluid in the
Eulerian form. The second fluid is then given desig-
nations of U, V, W for the components of velocity
(in coordinate axes X, Y , Z), the pressure P, the
fluid density E, and the viscosity constant by K.
Three additional constants q, r, and n are named,
so that the quantities in the second fluid can then
be related to the designated quantities in the first
fluid such that the quantities in the second fluid
will also satisfy the equations of motion that were
constructed for the first fluid. For example, the den-
sities of the two fluids are related by ED r"; their
coefficients of friction are related by K D qk; and
the velocity components, by U D nu, V D nv , and
W D nw . Then, the pressures must be related by
PD n2rpC constant, and the times in the two fluids
must be related by T D qt=n2. Putting the terms for
the quantities of the second fluid expressed in terms
of the quantities of the first fluid into the equations
of motion for the first fluid shows that they satisfy
those equations.

2. The nature of the two fluids determines how their
densities and coefficients of friction are related to
each other, so two of the three constants, q and r, are
determined. Helmholtz then considers various kinds
of cases (e.g., compressible versus incompressible,
cohesive versus noncohesive (liquid vs gaseous flu-
ids), certain boundary conditions, whether friction
can be neglected), and what they permit to be in-
ferred about the third undetermined constant n.
The paper contains a variety of interesting remarks,
some of great practical significance, about how
other quantities of the two fluids (e.g., velocity of
sound) must be related to each other.

3. When Helmholtz comes to addressing the practical
problem mentioned in the title: “driving balloons
forward relative to the surrounding air,” he uses not
two masses of air in which two different air bal-
loons are situated, but rather: for the second fluid,
a mass of air in which an air balloon is situated,
and, for the first fluid, a mass of water in which
a ship is situated. He writes: “our propositions al-
low us to compare this problem [driving balloons
forward relative to the surrounding air] with the
other one that is practically executed in many forms,
namely, to drive a ship forward in water by means
of oar-like or screw-like means of motion [. . . ] we
must [. . . ] imagine to ourselves a ship driven along
under the surface. Such a balloon which presents
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a surface above and below that is congruent with
the submerged surface of an ordinary ship scarcely
differs in its powers of motion from an ordinary
ship” [18.41, p. 73]. Then, letting “the small letters
of the two above given systems of hydrodynamic
equations refer to water and the large letters to
the air,” he examines the practical conditions under
which he can “apply the transference from ship to
balloon with complete consideration of the peculiar-
ities of air and water.”

Helmholtz’s discussion contains many subtle points
concerning what would need to be considered if ac-
tually building the kind of ship needed to model an
air balloon. As he indicates, the practical considera-
tions involved in applying the method are not trivial
and can sometimes even be prohibitive; nevertheless,
the point is that the approach he outlines permits one
to make a proper analysis of any such comparison,
or “transference” using the hydrodynamic equations,
and can sometimes yield a solution when the hydrody-
namic equations are insoluble [18.41, p. 74]. Evidence
of the influence and significance of this particular pa-
per of Helmholtz’s into the twentieth century appears
in Zahm’s Theories of Flow Similitude [18.7]. Zahm
identifies three methods, one with Isaac Newton, one
with Stokes and Helmholtz, and one with Rayleigh.
The sole paper by Helmholtz cited there is this paper
of 1873 [18.41].

The significance to the history of physically simi-
lar systems is that Helmholtz’s account of his method
involves a differential equation, that the equation is
so central to the account, and that how it is involved
is stated so clearly. What is not stated very clearly is
whatever it is that plays the role of system; sometimes
Helmholtz seems to be saying that the transference is
from one mass of fluid to another; other times, that
it is between the objects situated within the fluid. If
we denote whatever ought to play that role by the
term system, though, we would say that, in Helmholtz’s
analysis, the hydrodynamic equations are not only the
core of the criterion for allowing the “transference”
of results [18.41, p. 74] observed in one situation to
another, but they indirectly give a criterion for, and
thus specify, what a system is, that is, what the sim-
ilarity in similar systems is between. If we use the
term system this way, then it is implicit in Helmholtz’s
account that a system is the mass and its configu-
ration (including anything situated within the mass),
with boundary conditions, to which the partial differ-
ential equation applies. We might also take note of the
fact that what the equation applies to is in equilibrium
(though not necessarily static equilibrium). The gov-
erning differential equations are important, too, in the

specification of what quantities need to be considered
in the analysis.

Yet, Helmholtz is careful not to overreach concern-
ing what can be deduced from the form of an equation;
as he points out in his Discontinuous Motions pa-
per [18.43] when investigating the example of fluid
being “torn asunder”: just because a certain situation
is governed by an equation of the same form as an-
other equation governing a different situation, does not
in itself guarantee that the two situations will exhibit
analogous behavior – even when the configuration and
boundary conditions are also analogous. It is for the
confluence of all these points that I considerHelmholtz’
1873 paper [18.41] such a major contribution to the his-
tory of the concept of similar systems.

Reynolds
Osborne Reynolds’ (1842–1912)work and influence on
similarity was immense, but it was by no means his only
major achievement [18.47]. Unless one has invested the
time required to read a significant part of his work, any
evaluation of his achievements and influence will sound
like hyperbole. I mention here only his most significant
contribution relevant to the history of the concept of
similar systems.

The decisive difference Reynolds made in the no-
tion of similar systems was to show that it applied
beyond well-behaved regimes. In fact, he showed, it
applied during the transition between well-behaved
regimes and chaotic ones. And, not only that, but that
the critical point of transition between well-behaved
(laminar flow) and chaotic (turbulent flow) regimes
could be characterized, and characterized by a param-
eter that was independent of the fluid. Stokes put it well
in the statement he made in his role as President of the
Royal Society on the occasion of presenting a Royal
Medal to Reynolds on November 30, 1888 [18.45, p.
234]:

“In an important paper published in the Philosophi-
cal Transactions for 1883, [Osborne Reynolds] has
given an account of an investigation, both theoret-
ical and experimental, of the circumstances which
determine whether the motion of water shall be
direct or sinuous, or, in other words, regular and sta-
ble, or else eddying and unstable. The dimensions
of the terms in the equations of motion of a fluid
when viscosity is taken into account involve, as had
been pointed out, the conditions of dynamical sim-
ilarity in geometrically similar systems in which
the motion is regular; but when the motion be-
comes eddying it seemed no longer to be amenable
to mathematical treatment. But Professor Reynolds
has shown that the same conditions of similarity
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hold good, as to the average effect, even when the
motion is of the eddying kind; and moreover that if
in one system the motion is on the border between
steady and eddying, in another system it will also
be on the border, provided the system satisfies the
above conditions of dynamical as well as geometri-
cal similarity.”

Stokes does not here use the term similar systems,
but that is what he means in using the grammatical
construction: “if in one system [. . . ], in another sys-
tem it will also [. . . ], provided the system satisfies the
above conditions of dynamical as well as geometri-
cal similarity.” What this means is that there are some
(experimentally determined) functions of a certain (di-
mensionless) parameter that describe the behavior of
fluids, whatever the fluid. The parameter is not a single
measured quantity such as distance, velocity, or viscos-
ity; rather, it is a ratio involving a number of quantities
(e.g., density, velocity, characteristic length, and viscos-
ity). The ratio is without units, as it is dimensionless.
Reynolds is often cited for coming up with the criterion
of dynamical similarity, but obviously, the idea pre-
dated his work, as Stokes’ statement recognizes. Rather,
what Reynolds did that was so decisive for the future
of hydrodynamics (and aerodynamics) was, as he ex-
plained in a letter to Stokes, that there was a critical
value (or values) for “what may be called the parameter
of dynamical similarity [the dimensionless parameter
mentioned earlier, which is now known as Reynolds
number]” [18.48, p. 233].

In the excerpt from his statement quoted above,
Stokes puts his finger on why what Reynolds did was
so significant in terms of a fundamental understanding
of fluid behavior, but Reynolds’ 1883 paper also had
practical significance for research in the field as well.
Stokes continued [18.49, p. 234]:

“This is a matter of great practical importance, be-
cause the resistance to the flow of water in channels
and conduits usually depends mainly on the for-
mation of eddies; and though we cannot determine
mathematically the actual resistance, yet the appli-
cation of the above proposition leads to a formula
for the flow, in which there is a most material
reduction in the number of constants for the deter-
mination of which we are obliged to have recourse
to experiment.”

It is not surprising that interest in applying the meth-
ods of similar systems grew in the subsequent years.

Prandtl
Prandtl’s work in experimental hydrodynamics and
aerodynamics is singularly prominent in work done in

the field in Germany in the twentieth century. Lud-
wig Prandtl (1873–1953) was an ex-engineer-turned-
professor in the Polytechnic at Hanover conducting
research on air flow when he presented a paper at
the Third International Congress of Mathematicians
in 1904: Motion of Fluids with Very Little Viscos-
ity [18.50]. It did not make much of a splash – except
with Felix Klein, then a prominent mathematician at the
University of Göttingen. In his paper, Prandtl laid out
a plan to treat flow around bodies. What he proposed
was that the problem be analyzed into several distinct
questions [18.50]:

1. What happened at the boundary of the skin that
formed against the body, and what happened on
each side of it, that is

2. What happened in the fluid on the side of the bound-
ary that was within the skin, and

3. What happened in the fluid on the other side of the
boundary, within the main fluid stream.

Prandtl showed that, in the mainstream, the math-
ematical solutions that were obtained by neglecting
viscosity could be applied to even these real fluids.
In the part of the flow under the skin formed around
the body, however, viscosity did have to be taken into
account. And, crucially, what happened in the main-
stream – the formation of vortices – set conditions for
what happened on the other side of the boundary, via
setting boundary conditions at the interface between
the two layers. Klein saw the potential of Prandtl’s ap-
proach and brought him to a post in Göttingen right
away [18.11].

In Göttingen, Prandtl then made use of the knowl-
edge that had been developed about hydrodynamical
similarity, using a water tank for some of his most
famous experiments. Rather than towing an object in
the water, though, Prandtl used a water wheel to move
the fluid in the water tank, much like fans were be-
ing used to push air through wind tunnels which by
then were replacing the whirling arm or moving rail-
car apparatuses used earlier in aerodynamical research.
Prandtl’s results for airfoils were based on hydrody-
namical similarity and, hence, on the concept of dy-
namically similar systems. His approach went beyond
that, too, including fundamental questions he addressed
by combining mathematical solutions and experimen-
tal results in an uncommon kind of synthesis. William
Lanchester in England also employed dynamic similar-
ity and authored significant works about his theoretical
and experimental research in aerodynamics; his visit
to Prandtl in 1908 may have contributed somewhat to
Prandtl developing these ideas, since Prandtl was in
a position to understand Lanchester’s work, and appre-
ciate its significance [18.11].
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Rayleigh
Lord Rayleigh (John William Strutt) (1842–1919) be-
came a proponent of dynamic similarity in Great
Britain. The context of his advocacy of the method
was part scientific, part political. The scientific part
was an appreciation for the significance of dynamical
similarity in effective research; the political part was
a feeling that Britain ought not be left behind in aero-
nautical research. His political, social, and professional
prominence put him in a position to be an effective
advocate. He was the first president of the British Ad-
visory Committee on Aeronautics, founded in 1909.
Its first report includes his Note as to the Applica-
tion of the Principle of Dynamical Similarity [18.51];
he introduces the topic by first citing Lanchester for
one application of the principle of dynamical similar-
ity, then noting his own communications of “a some-
what more general statement which may be found to
possess advantages.” The next year, 1910–1911, the
committee’s annual report included two papers on dy-
namical similarity, one of them by Rayleigh, under
the General Questions in Aerodynamics section of the
report [18.52]. In 1911–1912, the annual report men-
tions plans for experiments on an airship to determine
its resistance “by towing tests in the William Froude
National Tank” [18.53]. Under a section, The Law of
Dynamical Similarity and the Use of Models in Aero-
nautics, the report notes its significance to all their
research [18.52]:

“The theory relating to dynamical similarity ex-
plained by Lord Rayleigh and Mr. Lanchester in the
first of the Annual Reports of the Committee is of
fundamental importance in all applications of the
method of models to the determination of the forces
acting on bodies moving in air or in water.”

The next year, the annual report noted that [18.54]:

“Much evidence has now been accumulated in
favour of the truth of the law of dynamical similar-
ity to which attention was drawn by Lord Rayleigh
and Mr. Lanchester in the first Report of this Com-
mittee.”

In June of 1914, the journal Nature featured a kind
of survey paper, Fluid Motions, based on “a discourse
delivered at the Royal Institution on March 20” by
Rayleigh [18.55]. Here, we see Rayleigh actively cam-
paigning for wider appreciation and use of the principle,
which he credits Stokes with having “laid down in all its
completeness.” We know that Stokes explicitly used the
notion of similar systems in developing and explaining
the use of the principle, so it is fair to say that Rayleigh
means his discussion and use of it to be consistent with
Stokes’ notion of similar systems.

In this paper, Rayleigh pointed out that it appeared
that viscosity was important in many cases where it was
so small that it seemed improbable that it should matter.
When viscosities were low, as in water, one would not
expect that the actual value of viscosity would be a sig-
nificant factor in water’s qualitative behavior. As ex-
plained above, Osborne Reynolds’ results on fluid flow
in pipes had shown that it is; Reynolds began to suspect
that viscosity was important even in water when he ob-
served unexpected changes in fluid flow as the tempera-
ture was varied. Since viscosity varies with temperature,
he investigated the effect of viscosity and found that it
was indeed important for fluid flow through pipes, even
for nonviscous fluids such as water. Rayleigh added
that Reynolds also investigated cases where viscosity
was the “leading consideration,” as Rayleigh put it, in
remarking that “It appears that in the extreme cases,
when viscosity can be neglected and again when it is
paramount, we are able to give a pretty good account of
what passes, it is in the intermediate region, where both
inertia and viscosity are of influence, that the difficulty
is the greatest” [18.55]. This is the lead-in to his advo-
cacy for the law of dynamic similarity: “But even here
we are not wholly without guidance.”What is this guid-
ance? He continues [18.55, p. 364]:

“There is a general law, called the law of dynamical
similarity, which is often of great service. In the past
this law has been unaccountably neglected, and not
only in the present field. It allows us to infer what
will happen upon one scale of operations from what
has been observed at another.”

Rayleigh also notes: “But the principle is at least
equally important in effecting a comparison between
different fluids. If we know what happens on a certain
scale and at a certain velocity in water, [emphasis in
the original] we can infer what will happen in air on
any other scale, provided the velocity is chosen suit-
ably.” This is, of course, the point Helmholtz had made
in 1873. Rayleigh notes that the point applies only in
the range where the velocities are small in comparison
to the velocity of sound [18.55].

Rayleigh gives an example of a use of the princi-
ple which permits one observation or experiment to be
regarded as representative of a whole class of actual
cases: that is, the class of all the other cases to which it
is similar, even though the cases may have very different
values of measurable quantities such as velocity. The
important fact about the situation is expressed by the
formula for the dimensionless parameter, which picks
out the cases to which it is similar [18.55, p. 364]:

“It appears that similar motions may take place pro-
vided a certain condition be satisfied, viz. that the
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product of the linear dimension and the velocity, di-
vided by the kinematic viscosity of the fluid, remain
unchanged.”

Put more specifically, the important feature of a par-
ticular situation is the value of this dimensionless pa-
rameter; what Rayleigh is saying is that, even in cases of
a different fluid, so long as this dimensionless product
is the same (and, of course, that one is in the applicable
velocity range for which it was derived), the motions
will be similar.

Onemight think that, by 1914, when the use of wind
tunnels had become recognized as essential to practical
aeronautical research, this principle would have become
accepted and would no longer be in question, at least
among aeronautical researchers. But if Rayleigh’s es-
timation of the state of the profession is correct, apart
from Lanchester’s work, this was not so, even as late as
March of 1914; he says that:

“although the principle of similarity is well estab-
lished on the theoretical side and has met with some
confirmation in experiment, there has been much
hesitation in applying it, [. . . ]”

He especially mentions problems in its acceptance
in aeronautics due to skepticism that viscosity, which is
extremely small in air, should be considered an impor-
tant parameter:

“In order to remove these doubts it is very desirable
to experiment with different viscosities, but this is
not easy to do on a moderately large scale, as in the
wind channels used for aeronautical purposes.”

Rayleigh tries to persuade the reader of the signifi-
cance of the effects of viscosity on the velocity of fluid
flow by relating some experiments he performed with
a cleverly designed apparatus in his laboratory. The
apparatus consisted of two bottles containing fluid at
different heights, connected by a tube with a constric-
tion, through which fluid flowed due to the difference
in “head”, or height of fluid, in the two bottles [18.55,
p. 364]. The tube with the constriction contained fit-
tings that allow the measurement of pressure head at
the constriction, and on either side of it. To investigate
the effects of viscosity, Rayleigh varied the temper-
ature of the fluid, which changes the fluid viscosity,
and he observed how the velocity of the fluid flowing
between the two bottles was affected. The kind of rela-
tionship he establishes and uses is of the form Galileo
employed in reasoning from one pendulum to another.
In other words, he worked in terms of ratios (ratios
of velocities, ratios of viscosities, ratios of heads), and
he employed the fact that some ratios are the square
root of others [18.55]. He took the experimental results
he reported in this 1914 paper to conclusively settle
the question of the relevance of viscosity to fluid mo-
tions. This is an example of the kind of exploratory
work that can be involved in order to answer one of
the questions needed in order to use the principle of
similarity properly: What quantities are relevant to the
behavior of interest (in the range of interest)? Although
the researcher’s experience and judgment are involved,
sometimes new experiments should be, and are, con-
ceived and carried out to help determine the question.

Rayleigh delivered this “Discourse” in early 1914
[18.55]. 1914 was a very special year for the concept of
similar systems, and deserves a section all its own.

18.4 1914: The Year of Physically Similar Systems

In terms of an advance in the understanding and for-
malization of physically similar systems, 1914 was
a landmark year, just as 1850 (Stokes’ paper [18.45]),
1873 (Helmholtz’s paper [18.41]), and 1883 (Reynolds’
paper [18.56]) would still be nineteenth century land-
marks in any history of the concept of dynamical
similarity. Going back to earlier eras, many would
also consider the dates 1638 (Galileo’s Two New Sci-
ences [18.10]) and 1673 (Newton’s Principia [18.3])
significant to the concept of similar systems. My review
above suggests additions to the above list of dates in the
nineteenth century that should be recognized as impor-
tant in the history of the concept of similar systems:
the years around 1880 (van der Waals paper [18.57])
and 1881 (Onnes’ paper [18.32]). The role of the no-

tion of similar systems in both the development and the
understanding of the principle of corresponding states
in physical chemistry should enjoy far more recogni-
tion among philosophers of science than it has to date,
and perhaps Lorentz ought to be included, too, for his
recognition of the importance of the method of simi-
lar systems. A strong argument could also be made for
including a date commemorating one of Froude’s influ-
ential achievements in the nineteenth century list.

In contrast, however, dates for the papers by
Maxwell and Boltzmann using the term similar systems
should not be included on this list, in my view. This
exclusion is not a lack of generosity, but an effort at
clarification. Their use of the term similar system in
statistical mechanics, a term that already had a fairly
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well-defined meaning in the theories of mechanical
similarity and dynamical similarity, may have caused,
or at least contributed to, confusion about the concepts
of similar system and similarity as they are used in con-
nection with mechanical and dynamical similarity. As
we shall see, confusions about these concepts came to
a head in 1914; perhaps it is no coincidence that at least
one source of the confusion was a proposal by someone
known for his work in statistical thermodynamics.

18.4.1 Overview of Relevant Events
of the Year 1914

In the part of 1914 leading up to Buckingham’s land-
mark paper in October 1914 [18.2] that developed the
notion of physically similar systems, hardly a month
went by without some major work concerning similar-
ity and similar systems appearing (Fig. 18.3):

� In January 1914, Stanton and Pannell publish a ma-
jor compendium of work [18.6] done at Britain’s
National Physical Laboratory over the previous
four years, Investigation into Similarity of Mo-
tions� In February 1914, a much anticipated English trans-
lation of Galileo’s Two New Sciences [18.10] was
published.� In March 1914, Rayleigh delivered his lecture Fluid
Motions [18.55] at the Royal Institute (March 20,
1914).� In April 1914, Richard Chace Tolman’s The
Principle of Similitude appears in Physical Re-
view [18.58], and Rayleigh’s Fluid Motions [18.55]
is published in the periodical Engineering, 97 (April
8, 1914).� In May 1914, Buckingham gives a paper on The
Interpretation of Model Experiments to the Wash-
ington Academy of Sciences [18.59].� In June 1914, Rayleigh’s review article Fluid Mo-
tions was published in Nature [18.55].� In July 1914, Buckingham’s Physically Similar Sys-
tems was published in Journal of the Washington
Academy of Science [18.1].� In October 1914, Buckingham’s Physically Similar
Systems: Illustrations of the Use of Dimensional
Equations [18.2].

And sometime during 1914, Philipp Forchheimer’s
Hydraulik [18.60] was published, which contains a sec-
tion on The Law of Similarity (Das Ähnlichkeitgesetz).
Hydraulik becomes a highly regarded compendium and
reference work on Hydraulics for many decades after-
ward. In the concluding paragraph of the section on
the law of similarity, Forchheimer writes that every hy-

draulic equation that fulfills the law of similarity can
be expressed in the form of an equation consisting of an
unidentified function F of three dimensionless ratios set
equal to an unidentified constant. He indicates that the
law of similarity is shown to be merely a special case of
the general law according to which all the terms of any
of the equations of importance in mechanics, need to be
of equal dimension, inasmuch as the law of similarity
treats one body as a prototype, and the others as copies
of it.

18.4.2 Stanton and Pannell

In January of 1914, Stanton and Pannell read their paper
Similarity of Motion in Relation to the Surface Fric-
tion of Fluids [18.6] to the Royal Society of London.
Stanton was superintendent of Britain’s National Phys-
ical Laboratory (NPL) Engineering Department. The
paper was a compendium of the work done there on
similarity, and had been submitted to the Society in De-
cember 1913. It begins with references to Helmholtz’s
and Stokes’ work using equations for non-ideal fluid
flow, refers to Newton’s Principia on similar motions,
and uses Rayleigh’s equation for fluid resistance. It
explains that Stanton and Pannell’s work involves in-
vestigating “the conditions under which similar motions
can be produced under practical conditions.” The work
had been carried out due in part to interest in the possi-
bilities of using small-scale models in wind tunnels for
engineering research. With one exception, they began,
the experimental study of similar motions of fluids was
very recent [18.6, p. 200]:

“Apart from the researches on similarity of mo-
tion of fluids, which have been in progress in the
Aeronautical Department of the National Physical
Laboratory during the last four years, the only pre-
vious experimental investigation on the subject, as
far as the authors are aware, has been that of Os-
borne Reynolds [. . . ].”

Stanton and Pannell cite several of Reynolds’ major
discoveries:

1. that there is a critical point at which fluid flow sud-
denly changed from “lamellar motion” to “eddying
motion” [18.6, p. 200]

2. that the critical velocity is directly proportional to
the kinematical viscosity of the water and inversely
proportional to the diameter of the tube, and

3. that for geometrically similar tubes, the di-
mensionless product: (critical velocity) � (dia-
meter)=(kinematic viscosity of water) is constant.

Stanton and Pannell also noted a complication: sur-
face roughness needed to be taken into account; this is
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a matter of geometry on a much smaller scale making
a difference. However, the overall approach of the use
of dimensionless parameters to establish similar situ-
ations was still seen to be valid, as indicated by their
extensive experiments [18.6, p. 201]:

“From the foregoing it appears that similarity of
motion in fluids at constant values of the vari-
able vd=� [velocity� diameter=kinematic viscosity
of water] will exist, provided the surfaces relative
to which the fluids move are geometrically simi-
lar, which similarity, as Lord RAYLEIGH pointed
out, must extend to those irregularities in the sur-
faces which constitute roughness. In view of the
practical value of the ability to apply this principle
to the prediction of the resistance of aircraft from
experiments on models, experimental investigation
of the conditions under which similar motions can
be produced under practical conditions becomes of
considerable importance, [. . . ] By the use of colour-
ing matter to reveal the eddy systems at the back of
similar inclined plates in streams of air and water,
photographs of the systems existing in the two flu-
ids when the value of vd=� was the same for each,
have been obtained, and their comparison has re-
vealed a remarkable similarity in the motions.”

In referring to the dimensionless parameter vd=�
as a variable, what Stanton and Pannell meant was
that their equation for the resistance R includes a func-
tion of this dimensionless parameter, that is, resistance
RD .density/� .velocity/2� .some function of vd=�/.
As they put it, RD �v 2F.vd=�/, where F.vd=�/ indi-
cates some unspecified function of vd=�. Hence, vd=�
is a variable in the sense that the relation for resis-
tance includes an unspecified function of vd=�. It is
also a variable in a more practical sense: it can be phys-
ically manipulated.

Stanton and Pannell presented this relation as a con-
sequence of the principle of dynamical similarity (in
conjunction with assumptions about what “the resis-
tance of bodies immersed in fluids moving relatively
to them” depends on. Evidently, it was Rayleigh who
suggested the generalization; they cite Rayleigh’s con-
tribution in the Report to the Advisory Committee for
Aeronautics, 1909–1910 [18.51, p. 38]. Rayleigh had
there spoken of the possibility of taking a more general
approach than current researchers were taking in apply-
ing the “principle of dynamical similarity.”

In presenting the results they obtained at the Na-
tional Laboratory in the paper, it is noteworthy that
the results are presented in graphs where one of the
variables plotted is the term R=�v 2, which is just an-
other expression for the unspecified function, and is
dimensionless. What this implies is that the laboratory

experiments are not conceived of in terms of the values
of individual measurable quantities such as velocity but
in terms of the value of a dimensionless parameter.

Rayleigh, too, presented a kind of survey paper in
early 1914, as mentioned above. In that March 1914
paper [18.55], Rayleigh noted that the principle of dy-
namical similarity “allows us to infer what will happen
upon one scale of operations from what has been ob-
served at another.” That is, one use of the principle is
to use an observation or experiment as representative
of a whole class of actual cases: all the other cases to
which it is similar, even though the cases may have
very different values of measureable individual quanti-
ties such as velocity. The important fact of the situation
is the dimensionless parameter just mentioned [18.55]:

“It appears that similar motions may take place pro-
vided a certain condition be satisfied, viz. that the
product of the linear dimension and the velocity, di-
vided by the kinematic viscosity of the fluid, remain
unchanged.”

A consequence of this fact is that, even in cases of
a different fluid, so long as this dimensionless product
is the same, the motions will be similar: no mention of
the fluid! Not only is this striking claim correct, but it is
responsible for a particularly useful application of Stan-
ton and Pannell’s work, of which they were well aware:
tests done on water can be used to infer behavior about
systems where the fluid is air. Not because air and water
are similar – the relevant fluid properties are very differ-
ent, in fact – but because the dimensionless parameter
relating a number of the features of the fluid and of the
situation is the same. Air and water are about as differ-
ent as can be [18.6, p. 202]:

“The fluids used in the majority of the experiments
have been air and water. The physical properties of
these are so widely different that observations on
others are hardly necessary [. . . ]”

Just as the theorem of corresponding states in phys-
ical chemistry allowed the construction of a function
such that the values for many different kinds of fluids
all fell on the same line, so here, too: that the function
of the variable vd=� is the same for air, water, and oil is
experimentally illustrated by Fig. 18.6 from the paper.

18.4.3 Buckingham and Tolman

Buckingham’s Background in 1914
Edgar Buckingham (1867–1940) was a physicist who
had been working at the National Bureau of Standards
in Washington, DC, since 1906. He had little previous
experience or background in aeronautics when he began
working on issues related to aeronautical research. His
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Fig. 18.6 The approach in
Stanton and Pannell’s paper
of 1913/1914 expressing
experimental results in terms
of Reynolds number remains
the fundamental approach
even today. The chart above,
a Moody diagram, illustrates
that the fluid behavior
for flow in pipes can be
expressed in a manner that is
independent of the nature of
the fluid and other specifics
of the configuration

involvement arose as a consequence of efforts afoot to
establish a government agency devoted to aeronautical
research in the United States, modeled on the British
Advisory Committee for Aeronautics; one spot was al-
located for a physicist from the National Bureau of
Standards [18.61]. How did it end up that it was Buck-
ingham, then, who authored the paper that has become
such a landmark in hydrodynamics and aerodynamics?
In a letter to Rayleigh in 1915, Buckingham explained
the origins of his 1914 paper On Physically Similar
Systems: Illustrations of the Use of Dimensional Equa-
tions [18.62]:

“Some three or four years ago, having occasion to
occupy myself with practical hydro- and aerody-
namics, I at once found that I needed to know more
about the method [of dimensions] in order to use
it with confidence for my own purposes. Since you
and the few others who have made much use of the
method of dimensions have generally referred to it
somewhat casually as to a subject with which ev-
eryone was familiar, I supposed that the hiatus in
my education would be easily filled.”

But it was not [18.62]:

“[. . . ] upon looking through your collected papers,
the Sound [probably a reference to Rayleigh’s The-
ory of Sound], Stokes’s papers, and a few standard
books such as Thompson and Tait [Principles of
Mechanics] and Routh’s Rigid Dynamics I was
amazed at my failure to find any simple but com-
prehensive exposition of the method which could
be used as a textbook. [. . . ] Each one of your nu-

merous applications of the method seemed perfectly
clear, and yet their simplicity gave them the appear-
ance of magic and made the general principle rather
elusive.”

It is noteworthy that Buckingham mentions look-
ing at the main mechanics textbooks used in Britain,
rather than engineering texts. Approaching aerodynam-
ics from the point of view of a physicist was consistent
with the kind of community in which Buckingham
worked and had been educated. He had earned an un-
dergraduate degree in physics at Harvard University
(graduating in 1887) and a doctorate in physics from
Leipzig in 1894. Descriptions of him as an engineer
or physicist-engineer as mentioned in Maila Walter’s
book [18.8] are somewhat misleading. After a few years
as a physics professor, Buckingham worked as a physi-
cist at US government agencies; first at the USDA
Bureau of Soils (where he did very original theoret-
ical work, applying energy methods), and then at the
National Bureau of Standards [18.11]. Involving physi-
cists on aerodynamical research planning made sense,
and it also helped cultivate a more prestigious image of
a research institution concerned with aerodynamics in
1914. Buckingham seemed aware of this, as evidenced
by his remark to Rayleigh about the latter’s Nature ar-
ticle on the principle of dynamical similarity; he wrote
Rayleigh that [18.62]:

“a note, such as the one in Nature of March 18th,
which has your authority behind it, has an effect
far more important in the present state of affairs
than any detailed exposition of the subject, however
good, because physicists will be sure to read it.”
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One of Buckingham’s special areas of expertise
within physics was thermodynamics. He did not view
thermodynamics as merely a subspecialty in physics,
though, but rather as an enlightened view of science
in which thermodynamics encompassed all of classi-
cal mechanics. In his 1900 book, Outline of a Theory
of Thermodynamics, Buckingham had written [18.63, p.
16]:

“Thermodynamics [. . . ] aims at the study of all the
properties or qualities of material systems, and of
all the forms of energy which they possess. It must,
therefore, be held, in a general sense, to include
pure dynamics, which is then to be looked upon as
the thermodynamics of systems of which a number
of nonmechanical properties are considered invari-
able. For thermodynamics, in this larger sense, the
more appropriate name energetics is often used, the
word thermodynamics being reserved to designate
the treatment of problems which are directly con-
cerned with temperature and heat.”

Buckingham’s approach toward formalizing
physics in his 1900 book on the foundations of
thermodynamics had been to make the formalism he
proposed as flexible as possible, and to build as few
assumptions into it as possible. In generalizing the
existing science of dynamics, he chose to regard as
variable certain properties that are often considered
invariable in dynamics. As Buckingham obtained his
doctorate in Leipzig under Wilhelm Ostwald, a friend
of Boltzmann who was often engaged with him in
discussions and debates about foundational issues in
science, Buckingham was familiar with debates in
philosophy of science [18.11]. Buckingham developed
(if he had not already had) a penchant for asking
foundational questions, too; in his new role of advisor
on research into aeronautics, he set for himself the task
of discerning the foundations of the methods he saw
being used in aeronautical research.

Buckingham’s Papers at the Washington
Academy of Sciences in 1914

By the middle of 1914, Buckingham had figured out
some things about the foundations of the methods used
in aerodynamical research. As his note to Rayleigh indi-
cates, he had been concentrating on understanding how
“the method of dimensions,” or dimensional analysis,
was employed in aerodynamical and hydrodynamical
research. On May 23, 1914, he presented a paper enti-
tled The interpretation of experiments on models to the
Washington Academy of Sciences in Washington, DC,
of which he was a member; 27 people were present, and
four discussed the paper afterward [18.59]. The account
published in the academy’s journal stated that:

“The speaker began by deducing a general theorem
regarding the form which physical equations must
have in order to satisfy the requirement of dimen-
sional homogeneity.”

Dimensional homogeneity is an exceedingly gen-
eral requirement of an equation; if the terms in an
equation have any units (as equations in physics do), the
equation is not really considered an equation if it does
not meet the requirement of dimensional homogeneity.
Thus, this deduction is of something very fundamental
in physics; it is about the logic of equations. The ac-
count continues [18.59]:

“The theorem may be stated as follows: If a rela-
tion subsists among a number of physical quantities,
and if we form all the possible independent dimen-
sionless products of powers of those quantities, any
equation which describes the relation is reducible to
the statement that some unknown function of these
dimensionless products, taken as independent argu-
ments, must vanish.”

The antecedent of the theorem is extremely gen-
eral: “If a relation subsists among a number of physical
quantities [. . . ];” what is striking is that the antecedent
of the theorem is not a requirement that the relation
mentioned be known, only that it exist. The theoremwas
described as a “general summary of the requirement
of dimensional homogeneity.” The report on Bucking-
ham’s talk added that the method of determining the
number and forms of the independent dimensionless
products was explained. There is no mention of simi-
lar systems in the journal’s account of this May 1914
talk, but it does add that the theorem “may be looked at
from various standpoints and utilized for various pur-
poses,” and that “several illustrative examples” were
given showing the “practical operation of the theo-
rem” [18.59].

In July 1914, the academy’s journal featured a short,
six-page paper by Buckingham. The topic identified
was more general than model experiments, and this
time it did mention similar systems; in fact, the paper
was titled Physically Similar Systems. That Bucking-
hammeant the July paper to be seen as a generalization
of the earlier paper on the interpretation of model ex-
periments was indicated in the closing sentence of the
paper [18.2, p. 353]:

“A particular form of this theorem, known as the
principle of dynamical similarity is in familiar use
for the interpretation of experiments on mechani-
cal models; but the theorem is equally applicable to
problems in heat and electromagnetism” (emphasis
added).”
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Like the May 1914 talk, the short July 1914 pa-
per is notable for the generality of its approach. It did
not imply that there were any set fundamental quan-
tities, nor how many there were. It did not talk about
physics, even. It spoke of quantities, relations between
quantities, and equations. It is spare and elegant. It be-
gins [18.1]:

“Let n physical quantities,Q, of n different kinds, be
so related that the value of any one is fixed by the
others. If no further quantity is involved in the phe-
nomenon characterized by the relation, the relation
is complete and may be described by an equation of
the form ˙MQb1

1 Qb2
2 Qb3

3 � � �Qbn
n D 0, in which the

coefficients M are dimensionless or pure numbers”

He makes it clear that it is a matter of choice which
units are to be regarded as fundamental ones.

“Let k be the number of fundamental units needed
in an absolute system for measuring the n kinds of
quantity. Then among the n units required, there
is always at least one set of k which are indepen-
dent and not derivable from one another, and which
might therefore be used as fundamental units, the
remaining (n� k) being derived from them.”

Together, these allow him to say how the quan-
tities other than those that are taken to be among
the k fundamental quantities are related to those fun-
damental quantities. Denoting the fundamental units
by [Q1] through [Qk] – in this July 1914 paper he
sometimes uses the square brackets indicate the units
of the enclosed quantity – and the remaining (n� k)
units that are derived from them by [P1], [P2], and
so on up to [Pn�k], we get (n� k) equations that re-
late the units of the (n� k) Ps to the units of the
kQs. Putting these requirements in terms of dimensions
rather than units allows one to apply the requirement
of dimensional homogeneity – doing so for each of
the fundamental units gives k equations; each of the k
equations is a result of setting the exponents of one of
the units to zero. It can then be shown that the num-
ber of independent dimensionless parameters ˘is is
(n� k) [18.1].

The generality of the treatment here marks this work
on similar systems by Buckingham’s off from the ear-
lier work by Stokes in 1850 [18.45] and Helmholtz in
1873 [18.41]. Whereas Stokes spoke of “similar sys-
tems, composed of similar solids, oscillating in a similar
manner” and of comparing [18.45]:

“similarly situated points in inferring from the cir-
cumstance that [the relevant hydrodynamical equa-
tions] are satisfied for one system that they will be
satisfied for all [the other similar] systems,”

Buckingham spoke of an undetermined function
whose arguments were dimensionless parameters and
he spoke of varying the quantities (Qs and Ps above) in
ways that “are not entirely arbitrary but subjected to the
(n� k� 1) conditions that [certain] dimensionless˘i’s
remain constant” [18.1].

Putting it in other terms, Buckingham character-
ized systems as similar in terms of a (nonunique) set
of invariants. His emphasis is on the principle of di-
mensional homogeneity, which is really about the logic
of the equations of physics. The concept of similar
systems arises from reflecting on how the principle of
dimensional homogeneity might actually be put to use,
what it might allow one to infer. After the paper’s open-
ing pages, in which he laid out the observations about
the nature of equations that express relations in nature
(i. e., wherein the value of one quantity is fixed by the
others) stated above, he writes:

“The chief value of the principle of dimensional ho-
mogeneity is found in its application to problems
in which it is possible to arrange matters so that
the [dimensionless ratios] r’s and the [dimension-
less parameters] ˘ ’s of [the set of linear equations
relating the P’s to the Q’s and the (unknown) func-
tion � of the dimensionless r’s and ˘ ’s] remain
constant,”

so that the unknown function � takes on a fixed
value, thus giving a definite relation between the Ps and
Qs in terms of the value of the unknown function �.
As he remarks, the point is not that dimensional analy-
sis provides the function � or even the value � takes
on once the values of the invariants are set. Rather,
the principle allows one to express the relations be-
tween quantities in terms of �, which has a fixed value
if all its arguments (the dimensionless parameters) are
fixed. Hence, doing an experiment on one case yields
the relation for all the cases in which the dimensionless
parameters that are the arguments of � have the same
value, even if the individual quantities fromwhich those
parameters are formed are all different.

Though Buckingham was, he said, only aiming to
give a clear treatment of the same idea that Stokes and
others had stated, a lot had happened in mathematics
and physics (especially in physical chemistry and ther-
modynamics), in the intervening decades. In their works
on similar systems, Stokes and Helmholtz worked with
physical equations, the partial differential equations of
fluids and fields; Buckingham, as a physicist, was cer-
tainly cognizant of and competent in working with
them, too, but in the July 1914 paper on similar systems,
he worked with (more abstract) dimensional equations.
The goal here, in this lean paper that featured no exam-
ples or applications, was to get straight on things that
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(so far as he was aware) had not yet been articulated
by others who had employed the method. He would
later write to Rayleigh about these first papers on the
method [18.62]:

“I had therefore [. . . ] to write an elementary text-
book on the subject for my own information. My
object has been to reduce the method to a mere
algebraic routine of general applicability, making
it clear that Physics came in only at the start in
deciding what variables should be considered, and
that the rest was a necessary consequence of the
physical knowledge used at the beginning; thus dis-
tinguishing sharply between what was assumed,
either hypothetically or from observation, and what
was mere logic and therefore certain.

The resulting exposition is naturally, in its gen-
eral form, very cumbersome in appearance, and
a large number of problems can be handled vastly
more simply without dragging in so much mathe-
matical machinery.”

His exposition treats of a system S characterized
very abstractly: “The quantities involved in a physi-
cal relation pertain to some particular physical system
which may usually be treated as of very limited ex-
tent” [18.1, p. 352]. The system constructed to be
similar to it, likewise, is described very formally [18.1,
p. 352]:

“Let S0 be a second system into which S would be
transformed if all quantities of each kindQ involved
in [the equation expressing the physical relation
pertaining to the system] were changed in some
arbitrary ratio, so that the r’s for all quantities of
these kinds remained constant, while the particular
quantities Q1, Q2, . . . , Qk changed in k independent
ratios.”

After completing the specification of the constraints
on how the quantities change in concert with each other
so that S0 also satisfies the relation: “Two systems S
and S0 which are related in the manner just described
are similar as regards the physical relation in ques-
tion.” [18.1, p. 352]

The exposition may have been cumbersome, but the
point is elegant and spare: the constraints that must be
satisfied in constructing the system S0 are just these:
to keep the value of the dimensionless parameters that
appear in the general form of the equation – the ar-
guments of the function � – the same in S0 as in S.
So, what is crucial is to identify a set of dimensionless
parameters that can serve as the arguments of the unde-
termined function �. For Buckingham, unlike for some
predecessors writing about similar systems or dynamic
similarity, the method underlying the construction of

physically similar systems is not a method peculiar to
mechanics; it applies to any equation describing a com-
plete relation that holds between quantities.

Richard Chace Tolman’s Principle of Similitude
Meanwhile, another physicist in the United States was
publishing on similitude, too, though with considerably
less rigor. Richard Chace Tolman (1881–1948) was an
assistant professor of the relatively new field of physical
chemistry at the University of California when Onnes
won the Nobel Prize for his work in physical chem-
istry on the liquefication of helium; Onnes delivered his
Nobel Prize Lecture in December 1913 [18.31, 64]. As
noted above, Onnes had aimed to “demonstrate that the
principle of corresponding states can be derived on the
basis of what he calls the principle of similarity of mo-
tion, which he ascribes to Newton” [18.32].

Tolman published The Principle of Similitude in the
March 1914 Physical Review, in which he proposed the
following [18.58, p. 244]:

“The fundamental entities out of which the phys-
ical universe is constructed are of such a nature
that from them a miniature universe could be con-
structed exactly similar in every respect to the
present universe.”

Tolman then (he claimed) showed that he could de-
rive a variety of laws, including the ideal gas law, from
the principle of similitude he had proposed, proceed-
ing in somewhat the same way as Onnes had proceeded
in showing that the principle of corresponding states
was a consequence of mechanical similarity. Tolman
seemed to appeal to a criterion that the two universes
should be observationally equivalent [18.58, p. 245]

“[. . . ] let us consider two observers, O and O0, pro-
vided with instruments for making physical mea-
surements.O is provided with ordinary meter sticks,
clocks and other measuring apparatus of the kind
and size which we now possess, and makes mea-
surements in our present physical universe. O0,
however, is provided with a shorter meter stick, and
corresponding altered clocks and other apparatus so
that he could make measurements in the miniature
universe of which we have spoken, and in accor-
dance with our postulate obtain exactly the same
numerical results in all his experiments as does O in
the analogous measurements made in the real uni-
verse.”

He brings up some other considerations, some from
physics (Coulomb’s law), some from the theory of di-
mensions, and then tries to show how various physical
relations, such as the ideal gas law, can be deduced from
simple physical assumptions and his proposed principle
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of similitude. For relations involving gravitation, how-
ever, a contradiction arises; his response is to use the
contradiction as motivation to propose a new criterion
for an acceptable theory of gravitation. He concludes
that his proposed principle is a new relativity prin-
ciple: the “principle of the relativity of size” [18.58,
p. 255].

Tolman believes that, in his paper, he has lain out
transformation equations that specify the changes that
have to be made in lengths, masses, time intervals, en-
ergy quantities, etc., in order to construct a miniature
world such that [18.58, p. 255]:

“If, now, throughout the universe a simultaneous
change in all physical magnitudes of just the nature
required by these transformation equations should
suddenly occur, it is evident that to any observer
the universe would appear entirely unchanged. The
length of any physical object would still appear to
him as before, since his meter sticks would all be
changed in the same ratio as the dimensions of the
object, and similar considerations would apply to
intervals of time, etc. From this point of view we
can see that it is meaningless to speak of the abso-
lute length of an object, all we can talk about are
the relative lengths of objects, the relative duration
of lengths of time, etc. The principle of similitude is
thus identical with the principle of the relativity of
size.”

Tolman’s suggestion differs from the concept of
similar systems mentioned so far, though the difference
may not be obvious. Others working on similar systems
where quantities or paths were homologous between
similar systems noted that there were limits of appli-
cability; they recognized the fact that there are ranges
in which size matters (e.g., surface tension matters dis-
proportionately at small scales [18.21]; the restriction
in Helmholtz’ 1873 paper that velocities must be small
with respect to the velocity of sound [18.41], Reynolds’
recognition of the role of “mean range” of molecules
in transpiration [18.11]). Helmholtz even explicitly dis-
cussed the practical difficulties of constructing models
of a different size than the configuration modeled, rais-
ing the question of whether in some cases it may not
be possible to do so [18.41]. Tolman not only does not
recognize such limits; he suggests making the denial
that they exist a principle of physics. It seems pretty
clear that Tolman is here modeling his exposition on
Einstein’s 1905 paper on the special theory of rela-
tivity. Tolman proposes that the relativity of size be
regarded along the lines of the relativity of motion:
in his paper on special relativity, Einstein had consid-
ered it a principle that observers cannot tell one state

of unaccelerated motion from another; Tolman pro-
poses to do the same for the statement that observers
not be able to distinguish an appropriately constructed
model universe from the actual one [18.58], if inhabit-
ing it as an appropriately transformed being and using
appropriately constructed or transformed instruments.
There is a confusion in Tolman’s reasoning. While it
is quite natural to say that a desirable principle of na-
ture, and a desirable constraint on measuring systems,
is that it should not matter to the project of pursuing
truth that one observer in the actual world is using one
system of measurement and another observer in the ac-
tual world is using another system of measurement,
Tolman seems here to be confusing that requirement
with a requirement that miniature universes constructed
from the materials of the actual universe be indistin-
guishable from the actual, full size, universe by the
miniature observers inhabiting those miniature uni-
verses.

Buckingham’s Physical Review Paper
and Reply to Richard Chace Tolman

It’s rather obvious that the notion of similar systems –
one system being transformed into another system S0

in such a way that it “corresponds” to S (“as re-
gards the essential quantities”) – is relevant to eval-
uating the claim Tolman made in his 1914 Principle
of Similitude paper [18.58] that the universe could be
transformed overnight into an observationally indis-
tinguishable miniature universe. The notion of similar
systems is also relevant to Stanton and Pannell’s Simi-
larity of Motion paper [18.6], in that it is a more general
treatment of the methodology of model testing (“the
principle of dynamical similarity” [18.6, p. 201]) given
there. In the next paper that Buckingham wrote on the
topic [18.2], in addition to presenting the generalized
treatment found in the July 1914 version of Physically
Similar Systems, he addressed both these related top-
ics on which major papers had appeared in the earlier
part of the year: experimental models and Tolman’s
claims about the possibility of an observationally in-
distinguishable miniature universe. The October 1914
Physical Review featured Buckingham’s On Physically
Similar Systems: Illustrations of the Use of Dimen-
sional Equations; his manuscript is dated June 18th of
that year [18.2].

In his 1914 Physical Review paper [18.2], Bucking-
ham says that his purpose in presenting how the notion
of physically similar systems can be developed from
the principle of dimensional homogeneity in that paper
was to provide the background against which to respond
to Tolman’s proposed “principle of similitude” [18.2,
p. 356]. He makes several points relevant to address-
ing Tolman’s proposal for a new principle in physics in
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developing “the notion of physical similarity” and “the
notion of physically similar systems”:

1. It is only “the phenomenon characterized by the re-
lation [expressed by the equation whose existence
was assumed at the start]” that “occurs in a similar
manner” in both systems: “we say that the bodies or
systems are similar with respect to this phenomenon
(emphasis added).” Buckingham specifically points
out that systems that are “said to be dynamically
similar” might not be similar “as regards some other
dynamical relation”; two dynamically similar sys-
tems might not “behave similarly in some different
sort of experiment.”

2. There is a more general conception of similarity
than dynamical similarity, and it too “follows di-
rectly from the dimensional reasoning, based on the
principle of homogeneity.”

3. Tolman’s proposed Principle of Similitude is not
clearly stated, but inasmuch as Buckingham un-
derstands it, it seems to him “merely a particular
case” of the theorem Buckingham presents in the
paper. Buckingham reasons as follows: The way
Tolman proceeds is to select four specific indepen-
dent kinds of quantity (length, speed, quantity of
electricity, electrostatic force), subjects these four
kinds of quantity to four arbitrary conditions, then
finds the conditions that some other kinds of quan-
tities are subject to “in passing from the actual
universe to a miniature universe that is physically
similar to it” [18.2, p. 356]. I take Buckingham’s
point to be that, inasmuch as what Tolman is con-
cluding is correct, it can be concluded using the
principle of dimensional homogeneity without the
aid of the “new” principle that Tolman proposed in
his March 1914 Physical Review paper.

Having already remarked that the notion of similar
systems used in constructing and using a model pro-
peller is generalizable beyond mechanics, he then goes
on to show how the principle involved in doing so –
the “method of dimensions” [18.65, p. 696] – applies in
problems ranging from electrodynamics (energy den-
sity of a field, the relation between mass and radius of
an electron, radiation from an accelerated electron) to
thermal transmission, and, finally, at a higher level, to
the kind of bird’s-eye view question to which his interest
tended to migrate: “the relation of the law of gravitation
to our ordinary system of mechanical units.”

The question he asks about the role of the law of
gravitation in determining units of measure is a bit dif-
ferent. It is about the number of fundamental units, and
the question Buckingham asks can be put in terms of
similar systems: if it is, in fact, true that in mechanics

three fundamental units suffice to describe mechanical
phenomena (more if thermal and electromagnetic phe-
nomena are to be described), then it would be correct to
conclude that [18.2, pp. 372–373]:

“[A] purely mechanical system may be kept sim-
ilar to itself when any three independent kinds of
mechanical quantity pertaining to it are varied in
arbitrary ratios, by simultaneously changing the re-
maining kinds of quantity in ratios specified by [the
constraint of dimensional homogeneity . . . ] For in-
stance, we derive a unit of force from independent
units of mass, length, and time, by using these units
in a certain way which is fixed by definition, and
we thereby determine a definite force which is re-
producible and may be used as a unit. Now by
Newton’s law of gravitation it is, in principle, pos-
sible to derive one of the three fundamental units of
mechanics from the other two.”

Buckingham then describes a laboratory experiment
from which a unit of time can be derived from units
of mass and length – if one assumes Newton’s law of
gravitation to hold. To be clear: Buckingham is grant-
ing that people have sometimes reduced the number of
fundamental units to two, such as when a unit of time is
derived from units for mass and length, when working
on specific problems. What he is concerned to show is
that, in order to do so, they have had to use assumptions
about the law of gravitation. He is not unaware that the
current state of physics indicates Newton’s law of grav-
itation is not the final word, and is pointing out the role
that a law of gravitation plays in such reductions of the
number of fundamental units to two. Put in terms of
similar systems, the question is: How many degrees of
freedom do we have in constructing a system S0 that is
similar to S? How many quantities can be varied in an
arbitrary ratio when we transform S into S0, a system
that is physically similar to it?

Buckingham points out that, even in the domain of
mechanics, it depends on what phenomenon the relation
between quantities characterizes. As he emphasized,
the notion of physical similarity and physically sim-
ilar systems involves only similarity with respect to
a specified relation. (Recall that the analysis started
with the quantities involved in a given equation, where
that equation describes a relation that relates a certain
number of kinds of quantities such that any one was
determined by all the others, and the relation character-
ized a phenomenon of interest.) In developing a general
methodology, Buckingham had considered all possi-
ble relations that could exist among the given kinds
of quantities. In the most general case, the law of
gravitation is a constraint on how quantities are re-
lated. Recognizing this additional constraint reduces the
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number of independent quantities by one. However, he
explains, such generality is not always required in prac-
tice [18.2, p. 374]:

“But if for ‘all possible relations’ we substitute ‘all
relations that do not involve the law of gravitation,’
we may ignore the law and proceed as if it were
non-existent.”

This can actually be done in many cases, he says,
since [18.2, p. 374]:

“in practice, physicists are seldom concerned with
the law of gravitation: for all our ordinary physi-
cal phenomena occur subject to the attraction of an
earth of constant mass and most of them occur un-
der such circumstance that the variation of gravity
with height is of no sensible importance.”

However, for precise geodesy and astronomy, one
needs to be explicit about the law of gravitation.

Buckingham’s answer to the question Tolman’s pa-
per raises about the possibility of constructing obser-
vationally indistinguishable miniature universes, thus,
bifurcates into two cases, depending on whether or not
the phenomenon that we are interested in observing
in the miniature universe is influenced by the law of
gravitation. If not, then it might not be impossible to
construct a miniature universe, as Tolman suggests, that
will be similar to the universe (as regards that phe-
nomenon.) On the other hand, if the phenomenon is
influenced by the law of gravitation, more things must
be taken into account:

“the gravitational forces in the miniature universe
must bear to the corresponding gravitational forces
in the actual universe a ratio fixed by the law of
gravitation.”

He points out that the effect of the law of gravitation
on the phenomena of interest shows up in the process
of constructing similar systems. If we erroneously try
to independently choose three units rather than letting
the third be determined by the first two fundamental
units chosen, we run into trouble because the measured
values for corresponding speeds and forces will not cor-
respond to the values in the actual universe – unless,
that is, the third unit is allowed to be fixed by the law of
gravitation in terms of the first two.

The points about physically similar systems, sys-
tems of units, and the law of gravitation seem to be
questions in the logic of physics. Yet, the main claim
of Buckingham’s papers on physically similar systems
can actually be stated in terms of a theorem about the
symbolism of relations between physical quantities.

This is seen in the “convenient summary” with
which he concludes the paper [18.2, p. 376]:

“A convenient summary of the general consequence
of the principle of dimensional homogeneity con-
sists in the statement that any equation which
describes completely a relation subsisting among
a number of physical quantities of an equal or
smaller number of different kinds, is reducible to
the form � (˘1, ˘2, : : :, ˘i, etc.) D 0 in which the
˘ ’s are all the independent dimensionless products
of the form Qx

1Q
y
2 . . . , etc. that can be made by using

the symbols of all the quantities Q.”

The equation � (˘1, ˘2, . . . , ˘i, etc.)D 0 in the
quote from Buckingham above is what I called The Re-
duced Relation Equation of 1914 in Sect 18.1 of this
chapter.

18.4.4 Precursors of the Pi-Theorem
in Buckingham’s 1914 Papers

This chapter is devoted to the history of the notion of
physically similar systems. Buckingham’s 1914 papers
are considered a landmark in the development of our
current notion of physically similar systems, due to the
articulation of what a physically similar system is and
how it is related to the symbolism used to express re-
lations in physics. First, Buckingham showed that The
Reduced Relation Equation of 1914 followed from the
principle of the homogeneity of a physical equation.
Then, he showed how the notion of physically similar
systems could be developed from it.

However, since Buckingham’s name has since be-
come attached to the so-called pi-theorem, and the full
contents of his 1914 papers are often ignored, being in-
accurately viewed as doing little more than presenting
the pi-theorem, I want to emphasize that what has be-
come known as the pi-theorem itself is not actually due
to Buckingham. There were, in fact, many precursors
who proved the same result, with varying levels of gen-
erality.

Vaschy and Bertrand
The pi-theorem is referred to in France as the
Vaschy–Buckingham Pi-Theorem. In 1892, Vaschy
(1857–1899) published Sur les lois de similitude en
physique [18.66, 67], in which he stated the result about
the number of parameters required to state a given
relationship that is often attributed to Buckingham.
However, unlike Buckingham, Vaschy did not men-
tion dimensions or dimensional equations. He spoke of
quantities and units, and did so as though they were the
same sort of thing, though he did speak of some units
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as fundamental and others as derived. More precisely,
Vaschy’s theorem is [18.67]:

“Let a1, a2, a3, . . . , an be physical quantities, of
which the first p are distinct fundamental units
and the last (n� p) are derived from the p fun-
damental units (e.g., a1 could be a length, a2
a mass, a3 a time, and the (n� 3) other quanti-
ties would be forces, velocities, etc.; then pD 3).
If between these n quantities there exists a relation
F.a1; a2; a3; : : : ; an/ = 0, which remains the same
whatever the arbitrary magnitudes of the fundamen-
tal units, this relationship can be transformed in
another relationship between at most (n�p) param-
eters, that is f .x1; x2; x3; : : : ; xn�p/D 0 , the param-
eters x1; x2; x3; : : : ; xn�p being monomial functions
of a1; a2; a3; : : : ; an.”

The parameters x1; x2; x3; : : : ; xn�p play the same
role as the dimensionless ˘ ’s in Buckingham’s theo-
rem. Vaschy then shows how to obtain reduced relations
for the pendulum and for a telegraph cable. What is no-
table is that he produces a pair of ratios, not just one
ratio, in each case, and he expresses the result as an un-
known function of these parameters (xi’s) set equal to
zero. He does not use the terminology of systems, but
he is interested in laws of similitude (in the sense of the
similarity laws of Sect. 18.3.1) that can be derived from
them, citing one by W. Thomson (Lord Kelvin) in the
case of the telegraph line. The conditions of Vaschy’s
theorem are not exactly the same as in Buckingham’s
theorem, but Vaschy does emphasize that his reason-
ing does not assume any particular system of units,
and he does derive the key move to the Reduced Rela-
tion Equation of 1914. The case is strong for crediting
Vaschy’s paper with containing the pi-theorem.

Some have also argued that Joseph Bertrand pro-
vided an even earlier, though less general, proof of the
pi-theorem in 1878, in Sur l’homogeneite dans les for-
mules de physique [18.66, p. 209]. This is the same
Joseph Bertrand (1822–1900) cited above for the much
earlier 1847 work drawing attention to the principle of
similitude, in which he mentioned “an infinite number
of possible systems, which may be regarded as similar
to” a given system, and provided a new basis for New-
ton’s theorem of similarity using a result by Cauchy
involving the principle of virtual velocities.

These two works by Bertrand [18.28, 68] thirty
years apart reflect an important late nineteenth century
development that permitted using a logical principle
about the equations of physics, that is, the homogene-
ity of equations of physics, rather than a principle of
physics itself. This late nineteenth-century development
was the idea of coherence as a constraint on a system of
units; the idea, that is, of a coherent system of units.
Coherence of a system of units, and its importance in
connecting dimensional analysis and similarity, is dis-
cussed in [18.69].

Riabouchinsky
Sometime after 1914, Buckingham became aware that
Dimitri Riabouchinsky (1882–1962) had also proved
a mathematical theorem about the number of dimen-
sionless parameters needed to express a given physical
relation, using the methods of dimensional analysis,
in 1911 [18.65]. Riabouchinsky (spelled Riabouchin-
ski in Buckingham’s papers), was a scientist who had
provided the private funding for the Aerodynamic In-
stitute of Koutchino associated with the University of
Moscow, which had a wind tunnel; hence, Riabouch-
insky was, like Buckingham, faced with the problem
of understanding how to interpret model experiments.
After becoming aware of Riabouchinsky’s proof, Buck-
ingham credited him prominently for the proof in his
writings. In a paper in 1921, discussing the desire that
had arisen for a more systematic procedure for obtain-
ing the results that Rayleigh and others had obtained
using dimensional methods, he wrote [18.70, p. 696]:

“Such a routine procedure is provided by formulat-
ing the requirement of dimensional homogeneity as
a general algebraic theorem, which was first pub-
lished by Riabouchinski (sic), and which will be
referred to as the˘ theorem.”

Buckingham speculated that he might have seen
a notice of Riabouchinski’s result in one of the Annual
Reports of the British Advisory Committee on Aero-
nautics [18.71], and that [18.70, p. 696n]:

“Guided [. . . ] by the hint contained in this ab-
stract, the present writer came upon substantially
the same theorem, [. . . ] The theorem does not differ
materially from Riabouchinski’s, except in that he
confined his attention to mechanical quantities.”
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18.5 Physically Similar Systems: The Path in Retrospect

We are now in a position to survey the path from New-
ton’s theorem about similar systems of bodies in the
seventeenth century to Buckingham’s development of
the notion of similar systems from what I have called
the Reduced Relation Equation of 1914, in the early
twentieth century. Painting what we can see in retro-
spect in broad brush strokes, the picture of this path is
that there are several key ideas that made the twentieth
century notion of physically similar systems possible.
The first of these is the notion of a function developed
in the eighteenth century, and the second is the notion
of a coherent system of units developed in the late nine-
teenth century.

Brian Hepburn identifies Leonhard Euler as a key
eighteenth century figure linking Newton’s age and
ours, and has argued that the concept of a function was
crucial to the development of what we now know as
Newtonian mechanics. Whereas Newton’s mechanics
“dictated how motions are generated in time by forces”
and “would treat of the actual process of moving bod-
ies,” Hepburn says, for Euler, in contrast, “the central
object of investigation in mechanics is the [mathemat-
ical] function” [18.12]. He points out that equilibrium
relations are the most important among relations, and
hence that “sets of quantities” characterized “states” –
I would amend this to “states of a system.” The no-
tion of a function allowed the concept of a system to
be expressed in terms of the interrelatedness of some
quantities – if one quantity changed, any of the oth-
ers in the system might be affected, too. The notation
of a function set to 0, that is, f .x1; x2; : : : ; xn/D 0 can
be used to express this interrelatedness. The notion of
equilibrium and an equation of state, which are express-
ible by the functional notation, are important in this
newer notion of a system; what this new notion of sys-
tem eventually replaced was the notion of a system as
a configuration of particles and/or bodies. The notion of
a similarity law likewise progressed from simply a sin-
gle ratio to express an invariant relation, to a function
with multiple arguments, each of which was a dimen-
sionless ratio.

When Bertrand invoked the principle of virtual ve-
locities in 1847 [18.25, p. 380] to derive the principle
of mechanical similitude, he was using the notion of
a function, but he was still using considerations and
principles of mechanics. By 1878, he could take a much
more general approach, using a principle that was a con-
straint on the equation expressing relations between the
physical quantities, rather than the system of bodies and
particles itself. Independently, many others could do so,
too: Vaschy in France and Riabouchinsky in Russia,
and they were not the only ones. In physical chem-

istry, van der Waals and Onnes, thinking of collections
of molecules as systems, could apply these more for-
mal notions of similar systems to come up with a way
to predict the behavior of one substance based on only
its critical points, along with observations about how
another substance behaved. The amazing success of
this approach in physical chemistry seems to have en-
couraged extending the approach of similar systems to
electromagnetic theory and the kinetic theory of gases.

That the time was right in 1914 for deriving the pi-
theorem and the Reduced Relation Equation of 1914 is
clear from the fact that so many had already done it
by then. That Buckingham was the one to write what
has become the landmark paper articulating the no-
tion of physically similar systems, which he developed
from the Reduced Relation Equation of 1914 in the ˘ -
theorem, then, appears to be a matter of timing, at least
in part: when he was suddenly asked to devote time to
the question of the value of model experiments using
wind tunnels, it was the early twentieth century, when
the notion of a system was readily expressible by the
notation for a function, when coherent systems of units
in every part of physics was something that could be as-
sumed, and someone with a doctorate in physics would
have a facility with formal methods applied to equa-
tions.

Around the same time, or shortly thereafter, D’Arcy
Wentworth Thompson wrote his classic work, On
Growth and Form [18.72], on the mathematicization of
biology. In that work, he carried the use of similitude
in physics over into biology and he, too, explicitly cites
Newton (for his use of similitude), as well as Galileo
(for his discussion of scaling and similitude), Boltz-
mann, Helmholtz and numerous publications on aerial
flight. A detailed discussion of D’Arcy Thompson on
similitude may be found in Chap. 6 (The Physics of
Miniature Worlds) of Wittgenstein Flies a Kite [18.11,
pp. 117–130].

How do things stand today, in the early twenty-first
century? Certainly, there are pockets in many disci-
plines – physics, hydrodynamics, aerodynamics, the
geological and other sciences, hydrology, mechanics,
biology, and more – where researchers recognize the
value of thinking in terms of physically similar systems.
However, it is not really a staple of the basic curriculum.
Few philosophers of science understand the concept or
why it is significant. This article is offered to help im-
prove at least the latter situation.
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19. Hypothetical Models in Social Science

Alessandra Basso, Chiara Lisciandra, Caterina Marchionni

The chapter addresses the philosophical issues
raised by the use of hypothetical modeling in the
social sciences. Hypothetical modeling involves the
construction and analysis of simple hypothetical
systems to represent complex social phenomena
for the purpose of understanding those social phe-
nomena.

To highlight its main features hypothetical
modeling is compared both to laboratory experi-
mentation and to computer simulation. In analogy
with laboratory experiments, hypothetical mod-
els can be conceived of as scientific representations
that attempt to isolate, theoretically, the working
of causal mechanisms or capacities from disturbing
factors. However, unlike experiments, hypothetical
models need to deal with the epistemic uncer-
tainty due to the inevitable presence of unrealistic
assumptions introduced for purposes of analyti-
cal tractability. Computer simulations have been
claimed to be able to overcome some of the stric-
tures of analytical tractability. Still they differ from
hypotheticalmodels inhow they derive conclusions
and in the kind of understanding they provide.

The inevitable presence of unrealistic as-
sumptions makes the legitimacy of the use of
hypothetical modeling to learn about the world
a particularly pressing problem in the social sci-
ences. A review of the contemporary philosophical
debate shows that there is still little agreement on
what social scientific models are and what they are
for. This suggests that there might not be a single
answer to the question of what is the epistemic
value of hypothetical models in the social sciences.
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19.1 Hypothetical Modeling as a Style of Reasoning

In Styles of scientific thinking in the European tradi-
tion, the historian of science A.C. Crombie [19.1] lists
six styles of thinking that characterize modern scientific
thought:

1. The method of postulation
2. The use of experiments

3. The hypothetical construction of analogical models
4. The taxonomic method
5. The use of statistics and probability
6. Historical derivation.

Ian Hacking re-labels Crombie’s classification as
one of the scientific styles of reasoning and adds a sev-
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enth: The laboratory style, which lies between methods
(2) and (3) in that it relies on “built apparatus” to pro-
duce phenomena about which hypothetical models may
be true or false [19.2]. Each style of reasoning intro-
duces new kinds of objects, new evidence and newways
of being a candidate for truth. For our purposes the rel-
evant features of a style of reasoning are its stability
across disciplinary contexts and its autonomy, in other
words, once a style of reasoning becomes established,
it determines its own criteria of what counts as good
reasoning [19.2].

Hypothetical modeling refers to that scientific strat-
egy in which the known properties of an artifact are
put to use in order to elucidate the unknown properties
of a natural phenomenon [19.1, p. 1087]. Mary Mor-
gan [19.3] deploys the concept of style of reasoning
to characterize the practice of theoretical modeling in
economics and traces the history of howmodeling grad-
ually became the prevalent style of reasoning in eco-
nomics, achieving its present features around the sec-
ond half of the last century. It is these features that Mor-
gan’s work, and ours too, endeavors to describe. Here,
however, we are concerned with hypothetical modeling
as it takes place in the social sciences at large. By treat-
ing this method as one style, we seek to highlight its
distinctive characteristics, which cut across disciplines.

Unlike in economics, in other social sciences such
as sociology and political science, until a few decades
ago the use of hypothetical models was limited to rela-
tively narrow areas of inquiry. Well known, contentious
attempts at introducing economic-style, rational-choice
models in sociology and political science sparked accu-
sations of economics imperialism [19.4]. More gener-
ally, formal modeling was often perceived in opposition
to the qualitative leanings of many social scientists.
Critics complained that mathematical models could
not capture the complexity of social and economic
phenomena, which are often hard to quantify and mea-
sure and do not obey the kinds of exceptionless laws
that were believed to characterize the natural sciences.
Disciplinary resistance to the method of hypothetical
modeling, however, is not at odds with the stability
characteristic of styles of reasoning: It is the deploy-
ment of a style in a new field and domain of inquiry that
is contested, but its features, those that make it a style,
might remain untouched. Moreover, the critical attitude
toward the method of hypothetical modeling is now
changing, at least in some social sciences. For instance,
Clarke and Primo [19.5, p. 1] claim that, “[m]odels
have come to be the dominant feature of modern po-
litical science and can be found in every corner of the
field”. Edling [19.6, p. 197], writes that “since mathe-
matical sociology was firmly established in the 1960s,
it has grown tremendously”.

The transfer of models and modeling techniques
across disciplinary boundaries is contributing to the es-
tablishment of shared modeling standards. Recent fields
such as network theory and agent-based modeling are
united by commonmodeling tools rather than by a set of
principles or subject matter. These tools are then being
modified and adapted in house, as it were, to satisfy the
specific epistemic and nonepistemic needs of each field.
For example, the use of network theory in sociology
looks rather different from the use of network theory
in economics and this is in part due to their being em-
bedded in different disciplinary cultures [19.7, 8]. Thus,
it is possible to talk of field-specific modeling practices
to emphasize what is distinctive about a specific dis-
cipline and to talk of style of reasoning to underline
the distinctiveness of model-based reasoning vis-à-vis
other scientific styles of reasoning, such as the labora-
tory style. Which aspect is emphasized depends on the
purposes of one’s enquiry.

Here we are interested in the commonalities: Treat-
ing hypothetical modeling as a style of reasoning
encourages us to look at its characteristic features vis-à-
vis other styles of reasoning employed in social science.
Philosophers of science sometimes talk of model-based
social science, a label that captures the same kind of
scientific activity. Here is how Peter Godfrey-Smith
characterizes it [19.9, p. 726]:

“What is most distinctive of model-based science
is a strategy of indirect representation of the world
[. . . ] The modeler’s strategy is to gain understand-
ing of a complex real-world system via an un-
derstanding of a simpler, hypothetical system that
resembles it in relevant respects.”

The terms hypothetical modeling and model-based
science both refer to the scientific activity of under-
standing phenomena by building hypothetical systems,
which at once are much simpler than the phenomenon
under investigation and hopefully resemble it in some
respect. The modeler studies these simpler, hypothet-
ical systems in order to gain insights into the more
complex phenomena they represent. These hypothetical
systems can be of different kinds: They can be concrete
objects such as the scale models of engineers, or they
can be the set of mathematical equations very familiar
to both physicists and economists. In this chapter our
main focus is on models that are abstract in the sense
that they do not exist as physical objects to be manip-
ulated by the modeler. They are theoretical rather than
empirical models. Empirical models are built for testing
and measuring relationships between variables and are
based on empirical data; they do not describe hypothet-
ical systems. In this sense they are better thought of as
belonging to the statistical style of reasoning.
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The attribute theoretical should not be taken to sug-
gest that theoretical models are always instantiations of
general theories. Theoretical principles might be only
one of the several ingredients that go into the construc-
tion of theoretical models [19.10]. Ideally, theoretical
(or hypothetical) modeling and empirical modeling are
tightly connected. The results of theoretical models are
translated into empirical models and thereby subject
to testing. In many cases, however, the evaluation of
theoretical models proceeds without the results being
directly confronted with data. This is how the histo-
rian and methodologist of economics Roger Backhouse
explains the relationship between theoretical and em-
pirical models [19.11, p. 138]:

“Empirical work starts with a set of economic rela-
tionships, formulated in such a way that they can be
confronted with data using formal, statistical tech-
niques. These relationships may be the theoretical
results [. . . ], but typically they will be different. The
reason for this is the requirement that they can be
confronted with data: They must refer to variables
on which statistical data exist, or for which proxies
can be found; functional forms must be precisely
specified and amenable to statistical implementa-
tion.”

Backhouse’s account is about economics, but it can
be generalized to other social scientific contexts in
which theoretical results cannot be directly confronted
with empirical data. In such cases, theoretical and em-
pirical modeling might be only loosely connected with
one another, for example, by way of the theoretical re-
sults informing empirical modeling and vice versa, as
depicted in Fig. 19.1.

But which theoretical results are taken seriously
enough to inform further empirical investigations? The

Theoretical modelling

Empirical modelling

Assumptions EvaluationTheoretical
results

Mathematical,
logical,
computational
techniques

EvaluationEmpirical
results

Economic
relationships

Statistical
techniques

Fig. 19.1 The relationship between
theoretical and empirical modeling
(after [19.11, p. 136])

evaluation of hypothetical models often relies on other
criteria such as credibility, insightfulness, explanatori-
ness or other modeling desiderata. This is one of the
aspects that make hypothetical modeling partly au-
tonomous from other styles of reasoning: The evalua-
tion of hypothetical models and their results is based
on criteria largely internal to the style, criteria that have
developed together with the stabilization of the style.

In contemporary social science the diffusion of hy-
pothetical modeling to tackle social scientific questions
is taking place in parallel with an increasing reliance on
computer simulations as well as on laboratory and field
experimentation. Recall that Hacking takes the labora-
tory style to lie between the use of experiments and
hypothetical models. The laboratory style differs from
experimentation simpliciter in that it creates artificial
environments about which the hypothetical models can
be true or false. In the social sciences where laboratory
experiments were believed to be virtually impossible,
modeling was considered to be an attempt–to some
fruitful, to others idle–to achieve theoretically what it
is impossible to implement in the laboratory; even now,
when both laboratory and field experimentation have
become well-established practices in many social sci-
ences, many questions of interest still cannot be studied
experimentally. It is perhaps not surprising that mod-
els and experiments have been compared in order to
understand their characteristic features as well as their
common characteristics.

The discussion in Sect. 19.2 addresses the question
of whether models are relevantly similar to experiments
and, if not, where the deep differences lie. In Sect. 19.3,
we examine the issue of whether computer simulations
belong to the style of hypothetical modeling. In gen-
eral terms, the question is whether or not computer
simulation and analytical modeling are different ways
of studying hypothetical systems. These comparisons
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allow us to highlight some of the main features of
hypothetical modeling in the social sciences. Finally,
we discuss the legitimacy of hypothetical modeling
as a way of learning about social scientific phenom-
ena. The debate reconstructed in Sect. 19.4 attempts to
understand how hypothetical modeling deals with the
specificities of the social sciences and to examine the
conditions of its legitimacy. As will become clear, there
is little agreement on the nature and function of theo-
retical models in social science. Perhaps this is not so
much a sign of slow progress in understanding models
as it is an indication that a substantive as well as a gen-
eral account of the nature and function of models is not
possible [19.12].

Most of the philosophical literature that we consider
throughout the chapter is about economic modeling.
This is because, in the social sciences, economic mod-
eling is where hypothetical modeling has been most
prevalent and hence has received the most philosophical
attention. However, many of the insights from this liter-
ature apply across the social sciences. Not only because
rational-choice models are widely employed in social
sciences other than economics such as sociology and
political science, but also because the indirect represen-
tation of phenomena through idealized models crosses
disciplinary boundaries. If and when a given issue is
peculiar to economics and cannot be generalized, it will
be pointed out.

19.2 Models Versus Experiments:
Representation, Isolation and Resemblance

The alleged impossibility of laboratory experimenta-
tion has for long been considered one of the features
that sets the social sciences apart from the natural sci-
ences. It was widely believed, among both scientists
and philosophers, that experiments were the exclusive
purview of the natural sciences: Many if not all ques-
tions of interest in the social sciences were thought not
to be amenable to experimental investigation, owing to
the difficulty of designing experimental settings capable
of reproducing and confining the phenomena of inter-
est. The broad scale of many social phenomena and the
inevitable presence of disturbing factors of very differ-
ent kinds (e.g., history, cultural background, value judg-
ments, etc.) were seen as insurmountable obstacles to
controlled experimentation. Obvious ethical issues also
contributed to limit the range of feasible scientific exper-
iments and continue to do so. Since the second half of
the last century, however, the use of experimentation in
social science has grown remarkably, both in the labora-
tory and in the field, thanks to technological andmethod-
ological developments, which allow control of many of
the disturbing factors that were previously considered
impossible to control for ([19.13], see also [19.14] for
economics and [19.15] for political science).

The method of hypothetical modeling has been
seen as an alternative to experimentation when exper-
imentation is difficult or unfeasible [19.16, 17]. Both
models and experiments are interpreted as devices for
surrogate reasoning, which are examined to draw infer-
ences about the target phenomena they aim to repre-
sent [19.18–20]. In the philosophical literature models
and experiments have been compared in terms of the
functions they play in scientific inquiry and in terms of
their use for drawing inferences about the world. The

concepts of isolation, representation and manipulation
are at the center of this comparison, which deals with
functional, methodological and epistemic aspects of the
two styles of reasoning.

Models and experiments can be seen as playing
a similar function, i. e., that of isolating the phe-
nomenon of interest from the interference of disturbing
factors [19.16–19, 21, 22]. This analogy concerns the
ideal model and the ideal experiment – or, as Cartwright
calls it, the “Galilean experiment” – in which only the
factor of interest is allowed to vary, leaving everything
else constant. Ideally, experiments proceed by remov-
ing or controlling all potentially disturbing factors so as
to allow scientists to create the conditions under which
causal relations can be observed in isolation. An influ-
ential account of models holds that, like experiments,
models aim at studying specific aspects of the phe-
nomenon of interest (such as causal relations, capacities
or mechanisms) in isolation from the interference of
disturbing factors [19.3, 16, 17, 21, 23, 24]. On this ac-
count, the isolative function of the ideal model is akin
to that of the ideal experiment. To emphasize this simi-
larity, it has been suggested that models are theoretical
experiments aimed at creating, theoretically, the kind of
controlled conditions typical of the laboratory [19.18].

As an illustrative case, consider von Thünen’s well-
known model of localization, which is described in the
Appendix (Sect. 19.A). The model could be interpreted
as the result of a process of isolation that zooms in
on the relationship between spatial distance and land
use. This is done by means of assumptions that neu-
tralize the effect of other factors by assuming them to
be constant, absent or negligible [19.23]. In the model
the pattern of agricultural production around the city
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depends exclusively on transportation costs, because
all other factors that can influence land use, such as
the presence of rivers or mountains, the different fer-
tility of the soil and the presence of transport routes,
are assumed away. Most of the assumptions listed in
Sect. 19.A can be seen as having this function.

The investigations of this analogy by Morgan
[19.19, 22] and Mäki [19.18] emphasize that the way
in which models and experiments fulfill their isolating
function is different. Experimenters control for disturb-
ing factors by designing the experimental set-up so
that disturbing factors are prevented from interfering
with the mechanism of interest; this can be done both
by physical interventions in the experimental environ-
ment and by choices regarding the procedure [19.22].
A social scientific experiment, for instance, might take
place in a laboratory in which the subjects interact with
the experimenter only via computer terminals, so as to
minimize the possibility that the experimenter’s expec-
tations influence the subjects’ behavior. Alternatively,
in order to control for the effect on subjects’ choices
of the language employed to describe a number of al-
ternatives, the experimenter might design the procedure
so that the subjects, instead of all being presented with
exactly the same description of the alternatives, are ran-
domly assigned different descriptions, thereby ensuring
that language will not have a systematic effect on ag-
gregate choice behavior [19.15].

Hypothetical models try to achieve the same kind
of control by means of theoretical assumptions, as in
the case of von Thünen’s model. The isolation achieved
by assuming away all disturbing factors is only a the-
oretical exploration that does not provide a definitive
answer to the question of what would happen in the real
world in such a situation. It is open to debate what this
difference amounts to and what its consequences are, in
particular when it comes to using this style of reasoning
for drawing inferences about the world. For Morgan,
as we will see shortly, this dissimilarity is grounded
in the different materials of which models and exper-
iments are made, and this, in turn, has major epistemic
consequences. In Mäki’s account, however, the conse-
quences of this dissimilarity are limited to the degree
and strength of isolation that the two styles are able to
provide and do not result in major differences concern-
ing their use for making inferences about the world.

For Mäki, models are able to display a higher de-
gree of control than experiments can do [19.18]. This
is because experiments can isolate only to the extent
to which it is practically feasible, and hence some in-
terferences are left uncontrolled for or only weakly
controlled for. Models, instead, can provide tighter iso-
lation, because they are not subjected to these practical
constraints and can simply assume all interferences

away. One implication of this is that the use of experi-
ments to test models is bound to be imprecise.

In Mäki’s account, however, the difference in the
degree of control between models and experiments
does not compromise the identification of further analo-
gies. In particular, Mäki claims that “many theoretical
models are (thought) experiments, and many ordi-
nary experiments are (material) models”, because both
fall under the general concept of scientific representa-
tion [19.18, p. 303]. In Mäki’s interpretation, something
qualifies as a representation if (a) it is used as a rep-
resentative of its target and (b) it resembles the target
in some respects and to certain degrees. Hypothetical
models, as we characterize them, are substitute systems
that are examined in order to gather information about
what they represent. Similarly, experiments are pieces
of the world created in the laboratory that can be seen as
material models, which again are not examined for their
own sake, but rather for their value in gathering infor-
mation about the world outside the laboratory. Models
and experiments qua substitute representations face the
question of whether it is legitimate to draw inferences
from the representational tool to the real world. This
can be thought of as an instance of the general problem
of extrapolation, which concerns the generalization of
the results obtained in a model or in an experimental
situation to the world. For Mäki, in both cases the key
to these problems rests on whether the world created in
the laboratory or in the model resembles reality in the
relevant respects and to a sufficient degree. In our ex-
ample from von Thünen’s work, the problem amounts
to establishing whether the model is relevantly similar
to reality so as to justify the claim that the distance from
the market actually affects the distribution of economic
activities as described in the model. In a laboratory ex-
periment on individual choice behavior, the question
arises as to whether the kind of task subjects are asked
to perform and the artificial environment of their inter-
action are relevantly similar to situations that occur in
the wild so as to warrant inferences from the exper-
iment to the world. In Mäki’s account, since models
and experiments raise similar issues of resemblance,
the ability to draw inferences about the world does not
hinge on their respective features. Although models can
sometimes be made closer to reality, the answer to the
problem of extrapolation ultimately depends on what
it means for a model to resemble a real situation, and
on the ability to identify the relevant aspects and the
sufficient degrees of resemblance [19.25]. Therefore,
a margin of ambiguity in the notion of sufficient rele-
vant resemblance remains.

Morgan takes a different stance on the problem of
extrapolation [19.19, 22]. She emphasizes that models
and experiments are similar in the way in which they are
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used and manipulated, but argues that the distinct fea-
tures that characterize these instruments provide them
with different epistemic powers for investigating the
world. Models and experiments are manipulated by in-
troducing controlled variation of some of their aspects
in order to check whether the results are affected by this
change. These manipulations allow scientists to inves-
tigate the consequences of variations in the initial con-
ditions on the result and/or the conditions under which
a particular result of interest can be obtained. Von Thü-
nen, for instance, after having illustrated his model as
described in Sect. 19.A, continued his investigation by
introducing the presence of a river and a smaller neigh-
boring town, thereby altering two of the initial assump-
tions. Changing themodel in this way enables investiga-
tion of how the newly introduced assumptions affect the
pattern of land use in comparison to the initial scenario:
The river facilitates the transportation of goods to the
market and thus distorts the concentric pattern, whereas
the presence of a smaller town generates its own concen-
tric regions of land use. In Morgan’s terms this can be
described as a case of “experiment on models” [19.22].
The manipulation of models can be interpreted as a kind
of experiment in which the scientists “interrogate” the
model by modifying some of the initial assumptions.
These questions can be motivated by theoretical issues,
by the aim to explain or predict real-world situations
or by the policy agenda the model is meant to guide.
For instance, von Thünen’s manipulations of the basic
model can be seen as being prompted by questions such
as “what happens to the pattern of concentric rings if
there is a river and/or a neighboring town?”

Yet when it comes to connecting the answers ob-
tained in this process to the real world, models and
experiments are substantially different for Morgan. She
argues that experiments have greater epistemic power
than models, because the experimental inferential leap
is smaller than in the case of models. This dissimilar-
ity is based on the different materials of which each is
made: Experiments are concrete investigations, which
deal directly with the world they are meant to study,
whereas models are abstract and idealized. Economic
experiments, for instance, deal directly with real peo-
ple’s behavior, however constrained the behavior is by
the experimental design. By contrast, models are ab-
stract entities, which are made of different stuff than
the reality they represent. ForMorgan, the “materiality”
of experiments can make inferences from experimental
results to the world both easy and strong, because they
are grounded on the material uniformity between the
system on which the manipulation is conducted and the
world about which the inference is made [19.19]. More
precisely, Morgan maintains that, insofar as experi-
ments share the same ontology with their target (which

is not obvious), we are more justified in claiming to
learn something about the world from experiments than
from models. Inference from the model to the world is
much more difficult because the materials are not the
same as the world’s.

Moreover, because of their materiality, experiments
can create new phenomena that might be different
or even contrary to theoretical expectations. When an
unexpected experimental result is sufficiently stable
across replications and manipulations of the experimen-
tal design, it qualifies as a new phenomenon, which
requires theoretical explanation. For instance, behav-
ioral regularities robustly observed in several economic
experiments, such as co-operation in prisoner dilemma
games, can be thought of as constituting new phe-
nomena with respect to the expectations of rational
choice theory. Such experimental phenomena have now
become the target of sustained theoretical efforts to ac-
count for them. Van Fraassen makes a similar point,
arguing that scientific instruments can be viewed not
only as windows that allow us to see what happens in
the world, but also as machines that create new genuine
phenomena that would not occur in the wild and that
theory needs to explain [19.26].

In Morgan’s account, the creation of new experi-
mental phenomena is only possible in the laboratory
and does not belong to the style of hypothetical mod-
eling [19.19]. Only real flesh and blood experimental
subjects have the freedom to behave in other ways than
expected. Experiments must allow a certain degree of
freedom because, if the subjects’ behavior was fully de-
termined, then the experiment would have no genuine
potential to confirm or refute a theory. Therefore, ac-
cording to Morgan, experiments have the potential to
surprise and confound theory: They can illuminate un-
expected or hidden consequences of a theory, but their
results can also be in conflict with theoretical expec-
tations. On the other hand, models cannot confound
because the behavior of agents is pre-determined by
the modeler’s assumptions [19.21]. In other words, the
agents in the model lack the “potential for independent
action”, which is what confers greater epistemic power
to experiments [19.19].

Morgan’s ideas, however plausible, can be chal-
lenged. Parker rightly observes that it is not always
the case that inferences are better justified when the
representative tool and the target are made of uniform
materials [19.27]. What is crucial is not the material, but
the presence of relevant similarities, which can be ma-
terial but also formal (in this respect, Parker’s point is
similar to Mäki’s). The justification of inferences about
the world depends on having good reasons to think that
the relevant similarities are in place. Having experiment
and target made of the same material does not guaran-
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tee that all relevant similarities are in place, because it
is possible that “same-stuff representations” fail to be
relevantly similar to their target systems. Nevertheless,
Parker agrees with Morgan that the material uniformity
between experiments and the world can provide some
epistemic advantage: Experimental and target systems
that are made of the same stuff will often be similar in
many relevant respects. In other words, being made of
the same material does not guarantee that relevant sim-
ilarities are in place, but it does make it more likely. As
a consequence, inferences from experiments are more
likely to be reliable than inferences from models.

A further challenge that models have to face arises
from the fact that not all assumptions in a model can
be thought to function as isolations. Assumptions in-
troduced to make it possible, or easier, to handle the
model analytically might impose constraints that are too
tight to allow relevant similarities between the mod-
els and the represented aspects of the world. This is
a point Cartwright makes specifically with regards to
economic models: Although many economic models
aim at mimicking Galilean experiments, they also in-
clude a number of assumptions that do not play the role
of isolation, but are rather introduced for the purpose
of mathematical tractability [19.21, 28]. If the models’
conclusions are due to assumptions that are completely
unrelated to the world, then it is not clear what the
model can tell us about the world.

Derivational robustness analysis has been proposed
as a remedy for the problem of over-constraining as-
sumptions [19.29, 30]. For Kuorikoski et al. deriva-
tional robustness analysis refers to the collective prac-
tice of building similar models of the same phenomenon
that differ only in a few assumptions. The analysis of
these groups of similar models can help to identify
which assumptions are necessary for deriving a cer-
tain result: Results that are robust across a number of
models are dependent on the shared, rather than on the
differing, assumptions. Now if the over-constraining as-
sumptions (or more generally the assumptions known to
be unrealistic) are found to be unnecessary for deriving
the result of interest, then there are reasons to think that
this result is based primarily on the shared assumptions,

Table 19.1 Models, experiments, simulations: A comparative perspective (after [19.22, p. 49])

Ideal model Ideal laboratory experiment Ideal simulation
Kind of representation Indirect: Different

material
Direct: Same material Indirect: Different

material
Isolation and control Assumed theoretical isolation Experimental material isolation Assumed theoretical isolation
Advantages Theoretical exploration in which

experiments are difficult
or unfeasible

Discovery of phenomena
for science to explain

Representation of complex and/or
dynamic problems and other
problems that are not solvable
analytically

Challenges Tractability Material and ethical constraints Transparency

which are hoped to be realistic. Hence, according to
Kuorikoski et al. even though robustness analysis is not
a procedure of empirical confirmation, it can increase
modelers’ confidence about their inferences from hypo-
thetical models. Note that althoughKuorikoski et al. are
mainly concerned with analytical models, robustness
analysis has also been claimed to be a crucial strategy
in correcting for various sources of error that might af-
fect the results obtained by computer simulations, as we
will see in Sect. 19.3.

Odenbaugh and Alexandrova raise the valid ob-
jection that, although in principle robustness analysis
might work, in practice it does not provide a defense
of hypothetical models with over-constraining assump-
tions [19.31]. If, for example, in economic modeling,
some of the core rational-choice axioms are never mod-
ified to check their effects on the modeling results and
if these axioms are in fact wildly unrealistic, then ro-
bustness analysis turns out to be of limited use. Hence,
although in principle hypothetical modeling might be
aimed at isolating a mechanism of interest, there re-
mains the problem that many assumptions do not have
this isolating function. This situation can jeopardize the
resemblance between the models and the represented
target, which would warrant the inferences from the
model to the world. We will return to these issues in
Sect. 19.4.

In conclusion, both models and experiments can be
considered as representations that are examined in order
to draw inferences about what is represented. They dif-
fer in the kinds of representation involved: Models are
abstract indirect representations, whereas experiments
are concrete direct representations made of the same
material as the target. It has been claimed that this has
implications both for the kind and the degree of con-
trol that these devices are able to provide and for the
way in which conclusions are drawn from them. On the
one hand, theoretical models enable the investigation of
phenomena that are difficult or impossible to reproduce
in the laboratory; yet on the other hand, only experi-
ments seem to have the genuine potential to bring to
light new phenomena that require theoretical explana-
tion (Table 19.1).
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19.3 Models and Simulations: Complexity, Tractability and Transparency

Together with theoretical models and experimental
analysis, computer simulations are key instruments in
the toolkit of the social scientist. Urban evolution,
flows of goods, crowd effects, the stock exchange, vir-
tual financial markets and regulatory policies are just
a few examples of what can be analyzed by means
of computer simulation. More concrete examples of
some of the newest applications include a simulated
model of the entire European Union economy, which
describes the interaction of a massive number of finan-
cial components involved in several markets simultane-
ously [19.32]. In Stockholm, a data set has been created
for the years 1990–2003 to map the entire metropolitan
area and simulate segregation effects [19.33].

Some of the characteristics of computer simula-
tion and the ways in which they are employed invite
a comparison of these instruments with the style of an-
alytical modeling. The use of computer simulation, in
fact, can be thought of as either complementing or re-
placing analytical models. In the literature some authors
have emphasized the elements of continuity between
the two methods; others have highlighted the differ-
ences. For instance, according to Guala [19.20] and
Morgan [19.22], models and simulations are akin to
each other in the way they are used to learn about
the world and for the functions they fulfill. Others
have argued that computer simulations open up novel
methodological questions that did not arise in dealing
with analytical models [19.34]. Below, we will explore
both the similarities and the differences between these
methods, with special focus on the features of computer
simulation that have been debated in relation to their
adoption in economics and the social sciences.

To see how models and simulations connect, con-
sider how computer simulation originally entered the
field of the social sciences. One pioneer in the study
of social phenomena with the aid of the computer has
been the political scientist Robert Axelrod. In 1980, Ax-
elrod launched a competition between experts in game
theory from different fields [19.35, 36]. The challenge
was to come up with a strategy for an iterated prisoner’s
dilemma game to be played in a computer tournament.
Axelrod paired strategies – fifteen in all – and had
the participants play for two hundred rounds in an all-
play-all tournament. At the end of the tournament, the
winning strategy turned out to be one of the simplest
and most ancient strategies of human co-operation, tit
for tat. The strategy is to co-operate in the first round of
the game and then replicate the opponent’s moves, i. e.,
to co-operate in case of co-operation and defect as soon
as the other player defects. The strategy is successful
insofar as it reaps the benefits of co-operation and does

not lose too much from retaliation. After the results of
the tournament’s first round were circulated, a second
round was held. Once again, tit for tat won the compe-
tition out of sixty-two rival strategies.

Axelrod’s tournament is one of the first examples
of the combination of game theory with the computer
to study co-operation. There are several reasons why
the encounter between game theory and the computer
was so fruitful. First and foremost, game theory has
traditionally focused on strategic rationality, i. e., on
the epistemic criteria for the solution of interaction
problems. The discipline is usually silent on dynamic
aspects, i. e., on what happens at the population level
when different strategies encounter one another repeat-
edly. Evolutionary game theory focuses on the latter
aspect of the problem to expand and complement the
domain of inquiry of traditional game theory. Computer
simulations are particularly useful for this purpose, as
they enable scientists to focus on frequency aspects of
strategic interactions rather than on the quality of the
strategies per se.

This point can be illustrated by an example. Imag-
ine for a moment that each of the procedures sent by
each game theorist to Axelrod represents the way in
which the theorist would have played the game in real
life. The number of possible combinations quickly be-
comes unmanageable (in the first tournament, which
was repeated 5 times, there was a total of 240 000
choices). By means of computer simulation, it is pos-
sible to study which strategies survive, which become
extinct and which co-exist. Through computer simula-
tion, agents can be represented more realistically than
before, for example, as individuals with bounded ratio-
nality and with learning and memory constraints.

Precisely because simulations study how social phe-
nomena emerge and evolve through the interactions of
single individuals and their environment, it has been
claimed that they represent an invaluable tool in social
science [19.37]. This is because the way the simulations
analyze the occurrences of social phenomena repro-
duces the dynamics in which such phenomena occur in
the social world. They provide bottom-up, mechanistic
explanations [19.38, 39]. Through computer simula-
tion, the role of individual, structural and institutional
variables can be represented in a particularly realistic
fashion, which has been claimed to help capture the
complexity of their interdependence. Note, however,
that the enthusiasm with which simulations have been
welcome in some fields, such as analytical sociology,
has not been unanimously shared. In fact, most notably
in economics, simulations have been viewed with suspi-
cion and their adoption not always encouraged. In order
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to understand the diverging attitudes of economists and
other social scientists, in what follows we will address
the following questions:

1. What are the features that characterize computer
simulation?

2. Do such features relate to a cluster of properties that
distinguish computer simulation from other styles
of reasoning such as analytical models?

3. Is economists’ preference for analytical modeling
over computer simulation justified on epistemic
grounds?

Firstly, consider that even if we talk about computer
simulations as distinct from analytical models, com-
puter simulations are ultimately based on models. The
way in which the two methods differ is that computer
simulations obtain their solutions by means of a pro-
gram that runs on a computer, whereas the solutions
of analytical models can be obtained without the aid
of a computer. This is simply because simulated mod-
els take into account a higher number of variables and
consider nonlinear relationships, which are easier to ex-
plore with the computer. Broadly speaking, computer
simulation refers to the entire process of formulating
a model, transforming it into an algorithm that runs on
a computer, calculating the output and analyzing the
results [19.34, 40–42]. Moreover, the contrast between
analytical models and computer simulations should not
convey the idea that computers do not proceed analyti-
cally. Obviously they do (at least if we narrow our focus
to models in the social sciences that do not require nu-
merical analysis); the difference is that when computer
simulations analyze complex systems, they usually pro-
ceed by averaging over a sufficiently high sample of
cases rather than in the manner of mathematical proofs
(more on this below).

Secondly, note that computer simulation is a coarse-
grained label, which generalizes different ways in
which simulations can be developed. Different tax-
onomies have been proposed in the literature [19.34,
43]. A preliminary, common distinction is between
agent-based models (ABM) and equation-based mod-
els. The former proceed by implementing local rules,
such as a decision rule in a sociological model; the
latter, by translating equation-based models, such as
partial or ordinary differential equations in physics, into
a computer program. The boundaries between disci-
plines, however, are not strict. Agent-based models are
frequently used in areas other than sociology, includ-
ing fields that were previously dominated by analytical
approaches, such as population ecology and theoretical
physics.

A less common but still well-known interpretation
defines computer simulation as a subset of a more gen-

eral class of simulations that deploy computers for their
ends [19.44]. In this view, a physical model of a tar-
get system – e.g., a scale model such as those used
in structural engineering – counts as a simulation that
adopts a specific means of representation, i. e., a phys-
ical model rather than a computer model. An extensive
body of literature examines the similarities between
computer simulations and experiments and highlights
the fact that simulations are closer to the style of experi-
mental analysis than to the style of analytical modeling.
For instance, according to Morrison, in their relations
to models, simulations are akin to experiments [19.45].
According to Parker, however, simulations lie between
models and experiments in that they display features of
both experimentation and modeling [19.27] (for a re-
view of the literature on the experimental interpretation
of computer simulations, see e.g., [19.34]).

Taxonomical differences aside, in the most basic
sense defined above, computer simulations are simply
a tool in the hands of the scientists. They help to achieve
the model’s results in a manner similar to the way in
which a calculator helps perform difficult mathematical
operations. Moreover, simulations enable the modeler
to represent the target system with a greater level of de-
tail than is usually found in analytical models and to
spell out in a particularly precise way the assumptions
behind the working hypothesis [19.34, 40, 41].

To illustrate, let us compare in more detail the
differences between two mathematical approaches to
a study of the same phenomenon. The Lotka–Volterra
model is a model in population ecology that also has
had applications in the social sciences for the study of
organization-environment relations [19.46]. The analyt-
ical version of the Lotka–Volterra model is a highly ab-
stract representation of the ecological (organizational)
system under study, which omits features such as the
environment in which the species live (the market), a re-
alistic level of satiation (competition), lifetime (supply)
and so on. When the same problem is addressed by
means of an agent-based computer simulation model,
a particularly detailed representation of the system of
interest is provided. Hence, it is claimed, not only
can computer simulation help to avoid common errors
in intuition, it might also reveal a system’s relevant
aspects that had been underestimated or disregarded.
Furthermore, computer simulations have heuristic func-
tions: They trigger our intuitions and can be helpful
in exploring new hypotheses; not least, they enable
us to visualize the results of a problem in particularly
efficacious ways. A more detailed and concrete exam-
ple of how computer simulation proceeds is given in
Sect. 19.B.

Given the features discussed above, it would be nat-
ural to expect computer simulation to be called upon to
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complement analytical models. In 1982 Richard Feyn-
man was already justifying the adoption of simulations
in physics on the following grounds [19.47, p. 468]:

“The present theory of physics [. . . ] allows space to
go down into infinitesimal distances, wavelengths
to get infinitely great, terms to be summed in infi-
nite order, and so forth. With computers we might
change the idea that space is continuous to the idea
that space perhaps is a simple lattice and everything
is discrete (so that we can put it into a finite number
of digits) and that time jumps discontinuously.”

Physical theories trade formal rigor for unrealis-
tic assumptions, such as continuous space and infinite
wavelengths. As Feynman suggests, computer simu-
lations can help physicists reduce the constraints of
mathematical tractability in favor of descriptive accu-
racy. Although similar considerations also apply to the
social sciences at large, in economics the endorsement
of computer simulation has been slower than in physics
and other areas of science – with a few exceptions, such
as the one we saw above from evolutionary game the-
ory.

Why then is there such an uneven reception of sim-
ulation in the social sciences? Why have economists,
who have the most established tradition of modeling,
been reluctant to embrace simulation? Lethinen and
Kuorikoski investigate the reason for economists’ pref-
erence for analytical models [19.42]. The authors claim
that this tendency might even slow down progress in
the subject and lead economists to dismiss results that
would be reasonable to accept. According to Lehtinen
and Kuorikoski, it is because simulations do not provide
the kind of understanding that is perceived as legitimate
in the economic community that this methodology is
more often considered as a secondary option at best.
Two key assets of economic theory, namely rationality
and equilibrium analysis, have a marginal role in agent-
based modeling, and these are aspects that economists
do not seem willing to dispense with. This also partly
explains why in other social sciences, where there is
no strong commitment to a unified theoretical corpus,
agent-based models are increasingly used. As we have
seen, agent-based models allow a greater degree of flex-
ibility in the behavioral rules ascribed to the agents. For
many social scientists, this represents an asset rather
than a liability. In economics, however, this flexibility
is often considered a problem in that the choice of be-
havioral assumptions is ad hoc rather than guided and
constrained by a unified theory (see [19.7] for a discus-
sion of this issue).

In the paper Robust simulations, Ryan Muldoon
addresses another source of concern related to the
adoption of computer simulation in science, mainly in-

volving the problem of verifying results [19.48]. To
adopt a term used in the literature, simulations are said
not to be transparent. While it is possible to check each
step in the derivation of an analytical model, the same
does not apply to simulation. Errors might be concealed
within the particular machine used to run the simula-
tion or within the particular programming language or
within the algorithm itself. According to Muldoon, the
best strategy for increasing confidence in the results is
to show that simulations provide robust results, i. e.,
results that are invariant to changes in the hardware,
the programming language and the algorithm. Depend-
ing on the degree of confirmation a scientist needs to
achieve, a robustness test investigates the source of pos-
sible mistakes similar to the way in which experimental
scientists test their experimental results.

Probably for a combination of the reasons given
above, recourse to computer simulation in economics
has been legitimized mainly when models become too
complex to be analytically solvable or when the vol-
ume of data collected is such that only high-powered
computers can process them. But what precisely does
it mean for a problem to be intractable, and how do
computer simulations deal with that? An example that
illustrates this issue with particular clarity is Schelling’s
model of racial segregation (see Sect. 19.B). Schelling’s
model explains the emergence of ethnic clusters in
different metropolitan areas as a consequence of the
preference of individuals for having a few neighbors of
their own ethnic group. Agents have different informa-
tion about their neighborhood, and, at any point in time,
they can decide to move to another neighborhood that
better suits their preferences. Agents move randomly
in space, and when they move, they tend to generate
further movements of those individuals whose neigh-
borhood has now changed. The chain of possible effects
triggered by each agent’s decision makes segregation
processes particularly difficult to formalize analytically.

Note that the issue of tractability does not concern
only the probabilistic nature of the problem. Analytical
methods can in fact be used to calculate the develop-
ment of a probabilistic systemwithout the need to resort
to simulation. In the case of Schelling’s model it is
because agents have different information and because
neighborhoods overlap with one another that analytical
treatments are usually excluded. One way to proceed
analytically would be, for instance, to assume that the
entire city is a unique neighborhood. At that point, all
agents would share the same information and the prob-
lem of overlapping neighborhoods would be solved.
However, no one wouldmove anywhere simply because
there would be no neighborhood to go to. In this sit-
uation computer simulations can remedy the lack of
analytical solutions by providing an approximation of
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the process under investigation. At each step of the sim-
ulation the state of the system probabilistically depends
on its configuration in the previous round. When the re-
sults aggregate we can observe whether an underlying
dynamic emerges. Furthermore, every time we rewind
the tape and run the simulation again, we can observe
whether the macrophenomenon is stable despite the
contingencies that characterize each particular stack of
simulations. Finally, since the simulation environment
is significantly flexible, we can consider a variety of
factors and their impact, such as agents with different
utility functions, or cities with different network struc-
tures [19.49].

Notice, however, that there is no reason why a way
could not eventually be found to develop analytical so-
lutions for Schelling’s model. In fact, in evolutionary
game theory, progress has been made in developing an-
alytical solutions with Schelling’s model, which rely on
stochastic processes [19.50]. More generally, it is often
the case that a certain problem does not have an analyt-
ical solution until a scientist finds one. When we look
at the conditions that make a problem mathematically
tractable or intractable we find that there are no neat
boundaries between the two. Something that has been
mathematically intractable up until today might become
tractable tomorrow, thanks to progress in the discipline.
But there are no neat criteria that define the tractabil-
ity/intractability of a problem. Hence, the economists’
claim that simulations should be limited to intractable
problems, and that scientists should not leap to simula-
tions when an alternative is possible, appears unjustified

after all. According to a less narrow perspective, the
adoption of computer simulation might be welcomed
even in cases in which an analytical solution is possible,
but which is particularly demanding to find, time con-
suming and expensive with respect to research costs.

To conclude, this section opened with a number of
questions on the nature of computer simulations and
their relation to analytical models. As we have seen,
the answer to the question of whether computer sim-
ulations constitute a different style of reasoning from
that of analytical models depends on the level of analy-
sis we consider. The differences between analytical and
simulated models appear clearer when we look more
closely at the two methods: Computer simulations are
particularly apt to deal with complex systems, even
though they do so at the cost of dispensing with ana-
lytical solutions. At a more general level, however, the
two practices can be seen to be similar: They both con-
cern the formulation of models and their manipulation
for the achievement of results (Table 19.1). Computer
simulation should not be taken as a remedy for the prob-
lems that affect analytical models, such as whether and
under what conditions we are justified in transferring
their results to real-world phenomena [19.51]. In these
respects, computer simulations deal with issues similar
to those dealt with using analytical models, if not with
more complicated ones. This, however, does not consti-
tute a reason to avoid their adoption. Rather it indicates
that scientists’ efforts are needed to meet the challenges
that this new methodological tool offers to actual scien-
tific practice.

19.4 Epistemology of Models

Scientific models, both analytical and simulation-based,
are used for a variety of purposes: Some are used for
heuristic or pedagogical reasons; others for prediction
or explanation of socio-economic phenomena; still oth-
ers are built and used with some practical application in
mind. The use of models for these purposes, however,
has been considered far from unproblematic. Clearly,
the source of the problem depends to some extent on the
specific purpose to which models are put. For example,
von Thünen’s model can be thought of as yielding the
prediction that, other things being equal, the production
of goods that are cheap to transport will take place far-
ther away from the central market. If this prediction is
not fulfilled, it might be because the real situation we
are considering is not as described in the model. This
is something to be expected, if we consider that von
Thünen’s model abstracts away from many of the fac-
tors that in reality have an impact on the localization of

economic activities. The same model can also be seen
as providing an explanation of the formation of a pat-
tern of concentric rings around the market, if such is
observed, by pointing to the transportation cost of the
goods as the cause of the phenomenon. However, even
if such a pattern is observed, the question remains as
to whether the cause of its emergence is in fact the one
theorized in von Thünen’s model. Similar issues arise
also with respect to Schelling’s model, which assumes
that the only factor affecting an agent’s decision about
where to live is the color of other people in a stylized
neighborhood. Obviously, in the real world many other
factors, such as housing prices and commuting distance,
influence individuals’ location choices.

Skeptical positions regarding the possibility of ac-
quiring knowledge about the social world by means of
hypothetical models are often based on the observation
that models typically contain a number of false assump-
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tions, and it is unclear how accurate predictions or true
explanations can be derived from models that are partly
false. No doubt, false assumptions are also employed
in the natural sciences, and the role of scientific ideal-
izations is likewise central to the philosophical debate
about modeling in the natural sciences. The presence of
false assumptions, however, has been regarded as be-
ing a particularly acute problem in the social sciences.
It has been argued that whereas in the physical sciences
it is possible to test idealized models by recreating the
same conditions in the laboratory, in the social sciences
this can rarely be done. Moreover, unlike the natural
sciences, the social sciences typically lack general theo-
retical principles (or laws) that indicate how deviations
from the model’s assumptions will affect the result in
the real world. For instance, suppose that our model
of a falling object assumes that there is no air resis-
tance. The effect of air resistance on the acceleration of
a feather falling on the floor can be calculated with the
appropriate formula of classical mechanics. In social
science, there are only few, if any, general principles
of this kind [19.21].

Nevertheless, hypothetical modeling is regarded as
a legitimate style of reasoning in many quarters of the
social sciences. Social scientists do distinguish between
good and bad models in ways that do not necessarily
have anything to do with an attempt at direct empiri-
cal testing. Both von Thünen’s and Schelling’s models
enjoy a high standing in the social sciences, and their
results are generally believed to be relevant, even if not
fully or straightforwardly applicable to the real world.
How then are such judgments made? And are they le-
gitimate? The questions related to whether and when
it is legitimate to use models for epistemic and practi-
cal purposes has been at the center of the philosophical
debate. However, there is very little agreement among
philosophers as to how to address these questions. Be-
low, we reconstruct the discussion of how hypothetical
modeling is and should be used in economics and the
other social sciences by organizing the different per-
spectives around the functions of models that are taken
as primary:

1. To make qualitative predictions
2. To isolate mechanisms or capacities
3. To learn about possibilities
4. To help with inferences
5. To design socio-economic mechanisms.

19.4.1 Instrumentalism
and Predictive Ability

According to an instrumentalist interpretation, if
a model yields accurate predictions, then the truth or

falsity of its assumptions does not matter. This position
is well exemplified by Friedman’s position advocated
in his famous essay The methodology of positive eco-
nomics [19.52, p. 14]:

“In so far as a theory can be said to have assump-
tions at all, and in so far as their realism can be
judged independently of the validity of predictions,
the relation between the significance of a theory and
the realism of its assumptions is almost the opposite
of that suggested by the view under criticism. Truly
important and significant hypotheses will be found
to have assumptions that are wildly inaccurate de-
scriptive representations of reality, and, in general,
the more significant the theory, the more unrealistic
the assumptions (in this sense).”

The Friedmanian version of instrumentalism has
been very popular among economists; the result has
been that the impression that abstract modeling was
somehow at odds with a commitment to realism has
been fostered. Independently of general philosophical
arguments for or against instrumentalism about mod-
els, this version of instrumentalism seems unsuitable as
a defence of social scientific modeling, especially when
it comes to theoretical models. As discussed above, in
the social sciences theoretical models can seldom be
confronted with data to test their qualitative predictions
and, when they are, their predictive record has not been
spectacular. Thus, even if some models are used and
defended because of the correctness of their qualita-
tive predictions, instrumentalism about social scientific
models is not widely entertained by philosophers, who
have sought to offer alternative accounts of the episte-
mology of models.

19.4.2 Isolation of Causal Mechanisms
or Capacities

Another strategy for dealing with the problem of unre-
alistic assumptions is to argue that not every assumption
has to be true, or descriptively accurate, in order for
the model to tell something about the world. Even if
there are differences between their philosophical com-
mitments, influential advocates of this position include
Mäki and Cartwright [19.16, 17, 23, 25, 28, 53–56]. As
mentioned above, according to Mäki, unrealistic com-
ponents of models serve to isolate a mechanism of
interest from disturbing factors. It is precisely thanks
to these falsehoods that the operation of a mechanism
can be studied in isolation from interfering factors.
In Mäki’s interpretation, therefore, models with false
components can deliver truths if and when the isolated
mechanism resembles the real-world target in relevant
respects and degrees [19.57].
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Figure 19.2 depicts the way in which resemblance
between model and target is supposed to explain why
the model is a successful model of a given phenomenon.
Success here is not only of a predictive kind. Mäki’s
account is meant to encompass explanation as well:
His claim is that, if the model successfully explains
a phenomenon, this is because it resembles the target in
relevant respects and degrees. How this is established
in practice constitutes an altogether different challenge,
which as we will see partly induces some authors to
question the extent to which models can in fact provide
explanations. As an illustration of Mäki’s position, con-
sider again his interpretation of von Thünen’s model
(Sect. 19.A): The localization of agricultural activi-
ties is explained, at least in principle, in terms of the
mechanism that relates distance and revenue; it is this
mechanism which is to be judged either true or false.
In other words, what matters is that the localization of
economic activities depends on the distance from the
market as described in the model, even if, due to the
interference of other factors, we do not observe a con-
centric pattern. Mäki’s account can be seen as a direct
response to some criticisms of unrealistic models in so-
cial science, because it points out that the mere presence
of false assumptions does not in itself prevent the pos-
sibility that the model is true about important aspects of
the target system. Hence, unrealistic models should not
be dismissed out of hand, but evaluated on a case-by-
case basis.

According to Cartwright, models can be seen as
isolating causal capacities. Many false assumptions are
introduced with the purpose of building a hypothetical
situation in which those capacities would act undis-
turbed from the effects of disturbing factors. Unlike
Mäki, however, she maintains that abstract models,
that is, models in which the operation of a capacity
is examined by abstracting away from concrete situa-
tions or system-specific details, cannot be meaningfully
interpreted as providing explanations of real-world phe-
nomena. For such models to be used to understand
real-world phenomena, they have to undergo a pro-
cess of concretization: The factors that can potentially
affect the operation of the isolated capacity in the con-
crete situation of interest should be reintroduced in the
model.

Cartwright has been rather skeptical that many
models in economics and in the social sciences more
generally have the right features to be used for un-
derstanding the social world – for two main rea-
sons [19.21]. First, socio-economic phenomena are
often brought about by many causes, which do not
combine vectorially making it hard if not impossible
to predict their net effect when they interact. More-
over, these causes often do not have capacities stable

Phenomenon
(localization of

agricultural
activity)

Mechanism
(relating

distance and
revenue)

Model

Relevant
resemblance

IsolationExplanation

Fig. 19.2 Relevant resemblance between model and phenomenon
as the basis for successful inference

enough to support generalizing from their behavior in
the isolated model to their behavior in the world. Fi-
nally, compared to physics, the social sciences have
few theoretical and empirical principles on which to
rely for the derivation of conclusions about phenom-
ena of interest. Therefore, deriving conclusions from
these few theoretical and empirical principles requires
a wide range of assumptions that do not serve the pur-
pose of isolating capacities, but are instead needed to
lend structure to the models while at the same time
allowing the models to be (mathematically) tractable.
Cartwright’s concern is that the models’ conclusions
might be artifacts of these assumptions rather than gen-
uine effects of the capacity in isolation. According to
Cartwright, these assumptions are at risk of overly con-
straining the models, whose results, as a consequence,
would often be artifacts of such over-constraining as-
sumptions rather than genuine effects of the capacity
in isolation. The scarcity of well-established theoretical
principles is a problem that economics shares with the
other social sciences. Nevertheless, one of the charac-
teristics peculiar to economics is its strong commitment
to a small set of axioms. Cartwright’s worry might be
less of a problem in fields that are ready to use a wide
range of behavioral assumptions as well as to rely on
agent-based modeling. This flexibility, however, might
come at a cost: One often-heard criticism is that there
is a flavor of the ad hoc in the way agent-based simula-
tions are used in social science [19.7, 12].

19.4.3 Learning About Possibilities

Thus far, we have been taking for granted that mod-
els have specific real-world targets that they are taken
to represent. Some social scientific models, however,
do not seem to represent any specific target, and thus
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they lack a representational link to the real world. Such
target-less models deserve a discussion about whether
they offer opportunities for learning about the world
and, if they do, what kind of learning [19.44, 58–61].
Let us go back to Schelling’s model, which, according
to Grüne-Yanoff, does not try to represent any particu-
lar city or any type of city, thereby making the issue of
model-target similarity seem meaningless [19.59]. The
only bit of the model that is informed by the real world
is the assumption that people have preferences for not
being in a minority. According to Grüne-Yanoff, evalu-
ating the model as a representation by inquiring about
its similarity to a city, or to cities in general, would force
us to conclude that it is defective. The model, how-
ever, still offers opportunities to learn about the world,
because it teaches us that, contrary to prior belief, resi-
dential segregation need not be brought about by racist
preferences. By describing how it is possible for the
phenomenon of segregation to come about rather than
how the phenomenon has actually occurred, the model
gives us a how-possibly explanation as opposed to
a how-actually explanation [19.62]. For Grüne-Yanoff,
learning from a model amounts to a justifiable change in
one’s confidence in one or more necessity or impossibil-
ity hypotheses:We learn from Schelling’s model insofar
as it justifiably changes “one’s confidence in hypothe-
ses about racist preferences being a necessary cause
of segregation” [19.60, p. 7]. Grüne-Yanoff’s approach
makes sense of why social scientists often talk about
models as indirectly providing insights about the world
rather than offering specific hypotheses about real sys-
tems, and of why in some cases little effort is spent in
applying models to those systems. However, the con-
cept of learning, which is supposed to replace that of
understanding or explanation, seems to be a heuristic
rather than an epistemic one. Unless criteria are laid
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Conclusion
Fig. 19.3 The inferentialist view of
models (after [19.63, p. 328])

out to specify how the model justifies one’s change
in confidence, learning becomes a rather subjective af-
fair [19.64, 65].

19.4.4 Inferential Aids

According to an inferentialist approach to models, the
question of how models can teach us about a target
system is ill posed, because models are tools to help
scientists’ inferential processes rather than autonomous
entities capable of delivering information, learning or
explanation [19.66–68]. Models are not abstract enti-
ties which social scientists manipulate to learn about
something else; in fact, the very idea of manipulating
an abstract entity sounds rather suspect. According to
the inferentialists, models are tools that aid inferences
from a set of assumptions to a conclusion; they help
“to derive some conclusions about the empirical sys-
tem, starting from information extracted from this same
system” [19.67, p. 103; emphasis in the original]. As
depicted in Fig. 19.3, the modeling activity (on the
right-hand side) aids inferences from premises to con-
clusions about the phenomenon (on the left-hand side).
Denotation, demonstration and interpretation refer to
three stages of the modeling activity: First, aspects of
the phenomenon are denoted by specific elements of
the model, results are then derived within the model,
and finally the results are interpreted again in terms
of the phenomenon [19.63]. The special features of
models as scientific tools are those that make them
useful for inference-making by expanding our limited
cognitive abilities. According to the inferentialist ap-
proach, the relationship between (good) representation
and (correct) inference is inverted: It is its usefulness for
drawing correct inferences that makes a model a good
representation, not vice versa. In other words, while for
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representationalism a model helps draw correct infer-
ences about its target only if it is a good representation,
for inferentialism, if by using a model we are able to
draw correct inferences about a target, then we can say
that the model represents its target well enough. Saying
this does not add much since there is nothing of sub-
stance in the relation of representation itself.

The difference between the two accounts can be fur-
ther appreciated by comparing Fig. 19.2 and Fig. 19.3.
Whereas in the inference described in Fig. 19.2 it is the
symmetric relation of resemblance that makes a model
a representation of the target phenomenon, in the case
described in Fig. 19.3, it is first the activity of deno-
tation and then that of interpretation that translate the
inferences reached through the model into conclusions
about a phenomenon. The goodness of a model, in turn,
depends on the number and variety of successful in-
ferences that it enables and on the ease with which
it allows the user to draw those inferences. The in-
ferentialist approach, however, raises the questions of
how to establish whether the inferences are correct,
and, if they are, what explains their success. Different
answers are possible. De Donato and Zamora Bonilla
maintain that what matters is success in prediction and
intervention, but this answer casts doubt on a large por-
tion of social scientific modeling: As mentioned above,
few such models yield successful predictions and they
rarely function as blueprints for interventions (however,
see Sect. 19.4.5 for a counter-argument). In contrast,
Kuorikoski and Ylikoski claim that explanatory success
is itself explained by the model having captured some
or another portion of the causal structure responsible for
the phenomenon, bringing them close to the isolationist
position.

19.4.5 Models as Blueprints for the Design
of Socio-Economic Mechanisms

Philosophers of social science have not only been in-
terested in the fit between hypothetical models and
the phenomena they seek to represent, but also in the
inverse relation, namely, in the role of hypothetical
models in the design of socio-economic mechanisms.
An example of successful institutional design guided by
theoretical models – and of the broader phenomenon
of economic engineering – is the auction mechanism,
which a group of economists was asked to draw up
for the efficient distribution of radio-electronic fre-
quencies by the federal communications commission
(FCC). Guala regards the FCC example as an instance
in which, rather than the theoretical model trying to
represent a real-world phenomenon, the real world is
molded so as to resemble the model as closely as possi-
ble [19.69, p. 456; emphasis in the original]:

“According to a widely shared view of scientific
knowledge, the main task of the theorist is to
explain spontaneously occurring and experimental
processes, by designing an appropriate model [. . . ]
The FCC case belongs to an altogether different
kind of scientific activity, proceeding in the op-
posite direction, from models to mechanisms and
processes.”

Obviously, the process from the model to the de-
sign of the mechanism is not a straightforward one. In
the FCC auction mechanism, for example, there was no
simple way of implementing existing and highly ab-
stract auction models because the real-world situation
had specificities that needed to be taken into account.
This required tinkering with models as well as probing
them experimentally in a back-and-forth process that
led to the design of the mechanism that was eventually
implemented. Interestingly, it is precisely the case of
the FCC auction mechanism that Alexandrova uses to
argue that models do not provide explanations that are
directly applicable to real-world situations [19.70].

According to Alexandrova, the theoretical models
were only indirectly implicated in this successful case
of economic engineering; rather it is the experimental
efforts that should be credited with the achievement.
By choosing this example, she seems to suggest that
there is nothing relevantly different between usingmod-
els to explain the working of existing institutions and
using them to design new institutional arrangements;
in both cases, the models merely provide templates
for the formulation of causal hypotheses. In particular,
Alexandrova proposes the view that models are “open
formulae” taking the following form: “In a situation
of type x with some characteristics that may include
C1 � � �Cn, a certain feature F causes a certain behav-
ior B”, where x is a variable that needs to be specified,
F and B refer to cause and effect and the Ci refers to
the conditions under which F causes B. It is only when
x is specified that the open formula becomes a causal
claim [19.70, 71].

The reason is that often it is either impossible to
know whether the modeling assumptions are satisfied
in a particular context of application, or it is known that
they cannot be satisfied at all. To illustrate, let us re-
turn to von Thünen’s model. While the open formula
would be something like in a situation such as type x,
transportation costs T cause the location of economic
activities according to pattern L, a causal hypothesis
would say that in a situation in which the transportation
costs depend only on the kind of good to be transported
and on the distance from the market (ci D f .d/), the
costs cause a concentric distribution of economic ac-
tivities around the market (plus other conditions). This
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hypothesis needs to be subjected to empirical or ex-
perimental testing. The characterization of the kind of
situation in which F causes B need not correspond to
the assumptions of the model, however. So the causal
hypothesis will not specify that the town has no spatial
dimension (assumption (5) in Sect. 19.A), as we already
know that this assumption cannot be satisfied by any
real-world system.

Whether or not it is in fact the experimental efforts
that ultimately identified the successful auction mecha-
nism, the FCC case points to the possibility that highly
abstract models, which are not representations of any
real-world phenomenon to begin with, can nevertheless
be used as guides to the design of successful institu-
tional arrangements. As Guala suggests, such uses of
models distinguish the engineering ambitions of the
social sciences – an aspect of model-based social sci-
ence connected with wider debates about the allegedly
unique capacity of the social sciences to influence their
object of study [19.69].

19.4.6 Where Do We Go From Here?

The question of when it is legitimate to use theoretical
models for epistemic and practical purposes is not yet
settled. It appears to be rather uncontroversial that dif-
ferent kinds of models are suitable for aiding different
kinds of inferences: Some models can be used to make
inferences about specific targets (the pattern of con-

centric rings around a particular city) or about generic
targets (the localization of agricultural activity), while
other models do not have a target at all. Whereas in the
latter case the inferences might be of the how-possibly
kind, in the former cases, the model might be said to
be explanatory or to help with explanatory inferences,
provided other conditions are also met. The challenge
is to identify such conditions. Although, according to
a very general principle, for purposes of explanation
and possibly reliable prediction and control, a model
should somehow capture the relevant features of the
phenomenon it targets, different bits of the model need
to be empirically confirmed, depending on the kind of
inferences at stake. This is where model manipulation
in the form of robustness analysis becomes impor-
tant: The manipulation of modeling assumptions helps
to identify which components of the model are cru-
cial for obtaining the result we are interested in. It is
these components that need to be empirically valid, not
the whole. This seems to hold also when the model’s
crucial assumptions are satisfied, not because they ac-
curately describe relevant features of their target, but
because the conditions for those assumptions to hold
true have been created by design. Although the real
world, however engineered, will rarely, if ever, ap-
proximate the model in every detail, at least in some
successful instances it can be molded so that the rele-
vant features – those that drive the modeling result –
are in place.

19.5 Conclusions

The social sciences are now undergoing significant
methodological change. Experimentation both in the
laboratory and in the field has become an important
addition to social scientists’ toolkit, not only for the-
ory testing, but also for theory formation and policy
design. There are also important new developments re-
lated to the availability of large databases, as well as
means to analyze them that were previously unavail-
able. In all this, not only has modeling become more
widespread, but also new modeling techniques such

as agent-based simulation are making headway. It has
even been suggested that computational science may
entail a new reorganization of the sciences around com-
putational templates that cut across the natural and
social sciences [19.72]. The place of modeling within
the arrays of styles that characterize the social sci-
ences is significantly changing, and it remains to be
seen how the different styles will interact to produce
scientific knowledge about social and economic phe-
nomena.
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19.A Appendix: J.H. von Thünen’s Model of Agricultural Land Use
in the Isolated State

Von Thünen’s model of agricultural land use describes
how the distance from a market affects the distribu-
tion of agricultural productions around a city [19.73].
This model is considered to be one of the first examples
of modern economic modeling, and it is still a classic
model in geography and urban economics from which
an entire tradition of models of land use in urban spaces
has originated. Von Thünen’s model has also received
some attention in the philosophy of economics, and
thanks to its analytical simplicity, it is particularly suit-
able for illustrating some of the ideas discussed in this
chapter [19.3, 23, 74].

Von Thünen’s localization model is based on a set of
assumptions that describes a homogeneous and isolated
agricultural space in which a single town is located:

1. The area is a plain, i. e., there are no mountains or
valleys

2. There are no streets or navigable rivers
3. The plain is completely cut off from the outside

world
4. Climate and fertility are uniform across space
5. The town is located centrally and has no spatial di-

mension
6. All markets and industrial activities take place in the

town
7. Production costs are constant across space
8. Transportation costs are directly proportional to the

distance, the weight and the perishability of the
goods

9. Selling prices are fixed and the demand is unlimited
10. Farmers have complete information and they act to

maximize their revenue.

Under these assumptions, a pattern of concentric
rings around the town emerges. Dairying and intensive
farming (vegetables and fruit) occupy the ring closest
to the town, because these products are perishable and
incur the highest transportation costs. Timber and fire-
wood are located in the second ring, because wood is
heavy and hence difficult and costly to transport. The
third ring consists of extensive farming of crops, such as
grain for bread, that are more durable than fruit and less
heavy than wood. On the outermost ring stock farm-
ing and cattle ranching take place, because animals can
walk to the city to be sold at the market and thus have
low transportation costs.

This result can also be described in analytical terms
by determining which production is most profitable at
different distances from the town.

The revenue r of each agricultural production con-
sists in its selling price p minus its production and
transportation costs. Since the selling price and the
unitary production and transportation costs are fixed,
the revenue depends only on the distance from the
city

ri.d/D .p� c/x� tdx iD fA;B;Cg ;

where x is the quantity of the good, c the production
cost per unit, t the transportation cost per unit and d
the distance from the market. The apex i indicates the
kind of agricultural production: Dairying and intensive
farming A, timber and firewood B, and extensive farm-
ing C.

The slope of each revenue curve depends on trans-
portation cost and distance �td.

The descending curves in Fig. 19.4 represent the
revenue of each production depending on its distance
from the town; e.g., at distance a it becomes more prof-
itable to produce product B.

A a b c

B

C

rA

rB

rC

Distance

Revenue

Town

Distance

Fig. 19.4 The production revenue and the land use in von
Thünen’s model (after [19.75, p. 76])
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19.B Appendix: T. Schelling’s Agent-Based Model of Segregation
in Metropolitan Areas

Thomas Schelling’s work on racial segregation paved
the way for the use of simulations in the study of social
phenomena. In his seminal work, Schelling studied how
macro-phenomena, such as segregation, can emerge as
an unintended effect of the combination of many in-
terrelated decisions [19.76]. Racial sorting is a case in
point. Segregation has been proven to occur as a side
effect of the preference of individuals for having a few
neighbors of the same ethnic group, rather than as the
consequence of a preference for segregation itself.

Schelling represented the segregation process by
means of a checkerboard and dimes and pennies, stand-
ing respectively for a certain metropolitan area and for
the individuals of two different groups (Fig. 19.5). The
model is based on a set of assumptions that describe an

Fig. 19.5 Schelling’s checkerboard: Initial and final configuration
(after [19.76, p. 155–157])

globals [
 percent-similar ;; on the average, what percent of a turtle's neighbours
  ;; are the same color as that turtle?
 percent-unhappy ;; what percent of the turtles are unhappy?
]

turtles-own [
 happy? ;; for each turtle, indicates whether at least %-similar-wanted percent of
  ;; that turtles' neighbours are the same color as the turtle
 similar-nearby  ;; how many neighbouring patches have a turtle with my color?
 other-nearby ;; how many have a turtle of another color?
 total-nearby ;; sum of previous two variables
]

to setup
 clear-all
 if number > count patches
  [ user-message (word "This pond only has room for " count patches " turtles.")
   stop ]

 ;; create turtles on random patches.
 ask n-of number patches
  [ sprout 1
    [ set color red ] ]
 ;; turn half the turtles green
 ask n-of (number/2) turtles
  [ set color green ]
 update-variables
 reset-ticks
end Fig. 19.6 Netlogo code of Schelling

segregation model (after [19.77])

idealized metropolitan area and its inhabitants. Exam-
ples of such assumptions are:

1. There are only two kinds of agents, Blacks and
Whites

2. Agents’ decisions only depend on preferences re-
garding their neighbors

3. The city is uniform, i. e., there are no architectural
or topological boundaries that constrain individual
choices

4. Agents move randomly in space
5. There are no costs of moving from one point to an-

other.

On the checkerboard it is possible to track the
movements of the agents and to observe how the con-
figuration of the neighborhood changes over time.

The resulting dynamics reflect the individual deci-
sions to move to areas whose composition meets the
agents’ preferences. Rather than obtaining analytical
solutions, Schelling’s model explores the conditions un-
der which segregation emerges by means of local rules.
What it shows is that, regardless of the initial position
of the agents and the spatial configuration, given a cer-
tain range of people’s preferences, clusters of neighbors
of the same color eventually emerge.

Even though agent-based models do not need to
be implemented on a computer, nowadays they are of-
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ten used together. The premise is to build a model that
captures the relevant variables of the agents’ decisions,
such as personal preferences and responses to other
agents’ behavior and to the context. Next, a way has to
be found to implement the model and the other compo-
nents that characterize the system – such as the network
structure – in a computer code. Call the set of relevant
factors that are external to the model its environment.
Together, the model and the environment constitute the
algorithm that runs on the computer.

Figure 19.6 shows an extract of the algorithm of the
segregation model implemented on NetLogo. Each run
of the program corresponds to a step in the simulation,
which in turn represents a change in the system. The
evolution of the system can be represented graphically
by means of software that transforms the numerical
analysis into visual representations (Fig. 19.7).
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20. Model-Based Diagnosis

Antoni Ligęza, Bartłomiej Górny

Diagnostic reasoning is an activity aimed at finding
the causes of incorrect behavior of various tech-
nological systems. In order to perform diagnosis,
a typical diagnostic system should be equipped
with the expert knowledge of the domain and
statistical evidence of former failures. More ad-
vanced solution combines model-based reasoning
(MBR) and abduction. It is assumed that a model
of the system under investigation is specified. Such
a model allows us to simulate the normal behavior
of the system. It can also be used to detect incorrect
behavior and perform sophisticated reasoning in
order to identify potential causes of the observed
failure. Such potential causes form a set of pos-
sible diagnoses. In this chapter, formal bases for
the so-called model-based diagnostic reasoning
paradigm are presented and application exam-
ples are discussed in detail. A method of modeling
system behavior with the use of causal graphs is
put forward. Then, a systematic method for dis-
covering all the so-called conflict sets (disjunctive
conceptual faults) is described. Such conflict sets
describe sets of elements in such a manner that in
order to explain the observed misbehavior at least
one of them must be faulty. By selecting and re-
moving such elements from all conflicts sets – for
each conflict set one such element – the proper
candidate diagnoses are generated. An example
of the application of the proposed methods to
the three-tank dynamic system is presented and
some bases for on-line generation of diagnoses
for dynamic systems are outlined, together with
some theorems. The chapter introduces an easy
and self-contained material being an introduction
to modern model-based diagnosis, covering static
and dynamic systems.
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Diagnostic reasoning can be considered as a cover
name for man and machine inference activities aimed
at discovering what is wrong when some systems do
not work as expected [20.1–3]. In fact, it constitutes
a set of mutually complementary paradigms of infer-
ence with the ultimate goal to produce a set of rational
explanations of the observed misbehavior of some sys-
tems under consideration. Diagnostic reasoning often
combines causal reasoning with domain experience
including statistical and expert knowledge. Hence, di-
agnostic reasoning makes use of the so-called shallow
knowledge and in the case of themodel-based diagnosis
the deep knowledge.

Shallow knowledge refers to empirical knowledge
based on numerous observations and experience, typ-
ical for practitioners, usually encoded with rules and
taking the form of the so-called expert system [20.4].
The diagnosed system is usually considered as a black
box where only inputs and outputs are known, and the
expert system covers the operational knowledge about
its behavior, properties, and possible failures in the form
of if–then rules. The development of the rules is based
on experience documented with accumulated records.

On the other hand, deep knowledge refers to the
contents of the box (the term white box is sometimes
used) and mathematical models of system behavior.
Hence, deep knowledge is the knowledge of the internal
structure, components, and their interactions. It allows
us to simulate the behavior of the system for any admis-
sible input conditions.

Diagnosis is usually carried out by domain experts,
and expert knowledge hardly undergoes any smart
formalization. Nevertheless, some most successful ap-
proaches mimic diagnostic reasoning by the combina-
tion of abduction/deduction including causal inference,
model-based reasoning (MBR), and case-based reason-
ing (CBR). Let us briefly explain the meaning of these
terms in practice.

Abduction [20.5, 6] consists in looking for valid ex-
planations for observed effects. In general, it is not
a valid inference rule. The result of abductive inference
is a set of hypotheses explaining what is observed; the
hypotheses must be consistent with the knowledge at
hand.

Deduction [20.6–8] consists in looking for conse-
quences of some assumptions and initial knowledge at
hand. In general, it is a valid inference rule. The result
of deductive inference is a set of facts true under the
assumptions and background knowledge.

Model-based reasoning [20.1, 2] refers to reasoning
about system behavior and properties on the basis of its
mathematical model. Note that no practical experience
or observations are necessary. Complete information on
the system can be gathered during a single session of
model investigation.

In constrast to deep knowledge and MBR,
CBR [20.9–11] is in opposite to using deep knowledge
and MBR. It consists in gathering a number of cases
(in the case of diagnosis – failure descriptions and fault
identifications) to be stored and used as patterns for
solving new problems. Case-based reasoning looks for
an identical case which occured in the past, or a simi-
lar one; in the latter case, reasoning by analogy can be
used.

The process of fault diagnosis of technical systems
typically requires the use of different methods of knowl-
edge representation and inference paradigms. The most
common scenario of such a process consists of the
detection of the faulty behavior of the system, classi-
fication of this behavior, search for and determination
of potential causes of the observed misbehavior, that is,
generation of potential diagnoses, verification of those
hypothetical diagnoses, and selection of the correct one,
and finally a repair phase.

There exist a number of approaches and diagnos-
tic procedures having their origin in very different
branches of science, such as mechanical engineering,
electrical engineering, electronics, automatic control,
or computer science. In the diagnosis of complex
dynamical systems, approaches from automatic con-
trol play an important role ([20.12–14]; a good state
of the art can be found in the handbook [20.3]).
The point of view of computer science, and espe-
cially artificial intelligence (AI) is presented, for ex-
ample, in [20.1, 2, 15]. A good comparative analysis
of some selected approaches was presented in [20.16]
and in [20.17]. A recent, comprehensive in-depth study
aimed at comparison of approaches emerging from
AI and from classical automatic control is presented
in [20.18].

This chapter is devoted to the presentation of some
selected approaches originating from AI, located in
the area of model-based reasoning (or MBR) and
based on consistency-based reasoning [20.7, 19–22].
The presentation is based on the authors’ experience
and some former publications including [20.23–29].
Many concepts and results were prepared during the
work on [20.30].
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20.1 A Basic Model for Diagnosis

Consider the mathematical point of view on the diag-
nostic process. Taking such a viewpoint, the problem of
building a diagnostic system, including issues of rep-
resentation and acquisition of diagnostic knowledge, as
well as the implementation of diagnostic reasoning en-
gine, can be considered as one way of searching an
inverse function or relation.

In fact, the problem of searching for diagnoses can
be considered as an inverse task to extended simulation
task; some specific features are as follows: (i) one ob-
serves a faulty behavior of the analyzed system (and
thus, apart from the knowledge about correct behavior,
also the one about faulty behavior should be acces-
sible), and then (ii) taking into account the observed
state (output), the main goal is not the reconstruction
of the input (control) but rather the causes of the failure
manifestations. Such causes can be considered as faulty
components of the system, or, at some more detailed
level, as wrong (faulty) parameter values produced by
these components.

For simplicity, assume that one of n system compo-
nents can become faulty, where each elementary fault
is of binary character – such a component can just
work or do not work correctly. Let D denote the set
of potential elementary causes to be considered and let
DD fd1; d2; : : : ; dng. Faulty behavior of the system can
be stated (detected) through the observation of one or
more symptoms of failure. Assume that there arem such
symptoms to be considered and their evaluation is also
binary. Let M denote the set of such symptoms, where
M D fm1;m2; : : : ;mmg. The detection of a failure con-
sists in the detection of the occurrence of at least one
symptom mi 2M. In general, some subset MC �M of
the symptoms can be observed to be true in the case
of a failure. The goal of the diagnostic process is the
generation of a diagnosis being any set DC � D, such
that taking into account the domain expert knowledge
and the system model it explains the observed misbe-
havior.

Let KB denote the knowledge base – in our case, the
model of the system behavior. Furthermore, let D� de-
note the components that are assumed to work correctly,
DC [D� DD, and let M� denote the failure manifes-
tations that are absent,MC[M� DM. More formally,
any valid candidate diagnosis DC must satisfy the fol-
lowing conditions

DC [D� [KBˆMC [M� ; (20.1)

and

DC [D� [KB[MC [M� 6ˆ ? : (20.2)

Condition (20.1) means that the diagnosis must ex-
plain the observedmisbehavior in view of the accessible
knowledge about the system. Condition (20.2) means
that the diagnosis must be consistent with the accessible
knowledge about the system and the currently observed
manifestations.

In the general case, the result of the diagnostic pro-
cess can consist of one ore more potential diagnoses;
these diagnoses – subsets of the set D – can be single-
element sets (i. e., the so-called elementary diagnoses)
or multielement ones. For simplicity, in a number of
practical approaches, only single-element diagnoses are
taken into account. In the case of complex, multiele-
ment diagnoses, the discussion is frequently restricted
to the so-called minimal diagnoses, that is, subsets of D
which explain the observed misbehavior in a satisfac-
tory way and simultaneously such that all elements of
them are necessary for the justification of the diagno-
sis.

For the sake of general consideration, it can be
assumed that there exists causal dependency between
elementary faults represented by the elements of D and
failure symptoms represented by the elements of M.
Hence, there exists some relation RC (i. e., a causal re-
lation), such that

RC � 2D � 2M ; (20.3)

that is, any failure being defined as a subset of D is as-
signed one or more sets of possible failure symptoms;
in certain particular cases, the failure – although oc-
curred – may also be unobservable.

Such approach, however, is indeterministic: a sin-
gle failure may be assigned several different sets of
symptoms of the observed misbehavior. Therefore, it is
frequently assumed that the causal dependency RC is of
functional nature, that is, RC is, in fact, the following
function

RC W 2D! 2M : (20.4)

In this approach, any failure causes some unique and
well-defined set of symptoms to occur. In this case, the
task of building a diagnostic system consists in find-
ing the inverse function, that is, the so-called diagnostic
function f , where f D R�1

C .
Unfortunately, in the case of many realistic systems,

the function RC is not a one-to-one mapping, so there
does not exist the inverse mapping in the form of a func-
tion.

Consider a simple example of such a system; let
it be the set of n bulbs connected serially (e.g., a set
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for a Christmas tree). An elementary diagnosis di is
equivalent to the ith bulb being blown. However, the set
of manifestations of the failure M D fm1g is a single-
element set, where m1 indicates that the bulbs are not
switched on. Even in the case, when the analysis is
restricted to considering single-element elementary di-
agnoses, there exists n potentially equivalent diagnoses;
each of them causes the same result with m1 being true.
If multielement diagnoses are admitted, then there exist
.2n� 1/ potential diagnoses.

In practice, the development of a diagnostic sys-
tem consists in finding the inverse relation R�1

C , and
more precisely it searches for this inverse relation dur-
ing the diagnostic process. In many practical diagnostic
systems, the diagnostic process is interactive, and ad-
ditional tests and measurements can be undertaken in

order to restrict the area of search. In the case of the se-
rially connected bulbs, such an approach may consists
in the examination of certain bulbs or rather groups of
them (an optimal strategy is that of dividing the circuits
into two equal parts).

Note that complex diagnostic systems use a variety
of technologies to deal with complexity; these include
hierarchical strategies for the identification of faulty
subsystem, interactive diagnostic procedures with the
use of supplementary tests, and observations aimed at
restricting the search area, accessible statistical data in
order to establish the most probable diagnoses, and ap-
ply heuristic methods in diagnosis. One of the basic
and frequently applied heuristics is considering only
elementary diagnoses. Another, more advanced one
consists in considering only minimal diagnoses.

20.2 A Review and Taxonomy of Knowledge Engineering Methods
for Diagnosis

20.2.1 Knowledge Engineering

Knowledge engineering (KE) methods occupy an im-
portant position both in technological system diagnosis
and in medical diagnosis [20.4]. They originate from
the research in the domain of AI, and, in particu-
lar, from those concerning knowledge representation
methods and automated inference. These methods are
good examples of practical applications of AI tech-
niques. They are mostly based on the algebraic, logical,
graphical, and rule-based knowledge representation and
automated inference methods [20.2, 28].

A characteristic feature of KE methods is that they
use mostly the symbolic representation of the domain
and expert knowledge as well as automated inference
paradigms for knowledge processing. They can also
make use of numerical data and models (if accessible)
as well as uncertain, incomplete, fuzzy, or qualitative
knowledge. A common denominator and core for all the
methods is constituted by mathematical logic.

The key issue of KE is knowledge representation
and knowledge processing; some other typical activities
include knowledge acquisition, coding and decoding,
analysis, and verification [20.4, 6]. Because of a specific
character of KE methods originating mostly from sym-
bolic methods for knowledge manipulation in AI, the
taxonomy of such methods is different than those of the
methods developed in the automatic control area [20.3]
and it constitutes some extension and complement. This
extension is oriented toward taking into account spe-
cific aspects of KE methods, while the taxonomy takes
into account both the applied tools and the philoso-

phy of specific approaches. In particular, in the case
of KE methods, some essential issues of diagnostic ap-
proaches are the following ones:

� Source and the way of specification of diagnostic
knowledge (model-based approaches vs experience,
statistics, and expert systems)� Applied knowledge representation methods (alge-
braic, numerical, logical, graphical)� Applied inference methods (abduction, deduction,
search)� Inference control mechanism (systematic search,
heuristic search).

The diagnostic knowledge can, in fact, be of two
different origins. First, it can be the so-called shallow
knowledge, having the source in input–output obser-
vations and experience. Such kind of knowledge is
also called expert knowledge in case it is appropri-
ately significant, and frequently its acquisition consists
in interviewing some domain experts. In this case, the
knowledge of the system model (the structure, prin-
ciples of work, mathematical models) is not required.
The specification of such kind of knowledge may take
the external form of a set of observations of faults and
assigned to them diagnoses, learning sequence of exam-
ples, or ready-to-use rules coming from an expert. The
approaches based on the use of shallow knowledge are
generally classified as expert systems methods.

Secondly, knowledge may be originating from the
analysis of mathematical models (the structure, equa-
tions, constraints) of the diagnosed system; this knowl-
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edge is referred to as the so-called deep knowledge.
In case such knowledge is accessible, the diagnostic
process can be performed with the use of the model
of the system being analyzed, that is, the so-called
model-based diagnosis is performed. The deep knowl-
edge takes the form of a specific mathematical model
(adapted for diagnostic purposes) and perhaps some
heuristic or statistical characteristics useful to direct di-
agnostic reasoning.

Most frequently, the specification of deep knowl-
edge includes definition of the internal structure and
dependencies valid for the analyzed system in connec-
tion with the set of elements, the faults of which are
subject to diagnostic activities, as well as the specifi-
cation of the current state of the system (observations).
The approaches based on the use of deep knowledge
are classified as model-based approaches. Obviously,
a wide spectrum of intermediate cases comprising both
of the above approaches in appropriate proportions are
also possible.

Knowledge representation methods include mostly
symbolic ones, such as facts and inference rules, logic-
based methods, trees and graphs, semantic networks,
frames, scenarios, and hybrid methods [20.3, 28]. Nu-
merical data (if present) may be represented with the
use of vectors, sequences, tables, etc. Mathematical
models (e.g., in the form of functional equations, dif-
ferential equations, constraints) may also be used in
modeling and failure diagnosis.

Reasoning methods applied in diagnosis include
logical inference (deduction, abduction, consistency-
based reasoning, nonmonotonic reasoning, and induc-
tion) as well as originating in logical methods for
knowledge processing in rule-based systems (forward
chaining, backward chaining, bidirectional inference),
pattern matching algorithms, search methods, case-
based reasoning, and other. In the case of numerical
data, various methods of learning systems, both para-
metric and structural ones, are also applied.

The control of diagnostic inference is mainly aimed
at enhancing efficiency, so that all the diagnoses (in
the case of complete search) or only the most probable
ones (in the case of incomplete search) are generated
as fast as possible, so that the obtained diagnoses are
ordered from the most likely ones to the most un-

likely ones. The applied methods include blind search,
ordered search, heuristic search, use of statistical in-
formation and methods, use of qualitative probabilities,
use of supplementary tests in order to confirm or reject
search alternatives as well as hierarchical strategies.

The following taxonomy of diagnostic approaches
is based on the KE point of view, and it takes into ac-
count mainly the type and way of diagnostic knowledge
specification and the applied methods of knowledge
representation.

20.2.2 Expert Methods

1. Methods based on the use of numerical data:� Pattern recognition methods in feature space� Classifiers using the technology of artificial neu-
ral networks� Simple rule-based classifiers, including fuzzy
rule-based systems� Hybrid systems.

2. Methods using symbolic data and knowledge (clas-
sical knowledge engineering methods, simple alge-
braic formalisms, graphic- and logic-based meth-
ods, and ones based on domain expert knowledge):� Diagnostic tests� Fault dictionaries� Decision trees� Decision tables� Logic-based methods including rule-based sys-

tems and expert systems� Case-based systems.

20.2.3 Model-Based Methods

1. Consistency-based methods:� Consistency-based reasoning using purely logi-
cal models (Reiter’s theory [20.22])� Consistency-based reasoning using mathemati-
cal, causal models, and qualitative models.

2. Causal methods:� Diagnostic graphs and relations� Fault trees� Causal graphs (CGs)� Logical abductive reasoning� Logical CGs.
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20.3 Model-Based Diagnostic Reasoning
Model-based diagnostic reasoning appears as a rel-
atively new diagnostic inference paradigm which is
based on a formal theory presented in the paper by Re-
iter [20.22]. The main idea of this paradigm consists
in the comparison of the observed system behavior and
the one which can be predicted with use of the knowl-
edge about system model. On one hand, such kind of
reasoning does not require an expert knowledge, long-
term data acquisition or experience, or a training stage
of the diagnostic system. On the other hand, what is
required is the knowledge about the system model al-
lowing for the prediction of its normal correct behavior.
More precisely, what is called for is the model of cor-
rect behavior of the system, that is, a model which can
be used to simulate the normal work of the system in
the case of lack of any faults.

An idea of such a diagnostic approach is presented
in Fig. 20.1.

Both the real system and its model process the same
input signals In. The output of the system Out is com-
pared to the expected output Exp generated with the use
of the model. The difference of these signals, the so-
called residuum R, is directed to the diagnostic system
DIAG. The residuum being equal to zero (with some
predefined accuracy) means that the currently observed
behavior does not differ from the expected one, that is,
the one obtained with the use of the model; if this is
the case, it may be assumed that the system works cor-
rectly.

In case some significant difference of the current be-
havior of the system from the one predicted with the use
of the model can be observed, then it must be stated that
the observed behavior is inconsistent with the model.

Model

DIAG

System
In Out

Exp

Adj

R

–

D

Fig. 20.1 A presentation of diagnostic activity

Detection of such behavior (or misbehavior, in fact)
implies that a fault occurs (under the assumption that
the model is correct and appropriately accurate), that is,
fault detection takes place.

In order to determine potential diagnoses, an appro-
priate reasoning allowing for some modifications of the
assumptions about the model must be carried out (in
the figure, it is shown with the use of the arrow mean-
ing a somewhat specific tuning of the model); in case, it
is possible to relax the assumption about correct work
of the system components in such a way that the pre-
dicted behavior would be consistent with the observed
one, then the modified model defines which of its ele-
ments may have become faulty. In this way, a potential
diagnosis DC can be obtained (or a set of alternative
diagnoses). The diagnoses are represented with sets of
system components which (potentially) are faulty, and
such that assuming them faulty explains in a satisfac-
tory way the observed misbehavior by regaining the
consistency of the observed output with the output of
the modified model.

20.4 A Motivation Example

In this section, a simple example of a system is intro-
duced. The work of the system is analyzed. It is used to
show:

1. The basic concepts, such as system inputs, system
outputs, internal variables, system components.

2. System structure and model.
3. How can the model-based diagnostic reasoning be

performed?

Let us consider the multiplier–adder system, as
introduced in [20.22]. The scheme of the system is pre-
sented in Fig. 20.2. The presented system is, in fact,
a nontrivial demonstration and benchmark system be-
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m3
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3

3

B

C

D

E

Fig. 20.2 A simple multiplier–adder system

ing a combined multiplier–adder; it is widely explored
in the domain literature [20.2, 28]; it is also used for the
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illustration of the FDI and DX procedures along with
the [20.16, 17] papers.

The system is composed of two layers. The first one
contains three independent multipliers m1, m2, and m3.
It receives the input signals A, B, C, D, and E and pro-
duces values of internal variables, namely X, Y , and Z.
The second layer is composed of two adders, namely
a1 and a2. It receives the values of the internal vari-
ables and produces the output values, namely F and G.
Only inputs (of the first layer) and outputs of the sys-
tem (of the second layer) are directly observable (i. e.,
they can be measured). The intermediate variables are
hidden and cannot be measured.

Note that the system has five internal components;
this can be written as

COMPD fm1;m2;m3; a1;a2g : (20.5)

Note that any of the components can be a cause
of single failure; hence, the set of potential diag-
noses D considered in Sect 20.1 can be considered as
DD COMP. The components are interconnected, as
shown in Fig. 20.2. The system has also five inputs,
three internal variables, and finally, two output vari-
ables.

In the following, we shall refer mostly to the classi-
cal diagnostic problem as follows. The current state of
the system is that the inputs are: AD 3, BD 2, CD 2,
DD 3, and ED 3. It is easy to check that – if the sys-
tem works correctly – the outputs should be F D 12
and GD 12. Since the current value of F is incorrect,
namely F D 10, the system is faulty. At least one of its
components must be faulty.

Now, let us ask, which component (or components)
is/are faulty. Note that, the fault of a component (or
multiple faults of several components) affects the value
of variable F (it is smaller than expected), but simulta-
neously does not affect the value of variable G (12 is
the correct value for the observed inputs).

The simplest approach may be based on the ob-
servation that the fault must be caused by an error of
a component responsible for producing the value of F.
In fact, one can expect a causal influence of the follow-
ing type: faulty component leads to the faulty value. In
order to perform the search, a simple CG presented in
Fig. 20.3 may be useful.

The bottom nodes of the graph correspond to faults
of components. The three top-level nodes correspond
to the observed values of output variables; in particu-
lar, the rightmost node marked with F�G corresponds
to the mutual relationship of signals F and G; in fact,
for the observed inputs, the values should be equal,
and, since they are not, one can also expect a double

G

m3

F–G

a1 a2

F

m2m1

Fig. 20.3 A simple CG for the multiplier–adder system

fault, where one component influences F (observed to
take value lower then expected) and G, and the other
fault improves the value of G so that it is correct. Such
a phenomenon is referred to as the effect of compensa-
tion.

Let us perform a diagnostic analysis at the intu-
itive level first. When considering the signal flow inside
the system, it can be observed that components of dis-
junctive conceptual fault (DCF) 1 D fm1;m2; a1g (here,
DCF stands for disjunctive conceptual fault – a set
defining a conflict; the definition of these terms will be
provided later on) are the only ones influencing signal
F. Similarly, components DCF2 D fm2;m3; a2g are the
only ones influencing signal G. Finally, components of
DCF3 D fm1; a1; a2;m3g are the ones responsible for
the symmetry of signals F and G. This is also visual-
ized with the CG presented in Fig. 20.3.

Now, we are at the core of model-based diagnos-
tic reasoning. Since the value of F is incorrect, at least
one of the components of DCF1 must be faulty. In other
words, assumption that all the elements of DCF1 are
correct is inconsistent with the observations. The set is
called a conflict set [20.22] or a disjunctive conceptual
fault (DCF) [20.29]. If considering single-element po-
tential diagnoses, all the three elements of DCF1 are
candidate diagnoses. (In fact, m2 is not a valid candi-
date for a single-element diagnosis; it also influences
the value of G, while no deviation of that value is ob-
served.)

But there is another problem to be explained. The
observed values of F and G considered together are
inconsistent with the model. Note that if all the com-
ponents were correct, then Z D C�E calculated by m3
must be equal to 6, and since G is observed to be 12,
Y (calculated backward and under the assumption that
a2 is correct) must also equal 6; hence, if m1 is correct,
then X must be 6 as well, and if a1 is correct, F would
be equal to 12. Since it is not the case, at least one of
the used components must be faulty, that is, DCF3 is
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also a conflict set (a disjunctive conceptual fault) – at
least one of its components must be faulty.

Now, in order to regain consistency of the observa-
tions with the system model, one must remove some of
the assumptions that all the components are correct. We
look only forminimal such explanations, since typically
we prefer the simplest possible diagnoses. And there are
four such explanations:

� fa1g is a single-element candidate diagnosis; it re-
pairs both DCF1 and DCF3� fm1g is another single-element candidate diagnosis;
it repairs both DCF1 and DCF3� fa2;m2g is a two-element candidate diagnosis; m2
repairs DCF1, while a2 repairs DCF3� fm2;m3g is another two-element candidate diagno-
sis; m2 repairs DCF1, while a2 repairs DCF3.

It is straightforward to observe that in the case of the
two-element diagnoses, the compensation phenomenon
is observed.

The diagnoses – in principle – are obtained as the
so-called hitting sets for all the conflict sets at hand.
Such a hitting set takes one element from each con-
flict. Hence, the conflicts are removed (repaired), and
the collection of taken in such a way components form
a candidate diagnosis. In the case of the first two – it
was the same element taken from both the conflict sets,
so that single-element diagnoses are yield.

In the following sections, an attempt to present the
formal theory underlyingmodel-based diagnosis is pre-
sented, and an approach to systematic generation of all
conflict sets on the base of CG is put forward. Then the
multiplier–adder example is revisited, and the formal
analysis of it is presented.

20.5 Theory of Model-Based Diagnosis

The theory of diagnostic reasoning using the system
model and based on the analysis of inconsistency of
the observed system behavior with the one predicted
with the use of system model was described by Re-
iter [20.22]. The basic ideas of this theory are presented
in brief in the following.

A basic definition in this theory is the definition of
a system.

Definition 20.1
A system is a pair (SD, COMP) where:

1. SD is a set of first-order predicate calculus formulas
defining the system, that is, the system description

2. COMP is a set of constants representing distin-
guished elements of the system (its components).

An example of such a system – the multiplier–
adder – has already been presented in this chapter and
shown in Fig. 20.2.

The model of the system SD describes its cor-
rect behavior. The distinguished elements appear in the
model (SD) and they are the only elements which are
considered to become faulty – the potential diagnoses
will be built from these elements only. In order to do
this, the system model is completed with formulas of
the form:AB.ci/which means that component cworks
correctly (AB stands for abnormal behavior).

The current behavior of the system is assumed to
be observed and values of certain variables can be mea-

sured. The representation of these observations can be
formalized in the form of a set of first-order logic for-
mulas; let us denote this set as OBS (OBS stands for
observations).

Note that an assumption of the form

f:AB.c1/; : : : ;:AB.cn/g
means, in fact, that each component of the analyzed sys-
tem works correctly. Hence, a set of the form

SD[f:AB.c1/; : : : ;:AB.cn/g
represents correct behavior of the system, that is, the
behavior which can be observed under the assumption
that all the components are not faulty. In the case at least
one of the components ci 2 COMP becomes faulty, the
set of formulas of the form

SD[f:AB.c1/; : : : ;:AB.cn/g[OBS
will become inconsistent. The diagnostic process con-
sists in searching for components which may have
become faulty, and as such, explain the misbehavior of
the system.

For intuition, a diagnosis in Reiter’s theory is a hy-
pothesis stating that some set of system elements being
a subset of COMP became faulty. Making such an as-
sumption must lead to regaining consistency of the
observed system behavior with the one predicted with
use of the model. For simplicity, only minimal diag-
noses will be considered explicitly.
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Definition 20.2
A diagnosis for the system with observations specified
by (SD, COMP, OBS) is any minimal set �� COMP,
such that the set

SD[OBS[fAB.c/ j c 2�g[
[ f:AB.c/ j c 2 .COMP��/g

is consistent.

Roughly speaking, one may say that a diagnosis for
some system failure which results with observed mis-
behavior is any minimal set composed of system com-
ponents, such that assuming all them to be faulty, and
assuming that all the other elements work correctly,
is satisfactory for regaining the consistency of the ob-
served behavior with a system model.

Direct search for diagnoses in the form of minimal
sets of components sufficient for regaining consistency
between the observed and predicted behavior based on
the analysis of the set of formulas given by (20.6) would
be a tedious task from the computational point of view.
In the case of multiple faults, one would have to search
for all single-element subsets, then two-element subsets
of COMP, etc., and each time such a subset should be
verified if it constitutes a diagnosis; some simplifica-
tions may consist in the elimination of any superset of
a diagnosis found earlier. In Reiter’s theory, further im-
provements are proposed.

The idea of a conflict set (or just conflict for sim-
plicity; recall also the name disjunctive conceptual fault
introduced in Sect. 20.4) is of key importance for the
theory of consistency-based diagnostic reasoning with
use of the system model. A conflict set is any subset
of the distinguished system elements, that is, COMP,
such that all items belonging to such a set cannot be
claimed to work correctly (i. e., at least one of them
must be faulty) – it is just the assumption about their
correct work which leads to inconsistency.

Assume that we consider a system specified as
a pair (SD, COMP), where SD is the theory describ-
ing the work of the system (i. e., system description)
and where COMP D fc1; c2; : : : ; cng is the set of dis-
tinguished system elements. Any of these elements can
become faulty, and the output of diagnostic procedure
is restricted to be a subset of the elements of COMP.

In diagnostic reasoning, it is assumed that the cor-
rect behavior of the system is fully described by the
theory of SD. Assumptions about the correct work of
system components take the form

:AB.c1/^:AB.c2/^ � � � ^:AB.cn/ :
Hence, assuming that the observed behavior is de-
scribed with the formulas of the set OBS and in the case

of lack of any faults, the set given by

SD[f:AB.c1/; : : : ;:AB.cn/g[OBS (20.6)

should be consistent. In the case of failure, however, the
set of formulas (20.6) turns out to be inconsistent. In or-
der to regain consistency, one should withdraw some of
the assumptions about the correct work of system com-
ponents of the form:AB.ci/. Such an approach leads to
one or several sets of the form fc1; c2; : : : ; ckg � COMP
of components such that at least one of them must have
become faulty. From a logical point of view, the as-
sumptions about such a conflict set are equivalent to
stating that the formula

AB.c1/_AB.c2/_ � � � _AB.ck/ (20.7)

is true. Obviously, formula (20.7) is true if AB.ci/ holds
for at least one i 2 f1; 2; : : : ; kg.

After Reiter [20.22], let us introduce a formal defi-
nition of a conflict set (conflict).

Definition 20.3
A conflict set for (SD, COMP, OBS) is any set
fc1; : : : ; ckg � COMP, such that

SD[OBS[ f:AB.c1/; : : : ;:AB.ck/g

is inconsistent.

For intuition, a conflict set (under the given obser-
vations and system model) is a set of components, such
that at least one of its elements must be faulty. Any
conflict set represents, in fact, a disjunction of poten-
tial faults. A conflict set is minimal if any of its proper
subsets is not a conflict set. Note that if the analysis is
restricted to minimal conflicts, then removing a single
element from such a conflict set makes this set become
no longer conflict. In other words, the system regains
consistency.

Now, let us define an important concept, that is,
a hitting set.

Definition 20.4
Let C be any family of sets. A hitting set for C is any
set H �SS2C S, such that H\S¤ ; for any set S 2 C.

A hitting set is minimal if and only if any of its
proper subsets is not a hitting set for C.

For intuition, a hitting set is any set having
a nonempty intersection with any conflict set; it is min-
imal if removing from it any single element violates the
requirement of nonempty intersection with at least one
conflict set.
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Having defined the idea of a conflict set and a hit-
ting set, we can present the basic theorem of Reiter’s
theory [20.22]:

Theorem 20.1
�� COMP is a diagnosis for (SD, COMP, OBS) if and
only if � is a minimal hitting set for the family of con-
flict sets for (SD, COMP, OBS).

Since any superset of a conflict set for (SD, COMP,
OBS) is also a conflict set, it can be shown that H is
a minimal hitting set for (SD, COMP, OBS) if and only
if H is a minimal hitting set for all minimal conflict
sets defined for (SD, COMP, OBS). This observation
(proved in [20.30]) leads to the following theorem be-
ing a fundamental result of Reiter’s theory:

Corollary 20.1
�� COMP is a diagnosis for (SD, COMP, OBS) iff �
is a minimal hitting set for the collection of minimal
conflict sets for (SD, COMP, OBS).

To summarize, the role of conflict sets in Reiter’s
theory is that they provide specifications of compo-
nents, such that for each conflict set, at least one
element must be faulty. By restricting the analysis to

minimal conflicts, one makes sure that by removing any
single element from such a set leads to the elimination
of conflict. Hence, the union of all such elements (i. e.,
a hitting set) allows for regaining global consistency;
it then constitutes a (potential) diagnosis. Of course,
for the considered system failure described with (SD,
COMP, OBS), there can exist many diagnoses explain-
ing the observed misbehavior.

In the case of the multiplier–adder system presented
in Fig. 20.2, the following conflicts were found

fa1;m1;m2g; fa1; a2;m1;m3g :

On the basis of them, all the potential diagnoses can
easily be found, that is,

D1 D fa1g; D2 D fm1g;
D3 D fa2;m2g; D4 D fm2;m3g :

Let us notice that only minimal diagnoses are found
(i. e., if some set is a diagnosis, then any of its supersets
will not be generated as a diagnosis) and that Reiter’s
theory allows for the generation of both single-element
diagnoses (single faults) and multielement ones (multi-
ple faults).

20.6 Causal Graphs

In model-based diagnosis, modeling of causal relation-
ships plays a very important role. It makes possible
pointing to the dependencies of potential faults of the
elements of the system under consideration on its ob-
served behavior, which is the result of the faults. The
knowledge about causal dependencies allows for effi-
cient diagnostic reasoning based on the direct use of
a causal model or some rules generated on the basis of
that model.

Let d denote any fault of some element of the di-
agnosed system. In the most simple case, it is assumed
that the fault can occur or not; from a logical point of
view, d may be considered to denote an atomic formula
of propositional logic. For the purpose of diagnosis, d
will be referred to as an elementary diagnosis, and as
a logical formula, it will be assigned logical value true
(if the fault occurs) or false (in case the fault is not ob-
served).

Analogously, let m denote a visible result of some
fault d; m can be observed in a direct way or can be
detected with the use of appropriate tests or measure-
ments. In the most simple case, manifestationmmay be
just observed or not, so as before from a logical point of

view, m can be considered to denote an atomic formula
of the propositional logic which can be assigned a logi-
cal value: true or false. For the purpose of diagnosis, m
will be referred to as a diagnostic signal or a manifes-
tation or just a symptom of a failure.

If there exists a causal relationship between d and
m it means that d, is a cause of m and m is an effect of
d. Let tp denote the time instant when some symptom
p occurred. For the existence of a causal relationship
between symptoms d and m, it is necessary that the fol-
lowing conditions are valid:

� dˆ m, that is, m is a logical consequence of d� td < tm, that is, a cause precedes its result in time� There exists a flow of a physical signal from symp-
tom d to symptom m.

The first condition – the one of logical conse-
quence – means that whenever d takes the logical value
of true, m must also take the logical value true. So, this
condition means that the existence of causal relation-
ship also requires the existence of logical consequence.
(Existence of logical consequence of the form d ˆm
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does not mean that there exists also causal relation-
ship, for example, the occurrence of d and m may be
observed as some independent results of some other,
external common cause.) This allows for the applica-
tion of logical inference models for the simulation of
systems behavior as well as for reasoning about possi-
ble causes of failure.

The second condition, that is, the one of precedence
in time means that the cause must occur before its re-
sult, and that the result occurs after the occurrence of
its cause. This implies some obvious consequences for
modeling of the behavior of dynamic systems in the
case of a failure.

The last condition means that there must exist a way
for transferring the dependency (a signal channel en-
abling the flow of the physical signal); lack of such
connection indicates that two symptoms are indepen-
dent, that is, there is no cause–effect relationship among
them. A more detailed analysis of theoretical founda-
tions of the causal relationship phenomenon from the
point of view of diagnosis can be found in [20.23, 25]
or [20.3].

The above presented model of the causal relation-
ship is, in fact, a simplest kind of the so-called strong
causal relationship; by relaxing the condition of logical
implication potential relationship can be obtained (in
such a case occurrence of d may, but need not necessar-
ily, mean the occurrence of m), including a causal rela-
tionship of probabilistic nature (characterized by some
quantitative or qualitative probability). For simplicity,
such extensions are not considered here. Another ex-
tension may consist in the causal relationship between
several cause symptoms and several result symptoms
described with some functional dependencies; as this
case is important for technical diagnosis, it will be con-
sidered in brief.

Let V denote some set of symptoms

V D fv1; v2; : : : ; vkg :
The discussion here is restricted to logical symptoms
taking the value of true or false. In some cases, it may
be observed that there exists a causal relationship be-
tween the symptoms of V constituting a common cause
for some symptom v and this symptom. In particular,
the following two cases are of special interest

v1 _ v2 _ � � � _ vk ˆ v ; (20.8)

and

v1 ^ v2 ^ � � � ^ vk ˆ v : (20.9)

In the first case, occurrence of at least one symptom
from V causes the occurrence of v ; it is said that there

exists a disjunctive relationship and the symptom v is
of OR type. By using an arrow to represent the causal
relationship, a dependency of disjunctive type will be
denoted as v1 j v2 j : : : j vk �! v .

In the latter case, it is said that the relationship is
a conjunctive one – for the occurrence of v , it is nec-
essary that all the symptoms of V must occur; it is said
that the symptom v is of AND type. The conjunctive
relationship is denoted as Œv1; v2; : : : ; vk� �! v .

Furthermore in some cases, it may happen that the
occurrence of some symptom causes another symptom
to disappear and vice versa; in such a case, it is said that
the relationship is of NOT type, that is

uˆ v and uˆ v : (20.10)

In such a case, the causal relationship is denoted as
u� v .

The above-presented causal relationship applies to
symptoms having the character of propositional logic
variables, that is, to formulas taking the value true or
false. Such symptoms, apart from denoting the occur-
rence of a discrete event (e.g., tank overflow, signal is
on, etc.) may also denote that certain continuous vari-
ables take some predefined values or achieve certain
levels, that is, de facto they can encode some formulas
of the form X D w or X 2W , where X is some process
variable and w is its value, andW is some set (interval)
of values. In such a case, qualitative reasoning and qual-
itative modeling of the causal relationship at the level of
propositional logic only may turn out to be insufficient.

A more general notation for the representation of
the causal relationship in case when values of certain
variables influence the values taken by other variable
may take the following form

v1; v2; : : : ; vk �! v ; (20.11)

or in the form of an equation

 .v1; v2; : : : ; vk/D v : (20.12)

Note that, in this case, it is important that variables
v1; v2; : : : ; vk influence variable v , and the quantitative
(or qualitative) characteristics of this influence are ex-
pressed with the appropriate equation. In practice, such
characteristics can be expressed with a look-up table
specifying the values of v for different combinations
of values of the input variables.

Now, let us pass to more general case, that is, mod-
eling the causal relationship among variables taking dis-
crete, continuous, qualitative, or even symbolic values.
This will be done with the use of causal graphs (CGs).

Consider two system variables, say X and Y . Then,
if X influences Y , we speak about causal dependency.
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Note that causality assumes at least the following three
phenomena:

� Logical implication: a certain change of X implies
a certain change of Y .� Directed flow of a physical signal; if X influences Y ,
then there must be some way a physical signal flows
from X to Y .� Temporal precedence – the change of X must hap-
pen prior to the change of Y .

In the following, the definition of a CG is formally
introduced.

Definition 20.5
A CG is a set of nodes representing system variables
and a set of edges or links describing mutual influ-
ences among these variables. The edges of the graph
are assigned equations describing the influences in
a quantitative way, and the variables are assigned some
domains.

Let us introduce the following notation:

� A, B, C, : : : – measurable variables of the system� ŒU�, ŒV�, ŒW� – immeasurable variables (internal or
hidden ones)� X� – conflicting variable, that is, one taking the
value inconsistent with the model-based prediction.

And let (�!) denote the existence of causal in-
fluence between two variables. Any such influence is
assigned an expression of the form

iD .ŒX1;X2; : : : ;Xk�; f ;Y; Œc1; c2; : : : ; ck ; cY �/

(20.13)

where X1;X2; : : : ;Xk are the input variables, f is a func-
tion defining the dependency in quantitative terms, Y is
an output variable and c1; c2; : : : ; ck are the system com-
ponents responsible for the correct work of the subsys-
tems generating the output values; cY is the component
responsible for the value of the output variable Y .

[X ]

[Y ]

[Z ]

A

C

D

E

B
F*

G

m1

m1

m2

m2
a1

a1

a2

a2m3

m3

Fig. 20.4 A complete CG for the multiplier–adder system

For example, a CG for the previously analyzed
arithmetical unit has the structure, as shown in
Fig. 20.4. Recall that variable F took an incorrect value;
according to the accepted notation, in Fig. 20.4, it is
marked with an asterisk.

The core idea of using the CG for search of conflicts
is based on the following observations and assumptions:

� Existence of all the conflicts is indicated by misbe-
havior of some variables (behavior different from
the predicted one).� In order to state that a conflict exists in the current
value of it (observed or measured) must be different
from the one predicted with the use of the model.� The conflict set will be composed of the com-
ponents responsible for the correct value of the
misbehaving variable.

So, in case the CG for the analyzed system is de-
fined, the detection of all the conflicts requires the
detection of all the misbehaving variables and next –
search of the graph in order to find all the sets of com-
ponents responsible for the observed misbehavior.

It seems helpful for the discussion to introduce the
idea of a potential conflict structure (PCS) [20.24, 30].

20.7 Potential Conflict Structures

In general case, search for conflicts is not an easy
task. In the original work of Reiter [20.22] no ef-
ficient method for conflict generation was given. To
make things worse, in the general case it is neces-
sary to use an automated theorem prover for prov-
ing inconsistency of the set SD[OBS[ f:AB.c/ j
c 2 COMPg in order to find all the refutations of it;

for any such case the instances of predicates AB.�/
used in refutation should be collected because they
form the conflict sets. Of course, the applied theorem
prover should be consistent and complete. In conclu-
sion, in the general case the task of finding all minimal
conflicts is hard to accomplish and computationally
complex.
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Fig. 20.5 Examples of
a simple PCS (after [20.24])

A potential conflict structure is a subgraph of the
CG sufficient for conflict generation; this idea was first
introduced in [20.24]; then it was discussed and de-
veloped in [20.26, 27, 30] and [20.29]; an attempt at
defining an approach to the automated search of con-
flict sets for a wide class of dynamic systems which is
based on the use of CG representing the flow of signals
in the analyzed system was undertaken. The use of such
a graph simplifies the procedure of conflict generation
and allows for relatively efficient search for all potential
minimal conflicts.

Similar concept named possible conflict has also
been described then in [20.31, 32].

Next, as a result of computational verification of
potential conflicts, those which are not real ones are
eliminated.

Definition 20.6
A PCS structure defined for variable X on m hidden
variables is any subgraph of the CG, such that:

� It contains exactlym hidden variables (including X).� The values of all incorporated variables are mea-
sured or calculated (they are well defined).� The value of variable X is double-defined (e.g.,
measured and calculated with the use of values of
the other variables).� In the considered PCS, all the values of the m
variables are necessary for X in order to be double-
defined.

A structure just defined allows for potential conflict
generation. Some examples of PCS for m hidden vari-
ables are shown in Fig. 20.5.

[V ]

[U ]

e

d

b

m = 0   –   no confliccts
m = 1; j = 2 {e, g}
 j = 3 {a, b, f }
m = 2; j = 4 {f, c, d, g}
  {f, c, d, e}
 j = 5 {a, b, c, d, e}
  {a, b, c, d, g} 

a

c

g

f

ZY

R

X

QP

Fig. 20.6 Example conflict structures; j is the number of
links used (after [20.24])

In Fig. 20.6, we show how the number of conflicts
and their structure changes withmD 0; 1;2 for a simple
CG of two hidden variables.

In Fig. 20.7, some further examples for a simple CG
with a single immeasurable variable are shown.
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[U ]

Potential conflicts:
{c1, c2, c3, c4}
{c1, c2, c3, c5}
{c1, c2, c3, c6}
{c4, c5}
{c5, c6}
{c4, c6}

c4 c6c5

c2 c3c1

X Y Z

RP Q

Fig. 20.7 A number of PCSs for a simple CG (af-
ter [20.24])

Finally, consider the graph presented in Fig. 20.8.
Since variable X takes a wrong value, certainly there

exists a conflict of the form fc1; c2g. But if c1 were
faulty, then Y should show an incorrect value, and it is
not the case. But there is another conflict set fc2; c3g –
since Y takes the correct value, U must be correct, and
c2 must be wrong. Hence, the most obvious diagnosis
is fc2g; it explains the misbehavior of X and is con-
sistent with the observation of the correct value at Y .

c2 c3

c1

X* Y

[U ]

P

{c2, c3}

{c1, c3}

ANT(X*)

{c1, c2}

Fig. 20.8 An illustration to the compensation phe-
nomenon (after [20.24])

On the other hand, a legal explanation is also diagno-
sis fc1; c3g. Here, c1 explains the wrong behavior of X
(with c2 being OK), and faulty component c3 compen-
sates the error caused by c1, so that Y is observed to
have the correct value.

20.8 Example Revisited. A Complete Diagnostic Procedure

Let us come back to the multiplier–adder example pre-
sented in Sect. 20.4. A detailed analysis of the observed
failure is presented in the following. Moreover, an anal-
ysis of all potentially observed faults is provided.

Consider once again the multiplier–adder system as
presented in Fig. 20.2. Assume that, as before F D 10
and GD 12, that is, an incorrect output is observed at
F. The current state of the system is that the inputs
are: AD 3, BD 2, CD 2, DD 3, and ED 3. Having in
mind the model of the system, it is easy to check that –
if the system works correctly – the outputs should be
F D 12 and GD 12. Since the current value of F is in-
correct, namely F D 10, a fault has been detected. At
least one of its components must be faulty.

For simplifying further analysis, consider the CG
for the multiplier–adder presented in Fig. 20.2. The
graph itself is presented in Fig. 20.4. The CG represents
a simplified model of the original system, at the level of
detail satisfactory for automated diagnosis.

In order to perform diagnostic reasoning, let us start
with abduction. We shall try to build a rule specifying
hypothetical faulty elements. Note that the value of F
is influenced by the inputs (observed) and the work of
elements m1, m2, and a1. If all the three elements work

correctly, then the output would be correct. Since it is
not, we can conclude that a conflict (or disjunctive con-
ceptual fault [20.29]) DCF1 is observed: at least one of
the elements fm1;m2; a1gmust be faulty. Hence, a rule
of the form

rule1_or W m1_m2_ a1 �! DCF1 (20.14)

can be stated.
The situation is illustrated in Fig. 20.9.
A further analysis leads to the detection of conflict

DCF2: under the assumed manifestations, one of the el-
ements fm1; a1;a2;m3g must also be faulty. This is so

[X ]
A

C
F*

m1

m1 a1

a1

6

[Y ]
B

D

m2

m2
6

12

10

Observation

Fig. 20.9 First conflict detected for the multiplier–adder
example
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since if all of them were correct, then Z D C�E calcu-
lated by m3 must be equal to 6, and since G is observed
to be 12, Y (calculated backward and under the assump-
tion that a2 works correct) must also equal 6; hence, if
m1 is correct, then X must be 6 as well, and if a1 is cor-
rect, F would be equal to 12. Since it is not the case, at
least one of the used components must be faulty. So we
have the following rule

rule2_or W m1_m3_ a1_ a2 �! DCF2 : (20.15)

The situation is illustrated in Fig. 20.10.
Note that if F would be correct and G would be

faulty, for example, F D 12 and GD 10, then another
observed conflict would be DCF3 D fm2;m3; a2g and
so we would have a third OR rule of the form

rule3_or W m2_m3_ a2 �! DCF3 : (20.16)

Moreover, DCF2 equivalent to a fault in fm1;m3; a1;
a2g would occur as well.

If both the outputs were incorrect (e.g., F D 10 and
GD 14), then, in general case, one can observe DCF1,
DCF2, and DCF3. Note, however, that whether DCF2
is a valid conflict may depend on the observed outputs.
For example, if F D 10 and GD 10 (both outputs are
incorrect but equal), then the structure and equations
describing the work of the system do not lead to a con-
ceptual fault [20.16, 17].

Note that any DCF is modeled with some PCS. De-
pending on the current manifestations, a DCF can be
observed (be active), that is, a real conflict exists or it
may be a potential conflict only (be inactive). For effec-
tive diagnosis, one needs only the specification of active
DCFs.

The diagnoses are calculated as reduced elements of
the Cartesian product of the conflict sets associated with
the active DCFs. The reduction consists in the elimina-
tion of duplicates.

[X ]
A

C

E

F*

G

m1

m1

m3

m3

a1

a2

a2

a1

6

[Y ]

[Z ]

6

6

12

6

10

12

Observation

Observation

Fig. 20.10 Second conflict detected for the multiplier–
adder example

The OR matrix for the diagnosed system is pre-
sented in Table 20.1.

The AND matrix defining the relationship between
the DCFs (active in the case of F being incorrect and
G correct) and the manifestations is presented in Ta-
ble 20.2.

In Table 20.2, F�, G�, etc., mean that the output
is incorrect, while F, G, etc. denote the correct output
observed at the variable.

In the analyzed case, that is F being faulty and
G correct, the final diagnoses for the considered
case are calculated as reduced elements of the Carte-
sian product of DCF1 D fm1;m2; a1g and DCF2 D
fm1;m3; a1; a2g. There are the following potential di-
agnoses: D1 D fm1g, D2 D fa1g, D3 D fa2;m2g, and
D4 D fm2;m3g. They all are shown in Fig. 20.11.

The potentially possible final diagnoses in general
case are presented in Table 20.3.

The calculation of diagnoses can be easily inter-
preted by using AND/OR CGs [20.25, 28]. An appro-
priate AND/OR graph is presented in Fig. 20.12. The
active links are represented with continuous lines, while
the potential ones are represented with dashed lines.
Active DCFs are marked with bold circles and the
current diagnostic problem (manifestations) are also
represented with a bold-line circle.

The final diagnoses are calculated as the minimal
sets of the lowest level elements which are necessary
to satisfy the currently observed set of manifestations.
The intermediate nodes representing the DCFs are OR

Table 20.1 An OR binary diagnostic matrix for the adder
system (the lower level)

DCF m1 m2 m3 a1 a2
DCF1 1 1 1
DCF2 1 1 1 1
DCF3 1 1 1

Table 20.2 An AND binary diagnostic matrix for the
adder system (the upper level)

M DCF1 DCF2 DCF3

F�, G, .F�G/� 1 1
F;G�, .F �G/� 1 1
F�, G�, .F �G/ 1 1
F�, G�, .F �G/� 1 1 1

D1 D2 D3

D4{  a1  ,   m1  ,   m2 }

{  a1  ,   a2  ,   m1 ,   m3 }

Fig. 20.11 Generation of potential diagnoses
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F*, G*,(F–G)*

AND-level

OR-level

DCF3DCF2DCF1

F*, G*,(F–G)F, G*,(F–G)*F*, G,(F–G)*

m1 m2 m3 a1 a2

Fig. 20.12 An AND/OR CG for the
example multiplier–adder system

Table 20.3 Final possible diagnoses

Observations Diagnoses
F�;G; .F �G/� fa1g, fm1g,

fa2;m2g, fm2;m3g
F;G�; .F �G/� fa2g, fm3g,

fa3;m2g, fm1;m2g,
F�;G�; .F �G/ fm2g,

fa1; a2g, fa1;m3g,
fa2;m1g, fm1;m3g

F�;G�; .F �G/� fa1; a2g, fa1;m2g,
fa1;m3g, fa2;m1g,
fa2;m2g,fm1;m2g,
fm2;m3g, fm1;m3g

nodes, while the top-level nodes representing current
manifestations are AND nodes.

The presented graphical interpretation can be con-
sidered as the effect of knowledge compilation for
building an efficient diagnostic procedure. In fact, the
graph covers all the possible potential failures. In order
to build an automated diagnostic system, it would be
enough to apply a simple, three-stage procedure:

� Decide which of the top-level nodes describe the
current diagnostic situation.� Find all the real conflicts corresponding to the
unique top-level node.� Generate all the minimal hitting sets.

The resulting diagnoses will be formed by minimal
sets of the lowest level nodes, such that a combination
of them supports the identified conflicts.

20.9 Refinement: Qualitative Diagnoses

20.9.1 Qualitative Evaluation of Faults

Amost popular classification of faults is the binary one.
An element can be just faulty (f D 1) or not (f D 0).
This kind of classification is prevailing in technologi-
cal systems, sometimes extended to several degrees or
a fuzzy fault description.

Note, however, that in some particular cases, the
fault can be interpreted as a significant deviation from
some expected status or value, and the deviation has
not only an amplitude but also a direction or sign as
well. In this case, the fault can be said to be negative
or positive one, and a classification described with three
values f�; 0;Cg can be established. This kind of knowl-

edge can be used for further refinement of diagnoses
without taking extraordinary measurements, tests, or
observations. Furthermore, the same classification can
also be assigned to manifestations, that is, values of cer-
tain variables can be normal (0), below the norm (�) or
above it (C). The presentation in the following is mostly
based on [20.29].

20.9.2 Elimination of Spurious Diagnoses

The idea is that in numerous cases the influence of faults
on the manifestations can be analyzed in a qualitative
way using the three-valued approach. Two key observa-
tions may be useful: (1) that certain faults can be only
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negative or only positive and (2) that the defined sign of
deviation of a fault defines also the sign of deviation of
the influenced manifestation.

For example, the voltage of a battery can only be
normal (0, no fault) or low (�, below normal). The level
of liquid in a tank can be normal (0), low (�), or high
(C). The clock can be exact, but when faulty it can slow
down (�) or advance (C).

The influence of a fault on manifestation can be
denoted using the sign. For example, low battery
(battery_fault) causes low light (light_fault), that is,
battery_fault.�/ �! light_fault.�/.

Let V denote a set of variables. For diagnostic pur-
poses, we shall assume that V D O[H[C, and these
sets are pairwise disjoint. O is the set of observable
(measurable) system variables, H is the set of hidden
variables, and C is the set of diagnostic variables aimed
at describing different faulty modes of diagnosed com-
ponents.

In the case of the multiplier–adder example system,
we have

OD fA;B;C;D;E;F;Gg;
HD fX; Y;Zg; and
CD fm1;m2;m3; a1; a2g :

Variables ofO andH take the values of the real numbers
(or integers) restricted to some reasonable intervals,
while variables of C are restricted to some of the pos-
sible modes of misbehavior. In our case, the values are
restricted to f�; 0;Cgwith the obviousmeaning of low-
ering the output value, producing correct output and
producing the output higher than expected.

For enhancing diagnostic reasoning, however, we
shall assume that all the variables can take three quali-
tative logical values f�; 0;Cg. For any variable V 2 V,
we can interpret these values as follows:

� V.0/ – the proposition that the value of V is correct
holds� V.C/ – the proposition that the value of V is incor-
rect; deviation is positive holds� V.�/ – the proposition that the value of V is incor-
rect; deviation is negative holds.

In other words, the first statement can be interpreted
as a kind of true, while the last two statements can be
interpreted as some two different types of negation.

We shall extend the knowledge about the models of
the system over incorrect behavior. In order to do that
we shall define some qualitative inference rules. Let R
be a set of rules defining all the accessible knowledge
about the behavior of faulty components depending
on the faulty mode. Note that, in fact, there are three
generic forms of such rules, that is those:

� describing the faulty behavior of elements in the
case of normal inputs� describing the normal behavior in the case of devi-
ated inputs� describing faulty behavior in the case of deviated
inputs.

Let c denote a single component and X a variable.
By c.v/, where v 2 f�; 0;Cg, we shall denote the type
of failure; if undefined, we shall write c.‹/. For partial
definition, we can use a set of values. The same applies
to variables. Now, more detailed characteristics of the
diagnoses can be found. Let us introduce a definition of
qualitative diagnosis taking into account the deviation
sign of a fault.

Definition 20.7
A qualitative diagnosis

DD fd1.#/;d2.#/; : : : ; dk.#/g

is a diagnosis fully explaining the observedmisbehavior
and covering the knowledge of the deviation sign for
any fault (if accessible). Here, # is C if the deviation
sign is positive, � if the deviation sign is negative, and
‹ if the deviation sign is unknown (any, undetermined).

In the following, three types of causal rules describing
the qualitative behavior are discussed in detail.

A generic form of the first type of rules is as follows

c.v/ �! Out.w /

where c denotes one of the five components of the
system, and v is one of the logical values defining
the operating mode, v 2 f�; 0;Cg and Out is its out-
put, w 2 f�; 0;Cg. For example, a faulty m1 lowering
its output signal is described with the rule c.�/ �!
Out.�/ with the obvious meaning. In the case of the
example system, we have as much as 10 such rules
(two for each of the five components) defining partic-
ular lowering or increasing of the output values when
in the faulty state.

A generic form of the second type of rules is as fol-
lows

In1.v1/^ In2.v2/ �! Out.w /

where In1 and In2 denote the inputs of a component and
Out is its output, v1; v2;w 2 f�; 0;Cg.

A generic form of the third type of rules is as fol-
lows

In1.v1/^ In2.v2/^ c.v/ �! Out.w /
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where In1 and In2 denote the inputs of a component c
and Out is its output, v ; v1; v2;w 2 f�; 0;Cg.

The rules of the second type (normal behavior, de-
viated inputs) are summarized in Table 20.4.

For example, a faulty component a1 showing
a lower value of its output signal (but assumed to be
correct) and taking one input signal lower and one nor-
mal can produce a lower output value. Such a behavior
is described with the rule

X.�/^ Y.0/�! F.�/

The rules of the third type (abnormal behavior, de-
viated inputs) are summarized in decision Table 20.5.

For all other 10 combinations of input signals and
component mode, the output is undefined. For exam-
ple, a faulty component a2 increasing its output signal
and taking one input signal higher than normal and one
normal produces a higher output value. Such a behavior
is described with the rule

Y.0/^ Z.C/^ a2.C/�! G.C/

20.9.3 Deduction for Enhanced Diagnoses

The analysis of potential qualitative diagnoses is per-
formed by the propagation of values over the CGs
forward, that is, deduction with the rules defined above.
This is performed for all qualitative diagnoses. When-
ever an inconsistency of the expected and observed
values is encountered, the candidate diagnosis is elimi-
nated.

Table 20.4 Behavior of the correct component with devi-
ated inputs

Inputs – 0 +
– – – ?
0 – 0 +
+ ? + +

Table 20.5 Behavior of the incorrect component with de-
viated inputs

Input1 Input2 Component
mode

Output

– – – –
– 0 – –
0 – – –
0 0 – –
+ + + +
+ 0 + +
0 + + +
0 0 + +

20.9.4 Analysis of Diagnoses

Let us analyze, in turn, all the four potential diagnoses
and their potential qualitative forms. The analysis is
aimed at finding all admissible qualitative diagnoses.

Case of m1
There are two false values for m1, that is, m1.�/ and
m1.C/.

Consider m1.�/ first. Using an appropriate deduc-
tion rule of the form

m1.�/�! X.�/ ;
we have X.�/. Since a1 is correct, but one of its inputs
is false (lower), we can use another rule of the form

X.�/^ Y.0/�! F.�/
and so we have F.�/. This is consistent with observa-
tions since FD 10, and the reference value was 12.

Now, consider m1.C/. Using an appropriate deduc-
tion rule of the form

m1.C/�! X.C/;
we have X.C/. Since a1 is correct, but one of its inputs
is false (upper), we can use another rule of the form

X.C/^Y.0/ �! F.C/
and so we have F.C/. This is inconsistent with ob-
servations since F D 10, and the reference value is 12.
Hence, the diagnosis m1.C/ is inadmissible.

Case of a1
There are two modes of faulty operation of a1, that is,
a1.�/ and a1.C/.

Consider a1.�/ first. The appropriate rule is of the
form

a1.�/�! F.�/
and so we have F.�/. This is consistent with obser-
vations since F D 10, which is lower than 12. Finally,
diagnosis a1.�/ is admissible.

On the other hand, consider a1.C/. The appropriate
rule is of the form

a1.C/�! F.C/
and so we have F.C/. This, however, is inconsistent
with observations since FD 10, and the reference value
is 12 and should be even higher. Hence, the diagnosis
a1.C/ is inadmissible.
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Case of fa2;m2g
There are four combined potential faulty modes
for diagnosis fa2;m2g, that is, fa2.�/;m2.�/g,
fa2.�/;m2.C/g, fa2.C/;m2.�/g, fa2.C/;m2.C/g.
Let us analyze them in turn. For simplicity, we shall
only show the applied rules and conclusions.
Case: fa2.�/;m2.�/g. Rule to be used

m2.�/�! Y.�/
Conclusion: Y.�/. Next rule to be applied

Y.�/^ Z.0/^ a2.�/ �! G.�/
Conclusion: G.�/ is inconsistent with observations.
Finally, diagnosis fa2.�/;m2.�/g is eliminated as in-
consistent with observations.
Case: fa2.�/;m2.C/g. Rule to be used

m2.C/�! Y.C/
Conclusion: Y.C/. Next rule to be applied

X.0/^ Y.C/ �! F.C/
Conclusion: F.C/ is inconsistent with observations.
Finally, diagnosis fa2.�/;m2.C/g is eliminated as in-
consistent with observations.
Case: fa2.C/;m2.�/g. Rule to be used

m2.�/�! Y.�/
Conclusion: Y.�/. Next rule to be applied

X.0/^ Y.�/ �! F.�/
Conclusion: F.�/ is consistent with observations. We
can proceed. Next rule to be applied

Y.�/^ Z.0/^ a2.C/�! G.‹/

Conclusion: G.‹/ may be consistent with observations.
Finally, diagnosis fa2.C/;m2.�/g is a potentially ad-
missible one.
Case: fa2.C/;m2.C/g. Rule to be used

m2.C/�! Y.C/
Conclusion: Y.C/. Next rule to be applied

X.0/^ Y.C/ �! F.C/
Conclusion: F.C/ is inconsistent with observations. Fi-
nally, diagnosis fa2.C/;m2.C/g must be rejected.

Case of fm2;m3g
There are four combined potential faulty modes
for diagnosis fm2;m3g, that is, fm2.�/;m3.�/g,
fm2.�/;m3.C/g, fm2.C/;m3.�/g, fm2.C/;m3.C/g.
Let us analyze them in turn.

Case: fm2.�/;m3.�/g. Rule to be used

m2.�/ �! Y.�/
Conclusion: Y.�/. Next rule to be applied

m3.�/ �! Z.�/

Conclusion: Z.�/. Next rule to be applied

Y.�/^Z.�/ �! G.�/

Conclusion: G.�/ is inconsistent with observations.
Finally, diagnosis fm2.�/;m3.�/g is eliminated as in-
consistent with observations.
Case: fm2.�/;m3.C/g. Rule to be used

m2.�/ �! Y.�/
Conclusion: Y.�/. Next rule to be applied

X.0/^ Y.�/ �! F.�/

Conclusion: F.�/ is consistent with observations. We
can proceed. Next rule to be applied

m3.C/ �! Z.C/

Conclusion: Z.C/. Next rule to be applied
Y.�/^Z.C/ �! G.‹/

Conclusion: G.‹/ may be consistent with observations.
Finally, diagnosis fm2.�/;m3.C/g may be considered
admissible.
Case: fm2.C/;m3.�/g. Rule to be used

m2.C/ �! Y.C/

Conclusion: Y.C/. Next rule to be applied

X.0/^ Y.C/! F.C/

Conclusion:F.C/ is inconsistent with observations. Di-
agnosis fm2.C/;m3.�/g must be eliminated.
Case: fm2.C/;m3.C/g. Rule to be used

m2.C/ �! Y.C/

Conclusion: Y.C/. Next rule to be applied

X.0/^ Y.C/�! F.C/

Conclusion:F.C/ is inconsistent with observations. Di-
agnosis fm2.C/;m3.C/gmust be eliminated.
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20.10 Dynamic Systems Diagnosis: The Three-Tank Case

As another example, let us consider the model of
a widely used dynamic system composed of three inter-
connected tanks [20.3, 27, 30]. The schematic diagram
of the system is presented in Fig. 20.13.

The components of the system selected for
diagnostic purposes are specified by COMPD
fk1; k12; k23; k3; z1; z2; z3g; they are the channels
(responsible for flow) and tanks (responsible for the
volume of the liquid). The signals to be observed are
L1, L2, and L3, and they describe the level of the liquid
in the consecutive tanks and the signals controlling the
input valve U. The model of the system is specified
with the following set of differential equations

f .U/D F (20.17)

A1
dL1
dt
D F�F12 (20.18)

k12

z1 z2 z3

k1

F

L1

k23

L2

k3

L3

U

Fig. 20.13 Three-tank system

U f (u)

k1

k12 k23
z1

L1

z2

L2

k3
z3

L3

F

U

Fig. 20.14 Matlab/Simulink model of the three-tank system

A2
dL2
dt
D F12 �F23 (20.19)

A3
dL3
dt
D F23 �F3 (20.20)

where Fij D ˛ijCij

p
2g.Li�Lj/, F3 D ˛3C3

p
2gL3, Ai

denote the cross-sectional areas of the tanks for iD
1; 2; 3, and Cij, C3 denote the cross-sectional areas of
the channels connecting the tanks for ijD 12;23. Note
that in the case of this system even a superfluous anal-
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k12

z1

z2
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[F]

[F12]

U

L1

L2

k23

k23
z3

z2

k3
z3

[F23]

[F3]

L3

Fig. 20.15 The CG for the three-tank system
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Fig. 20.16 Conflict set fz1; k1; k12g
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k23

k23

z2

[F23]
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Fig. 20.17 Conflict set fz1; k1; z2; k23g

ysis becomes a nontrivial task; this is the consequence
of the fact that this time the system under analysis is
a highly interconnected dynamic one, it is described
with nonlinear equations and there exists strong feed-
back in the system.

TheMatlab/Simulink model of this system is shown
in Fig. 20.14. Using Matlab/Simulink, one can simulate
the expected correct behavior of the system. If some
calculated variables are different from the measured
values, an inconsistency is observed and the diagnostic
procedure should be activated.

The CG for the example system is shown in
Fig. 20.15. The CG can be generated automatically
from the Matlab/Simulink model of the system with
conflict generator application developed for experimen-
tal use. The application is described in more detail in
Sect. 20.12.

After defining which of variables are measured
ones, the program can generate PCSs. All poten-

k1

z1

z2

z1

[F]

[F12]

U

L1

L2

z3

z2

k3
z3

[F23]

[F3]

L3

Fig. 20.18 Conflict set fz1; k1; z2; z3; k3g
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Fig. 20.19 Conflict set fk12; z2; k23g
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Fig. 20.20 Conflict set fk12; z2; z3; k3g
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tial conflicts for the three-tank system, that is,
fz1; k1; k12g, fz1; k1; z2; k23g, fz1; k1; z2; z3; k3g, fk12;
z2; k23g, fk12; z2; z3; k3g, fk23; z3; k3g calculated by
a conflict generator are shown in Fig. 20.22, and in
the graphic way in Figs. 20.16–20.21. Notice that
all PCSs can be calculated off-line. As the system
is composed of strongly coupled subsystems (there
are indirect feedback loops from L2 to L1 as well as
from L3 to L2) the generated conflict sets are rela-
tively complex. Assuming that the diagnostic system
detected that real conflicts are: fz1; k1; k12g, fz1; k1;
z2; k23g, fz1; k1; z2; z3; k3g based on Reiter’s theory,
the following diagnoses may be calculated: fz1g, fk1g,
fk12; z2g, fk12; k23; z3g, fk12; k23; k3g, so damaged
is element z1 or element k1 or at the same time el-

L2

k23

k23 z3

k3
z3

[F23]

[F3]

L3

Fig. 20.21 Conflict set fk23; z3; k3g

ements k12 and z2 or at the same time elements
k12; k23; z3, or at the same time elements k12; k23; k3
(Fig. 20.24).

20.11 Incremental Diagnosis

The algorithm of calculating diagnoses from conflict
sets given by Reiter [20.22] requires rather compli-
cated data structures, such as hitting sets (HSs) tree,
and is quite difficult to implement. Now, a theorem,
that allows us to calculate diagnoses for some of con-
flicts when there are known diagnoses for those conflict
sets will be proposed. This theorem may be used, for
instance, in the case when diagnoses are generated si-
multaneously for some subsystems of one system; in
such a case, it can be used for combining together the
separately generated sets of diagnoses. It can also be
used for incremental generation of diagnoses for one
set of conflict sets, and especially when one generates
conflicts and diagnoses simultaneously.

Before the theorem is formulated, it is necessary to
put forward the following definition.

Definition 20.8
Let A is set of nonempty sets. The reduced set bAc for
A is the set containing this elements from A which are
not supersets for other elements.

Example 20.1
Let AD ffa; bg; fa; b; cgg. We have bAc D ffa; bgg.
Let BD ffag; fa; bg; fa; b; cgg. Then bBc D ffagg.
Finally, let CD ffag; fa; bg; fa; b; cg; fb; cg; fd; egg. In
this case, bCc D ffag; fb; cg; fd; egg.

Now, a special operator for combining diagnoses
will be defined. The operator as its arguments takes
the diagnoses for two different families of conflict
sets.

Definition 20.9
Let Ci denote sets of conflict sets, Di sets of diagnoses
calculable from Ci, and Hi sets of all hitting sets for
Ci, iD 1; 2. Let D1 2 D1, D2 2 D2. The operator ˚ is
defined as follows

D1˚D2 D

8
ˆ̂̂
<

ˆ̂̂
:

fD1;D2g D1 2H2 and D2 2H1

fD1g D1 2H2 and D2 62H1

fD2g D1 62H2 and D2 2H1

fD1 [D2g D1 62H2 and D2 62H1

Note that the result of operation ˚ is a family of
sets, which may contain one or two sets and each of
these sets is a hitting set for Ci, iD 1; 2.

Example 20.2
Let us consider the following sets of conflict sets

C1 D ffa; b; cg; fa; dgg
C2 D ffa; c; dg; fb; egg :

The sets of diagnoses that can be generated are, respec-
tively,

D1 D ffag; fb; dg; fc; dgg; and
D2 D ffa; bg; fa; eg; fb; cg; fc; eg; fb; dg; fd; egg :

We have

fb;dg˚ fa; bg D ffb; dg; fa; bgg ;
fag˚ fa; bg D ffa; bgg ;
fag˚ fb; cg D ffa; b; cgg :
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Now, let us define another operator that constitutes
a kind of extension of the previous one.

Definition 20.10
Let Ci denote sets of conflict sets, and D1 D
fD1

1;D
2
1; : : : ;D

m
1 g, D2 D fD1

2;D
2
2; : : : ;D

n
2g be the sets of

diagnoses calculable from Ci, iD 1; 2. We define oper-
ator˚ as follows

D1˚D2 D
iDm;jDn[

iD1;jD1

fDi
1˚Dj

2g

In other words, by using ˚, one makes a union of
results of operations with˚ for each diagnosis from D1

with each diagnosis from D2.
Finally, the main theorem of this algebraic approach

will be presented. The theorem is named a composition
theorem since it allows for combining partial results
(ones obtained separately or in turn) into the final set
of diagnoses (proof in [20.30]):

Theorem 20.2 (Composition theorem)
Let Ci denote sets of conflict sets and Di sets of diag-
noses calculable from Ci, iD 1; 2; 3. If C3 D C1 [C2,
then D3 D bD1˚D2c.

Example 20.3
Let

C1 D ffa; b; cg; fa; dgg C2 D ffa; c; dg; fb; egg :

The sets of diagnoses are

D1 D ffag; fb; dg; fc; dgg; and
D2 D ffa; bg; fa; eg; fb; cg; fc; eg; fb; dg; fd; egg :

Consider the combined set of conflict sets

C3 D C1 [C2 Dffa;b; cg; fa; dg;
fa; c; dg; fb; egg :

The set of diagnoses in this case is as follows

D3 D ffa; bg; fa; eg; fb; dg; fc; d; egg :

Now, let us calculate the combination of diagnoses as

D1˚D2 D ffa; bg; fa; eg; fa; b; cg;
fa; c; eg; fb; dg; fa; d; eg; fb; c; dg; fc; d; egg :

Let us reduce the combined set of diagnoses; then we
obtain

bD1˚D2c D ffa; bg; fa; eg; fb; dg; fc; d; egg :

It is easy to see that D3 D bD1˚D2c.

The composition theorem allows for calculating di-
agnoses for the sum of two families of conflict sets in
the case where there are known diagnoses for each of
these sets of conflicts. One does not need start gener-
ation of diagnoses from the beginning, that is, without
using the known diagnoses for each individual family
of conflicts. The application of this theorem may, there-
fore, significantly increase the efficiency of a procedure
for the calculation of diagnoses.

The composition theoremmay be easily generalized
to the following theorem (proof in [20.30]):

Theorem 20.3 (Generalized composition theorem)
Let Ci denote sets of conflict sets and Di sets of diag-
noses calculable from Ci, iD 1; 2; � � � ; n; nC 1. If

CnC1 D C1 [C2 [ � � � [Cn;

then

DnC1 D bbbbD1˚D2c˚D3c˚ � � � c˚Dnc:
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20.12 Practical Example and Tools

For modeling dynamical systems, Matlab/Simulink was
chosen as a pretty good standard. A diagnostic sys-
tem was designed and implemented, which uses the
presented theory. The system is a consistency-based
diagnostic module and may be used to diagnose the
class of the systems modeled with CGs. In particular, it
needs a model of the diagnosed system made with Mat-
lab/Simulink. The system is composed of two separate
modules:

� Conflict generator� Diagnostic module.

A conflict generator is an application implemented
in C/C++. The main window of the system is shown in
Fig. 20.22.

The conflict generator performs two main tasks, that
is, the generation of CG from the model developed by
using the Matlab/Simulink application and generation
of all minimal, potential conflicts for such a graph. Con-

Fig. 20.22 The main window of the program Conflict Generator

Conflict
verificator

Diagnostic module

Diagnoses
generator DiagnosesFault

detector

Potential
conflicts

Diagnosed
system

Model of the
system

(in Matlab/Simulink)

Values of
variables

Predicted
values of
variables

Fig. 20.23 Diagram of the
diagnostic module

flict generation is done by the identification of all PCSs
in the given structure according to the previous consid-
erations. The potential conflicts generated with the use
of the conflict generator are then used by the diagnostic
module.

The diagnostic module has been implemented in
the Matlab/Simulink environment. It consists of three
parts, which are in Matlab/Simulink as masked subsys-
tems:

� A fault detector that has as input the values of mea-
sured variables of the diagnosed system and the
corresponding values obtained from the model. The
task of the fault detection subsystem is to detect in-
consistency.� A conflict verificator that takes potential conflicts
as its input. Its task is to determine which of the
conflicts are real ones.� Diagnoses generator that calculates diagnoses in the
form of minimal hitting sets for all real conflict sets.
Its algorithm is based on Theorem 20.3.

A diagram of the diagnostic module is shown in
Fig. 20.23.

Output of the system (main window) is shown in
Fig. 20.24. One can see there:

� List of potential conflicts (in case there is fault de-
tected real conflicts are marked)� List of generated diagnoses� Graphical visualization of the state of the system.

The graphical interface is quite important part of the
application which supports monitoring of the diagnosed
system and course of the diagnostic process. It can also
be useful in teaching about diagnosis of static and dy-
namic systems, especially about MBR.
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Fig. 20.24 Main
window of the
diagnostic module

20.13 Concluding Remarks

In this chapter, selected methods of knowledge engi-
neering in application for the diagnosis of technical sys-
tems were presented in brief. These methods belong to
the category of model-based reasoning since the analy-
sis is performed with by using the system model. Con-
trary to the so-called expert systems, especially ones us-
ing the so-called shallow knowledge of expert being the
result of experience and useful for diagnosis, and meth-
ods based on using model of the system do not require
expert knowledge, experience, evidence, etc., but only
the model of correct system behavior.

A classical example of the use of model-based di-
agnosis with the illustrative example of the multiplier–
adder system is presented in detail. The methods used
are based on consistency-based reasoning and abduc-
tive inference. Both the paradigms use models of the
system. A typical example for consistency-based rea-
soning is Reiter’s theory. Abductive inference may use
a model in the form of a CG. A detailed analysis of an
example CG by abductive reasoning was shown. The
produced results are consistency-based reasonings with
the use of a system model.

The main idea for the search of conflictswhich form
disjunctive conceptual faults is the one of potential con-
flict structures; it was shown that PCS can be used to
find all DCFs in an efficient way, and even to compile
the diagnostic knowledge.

An elaborated analysis of qualitative diagnoses
was presented in detail. Such an analysis yields more

detailed specification of diagnoses, and, simultane-
ously, may serve for the elimination of spurious
behavior.

An example of the application of the theory to
a dynamic system of three tanks was also presented
in detail. In the case of dynamic systems, the on-
line generation of conflicts may be necessary. As new
information becomes accessible, the DCFs can be re-
calculated, thanks to the provided theorems. A note on
practical diagnostic experiments and tools was provided
as well.

The presented groups of methods have well-defined
theoretical foundations. However, for efficient applica-
tion, they require adjustment to the specific type of the
diagnosed system. Moreover, new approaches to prob-
lem statement and new tools may open new diagnostic
possibilities; those include embedding the diagnostic
process within the framework of constraint program-
ming and compilation of diagnostic knowledge [20.33,
34]. These methods may serve as a core of advanced di-
agnostic system, but in order to improve efficiency, they
should be equipped with specific domain knowledge
and heuristic knowledge. They may be also comple-
mentary to one another, and it seems reasonable to
join expert knowledge based on experience with knowl-
edge about the system model. It should allow for the
diagnosis of new, unknown before failures, while the
expert component should allow for improving reason-
ing efficiency.
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21. Thought Experiments in Model-Based Reasoning

Margherita Arcangeli

Thought experimentation is at least as old as West-
ern philosophy. Scholars have made much use of
it in many disciplines. For instance, philosoph-
ical discussions on ethics, morality, knowledge,
and language abound with thought experiments.
Likewise, great scientific developments, such as in
physics and mathematics, have been achieved via
thought experimentation. This is true even long
before the introduction of the term, between the
late seventeenth and nineteenth centuries. But
what is a thought experiment? Although giving
a clear answer to this question is a very compli-
cated task, it is quite common to consider thought
experiments as pieces of reasoning about imag-
inary cases mainly performed with the aim of
increasing our knowledge or understanding of
the world. In this chapter, I review the lively de-
bate on thought experiments. First, I introduce
some famous examples and detail six of them
(Sect. 21.1). Second, I give some historical back-
ground (Sect. 21.2). Then, I focus on three of the
main questions asked in the literature, namely:
What is a thought experiment? (Sect. 21.3), What is
the function of thought experiments? (Sect. 21.4),
How do thought experiments achieve their func-
tion? (Sect. 21.5). These issues will lead to tackle
other important points, such as the relationship
between real and thought experimentation, the
differences between philosophical and scien-
tific thought experimentation, the role played by
intuitions and imagination in thought experimen-
tation.

21.1 Overview .......................................... 464
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21.1 Overview

Thought experiments (TEs) have a rather curious
history. Although thought experimentation is as old
as philosophy, both the introduction of the term
and the philosophical interest in thought experiments
as such have a much more recent history. Since
the beginning of Western philosophy, many famous
thought experiments have been proposed and dis-
cussed, including Plato’s ring of Gyges [21.1, 358a–
360d], Hilary Putnam’s brain in the vat [21.2], John
Locke’s inverted spectrum [21.3, II, Ch. 32, §15],
Galileo Galilei’s thought experiment on free-fall [21.4],
Étienne Bonnot de Condillac’s statue [21.5], Im-
manuel Kant’s on handedness [21.6], Charles Dar-
win’s thought experiment on the evolution of the
eye [21.7], Henri Poincaré’s disk world [21.8], Albert
Einstein’s lift [21.9], Werner Heisenberg’s ”-ray mi-
croscope [21.10], Tyler Burge’s arthritis [21.11], and
John Searle’s Chinese room [21.12]. These examples
are only a sample of a vast production that spans
a huge amount of time and issues (for other surveys
and in-depth analyses see contributions in Horowitz and
Massey [21.13]; Casati et al. [21.14]; Ierodiakonou and
Roux [21.15]; Frappier et al. [21.16], and in the spe-
cial issues of Philosophica – 72, 2003 – and that of
Perspectives on Science – 2/22, 2014). But what is
a thought experiment? After a brief historical introduc-
tion (Sect. 21.2), this chapter focuses on philosophical
answers to this question (Sect. 21.3) and on other is-
sues concerning thought experimentation, namely on
the issues about the function of thought experiments
(Sect. 21.4) and how thought experiments achieve their
function (Sect. 21.5). Before turning to these questions,
it is worth having a precise idea of what is under dis-
cussion by looking at some concrete examples. The
remainder of the section will be devoted to the intro-
duction of six thought experiments that can be seen as
a good sample of the most quoted and discussed thought
experiments in the literature.

21.1.1 Galileo on Falling Bodies

Galileo was a great thought experimenter. Via his
thought experiments he forcefully undermined Aris-
totelian physics. One among them is widely quoted in
the literature, namely the thought experiment against
the Aristotelian idea that the speed of a body’s free fall
increases proportionally to its weight. As Galileo put
it in his Discorsi e dimostrazioni matematiche intorno
a due nuove scienze (Discourses and Mathematical
Demonstrations Relating to Two New Sciences), the
supposition that [21.4, p. 62]

“bodies differing in heaviness [gravità] are moved
in the same medium with unequal speeds, which
maintain to one another the same ratio as their
weights [gravità].”

Galileo thought that this supposition was false and
maintained that a heavy cannon ball of 100 or more
pounds will not anticipate a half-pound musket ball
both dropped from a height of 200 arms. In order to
make his point, Galileo put forward a thought exper-
iment and observed that the Aristotelian idea leads to
a contradiction. His thought experiment runs as follows
(Fig. 21.1).

Imagine two bodies (e.g., stones) that have unequal
weights, and so speeds (e.g., the heavy stone falls with
a rate of 8 and the light stone with a rate of 4). Sup-
pose that these bodies are linked together (e.g., with
a weightless chain) and, then, that one drops them from
a certain height (e.g., the top of the Tower of Pisa). The
Aristotelian thesis would entail that the velocity of the
composite body will have: a) an intermediate value be-
tween the two, since the lighter body delays the heavier,
and b) a higher value than the two, since both bodies are
lighter than their union.

Galileo’s conclusion is that large and small bod-
ies fall with the same speed [21.4, p. 65]. He stresses
that the slight differences we experience are due to ex-
ternal factors, such as the air resistance. Arguably, “in
the vacuum their velocities would be completely iden-
tical” [21.4, p. 73].

Interestingly, it turns out that this hypothesis holds
also for bodies made of different materials, for example,
a hammer and a feather, as the well-known recreation
of the experiment by Apollo 15 astronaut David Scott

Old idea Galileo

Fig. 21.1 Two bodies falling from the Tower of Pisa
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on the Moon showed. An Italian team of scientists has
since conduced an atomistic version of Galileo’s exper-
iment, in which atoms of different weights fall in the
vacuum at the same speed [21.17]. How could Galileo
have seen so far using only his imagination?

21.1.2 Stevin’s Chain Thought Experiment

In De statica, the fourth tome of Simon Stevin’s Hy-
pomnemata mathematica, Stevin was dealing with the
force needed to keep an object on an inclined plane
from sliding down, and he concluded that the force
required is inversely proportional to the length of the
plane. In order to demonstrate his result, he proposed
the following thought experiment.

Imagine a triangular prism ABC (depicted in sec-
tion in Fig. 21.2) whose basis (AC) is horizontal and
the left side (AB) is twice the length of the right side
(BC). A wreath of 14 balls of equal weight and size is
draped over the prism, so that four balls are on AB (D,
R, Q, P), two on BC (E, F), and the remaining eight be-
neath the base (G, H, I, K, L, M, N, O). The spheres are
linked by a thread passing through their centers, so that
they can move, but they must remain equally spaced.
Moreover, the sides are frictionless, and S, T, and V are
fixed points on which the thread can slide freely.

Stevin claimed that if D, R, Q, and P were not bal-
anced by E and F, one of the two groups of spheres
would pull the other. What would happen if this was
so? Let us suppose that the block with eight balls (D,
R, Q, P, O, N, M, and L) generates more force than the
one with six balls (E, F, K, I, H, and G) and D, R, Q,
and P slide down the left side. Thus, D will go down
where O is and E, F, G, and H will take the place of P,
Q, R, and D, while I and K, will take the place of E and

M
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Fig. 21.2 Stevin’s chain: ABC is the section of the prism,
whose basis (AC) is horizontal and the left side (AB) is
twice the length of the right side (BC). Fourteen balls (D–
R) compose the chain draped over the prism. S, T and V
are fixed points on which the chain can slide freely

F. Nevertheless, as Stevin remarked, we are now facing
the same setup of the beginning and for the same rea-
son the four balls on the left side will slide down the left
side and be replaced by other four balls, and so on and
so forth. “These spheres will produce by themselves a
continuum and eternal motion [continuum et aeternum
motum], which is false” [21.18, p. 35]. Given the fact
that a perpetual motion is absurd, we are led to conclude
that the block with eight spheres and the one with six
balance each other. Moreover, since the spheres beneath
the basis are symmetrically arranged and pull equally in
both directions, we can imagine cutting the string at the
two lower corners without disturbing the equilibrium.
Hence, two spheres (E, F) offset four spheres (D, R,
Q, and P). From that Stevin concluded that the force
required to keep an object from sliding down on an in-
clined plane varies inversely with the length of the plane
and derived his law of the inclined plane: The ratio of
the force to the weight is equal to the ratio of the height
to the length of the plane.

21.1.3 Newton’s Bucket Thought Experiment

When we are sitting in a train and realize that the
train on the next platform changes its spatial relation-
ship with our train, without any other external cue we
are not immediately able to say which train is really
moving. However, when a motion changes in speed
or direction (i. e., accelerates), it is directly detectable,
apparently without reference to any other object. Are
accelerated motions a special type of motion or even
in such cases is there an implicit contrast between rela-
tive and absolute motion? In his Principia Mathematica
Isaac Newton [21.19] put forward a thought experiment
in order to ascertain whether absolute and relative mo-
tions differ as regards their effects in the context of
accelerated motions, more precisely whether only the
former would involve centrifugal force. Let me explain
step by step the thought experiment.

Imagine a bucket containing water, which hangs on
a rope that is twisted as much as possible, and then re-
leased. We can distinguish four phases (Fig. 21.3): (a)
both the water and the bucket are stationary, (b) only the
bucket begins to move, (c) the water and the bucket are
both moving, (d) the bucket stops, but the water keeps
moving. According to Newton, the existence of relative
motion between the water contained in the bucket and
the bucket itself is not able to explain the changes in
the surface shape of the water, when the water is ro-
tating. Indeed, in both the first and the third phases,
the water and the bucket are stationary relative to one
another. Yet while in (a) the water’s surface is flat, in
(c) it is concave. Likewise, in both the second and the
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a) b)

c) d)

Fig. 21.3 Newton’s bucket experiment: (a) both the water
and the bucket are stationary, (b) only the bucket begins to
move, (c) the water and the bucket are both moving, (d) the
bucket stops, but the water keeps moving

fourth phases, the bucket is in motion from the point
of view of the water and vice versa, but the water’s
surface is flat in (b) and concave in (d). Moreover, New-
ton suggests that the same would hold even in infinite
empty space, where there is no object external to the de-
vice. This last remark gives to the thought experiment
its unperformable flavor. In fact, although in the litera-
ture the bucket experiment has been mostly discussed
as a thought experiment, Newton affirmed to have done
it (clearly not in the empty space!).

According to the standard interpretation of the
bucket experiment (be it a real or a thought experiment),
the Newtonian theory could explain the phenomenon:
Absolute space is what discriminates between absolute
and relative motions, that is, between real and illusory
motions. Absolute space would be the system with re-
spect to which it is possible to understand that in the
first and in the second phase the water surface is flat,
because the water does not reallymove, whereas it does
in the third and the fourth phases, thus climbing the
bucket’s wall.

21.1.4 Gettier’s Thought Experiment

In his article, Is Justified True Belief Knowledge?, Ed-
mund Gettier [21.20] seriously undermined the classic
definition of knowledge via thought experimentation.
Almost from Plato to 1963, knowledge was considered

true and justified belief. A subject (S) knows the con-
tent of a proposition (p) if and only if: (a) p is true,
(b) S believes that p, and (c) S is justified in believing
that p. Via his thought experiments Gettier pointed out
how a justification may be flawed, thus implying that
we can have true and justified beliefs that seem not to
be states of knowledge (it should be noted that Bertrand
Russell, in his Human Knowledge: Its Scope and Its
Limits, anticipated this kind of example; see [21.21, pp.
170–171]). Many attempts have been made in order to
account for Gettier’s insight. Although none of these
has been widely accepted, the overall debate has helped
to clarify the concepts of knowledge and justification.
Here is one of Gettier’s original examples: Suppose that
Smith has applied for a job, as well as Jones. Actually,
the person in charge of hiring tells Smith that Jones
will get the job. Moreover, Smith has just counted the
number of coins in Jones’ pocket, which is ten. Hav-
ing such strong evidence, Smith believes that Jones is
the man who will get the job and Jones has 10 coins in
his pocket. Suppose that Smith infers from his belief an-
other belief, namely the belief that the man who will get
the job has 10 coins in his pocket. The same evidence
grounds both beliefs.

But imagine that Smith gets the job, not Jones,
and that by sheer chance, Smith unknowingly has 10
coins in his pocket. Although his belief that the man
who will get the job has 10 coins in his pocket is
both justified and true, Smith does not appear to know
that the man who will get the job has 10 coins in his
pocket.

After Gettier’s original examples, a variety of cases
à la Gettier have been proposed. A quite popular Get-
tier case is worth mentioning, namely the cow in the
field problem [21.22]. Briefly, this example sets up an
imaginary scenario in which a farmer is worried about
his cow Daisy and gets relaxed when he sees her black
and white shape in the field. It happens that Daisy was
safely in the field, but hidden in a hollow. What the
farmer mistook for his cow was a large sheet of black
and white paper. Like Smith, the farmer has a justified,
true belief which seems not straightforwardly to count
as knowledge.

21.1.5 Twin Earth

Among philosophers, a famous thought experiment
is that of Twin Earth. Putnam [21.23, 24] proposed
a thought experiment in order to show that psychologi-
cal states conceived in a narrow (i. e., intensional) sense
do not determine the references (i. e., extensions) of nat-
ural kind terms.

Suppose that somewhere in the Universe there is
Twin Earth, which is a planet exactly like Earth, with



Thought Experiments in Model-Based Reasoning 21.2 Historical Background 467
Part

D
|21.2

the exception that the chemical composition of what
is called water on Twin Earth is not H2O, but a very
long and complicated formula that can be abbreviated
as XYZ. Nevertheless, water and twin water (i. e., what
is called water on Twin Earth) have the same visual ap-
pearance, flavor, odor, etc. Thus, if Earthlings ever visit
Twin Earth, at first they will believe that the term wa-
ter has the same meaning on both planets. But they will
suitably revise their belief after discovering that water
on Twin Earth refers to XYZ. And it would be the same
for Twin Earthlings, if they ever visited Earth and dis-
covered that water on Earth refers to H2O.

Oscar-te is the Doppelgänger on Twin Earth of Os-
car, a typical inhabitant of Earth, and we can suppose
that both persons are perfect duplicates. Going back to
1750 (about 50 years before the discovery of the chem-
ical composition of water on Earth and, by hypothesis,
also of what is called water on Twin Earth), neither
Oscar, nor Oscar-te had beliefs about the chemical el-
ements of what they call water. Yet the term water
referred to H2O on Earth and to XYZ on Twin Earth,
respectively, in 1750 as much as nowadays (i. e., the
extension of the term did not change). Although by hy-
pothesis Oscar and Oscar-te had all the same beliefs,
and enjoyed the exact same psychological states with
respect to the word water, they did not mean the same
thing by water, because each use referred to a different
substance. Therefore, Putnam argues that meanings of
words are not in our heads.

21.1.6 Mary the Super-Scientist

Frank Jackson [21.25] proposed a famous thought
experiment (also known as the knowledge argument)
aimed at showing that physicalism (i. e., the view that ev-
erything can be physically explained) cannot account for
our knowledge about what it feels like to be in a certain
mental state. The thought experiment runs as follows.

Suppose that Mary is a brilliant neuroscientist who
knows all physical facts about chromatic vision. For
instance, she knows precisely which combinations of
wavelengths from a tomato stimulate the retina, and
“exactly how this produces via the central nervous sys-
tem the contraction of the vocal chords and expulsion
of air from the lungs” [21.25, p. 130], which results
in the utterance of the judgment the tomato is red.
Although she possesses all physical information con-
cerning what happens when, for example, we see the
redness of a tomato and use terms like red, she has never
had the experience of seeing any color, because she has
spent all her life in a black and white room. Now imag-
ine that Mary could see a tomato, because either she is
released from her room or provided with a color tele-
vision monitor. Would she learn something or not? The
intuitive answer seems to be yes. But does she really
learn a new fact? These questions have sparked a lively
debate [21.26], which led Jackson himself to revise his
position and claim that, after all, Mary is not discover-
ing a new fact, but rather a new way to represent it.

21.2 Historical Background

Schematically, it is possible to divide the long debate
on thought experiments into two phases, which we
could call classical and contemporary (see [21.27] for
a more fine-grained division in four stages). Thomas S.
Kuhn, in his 1964 paper, A Function for Thought Ex-
periments, marks the division between the two phases.
Kuhn has the merit of having highlighted an episte-
mological problem hitherto underestimated. His essay
opened a new way of viewing thought experiments as
puzzles, by asking: How might a mere thought exper-
iment yield new knowledge, without the input of new
data? It should be noted that Kuhn’s paper is mostly
known in its 1977 version. This is the reason why some
of his contemporaries (e.g., Carl Hempel) can be con-
sidered as belonging to the classical phase, even if their
writings are posterior to Kuhn’s essay.

The contemporary phase can, therefore, be separated
quite sharply from the classical phase along two criteria:

1. A greater awareness of the problematic aspect of
thought experiments tied to their epistemic function

2. The extension of the analysis to thought experi-
ments outside the realm of science (mainly physics),
in particular to philosophical thought experimenta-
tion.

In this section, I shall review the most important
steps of the history of thought experimentation. I be-
gin with the origin of the term (Sect. 21.2.1). Then I
briefly describe the two historical phases and finally in-
troduce the main actors of each phase (Sect. 21.2.2 and
Sect. 21.2.3, respectively).

21.2.1 The Rise of the Term

At the end of the nineteenth century, the Austrian physi-
cist and philosopher Ernst Mach wrote a paper entitled
Über Gedankenexperimente [21.28], which popular-
ized the German term Gedankenexperiment (thought
experiment) and sparked a methodological debate on
thought experiments, specifically in the scientific do-
main – physics in particular.
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However, the authorship of the German term goes to
the Danish physicistHans Ørsted [21.29] and, perhaps,
even before him to the German physicist and aphorist
Georg Christoph Lichtenberg, who wrote about exper-
imenting with thoughts [21.30, 31]. Actually, the very
starting point of the philosophical interest about thought
experimenting can be found in Immanuel Kant’s phi-
losophy [21.31], which is explicitly present in Ørsted’s
work [21.32], but also inspired Lichtenberg and many
other philosophers [21.33].

Despite the controversy about who coined the term
(on the topic see, for example, [21.31–37]), what is strik-
ing is that thought experimentation has a much older
history – in philosophy, as well as in natural sciences.
According to Nicholas Rescher, Pre-Socratics “invented
thought-experimentation as a cognitive procedure and
[. . . ] practiced it with great dedication and versatility”
([21.38, p. 31] – see also [21.39, 40], for a critique of
Rescher’s view; on the topic of ancient thought experi-
ment; see [21.41] and several contributions in [21.15]).
Likewise, Imre Lakatos [21.42] located in Ancient
Greece the beginning of thought experimentation,
specifically in formal Euclidean mathematics [21.43].
Afterward the practice of thought experimentation
continued (see [21.44–46] for discussions on thought
experiments during Middle Ages) and flourished,
mainly thanks to exceptional thought experimenters,
such as Galileo, René Descartes, Locke, Newton and
Gottfried Leibniz (on thought experimentation between
Middle Ages and the introduction of the term, see
contributions in Horowitz and Massey [21.13], Casati
et al. [21.14], and Ierodiakonou and Roux [21.15]; on
historical perspectives about Galileo’s thought exper-
imentation, see also Prudovsky [21.47], Atkinson and
Peijnenburg [21.48], and Palmieri [21.49]).

21.2.2 The Classical Phase

In the classical phase, the first reflections on thought ex-
periments are due to Lichtenberg and Ørsted (also No-
valis, according to Daiber [21.50] and Fehige [21.51];
see also Fehige and Stuart [21.33] for an in-depth
discussion of Lichtenberg’s, Novalis’, and Kant’s anal-
yses of thought experimentation). It is worth noting
that former analyses mainly focused on thought exper-
imentation in the scientific domain. Curiously, though,
milestone scientific thought experiments in the history
of physics, such as Galileo’s on free-fall (Sect. 21.1.1)
or Newton’s bucket (Sect. 21.1.3), are rarely mentioned.
Ørsted, for instance, mainly addresses thought experi-
mentation in geometry and, when it comes to physics,
only Kant’s philosophy is mentioned.

One might resist counting Mach among the classi-
cal authors, given his systematic analysis of thought ex-

perimentation, which seems to go beyond the scientific
domain. Indeed, when he lists thought experimenters,
he speaks of dreamers and novelists – whilst not of
philosophers [21.28, p. 451 of the 1973 English trans-
lation]). He also wrote that “Experimenting in thought
is extremely important for cognitive development” and
that “the thought experiment not only is of importance
in the field of physics, but on the contrary, in all fields
of knowledge” [21.28, pp. 455–456]. Still he analyses
only thought experiments in physics and mathematics.

Moreover, in Mach’s work we can find two traits
typical of the classical phase: (i) it is not always clear
how to distinguish between genuine thought experi-
menting and merely imagining about real experiments
(REs) [21.52, p. 74]; and (ii) Mach does not worry
about the distinct sphere of autonomy of thought ex-
periments as such, and eventually he brings back the
latter to real experiments. This is not intended to un-
derestimate in any way the great significance played by
Mach’s analysis of thought experiments on the subse-
quent debate. Indeed, credit is due to his examination
of the features proper to thought experiments (as well as
to real experiments) and inquiry on how they function,
even from a psychological point of view (Sect. 21.5).

Alexius Meinong first noticed the quite broad no-
tion of thought experiment introduced by Mach. In
his discussion of thought experiment [21.53], he ad-
dresses the distinction between experiments carried out
on thoughts (i. e., psychological experiments based on
the subjects’ thoughts) and within thought (e.g., math-
ematical thought experiments). But he himself did not
acknowledge that thought experiments should also be
differentiated from imaginings about real experiments.
The same can be said about another stakeholder of this
stage, namely Pierre Duhem.

Scepticism about the epistemic value of thought ex-
periments is common to Meinong and Duhem [21.54].
Duhem is known to have been a strenuous critic of the
idea that thought experiments could play a legitimate
role in the development of scientific thinking [21.34, 55,
56]. However, Duhem’s thesis is not to reject thought
experiments in toto [21.36, 57], but a certain use of
them: Thought experiments should not be used as if
they were real experiments just in order to conceal hy-
potheses arisen from pure supposition and abstraction.

Scepticism about thought experimentation is also
present in both Karl Popper’s and Hempel’s inquiries,
but it is accompanied by the acknowledgement of the
positive uses of thought experiments. Their analyses
have led these authors to suggest useful taxonomies of
thought experiments [21.58, 59] (see Sect. 21.4.1). By
contrast Alexandre Koyré, more in line with Lichten-
berg, Ørsted and Mach, focused almost exclusively on
the positive role played by thought experiments in sci-
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entific inquiry (only in an appendix, he considers their
misuse – see [21.60]).

21.2.3 The Contemporary Phase

In his milestone 1964 paper, Kuhn raised three ques-
tions that set the subsequent debate on thought experi-
ments:

1. To what extent must the imagined situation be one
that can be (or has been) found in nature, that is,
what conditions of verisimilitude are thought exper-
iments subject to?

2. How, “relying exclusively upon familiar data, can
a thought experiment lead to new knowledge or to
new understanding of nature?” [21.61, p. 241].

3. What, if any, kind of knowledge do thought experi-
ments produce?

The authors of the classical phase have analyzed
only thought experiments within the scientific domain,
physics in particular. Although Kuhn is no exception,
the many attempts that have been made to answer his
questions have extended the enquiry to thought experi-
ments in philosophy.

The contemporary phase is characterized by both
a proliferation of works on thought experiments, due
to the impact of Kuhn’s paper, and a very considerable
production of thought experiments. Philosophy was the
main protagonist of this new season of thought exper-
imentation. Just to give some examples, between the
1970s and the 1980s: Judith Thomson [21.62] ques-
tioned on the concept of the right to life and how
it differs from the concept of the right to what is
needed to sustain life, through a bizarre kidnapping
of a violinist by the Society of Music Lovers; Put-

nam wondered what would happen to the meaning of
the word water in a twin Earth where what is called
water has a different chemical composition from H2O
(Sect. 21.1.5); Searle [21.12] attempted to refute the
idea that the mind is a suitably programmed computer,
by imagining himself in a room that receives and re-
turns input in Chinese; Derek Parfit [21.63] racked his
brain on personal identity and tried to show that the
concept of identity is less important than that of sur-
vival by imagining a person splitting like an amoeba
(for concise but exhaustive descriptions of Thomson’s,
Searle’s and Parfit’s thought experiments, see [21.64]).
As hinted earlier (Sect. 21.2.1), there have been philo-
sophical thought experiments long before, but much of
contemporary philosophy makes heavy use of thought
experiments and it would be severely impoverished
without them.

However, not all contemporary analyses of thought
experiments deal with both scientific and philosophi-
cal examples (Sect. 21.4.3). As underlined by Rachel
Cooper, although many authors have restricted their
study to scientific thought experiments, a fine-grained
theory of thought experimentation should cover both
the sciences and the humanities [21.65–67].

Different answers to Kuhn’s questions have
emerged in a stream of literature since the 1990s, with
two polar positions: James R. Brown and John D. Nor-
ton. “The views of Brown and Norton represent the
extremes of platonic rationalism and classic empiri-
cism, respectively” [21.34, p. 69]. The best way to get
into this still flourishing debate is by tackling three
of the main issues which the contemporary phase has
sought to clarify further: What is a thought experiment?
What is the function of thought experiments? How do
thought experiments achieve their function?

21.3 What Is a Thought Experiment?

The aforementioned examples give an idea of what
a thought experiment is, but is it possible to offer
a precise and comprehensive definition? The lively de-
bate among contemporary philosophers has not led
to a unanimous definition. Indeed, thought experi-
ments are characterized variously as sometimes be-
ing arguments [21.68], specific ordered pairs [21.69],
glimpses into a Platonic world [21.55, 70–72], experi-
ments whose aim can be achieved without the benefit
of execution [21.52], forms of “simulative model-based
reasoning” [21.73], icons [21.74], abstract entities that
are not particularly experimental, but rather an explo-
ration and a refinement of theoretical models [21.75],
guided contemplations [21.76] and pieces of counter-
factual reasoning with experiment-like features [21.77].

Thus, it is a hard task to give a clear definition of
thought experiment that does not widen the concept so
as to make it practically useless. Too broad a defini-
tion would capture phenomena that intuitively are not
thought experiments [21.78]. It has been claimed that
we do not need a definition after all [21.55, 79].Geordie
McComb [21.80] suggests to see thought experiment as
a cluster concept.

At a closer look, we can impose some order into
the spectrum of definitions, which ranges from defini-
tions that classify thought experiments as belonging to
the theoretical realm, to those placing thought experi-
ments within the experimental realm. In this section, I
shall, first, review what has been said about the exper-
imental side of thought experimentation (Sect. 21.3.1)
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and, then, turn to the opposite end, namely the argu-
ments given in favor of the theoretical nature of thought
experimentation (Sect. 21.3.2). Finally, I shall dwell on
the main features that shouldmake thought experiments
easily identifiable (Sect. 21.3.3).

21.3.1 Thought Experiments
and the Experimental Realm

The issue about the relationship between thought and
real experiments is a much discussed topic in the de-
bate. The trend, as shown in Table 21.1, has been to
underline a continuity between thought experiments
and real experiments.

However, very often the experimental side of
thought experimentation has not been evaluated per se:
Thought experiments have been judged from the stan-
dards of real experiments, rather than on the basis of
a broad definition of experiment that can include both
types of experimentation. According to many scholars,
thought experiments are not kinds of experiment, but
tend to proceed as if they were.

The analysis of the experimental side of thought
experiments seems to be influenced by a widespread

Table 21.1 Simplified overview of some of the positions
in the debate on the continuity or discontinuity between
TE and RE. Strong continuists are authors who explic-
itly and extensively talk about the common features be-
tween the two types of experimentations. Even though
Paul Humphreys admits a parallelism between thought
and real experiments, he is considered as a strong dis-
continuist, because he sharply distinguishes between the
theoretical realm of the former and the empirical realm of
the latter [21.75, pp. 218–219]. In italics are highlighted
philosophers who can be classified in the classical phase
of the analysis of thought experiments. More will be said
in the following about both Duhem and Marco Buzzoni

Degree
Status Weak Strong
Continuity
between TE
and RE

Ørsted [21.29]
Popper [21.58]
Hempel [21.59]
Kuhn [21.61]
Brown [21.55, 70]
Szabó Gendler [21.81]
Bokulich [21.56]
Peijnenburg
and Atkinson [21.79]
Buzzoni [21.57]
Brendel [21.82]

Mach [21.28, 83]
Koyré [21.60]
Sorensen [21.52]
Nersessian [21.84]
Gooding [21.85]
Häggqvist [21.86]
Wilkes [21.87]
Bishop [21.88]
Cohen [21.64]

Discontinuity
between TE
and RE

Duhem [21.54] Hull [21.89, 90]
Norton [21.68]
Humphreys [21.75]
Hacking [21.74]

preconception about the intrinsic epistemological su-
periority of real experiments. By following this pre-
conception, we risk focusing on the features proper to
true experiments (i. e., real experiments) that thought
experiments lack. For instance, a typical plea for real
experimentation would stress that, insofar as thought
experimentation does not directly examine nature, it is
less reliable and lacks justificatory power (Sect. 21.4.3).
The upshot of this line of reasoning is that thought
experiments should be employed only when real ex-
periments are not available, otherwise they are use-
less.

Following Roy Sorensen [21.52], we might say that
the problem is rooted in how the adjective thought
should be interpreted in the expression thought exper-
iment. A terminological attitude that can fall pray to the
aforementioned preconception is to consider thought
experiments as mere imaginary visualizations of exper-
iments. In the works of many philosophers (particularly
belonging to the classical phase), the expression imag-
inary experiment is frequently used as a synonym for
thought experiment. However, substituting thoughtwith
imaginary can be misleading (see also Krimsky [21.91],
who claims that all imaginary experiments are thought
experiments but not vice versa, and Wilkes [21.87]).
The imaginary unit and the imaginary number for math-
ematicians, as well as the social imaginary and the
child imaginary for psychologists, are not degraded en-
tities. Still imaginary is commonly used as an adjective
that falsifies or somehow discredits the phenomenon to
which it refers. An imaginary friend, imaginary worlds,
imaginary fears and beliefs are understood as fictional
entities. The emphasis is on the negative aspects, on
what they lack in order to be real friends, worlds, fears
or beliefs.

It is no coincidence that Duhem called thought ex-
periments expériences fictives (fictitious experiments),
given his harsh critique of thought experiments used as
if they were real experiments. Similarly, albeit not moti-
vated by the same causticity, Hempel spoke of imagina-
tive experiments and seemed to complain about the fact
that thought experiments tend to be merely heuristic, in-
stead of providing purported evidence to be further vali-
dated. Hempel had been influenced, more or less explic-
itly, by the neo-positivist distinction between context of
discovery and context of justification [21.55, p. 89]; for
the relevant distinction, seeHans Reichenbach [21.92]).
Contrary to real experimentation, thought experimenta-
tion would be confined to the domain of discovery, that
is, the processes through which a hypothesis has been
formulated, rather than how such hypothesis could be
controlled and confirmed. The dichotomy between the
context of discovery and that of justification seems to
have influenced much of the analysis on thought exper-
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iments belonging to the classical phase, but also some
reflections of the contemporary phase, such as that of
Norton (according to Brown [21.55]) and of David Hull
(Sect. 21.4.3).

In his Plea for real examples [21.89, 90], Hull
puts forward a critique of thought experimentation
even harsher than that of Duhem. As suggested be-
fore (Sect. 21.2.2), Duhem’s criticism should not be
seen as a total rejection of thought experimentation.
Although Duhem is commonly presented in the liter-
ature as a detractor of the role of thought experiments
in scientific practice (thus, as a discontinuist – see Ta-
ble 21.1), his remarks should lead us to re-evaluate (but
not dismiss) thought experimentation (also suggested in
Daly [21.93, p. 114]). He criticized a naive view of real
experimentation and put forward very innovative ideas
about it (e.g., real experiments are not a matter of mere
observation without theory; they are subject to underde-
termination in the choice of a theory, that is, they cannot
test isolated hypotheses). Duhem focused his attention
on the negative aspects of thought experimentation that
convey such a naive view without realizing that thought
experimentation itself can be seen in a less simplis-
tic way and be subject to the same conceptual revision
he was advancing for real experimentation. Most likely
Duhem is a continuist, who undermined a naive view of
experimentation as a whole, including thought experi-
mentation.

Hull is more likely to be considered as a dis-
continuist. According to him, thought experiments are
mostly useless, and real experiments should be pre-
ferred to them (on real examples that go beyond our
imaginative ability; see [21.89, p. 312] and [21.90, p.
435]; on Hull’s view see also Sect. 21.4.3). In fact,
Hull seems to admit that thought experiments can have
scientific value, but only if they involve an imaginary
situation which is as plausible and detailed as possi-
ble (on the importance of a detailed scenario see also
Brendel [21.82] and Häggqvist [21.86], which ties with
issues discussed in Sects. 21.3.3 and 21.4.3). Moreover,
he seems to take for granted that thought experiments
must become, sooner or later, real experiments (on
the issue about whether real experiments can resolve
thought experiments, see Arthur [21.94]; Sect. 21.3.3).
However,Hull is not willing to concede that thought ex-
periments can be of value in all scientific fields, but only
for those which are “well-articulated” ([21.90, p. 431],
where he quotes other detractors of thought experimen-
tation such as Wilkes [21.87], and Fodor [21.95]; other
sceptics are in line with Hull’s view – for example, Fey-
erabend [21.96], Quine [21.97] and Thagard [21.98,
99]). For example, he argues that in biology thought
experiments cannot play any role; rather they risk to
create only confusion (for a critique of this position,

see [21.100]; for an analysis of thought experiments in
biology, see [21.101, 102]; see also [21.103], for a dis-
cussion on artificial life and thought experimentation in
biology, and [21.104], for a recent discussion on the re-
lationship between real and thought experimentation in
biology).

Recalling what was said earlier with respect to how
adjectives can transform the value of the name they
modify, it is interesting to notice that Hull mostly calls
thought experiments fictitious examples, but when he
emphasizes their positive aspect, he employs the ex-
pression hypothetical examples. Hypothetical does not
convey a negative value as imaginary does. Still it
is more cautious than thought. For example, a hypo-
thetical buyer is not really a buyer, she may become
a buyer, but at that point she will be a real buyer and
not anymore hypothetical. Thus, Hull’s view on thought
experiments is nicely exemplified by his use of the ad-
jective hypothetical as a synonym for thought.

It should be noted that positive continuist views also
oversimplify thought experimentation when they an-
chor it to real experimentation. For instance, it has been
stressed that Mach talks about thought experiments as
if they always lose to real experiments [21.52, p. 74].
Mach acknowledged that the outcome of some thought
experiments, such as Galileo’s thought experiment on
falling bodies (Sect. 21.1.1), is strictly determined,
so that the thought experimenter is led to consider
superfluous “any further test by means of a physical ex-
periment, whether rightly or wrongly” [21.28, p. 452].
However, he seems to complain about thought experi-
menters that avoid further real experimentation and take
the result of thought experiments as conclusive. In this
regard, Mach’s critique of Newton’s bucket thought ex-
periment (Sect. 21.1.3) is a good example. According to
Mach, Newton violated his rule of hypotheses non fin-
gere (to feign no hypotheses), since he used the bucket
thought experiment in order to show what was actually
presupposed by the thought experiment itself (i. e., the
existence of absolute space).

Similarly, evenKoyré’s analysis [21.60] might seem
driven by considering real experimentation as the
benchmark: Thought experiments are positive, since
they accentuate positive features of real experiments. In
this respect, Koyré’s and Duhem’s approaches can even
be seen as complementary, more than opposed.

More recent views have tried to investigate thought
experimentation as a genuine experimental practice on
a par with real experimentation. At least two analyses
are worth mentioning. Sorensen argues that thought ex-
periments are a limiting case of real experiments. Both
types of experimentation have very similar purposes
and also share methods for assessing such purposes
(Sect. 21.3.3 and 21.4). Clearly, they differ insofar as
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thought experimentation emphasizes the design aspect
at the expense of the execution aspect (other scholars
have followed Sorensen on this point – for exam-
ple [21.82, 85, 105]). Sorensen goes further and argues
that, although historically thought experiments have be-
come autonomous, their origin has to be individuated
in the mental component of real experimentation. They
should be seen as the result of an evolutionary pro-
cess: a “selective pressure” would have deprived real
experimentation of the execution aspect, emphasizing
the design aspect ([21.52, pp. 186 and 212], [21.106]
for a critique of Sorensen’s evolutionary explanation;
on Sorensen’s view, see also contributions in the spe-
cial issue of Informal Logic [21.107–110].

Marco Buzzoni argues that Sorensen underestimates
“the technological-operational dimension of the sci-
entific experiment” and supports a concept of real
experiment as a mathematical function ([21.57, p.
175]; see also [21.36]). Buzzoni [21.36, 57, 111] de-
velops a Kantian framework according to which from
an empirical point of view (i. e., exactly with respect
to the technological–operational dimension) real and
thought experimentations coincide, but they are com-
plementary from a transcendental point of view. Thus,
one type of experimentation without the other is un-
productive for scientific purposes (see [21.112, 113]
for objections to Buzzoni’s account and Buzzoni’s
reply in [21.114]). Many other scholars have under-
lined that thought experimentation shows an action-
practical component (e.g., [21.85, 101]; see Sect. 21.3.2
and 21.5). Moreover, this component has been ad-
duced as one of the main arguments against views
that confine thought experiments into the theoretical
realm.

21.3.2 Thought Experiments
and the Theoretical Realm

Instead of considering thought experiments either as
rough copies of real experiments or as peculiar experi-
ments, it might be claimed that they do not belong at all
to the experimental realm. There are two major propo-
nents of this point of view: Norton and Humphreys (Ian
Hacking’s view might also belong to this interpretative
current, since he sharply distinguishes thought from real
experiments and considers the former as static entities.
However, he seems to concede that the embodiment as-
pect is important for thought experimentation [21.74];
Sect. 21.5).

Norton argues that thought experimentation cannot
be a type of experimentation, because it lacks the es-
sential element proper to the latter, namely interaction
with the natural world [21.115]. According to Norton,

thought experiments are disguised arguments [21.68,
115–117]: a good thought experiment should be a sound
argument that increases our knowledge. In other words,
without epistemic loss a thought experiment can be re-
constructed (translated, or reduced) into an argument –
i. e., a list of propositions, of premises and assumptions,
leading to a conclusion via (inductive or deductive) in-
ferences. Thought experiments are often rhetorically
embellished and frequently they do not make explicit
all the assumptions on which they rely: these features
conceal their argumentative nature. Along with this re-
construction thesis, Norton suggests an elimination the-
sis: Thought experimentation is a dispensable epistemic
tool (see Gendler Szabó [21.76, 118] for a fine-grained
analysis of Norton’s elimination thesis; see also Timo-
thy Williamson’s view [21.119] – which seems in line
with Norton’s view, except for the role granted to imag-
ination – Sect. 21.5).

Humphreys claims that thought experiments “lie
much closer to theory than to the world” [21.75, p.
218]. He admits that they can be assimilated to that
type of real experiments that isolate “those features of
the world that are represented in a theoretical model”
and approximate “the idealizations that are employed
therein” [21.75, p. 218]. But nowadays, according to
him, this function is fulfilled by theories. In support
of his argument, he compares thought experiments to
computer simulations (or numerical experiments). Both
methods involve refinements of theories, adjustments
to conform conditions, parameters, approximations and
idealizations to empirical data, and can deliberately al-
ter parameters in order to produce laws different from
those of our world.

Actually, the parallelism between thought and nu-
merical experiments can show that the issue of the
experimental nature of thought experiments is still
open. Indeed, a lively debate among philosophers of
science on the status of computer simulations has led
to considerations very similar to those discussed earlier
(Sect. 21.3.1) about thought experiments. For instance,
some (e.g., [21.120]) argue that real experiments and
numerical experiments could not possibly differ from
each other more and that the latter can be seen as argu-
ments [21.121]; while others regard numerical experi-
ments as a genuine experimental practice (e.g., [21.122,
123]), whose analysis has been often influenced by
a bias for real experiments [21.124, 125].

Several parallelisms between thought experiments
and numerical experiments can be drawn and a com-
parative analysis can shed light on both topics at once.
Even though some authors have suggested that nu-
merical experiments can be seen as type of thought
experiments ([21.126]; see also [21.103], for a specific
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biological case, and [21.127], for a provocative view
according to which computer modeling will replace
thought experimentation), the trading zone between
thought experiments and numerical experiments has
been sparsely considered by current works on either
thought or numerical experiments. These works have
primarily focused their attention on the links between
these two scientific tools and real experiments (in-depth
analysis can be found in [21.128–131]; in passing other
authors have commented on the parallelism between
thought experimentation and numerical experimenta-
tion – for example, [21.36, 43, 52, 57, 64, 65, 73, 101,
132]; see also the related topic of video games as ex-
ecutable thought experiments [21.133]).

Much criticism has been raised against theoreti-
cal views about thought experimentation, especially
against Norton’s argument view. Although some have
found the latter too liberal (e.g., [21.134]), most
philosophers have found it too restrictive and have
offered four main objections. First, Norton’s transla-
tion of thought experiments into arguments would lose
some important aspects proper to thought experimen-
tation (e.g., [21.71–73, 82, 101, 135–138]), such as its
nonpropositional dimension or an action-practical com-
ponent. These aspects should not be neglected, for
they play an epistemic role, rather than being merely
picturesque. Tamar Gendler Szabó [21.76, 118], for in-
stance, maintains that Galileo’s thought experiments
on falling bodies (Sect. 21.1.1) cannot be fully recon-
structed into arguments (see also [21.71, 72, 139] for
other examples; see [21.140] for a reconstruction of
Galileo’s thought experiment within a nonclassical log-
ical framework). It has been pointed out that the same
holds for thought experiments that rely heavily on sen-
sory imagination or spatial reasoning (e.g., [21.65]).

A second related objection concerns the cognitive
underpinnings of thought experimentation. The same
conclusions can be drawn from a thought experiment
and from a logical argument, but constructing and per-
forming the former are different from producing and
carrying out the latter. This is so even if we take for
granted that all thought experiments are translatable
into arguments and that such a translation procedure is
epistemically advantageous (Sect. 21.5).

Third, it has been pointed out that thought experi-
ments may feature in the argumentation steps, but this
does not mean that they are arguments. Likewise for
real experiments. Real experiments can play a role in
or be rephrased as arguments, but typically they are not
considered as arguments and it is unlikely that someone
would claim that they are dispensable. We should not
confuse an experiment of whatever kind with its pub-
lished description [21.86, 101].

Finally,Michael Bishop ([21.88]; see also [21.141])
has offered a counterexample to Norton’s view: The
same thought experiment can be reconstructed in two
different arguments. Often this is the case when schol-
ars disagree about the upshot of a thought experiment;
otherwise it would be impossible to compare their
views and determine who is right. The main exam-
ple given by Bishop is the debate between Einstein
and Niels Bohr on an Einsteinian thought experi-
ment, namely the clock-in-the-box thought experiment
(see the volume dedicated to Einstein of The Li-
brary of Living Philosophers, edited by Arthur Schlipp,
for a complete description of this thought experi-
ment and also for Bohr’s objections and Einstein’s
reply [21.142]).

Nevertheless, one might think that Norton’s ar-
gumentative reconstruction thesis is valuable, while
maintaining that thought experiments are not arguments
and/or rejecting the elimination thesis. Once translated
into arguments, thought experiments can make explicit
their implicit assumptions. As pointed out by Richard
Arthur, “the reformulation of thought experiments as
arguments is a vital part of the scientific process”
([21.136, p. 228]; see also [21.101]; see [21.143] for
a proposal which takes into account both the experi-
mental and the argumentative sides of thought experi-
mentation).

21.3.3 Thought Experiments
and Their Features

Despite the fact that there is not a unanimous defini-
tion of thought experiment and different views push
thought experimentation toward either the empirical or
the theoretical realms, there are some features common
to most thought experiments. It should be noted that,
although discussions about these features often lead
to draw several parallelisms between thought and real
experimentations, they are not committed to the exper-
imental nature of thought experimentation. After all it
might be profitable to study thought experiments as if
they were experiments, even if they are not [21.52, 132].

In what follows I shall focus, on three features com-
mon to both thought and real experimentation:

1. The method of variation (i. e., isolation of variables,
manipulation and observation)

2. Fallibility and
3. Theoretical underdetermination.

I shall then turn to the main feature proper to
thought experimentation only (i. e., the mental nature
of its laboratory) and some connected features.
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The Method of Variation, Fallibility,
and Theoretical Underdetermination

Mach [21.28] maintained that the leading principles of
real experimentation must hold for thought experimen-
tation as well. According to Mach, the experimental
practice in toto is based on the method of variation. He
wrote that [21.28, p. 452]

“It can be seen that the basic method of the thought
experiment is just like that of a physical experiment,
namely, the method of variation. By varying cir-
cumstances (continuously, if possible) the range of
validity of an idea (expectation) related to these cir-
cumstances is increased.”

Many philosophers agree with Mach and have
stressed that the method of variation is a core fea-
ture of thought experimentation [21.36, 57, 75, 82, 86,
87, 132]. It has been pointed out that such a method is
common also to numerical experimentation [21.128].

The method of variation can be seen as a three-step
procedure describing what in general a thought exper-
imenter has to do: (i) select and isolate the features
which act as variables, (ii) manipulate these variables,
that is, make them interact, and (iii) finally observe what
consequently happens.

The first step leads to the question: what are the
variables involved?. Here answers diverge, since they
are hostage to the held view about the nature of thought
experimentation (Sects. 21.3.1 and 21.3.2). Can thought
experimentation examine nature or does it merely ex-
plore theoretical models? Anyway, it seems that thought
experimentation deals more with abstract representa-
tions [21.128] or suppositions ([21.52]; see also Goffi
and Roux [21.144], who speak of beliefs) than natural
circumstances and concrete entities.

As far as the second step is concerned, one might
be uneasy with the fact that in thought experimenta-
tion an experimenter is not literally manipulating the
variables in question. Despite philology, however, ma-
nipulating is not merely influencing manually. Things
can be rotated and moved also in our imagination. Ex-
pert chess players or Rubik’s Cube solvers do perform
such kind of mental manipulation [21.52, 145]. This
consideration leads us to the third step of the method
of variation, namely the observation of the interactions
among the variables ([21.64, 73, 85, 146–148] have par-
ticularly stressed both (ii) and (iii)).

Observation or visualization has seemed to many
a necessary condition of thought experimentation, as
well as of real experimentation [21.36, 57, 71, 72, 85,
147, 149, 150]. The problem is that it is not clear
whether observation means the same thing in both con-
texts. In thought experimentation, observation seems

not to be grounded in perceptual experiences as in
real experimentation. Often enough authors speaking
of observation in thought experimentation seem to re-
fer to a representation of the described situation in the
mind’s eye and to imagination as a vehicle for quasi-
observation [21.64, 90, 103, 145, 150]. Making observa-
tions, however, can be interpreted in a less perceptual
sense. John Gilbert and Miriam Reiner [21.148], for
instance, take thought experimental observations as out-
comes produced by logical laws, without denying that
in a thought experiment a world containing objects is
imagined (this issue relates to that of the underpinnings
of thought experimentation, see Sect. 21.5).

Other features of thought experimentation have
been pointed out. Two of them are worth mentioning,
which are still common to thought and real experimen-
tation, namely fallibility and theoretical underdetermi-
nation.

Like real experiments, thought experiments can fail.
Alan Janis [21.151] has underlined three different ways
in which real and thought experimentation may fail.
First, an experiment can fail because of its incomplete-
ness, due to inadequacy of the equipment, or to external
factors (see also [21.64, 65]). It is difficult to give ex-
amples of this category, because usually they are not
published. Second, an experiment can fail when its re-
sults are incorrect (e.g., Einstein’s clock-in-the-box, ac-
cording to Janis). Third, an experiment can yield correct
results, but ones that elude the question which moti-
vated the experiment in the first place (Janis gives as
example the Einstein–Podolsky–Rosen (EPR) thought
experiment – see next paragraph). Arguably, thought
experimenters, similarly to real experimenters, need to
engage in error management in order to improve their
results (e.g., the thought experimental debate between
Einstein and Bohr, as well as that between Darwin
and Fleeming Jenkin – as for the latter, see [21.100,
101]).

Alisa Bokulich [21.56] has suggested that thought
experiments can show theoretical underdetermination
in that they cannot discriminate between different the-
oretical frameworks (see also [21.86, particularly ch.
6], [21.152] and [21.153]). EPR, a thought experiment
by Einstein et al. [21.154], is an example of a thought
experiment that can be rethought from the perspective
of different and incompatible theories [21.56, p. 299].
Sidestepping the technical details of such thought ex-
periment, what is important to keep in mind is that its
upshot is a dangerous correlation between two physi-
cal quantities (position and momentum), which would
undermine quantum mechanics (QM) (in its Copen-
hagen version). Commonly EPR has been interpreted
as a failed demonstration of the incompleteness of QM
and as an argument in embryo form for a determinis-
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tic completion of QM, which is indeterministic. Indeed,
precisely on the basis of EPR, David Bohm developed
the most famous deterministic version of QM. How-
ever, per se EPR is not a crucial thought experiment that
can help us to decide between QM and its determinis-
tic rivals (EPR is widely discussed in the literature on
thought experiments – for example, see the debate be-
tween Atkinson, [21.155], and Stöltzner, [21.43]). This
feature of thought experiments undermines the idea that
they do not have a life of their own [21.74], that is the
ability to evolve and be adapted to different theories and
ends (also philosophical thought experiments seem to
have a life of their own – for example, see Twin Earth
chronicles in [21.156]).

The Laboratory of the Mind
The most striking feature of thought experiments is
that they are conducted in the “laboratory of the
mind” [21.55, 70]. Thought experimentation seems to
be grounded in imagination (Sect. 21.5). The fact that
we can experiment within our mind has its advantages.
As remarked by Mach, “Our own ideas are more eas-
ily and readily at our disposal than physical facts. We
experiment with thought, so to say, at little expense”
([21.28, p. 452]; see also [21.52] for a discussion of the
advantages of thought experimentation over real exper-
imentation). However, the fact that thought experiments
are not in direct contact with natural phenomena and are
merely a product of our imagination has its shortcom-
ings (Sects. 21.3.1 and 21.4.3).

Two other features are tied to the mental nature
of thought experimentation. First, thought experimenta-
tion seems not able to give quantitative outcomes, since
it does not involve instrumental apparatus. However, at
least scientific thought experiments can give quantita-
tive results (e.g., Ronald Fisher’s thought experiments
that explained the influence of natural selection on sex
ratio – [21.52, p. 250]; Sect. 21.4.3). Still, the outcomes
of real experimentation seem to be fixed and possible to
be determined in a way that the outcomes of thought
experimentation cannot ([21.157]; see also [21.52, p.
247], on the unavoidable incompleteness of thought
experimentation, which ties with the issue about philo-
sophical thought experimentation heavily relying on
unclear background assumptions – Sect. 21.4.3).

Second, it has been argued that a genuine thought
experiment should not require a concrete implemen-
tation, which can even be impossible for practical
or ethical–political reasons. Sorensen [21.52], for in-
stance, conceives thought experiments as experiments
in which the design aspect is accentuated at the expense
of the execution aspect (Sect. 21.3.1). Furthermore,
he has identified three reasons (impossibility, unim-
provableness, unaffordability) that explain why thought
experiments need not to be concretely performed (see
the previous discussions on this issue in [21.54, 83]).
Sorensen’s view can be summed up by means of a spec-
trum: There would be nonimplementation, on one ex-
treme, due to the maximization of benefits and, on the
other, due to containment of losses.

To put it in another way, even when possible, a real
performance of a thought experiment would be irrele-
vant to the purpose of the thought experiment [21.72].
This does not mean that thought experimentation can-
not lead to real experimentation. Arguably, a thought
experiment can open new lines of inquiry, which can be
explored by means of real experiments. Still the result-
ing real experiment should not be seen as the realization
of the initial thought experiment.

Some authors disagree and claim that, at least some,
thought experiments can be concretely implemented
and that, more generally, thought experimentation
should be resolved into real experimentation [21.78,
79, 89, 90, 155, 158]. A classical example given in favor
of this view is Alan Aspect and colleagues’ real exper-
iments, whose results have been published in a paper
titled Experimental Realization of Einstein–Podolsky–
Rosen–Bohm Gedanken Experiment: A New Violation
of Bell’s Inequality [21.159]. However it is possible
to contend this interpretation of EPR. Despite part
of the title of Aspect and colleagues’ paper, the real
experiment they conducted can be considered as an em-
pirical test of a hypothesis suggested by John Stuart
Bell, who found it by studying Bohm’s version of EPR
([21.152]; see also [21.43, 160–162] for similar views
on EPR).

On a moderate view, some thought experiments can
be concretely performed, without denying a genuine
status to thought experimentation (on this topic see re-
cent discussions in [21.16]; Sect. 21.3.1).

21.4 What Is the Function of Thought Experiments?

Independent of the adequate definition of thought ex-
periment, scholars widely agree on what it should
do: to increase our knowledge. Thought experiments
have generated a lot of epistemological interest, mainly

sparked by Kuhn’s inquiry (see Sect. 21.2.2). The
main epistemological questions addressed in the lit-
erature are the following: What kind of knowledge
do thought experiments really produce? To what ex-
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tent are thought experiments a reliable source of in-
formation? What role do thought experiments play
in processes of rational choice? The last question is
strongly connected to the issue about how to clas-
sify thought experiments according to their epistemic
functions. I shall begin by presenting some proposed
taxonomies (Sect. 21.4.1), then I shall turn to the ques-
tions about the type of knowledge (if any) produced by
thought experimentation (Sect. 21.4.2) and about its sta-
tus (Sect. 21.4.3).

21.4.1 Sorting Thought Experiments

It might be useful to have an efficient classificatory
scheme of immediate understanding, in order to put
some order in the domain of thought experimentation
and to try to understand it better. However, this is not
an easy task. Thought experiments are employed in so
many disciplines. Moreover, their interpretation can de-
pend on historical factors ([21.163]; see also [21.164])
and on the intention of the thought experimenter, in-
deed they can even be rethought for different purposes
([21.56]; Sect. 21.3.3).

Thought experiments can be classified along sev-
eral dimensions (e.g., by domains such as science vs
philosophy, by type of reasoning such as inductive vs
deductive). However, most taxonomies classify thought
experiments according to their functions with respect to
a group of hypotheses or a theory (several taxonomies
are put forward by different scholars in [21.13]). None
of these taxonomies seems to be definitive, but one has
become quite popular, namely the taxonomy proposed
by Brown ([21.81]; see [21.165] for a critique of this
taxonomy).

Brown firstly divides thought experiments into two
general types, destructive and constructive. A thought
experiment falling within the former category is “a pic-
turesque reductio ad absurdum” ([21.55, p. 34]; see
also [21.70, p. 123]) devised in order to reject, or at
least seriously undermine, some hypotheses or a the-
ory. Here Brown rejoins Popper’s taxonomy and his
critical use of thought experiment [21.58], which in
turn is analogous to Hempel’s theoretical thought ex-
periments – although the latter category goes beyond
thought experiments against theories and encompasses
all thought experiments that explicitly make fruitful
predictions [21.59].

There are different ways of undermining a theory,
thus suggesting different subcategories of destructive
thought experiments. At least two subcategories can be
offered. First, a thought experiment can show a problem
internal to a given theoretical framework. This is the
case, for instance, in Galileo’s falling bodies thought
experiment (Sect. 21.1.1), since it shows an inconsis-

tency within Aristotle’s account of motion (due to the
Aristotelian hypothesis that speed is proportional to
weight).

Second, a thought experiment can show a problem
external to a given theoretical framework, that is, be-
tween the latter and other assumptions or theoretical
frameworks. Erwin Schrödinger’s cat thought experi-
ment is such an example, since it underlined how QM
(in its Copenhagen interpretation) was in conflict with
our beliefs about the macroscopic level.

According to the Copenhagen interpretation of QM,
a physical system can be in a very special state which
actually is a simultaneous superimposition of different
states. Once observed or measured, the physical sys-
tem collapses into one of the superimposed states. This
physical phenomenon occurs only at the quantum or mi-
croscopic level, but the problem is precisely where to
draw the divide between the latter and the macroscopic
level (i. e., the object of study of classical physics). As
pointed out by Schrödinger, macroscopic objects like
cats are not likely to be at the same time dead and alive
(Fig. 21.4).

Following Brown and Fehige [21.27], a third sub-
category might be added, namely “counter thought
experiments” [21.166] or “thought-experiment/anti-
thought-experiment pairs” [21.115, 117]. Counter or
anti-thought experiments target thought experiments,
more than theoretical frameworks. Examples of this
category are Lucretius’ thought experiment (originally
introduced by the Pythagorean Archytas; see [21.115,
167]), meant to undermine an Aristotelian thought ex-
periment on finiteness of space, and Mach’s version
of Newton’s bucket (Sect. 21.1.3) aimed at showing
that centrifugal forces are due to the rotatory motion
relative to the terrestrial mass and other celestial bod-
ies ([21.168]; on this topic see, for example, [21.31,
116, 169]). Popper stressed that counter-thought exper-
iments run the risk to be unacceptable, because unfair
with respect to the opponent’s position [21.58, p. 466].
This is the apologetic use condemned by Popper (on the
latter and Popper’s critical use, see [21.170]).

Fig. 21.4 Schrödinger’s cat thought experiment
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Constructive thought experiments aim to support
a theory or theoretical hypothesis, but they can do
so in very different ways. Thus, Brown divides this
category into three further types, namely mediative,
conjectural, and direct. Mediative thought experiments
have a pedagogic or illustrative role (generally on the
pedagogical role played by thought experiments see,
for example, [21.148, 171–176]). Indeed, they help us
to better understand the conclusions that can be drawn
from a specific theory. Brown gives as an example
James Clerk Maxwell’s demon thought experiment.
According to the kinetic theory of Maxwell, there is
a probability, albeit very small, that heat moves from
a cold body to a hot one. The second law of thermody-
namics, however, implies the impossibility of such an
event. To show the logical possibility of violating clas-
sical thermodynamics, Maxwell proposed his thought
experiment of the demon [21.177].

Imagine two interconnected boxes; one filled with
cold gas (C) and the other with hot gas (H). A very small
door controlled by a demon is in between the two boxes
(Fig. 21.5). The demon lets fast molecules go from C
to H, and slows molecules go from H to C. In this way,
while the average speed of the molecules in H would
increase, the average speed of the molecules in C would
decrease. Since according to Maxwell’s theory, heat is
nothing more than the average speed of the molecules,
the thought experiment shows the possibility of the flow
of heat moving from a cold body to a hot body.

Given their illustrative and expository role, Brown’s
mediative thought experiments recall Popper’s heuristic
use of thought experiment [21.58] – a category pro-
foundly similar to Hempel’s inductive thought experi-
ments [21.59]. According to Brown, however, positive
thought experiments can do more than merely illustrate
a theory; they can help in constructing a theory. This
is precisely what both conjectural and direct thought
experiments aim to do. Contrary to mediative thought
experiments, they do not start from a specific theory,
but they end with one. What distinguishes conjectural
from direct thought experiments is that they make up
conjectured phenomena and put forward theories in
order to explain them. Brown gives Newton’s bucket
experiment (Sect. 21.1.3) as an example of conjec-

A B A B

Fig. 21.5 Maxwell’s demon

tural thought experiment, since it advanced a problem
(i. e., things being equal from a relative point of view,
there can be different effects on the surface of some
water contained in a rotating bucket) and its solution
(i. e., we should distinguish between relative and ab-
solute motions, where the latter refer to the absolute
space). It should be noted that Mach would have dis-
agreed with such an interpretation of Newton’s bucket
thought experiment, which will turn to be a mediative
more than a conjectural thought experiment. Accord-
ing to Mach [21.168], from the thought experiment,
we can reach the conclusion that absolute motions and
space do exist, only if we accept from the beginning
the existence of absolute space and the distinction be-
tween absolute and relative motions. Moreover, if we
consider Newton’s bucket as a thought experiment run
against relativist theories of motion (such as Descartes’s
and Leibniz’s ones), it can also be seen as a destructive
thought experiment.

Direct thought experiments establish new theories
starting with unproblematic phenomena. An example of
this category is Stevin’s chain thought experiment, since
it introduced Stevin’s law of the inclined plane –i. e., the
force to the weight is equal to the ratio of the height to
the length of the plane (Sect. 21.1.2; this thought exper-
iment can be seen also as destructive [21.153]).

Finally, according to Brown some thought exper-
iments are both destructive and direct-constructive,
these are platonic thought experiments [21.55, 70–72].
An example of this category is Galileo’s thought ex-
periment on falling bodies (Sect. 21.1.1), since at the
same time it undermined the Aristotelian theory of
motion and put forward a new theoretical framework.
As Koyré [21.60] remarked, such a thought experi-
ment seems an example of good physics made a priori.
This is precisely what characterises platonic thought
experiments; they are vehicles of a priori knowledge
(Sect. 21.4.2).

The following schema (Fig. 21.6) sums up Brown’s
taxonomy.

Although Brown applies his taxonomy only to sci-
entific thought experiments, it might be extended to

TE

Platonic

Destructive Constructive

Conjectural MediativeDirect

Fig. 21.6 Brown’s taxonomy of thought experiments (af-
ter [21.55])
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encompass philosophical thought experiments too (as
suggested in [21.27]). For example, Twin Earth thought
experiment (Sect. 21.1.5) may count as internal-
destructive, since it targets a hypothesis assumed by
internalist theories of meaning (i. e., identical psycho-
logical states imply identical references). The same
thought experiment can also be seen as a conjectural-
constructive one, since it highlights a problematic phe-
nomenon (i. e., the situation in which identical psycho-
logical states imply different references) and suggests
a solution (i. e., meanings are constrained by natural
kinds). The fact that a thought experiment can be dif-
ficult to classify is specific neither to philosophical
thought experiments (see what was said earlier about
Newton’s bucket), nor to Brown’s taxonomy (as will
become clearer in the following). This is nothing but
a symptom of how sorting thought experiments is diffi-
cult in itself.

Two more taxonomies are worth mentioning, which
have sought to integrate also philosophical thought
experiments. Sorensen has proposed a taxonomy of
thought experiments driven by the idea that thought
experiments are “stylized” paradoxes [21.52, p. 165],
which serve as “alethic refuters” [21.52, p. 135]. In
other words, thought experiments can be seen as “expe-
ditions to possible worlds,” whose mission is “to refute
a source statement that has an implication about the
constituents of these worlds” [21.52, p. 135]. In anal-
ogy with the two alethic modalities, Sorensen divides
thought experiments into two categories: refuters of
possibility and refuters of necessity. Both argue against
a theory or theoretical framework: the former by point-
ing out inauthentic possibilities wrongly considered as
authentic, the latter by revealing neglected genuine pos-
sibilities. Sorensen gives many examples, for instance,
while Gettier’s thought experiments (Sect. 21.1.4) and
Maxwell’s demon are necessity refuters, Schrödinger’s
cat and Mark Johnston’s [21.178] thought experiment
against views on personal identity that make the lat-
ter dependent on future events are possibility refuters
(see [21.86] for a critique of Sorensen’ logical regimen-
tation, which is at the bottom of his taxonomy; it might
be interesting to explore the link between Sorensen’s
taxonomy and the one proposed in [21.179], pivoting
on the idea that while some thought experiments en-
large the domain of properties pertaining to the actual
world, others restrict such a domain).

Gendler [21.118] proposes a tripartite taxonomy of
thought experiments pivoting on three different ques-
tions that can arise from a thought experiment. First,
one may wonder what would happen if the imaginary
scenario take place. This is what factive thought ex-
periments ask. Second, there are conceptual thought
experiments that pose the question of how what takes

place in the imaginary scenario should be described.
Finally, valuational thought experiments assess the ap-
propriate, moral, or aesthetic, evaluation of the envis-
aged situation. However, this taxonomy can be reduced
to two broad categories. Gendler takes thought experi-
ments as contemplations of imaginary cases that force
us to account for the represented exceptional episodes
and identifies two strategies for doing that, namely
exception-driven and norm-driven. On the one hand,
the exception helps us to establish the norms of a the-
ory (e.g., Galileo on falling bodies – Sect. 21.1.1) and,
on the other hand, norms guide us in evaluating the
exception (e.g., the thought experiment of the ship of
Theseus, which questions criteria for identity). While
factive thought experiments typically fall within the
former strategy, conceptual and valuational thought ex-
periments fall within the latter.

Note that some authors might complain that all
these taxonomies neglect to consider other specific
types of thought experiment. First, some thought ex-
periments seem neither to refute, nor to support a the-
ory, but rather to be part of the theory itself. These
thought experiments have been called functional, pre-
cisely because they have “a specific function within
a theory” [21.180, p. 384]. In psychological testing, for
instance, thought experiments advancing brainwashing
procedure made possible to apply a frequentist concep-
tion of probability [21.180, p. 384]. It has been pointed
out that functional thought experiments can also be
found in modern physics [21.43].

Second, some thought experiments can start by
clarifying conceptual issues and then turning to pro-
vide the basis for normative judgments. This seems to
be the case with respect to the concept of money in
economics. Julian Reiss has labeled such thought exper-
iments “genealogical” ([21.181]; see also [21.182] for
parallelisms between thought experiments in physics
and in politics – on political thought experimentation,
see also [21.183]).

Third, by analyzing thought experimentation in
quantum gravity,Mark Shumelda [21.184] stresses that
thought experiments can also be used in order to impose
logical constraints on future scientific theories.

21.4.2 Thought Experiments
and Kinds of Knowledge

A good thought experiment should be conducive to
a new justified belief about the world or, at least,
our interpretation of the latter. For instance, thanks to
Galileo’s thought experiment on free fall (Sect. 21.1.1),
we know that speed is not proportional to weight.
Hence, we have, on the one hand, reasons against the
Aristotelian theory of motion and, on the other hand, ev-
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idence in favor of Galileo’s theory, according to which
speed is proportional to time.

Nevertheless, the fact that thought experimentation
can produce knowledge is not a simple issue, and it
turns out to be more complicated than in the case of
real experimentation. Leaving aside arguments to the
effect that thought experiments do not at all increase
our knowledge, disagreements arise when philosophers
want to specify the kind of knowledge that we gain
through thought experimentation. This is easily seen
with the problem of informativeness raised by Kuhn
(Sect. 21.2.2): How can a thought experiment yield new
empirical knowledge without the input of new data?
This question has a paradoxical flavor due to the fact
that only real experimentation is in direct contact with
the world, from which it directly derives new materi-
als. By contrast, thought experimentation is bound to
use only old data, stored in the mind of the thought
experimenter. How, therefore, can thought experiments
provide us with new knowledge or understanding of
nature? And what kind of new knowledge would they
produce?

Very different stances have emerged in the many at-
tempts to answer this epistemological question since the
1990s. Two among them can be seen as the polar posi-
tions of the relevant logical space: Brown and Norton,
respectively, claiming that there is, and that there is not,
new knowledge.

Following Koyré, Brown identifies a set of a priori
thought experiments. These are, in Brown’s terminol-
ogy, Platonic thought experiments (Sect. 21.4.1), since
they are neither based on new empirical data, nor
simply inferred from old ones [21.55, 70–72]. These
thought experiments are to be considered constitu-
tively a priori and a source of knowledge independent
of experience. How are we to explain, for exam-
ple, the transition from the Aristotelian theory to the
Galilean theory of motion? The right answer cannot
be new sensory data, since none has been added. Ac-
cording to Brown, it is not even possible either to
invoke any logical truth, that allows us to infer that
all bodies fall at the same speed, or to appeal to other
criteria, such as aesthetic ones (e.g., that of simplic-
ity). Platonic thought experiments allow us to see the
laws of nature. Many authors have criticized Brown’s
aprioristic account, above all his risked extension of
Platonism from mathematics to physics [21.65, 75,
136].

According to Norton, pure thought is totally unable
to generate any kind of knowledge, except from log-
ical truths, and can only transform what the subject
already possesses [21.115, p. 49]. Moreover, he crit-
icizes a fundamental assumption in Brown’s account:

the parallelism between visual and platonic percep-
tion [21.116]. Norton highlights that we have good
criteria for assessing the unreliability of the former, but
the same does not hold for the latter, which relies on
both imagination and intuition [21.71, 72, 150]. Finally,
since he argues that thought experiments can be re-
constructed into arguments without epistemic loss (see
Sect. 21.3.2), Norton denies that thought experimenta-
tion has a distinguishing kind of epistemic force. Thus,
thought experiments can increase our knowledge, but
only in the way logically sound arguments can do.

Between these two extremes, many scholars agree
in thinking that new knowledge can be gained
via thought experimentation. For example, Humph-
reys [21.75] maintains that thought experimentation
provides a better understanding of the conditions
needed for a theoretical model to hold. By contrast,
Gendler [21.118, 145] claims that via thought exper-
iments, we can get either new justified beliefs about
contingent aspects of the natural world or new jus-
tifications for old beliefs. Gendler’s reflections are
clearly influenced by Kuhn, who already emphasized
the importance of thought experiments in conceptual re-
configuration. Moreover, like others (e.g., [21.73, 82]),
she also follows some insights of Mach, who argued
that thought experiments make explicit a kind of inar-
ticulate knowledge, not yet organized in theoretical
frameworks, though stored in memory [21.28, 83]). In
line with Mach’s view, it has been claimed that success-
ful thought experiments transform ability knowledge
into propositional knowledge [21.185].

As far as the kind of knowledge is concerned, while
some authors have maintained that thought experimen-
tation involves both a priori and a posteriori knowledge
(e.g., [21.186]; see also [21.136] for an aprioristic ac-
count of thought experiments), others have strongly
criticized any aprioristic account of thought experimen-
tation. For instance, although Rodney Snooks [21.78]
agrees with Brown in thinking that thought experiments
are a direct vehicle for the laws of nature, he argues that
they do not give us access to a priori truths (see also
Hopp [21.138], where a phenomenological approach
is defended according to which thought experimenta-
tion can lead us to intuit universals and relations among
them).

The debate has tackled also other kinds of knowl-
edge, for instance, both modal and counterfactual
knowledge [21.119, 187].

The issue about the kind of knowledge (e.g.,
new/old, a priori/a posteriori, universal/contingent, con-
ceptual/empirical) gained via thought experiments is
not the only thorny problem. Also, the issue about the
status of such knowledge remains open.
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21.4.3 The Epistemological Status
of Thought Experiments

Is the knowledge gained via thought experimentation
valid or reliable? And more generally we may ask:
Are thought experiments indispensable epistemic tools?
These questions, on the one hand, take us back to
the comparison between real and thought experimen-
tation (Sect. 21.3.1) and, on the other hand, open the
issue about thought experiments in philosophy. In what
follows, I shall address these issues respectively and de-
vote a final subsection to the topic of intuitions.

The Proper Functions
of Thought Experimentation

As we have seen (Sect. 21.3.1), thought experimen-
tation is often considered as being of a rank lower
than real experimentation, as if they were competing
strategies. That is, the two types of experimentations
perform the same function and the real type is to be
preferred when possible (Sect. 21.3.3). And indeed, real
and though experimentations seem to play very similar
roles in the evaluation of theories: Both test hypotheses,
help to refine theories and similarly may fail in achiev-
ing these goals. However, one might ask whether there
is a functional difference between thought and real ex-
periments.

Some authors argue that, in fact, contrary to real
experiments, thought experiments cannot have a jus-
tificatory role, but only an illustrative or explanatory
role [21.89, 90, 98, 99]. However, this position does not
do justice to both types of experimentations. After all,
even real experiments are not only means of theoretical
justification. Moreover, reasoning along this line tends
to focus only on the justificatory inadequacy and to see
it as the major limit and deficiency of thought exper-
imentation. Once again the running idea seems to be
that thought experimentation has no role to play within
the context of justification and should be confined to
the context of discovery (see Sect. 21.3.1). Once again
we run the risk of underestimating the peculiarities of
both types of experimentation. What, then, is the proper
function of thought experiments, which sets them apart
from real ones and is also what motivates us to use them
instead of the latter?

In the literature, answers given to this question
are not crystal clear. Let us mention some of them.
It has been emphasized that thought experimentation
provides us with idealization and modeling of real-
ity to a higher degree compared to real experiments
(e.g., Koyré [21.60]; idealization can also be a source
of unreliability, for a discussion on this topic, see
Sorensen [21.188]). However, it is questionablewhether
this really answers the above question, or merely

changes the focus to how thought experimentation func-
tions (Sect. 21.5).Gendler [21.118] has proposed to see
the functional difference in the type of results. Both
thought experiments (at least scientific ones) and real
experiments tell us about the real physical world, but
via the former we obtain intuitions, whereas via the
latter data (Sect. 21.3.3). A question arises: Do we re-
ally make use of thought experiments because we are in
search of intuition rather than data?

Inspired by Kuhn, Bokulich [21.56] has suggested
that thought experimentation tests the nonempirical
virtues of theories, such as (internal or external) co-
herence, simplicity, and fruitfulness (for the notion
of nonempirical virtues, see [21.189]; similar notions
can be found in [21.190, 191]). On this view, Galileo’s
thought experiments showed an incoherence internal to
Aristotle’s theory of motion, stemming from an am-
biguous use of the concepts of speed and weight. He
also dared to go beyond the impasse, and to propose
a new theoretical framework within which he could
account for the phenomena. Bokulich’s conclusion on
thought experimentation in physics finds a parallel in
the work of James Lennox [21.101, 102] on Darwin’s
thought experiments (see also the claim that thought
experiments in science test how unified a theory is
in [21.132]). Indeed, Lennox argues that thought ex-
periments are functionally experiments, but we appeal
to them under special conditions: “thought experiments
are especially important when the issue at hand is the
theory’s potential to explain as, and what, it claims it
will” [21.101, p. 236]. It has been proposed to extend
a similar approach to philosophical thought experi-
ments [21.152].

It should be noted that most authors who chal-
lenge the epistemic validity of thought experimenta-
tion do not object to scientific thought experiments.
George Bealer [21.192] has proposed to formalize this
view terminologically. According to him, the expres-
sion thought experiment should refer only to those
hypothetical situations designed to generate intuitions
about the natural world, in other words to scien-
tific thought experiments. Likewise, others, among the
fiercest critics of the epistemological role of thought
experiments, have always rescued scientific thought ex-
periments, specifically within physics. For example,
both Hull [21.90] and Snooks [21.78] limit the power of
thought experiments to well-articulated scientific fields,
that is physics. Generally, there is a sharp scepticism
about philosophical thought experiments.

The Status
of Philosophical Thought Experimentation

Rachel B. Cooper [21.65] has pointed out that much of
the analysis on thought experimentation is restricted to
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scientific thought experiments, probably due to a strat-
egy of caution (Sect. 21.2.3). In the last decade, the
number of analyses considering only philosophical
thought experiments has also grown – mainly due to
the debate about the role of intuition in philosophy (see
in the following). Although Brown does not deal with
examples of philosophical thought experimentation, he
is aware of this shortcoming and wonders whether sci-
entific and philosophical thought experiment can be
accommodated by a single theory [21.55, p. 28–31]. He
also claims that perhaps this kind of conceptual analy-
sis reveals a core common to philosophy and physics. If
we were able to know more about such a common core,
we would probably learn more about physics and phi-
losophy, as well as thought experimentation (it is worth
underlining that also in mathematics thought experi-
mentation seems an important, and perhaps the only,
form of experimentation; on the topic see, for exam-
ple, [21.42], contributions in [21.13, 193–195]).

Cooper claims that often what distinguishes sci-
entific from philosophical works are only the journals
in which they are published. But papers on scien-
tific thought experiments, such as Schrödinger’s cat
(Sect. 21.4.1), can be found both in scientific and philo-
sophical journals. Similarly, a philosophical thought ex-
periment such as Searle’s Chinese room (Sect. 21.2.3)
is tackled by philosophers, as well as by psycholo-
gists. “It is hard to distinguish science from philosophy
and even harder to distinguish philosophical from sci-
entific thought experiments” [21.65, p. 329]. Cooper
suggests that a comprehensive analysis of thought ex-
perimentation cannot avoid to give an account of both
philosophical and scientific thought experiments.

Besides Cooper, other scholars have tried, more or
less extensively, to analyze both scientific and philo-
sophical thought experiments, without raising a barrier
between them [21.52, 64, 79, 82, 118, 141, 152, 161].

Arguably science and philosophy are intertwined,
but one might think that the latter is more hostage to
speculation and boundless imagination than the for-
mer. Precisely, for this reason, Kathleen Wilkes main-
tains that a good thought experimenter should envisage
a scenario not too far from reality and specify all con-
ditions relevant to its understanding ([21.87, p. 9]; see
also [21.28]). Thus, she considers thought experimen-
tation fruitful only in the scientific domain, because the
latter, contrary to the philosophical domain, cannot de-
viate too much from reality and must invoke a type of
thought experimentation more akin to real experimen-
tation (this point brings us back to the issue about the
biased continuity between real and thought experimen-
tation see Sect. 21.3.1; see recent discussion in [21.196]
about the idea that also thought experimentation in sci-
ence is weakened by being dependent on imagination –

Sect. 21.5). According to Wilkes, there are two condi-
tions for any experimenter (thought or real): first, to aim
at testing a theory by varying key parameters and main-
taining constant other relevant parameters (Sect. 21.3.3)
and, second, not to violate natural laws. This sec-
ond condition should further distinguish scientific from
philosophical thought experiments. On this condition,
however, the philosophical thought experiment of the
brain in the vat [21.2] would be acceptable, since it is
not obviously nomologically impossible, whereas the
thought experiment of Einstein chasing a light beam
would not be (see [21.164] for an in-depth analysis of
this thought experiment). Moreover, as rightly stressed
by Brown [21.55, p. 30–31]

“Too often thought experiments are used to find
the laws of nature themselves; they are tools for
unearthing the theoretically or nomologically pos-
sible. Stipulating the laws in advance and requiring
thought experiments not to violate them would sim-
ply undermine their use as powerful tools for the
investigation of nature”

See also what will be said about Cooper on this
point Sect. 21.5.2).

Philosophical thought experiments are generally
pictured by their detractors as fairy tales, which do
not deserve to be taken seriously. The underlining idea
seems to be that philosophy is too much prone to con-
ceptual ruminations, involving idealization and approx-
imation, and based on a methodology less strict than
the scientific one. Philosophical thought experimenta-
tion would be paradigmatic of these flaws. Following
Hull’s discussions ([21.89, 90]; Sect. 21.3.1), which
sum up criticisms against philosophical thought experi-
ments very well, there are four negative aspects, which
make philosophical thought experimentation less effec-
tive than scientific thought experimentation.

First, philosophical thought experiments lack
well-defined theoretical frameworks. According to
Hull [21.90, pp. 432, 434 and 438] this is the funda-
mental difference between philosophical and scientific
thought experiments and, probably, the reason for the
disparity (at the time of his writings) between many ex-
cellent analyses of scientific thought experiments and
poor accounts of philosophical thought experiments.
Hull thinks that thought experiments made within ana-
lytic philosophywell exemplify the lack of a theoretical
framework that allows us to set up the imagined sce-
nario. Provocatively, he writes: “If no such context
exists, philosophers need to construct one. [. . . ] If Jane
Austen can do it, so can Hilary Putnam” [21.90, p. 434].
If a theoretical and technical background is missing,
as much as one tries to refine the details of the given
thought experiment, it will remain hopelessly incom-
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plete (Sect. 21.3.3) and of poor cognitive value. Fur-
thermore, without a reliable theoretical background, the
usefulness of philosophical thought experimentation is
also undermined, in so far as thought experimentation
cannot exploit a fruitful interdependence between ob-
servations and theories [21.89, p. 311].

Second, philosophical thought experiments are used
in order to justify or provide evidence in favor of the-
oretical hypotheses, though they should be used only
for descriptive purposes ([21.89, pp. 315–316]; see
also [21.90, p. 438 and p. 453]). According to Hull, the
fact that philosophical thought experimentation relies
more on common sense than on scientific data weakens
its justificatory power and is also the reason why they
cannot offer the same degree of technical specificity as
scientific thought experimentation and real experimen-
tation.

Third, Hull maintains that, contrary to real experi-
mentation, thought experimentation requires a theory of
conceivability as a vehicle for possibility. Thus, thought
experimentation should adopt a strong standard of con-
ceivability. Unfortunately, “Too often, the decisions
that philosophers make rest heavily on intuitions about
what sounds right” [21.90, p. 435]. In a nutshell, we set-
tle for weak requirements for assessing the plausibility
of the conclusions reached via thought experimentation
(there is a vast philosophical literature on the link be-
tween conceivability and possibility; see, for example,
contributions in [21.197], which also touch upon the is-
sue about thought experimentation; see also [21.198]).

Finally, misleading intuitions seriously undermine
the efficacy of thought experimentation. These intu-
itions are culturally variable, being dependent on our
cultural beliefs. The latter can help us in exploring pos-
sible worlds, but also be narrow-minded and inhibit
innovation [21.90, p. 431 and p. 446]. It does emerge,
from the catastrophic picture of the critics about
philosophical thought experiments, that the latter are
a source of, in Hull words, “conceptual morass” [21.89,
p. 315], rather than a prelude to its remediation.

The lack of a strong standard of conceivability, the
contextual vagueness, and the consequent paucity of in-
terrelation between empirical and theoretical data are
errors that can be traced to a single source: mislead-
ing intuitions. Hence, criticisms against philosophical
thought experimentation can be reduced to 2. Philo-
sophical thought experimentation, on the one hand,
relies on questionable intuitions and, on the other hand,
purports to bring evidence in defence of a philosophi-
cal claim or theory. Without calling into question, the
plausibility of such a view, a further difficulty arises
from the fact that the meaning of the term intuition is
not crystal clear. There is not a consensus either on
what intuitions are or on what we can reasonably ex-

pect from them. This is so not only in the debate on
thought experimentation, but also in the specific de-
bate about the nature of intuitions (a good starting point
on the topic are the contributions in [21.199]; see also
Cappelen [21.200], Chudnoff [21.201] and Booth and
Rowbottom [21.202]).

Intuitions and Thought Experimentation
Intuitions seem to be an integral part in the processes of
rational choice. Psychology and related disciplines have
been investigating the formation and variation of our
daily choices for a long time [21.203]. The picture that
has emerged is that our decisions are highly sensitive to
many elements which, at first sight, appear irrelevant,
such as the framing of the context. Similar considera-
tions seem to apply to intuitions as well. This line of
research is a warning to a standard philosophical prac-
tice that uses intuitions generated in response to thought
experiments as evidence in the assessment of a philo-
sophical thesis (e.g., in ethics – see, [21.204–206]). The
lesson would be that a more rigorous program, whose
goal is to observe responses obtained via thought exper-
iments and to study the nature of the intuitions involved,
is needed. A new philosophical movement known as
Experimental Philosophy (or X-Phi) aims precisely at
meeting this challenge, by making use of the critical
methods proper to social experimental psychology (for
an introduction to X-phi, see [21.207] and contributions
in [21.208]).

Note that the methodology of the experimental
philosophers has been highly criticized (e.g., [21.209]
and [21.210],Williamson is also sceptical about the role
of intuitions in thought experimentation – [21.119, 211,
212] – without being sceptical about thought experi-
mentation itself like [21.213]). Leaving aside such cri-
tiques, X-Phi studies have shown that some philosoph-
ical thought experiments typically considered as uni-
versally acceptable (e.g., Gettier’s cases, Keith Lehrer’s
Mr. Truetemp thought experiment [21.214], Putnam’s
brain in a vat, Saul Kripke’s thought experiment on
Gödel and Schmidt – [21.215]) evoke variable intu-
itions both inter- and intra-subjectively [21.216, 217].
The fact that thought experiments produce unstable in-
tuitions makes thought experimentation itself shaky.
However, thought experimentation in the scientific do-
main is commonly considered efficient. Therefore, it is
legitimate to ask whether only philosophical thought
experiments evoke poor intuitions and, if not, whether
scientific thought experiments have other resources in
order to make their intuitions more useful.

Some contemporary philosophers have explicitly
pointed out that all thought experiments, both philo-
sophical and scientific, evoke and make use of intu-
itions. In Brown’s account, for example, the state of
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seeing the laws of nature is interpreted in terms of hav-
ing intuitions [21.55, 72]. On this view, in Galileo’s
thought experiment (Sect. 21.1.1) the desired scientific
conclusion comes as a result of our having the intuition
that the two bodies fall at the same speed. However,
it seems that in the scientific domain as well, thought
experimentation can elicit misleading and unreliable
intuitions (e.g., in EPR thought experiment, which is
generally interpreted as a failed thought experiment –
Sect. 21.3.3). Still it is an open question whether and
how these intuitions can be properly used in the scien-
tific domain.

One way to answer this question is to argue that
philosophical and scientific thought experiments do not
involve the same type of intuitions. Bealer [21.192]
seems to hold this view. He distinguishes between ra-
tional and physical intuitions. The former would be
sui generis intellectual seemings and would arise when
considering the (logical or metaphysical) possibility of
an imagined scenario or the applicability of a given con-
cept to such a scenario. The author gives as an example
of this type of intuition Gettier’s cases (Sect. 21.1.4),
which trigger two rational intuitions: A first intuition
confirms that the case is possible, while a second in-
tuition that we cannot ascribe to the imagined subject
a state of knowledge. Physical intuitions deal with what
would happen if the given imagined scenario were ac-
tual, rather than with its plausibility. Newton’s rotating
bucket thought experiment (Sect. 21.1.3) would exem-
plify this type of intuition, since in this case a physical
intuition has to answer the question: “Would water
creep up the side of the bucket (assuming that the
physical laws remained unchanged)?” [21.192, p. 207].
According to Bealer, another feature distinguishes ra-
tional from physical intuitions: only the former present
themselves as necessary. As Bealer would say, nec-
essarily if a subject S intuits that the given imagined
scenario is not a case of knowledge, it seems to S that
the given imagined scenario is not a case of knowledge
and also that necessarily the given imagined scenario
is not a case of knowledge. By contrast, it does not
seem that the water must crawl up the side of the
bucket, though it is possible. Finally, Bealer claims that
the expression thought experiment should be used to
refer only to hypothetical situations that generate phys-
ical intuitions – i. e., to scientific thought experiments
(mathematics and logic excluded).

Beyond the plausibility of a distinction between
physical and rational intuitions drawn on the dis-
tinction between possibility and necessity, its rele-
vance for a corresponding distinction between scientific

and philosophical thought experiments is questionable,
since the alleged self-evidence of intuitions produced
by philosophical thought experimentation has been se-
riously challenged.

Daniel Dennett [21.218] defined thought experi-
ments as intuition pumps. Generally, in the literature
on thought experiments, this expression is interpreted
in a negative sense. Indeed, Dennett does not consider
(at least philosophical) thought experiments highly.
However, the philosopher seems to acknowledge that
thought experiments can be useful when he writes
that [21.218, p. 18]

“Philosophy with intuition pumps is not science at
all, but in its own informal way it is a valuable –
even occasionally necessary – companion to sci-
ence.”

Following Peter Swirski [21.219], it can be argued
that the fact that thought experiments, both scientific
and philosophical, are intuition pumps, and that these
intuitions are unstable, is not negative per se. The epis-
temic force of a thought experiment seems precisely to
arise from the fact that it depicts an exceptional case
and forces us to account for the latter. Perhaps, the
problem lies in an overestimation of what “can rea-
sonably be expected of such experiments” [21.219, p.
105]. For example, it might be an exaggeration to con-
sider thought experimentation a canonical procedure of
justification [21.192], as if a single thought experiment
could lead us to accept or to reject a theory. After all,
even real experiments seem not capable of doing so
much.

It is also possible to argue that it is a mistake
“to describe the sort of knowledge involved in these
thought experiments as intuitions” [21.56, p. 300]. The
idea would be that intuitions are a component in the
cognitive process of thought experimenting, more than
its upshot. It might be even argued that intuitions are
dispensable in thought experimenting [21.31, 119, 211,
212, 220]. According to many authors [21.71, 72, 82,
137, 161, 204, 221], however, intuitions play a crucial
role in thought experimenting. Through these intuitions,
in conjunction with other components (e.g., theoreti-
cal assumptions, empirical data), thought experiments
lead us to acquire knowledge. The power of thought
experiments would rely on optimizing the combination
between data, theories, and intuitions. It can be argued
that scientific and philosophical thought experimenta-
tions are functionally similar: The latter have the same
potential as the former in order to make interact data,
theories, and intuitions [21.152].
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21.5 How Do Thought Experiments Achieve Their Function?

The discussion on the intuitions involved and generated
by thought experimentation (Sect. 21.4.3) highlights
another important issue in the debate on thought experi-
mentation, namely the question about how the latter ob-
tains its results. This question is intimately connected to
the cognitive side of thought experimentation. In what
follows, first, I shall outline the motivation for a cog-
nitive approach to thought experimentation and briefly
review what has been said about the cognitive un-
derpinnings of thought experimentation (Sect. 21.5.1).
Second, I shall focus on the role played by imag-
ination in thought experimentation, since almost all
scholars agree in thinking that imaginative capacities
are recruited by thought experimenters (Sect. 21.5.1).
Third, I shall draw on issues connected to the latter,
namely the narrative dimension of thought experimen-
tation.

21.5.1 A Cognitive Approach
to Thought Experimentation

Most analyses in the debate have been primarily con-
cerned with epistemological issues that aim to analyze
thought experiments with respect to their outputs, more
than their cognitive underpinnings. A cognitive ap-
proach would, however, be worth pursuing, because we
could consider not only the result of a thought exper-
iment, but also what happens in the head of someone
performing a thought experiment (on the advantages
and disadvantages of the study of thought experimen-
tation via cognitive sciences see the debate between
Stuart [21.222] and Thagard [21.99]).

Mason Myers [21.185] complained about both the
lack of a deep investigation of the basis of thought
experimental reasoning and the epistemic aspects of
(philosophical) thought experiments. However, an epis-
temological approach to thought experiments is not
cognitive, or not necessarily so. The difference between
these two ways of studying thought experiments lies
in the specific issues addressed, as well as in the fact
that while the epistemological approach is generally
normative, the cognitive approach is more descriptive.
A fine-grained and comprehensive analysis of thought
experiments should acknowledge the differences be-
tween these two approaches and pursue them together
insofar as they are complementary [21.223].

In the literature, there have been several attempts
to describe the stages of a thought experiment or how
it works. For instance, Reiner and Gilbert [21.148]
argue that there are six stages to thought experi-
menting:

1. A problem or a hypothesis is stated
2. An imaginary world that contains objects and laws

is made up
3. The thought experiment is designed
4. The thought experiment is run
5. Observations are made (i. e., an outcome produced

with the use of the laws of logic) and
6. Conclusions are drawn (see also [21.52, 86] and

more recent contributions in [21.15]).

However, it is not always clear if these analyses
focus on what really happens in the heads of thought
experimenters or if they are about the argumentative
structure of thought experiments. Indeed, it seems that
thought experiments are pieces of reasoning, so that
it should be possible to organize them into a premise-
conclusion structure, involving certain inferential rules
(Sect. 21.3.2).

Anyway, the question of how thought experi-
ments fulfil their functions has led many to tackle
the issue about the kind of reasoning underlying
thought experimentation. On this issue, authors dis-
agree and have appealed to different, but sometimes
compatible, kinds of reasoning: hypothetical [21.38],
counterfactual [21.77, 119], deductive [21.115, 117,
134], inductive [21.115, 117], abductive [21.103], sim-
ulative model-based [21.73], propositional [21.119],
nonpropositional [21.73, 136], and heuristic (e.g., De
Mey [21.224], who pleads for an approach who inte-
grates both the heuristic value and the demonstrative
force of thought experiments).

A related debate concerns the role played by intu-
itions in thought experimentation (Sect. 21.4.3). Jeanne
Peijnenburg and David Atkinson claimed that, although
there is not a unanimous definition of what thought
experiments are, there is unanimity about what they
should do, that is to give “a sudden and exhilarat-
ing insight” ([21.79, p. 306]; see also the definition
in the Encyclopedia of Cognitive Science – [21.81]).
Indeed, many philosophers in the debate on thought
experiments have claimed that intuitions are an impor-
tant component of the thought experimental process, as
well as the type of its outcome. However, the precise
role played by intuitions in thought experimentation
is an open question. As previously stressed, while
some authors have argued that intuitions cannot explain
by themselves the epistemic role of thought experi-
ments [21.56], others have based their scepticism about
the thought experimental practice precisely on the fact
that they mainly involve (deceptive) intuitions [21.79,
89, 90, 99].
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Despite this disagreement, almost all authors in-
volved in the debate on thought experiments agree in
considering thought experiments as epistemic tools,
which involve imagination in order to provide insights
on a certain hypothesis or theory (see the definition in
the Encyclopedia of Cognitive Science [21.81]).

21.5.2 Imagination and Thought
Experimentation

Mach [21.28, 83, 168] was the first to argue that imag-
ination plays a pivotal role in thought experimentation.
According to him, performing a thought experiment is
to “combine circumstances” in imagination [21.28, p.
452]. Some passages of his writings have led authors
to maintain that Mach conceived imagination as visu-
alization. Among these authors is Gendler [21.145],
who attributes to Mach the idea that it is visual im-
agery (i. e., visual imagination) that is primarily at work
in thought experimenting (see also [21.52]; for a cri-
tique [21.223]). Gendler herself has tried to pursue
Mach’s approach. She establishes a link between re-
search of cognitive scientists and philosophers on visual
imagery and the analysis of Stevin’s thought experiment
on the inclined plan (Sect. 21.1.2), and finds that at least
in some thought experiments the role of visual imagery
is epistemically crucial (see also [21.105] on this point).

It is possible to consider themodel-based approach,
which calls on the literature of model-based reasoning
in cognitive science, as belonging to the Machian tra-
dition too, that is, they pursue Mach’s aim of analyzing
thought experiments with the help of a psychological
theory (for a detailed analysis, see [21.86, Chap. 4]).
Among the authors advocating this approach [21.85,
132, 225, 226], three are to be considered as its main
developers, namely Miščević [21.137, 149], Nerses-
sian [21.73, 84, 135, 227] and Cooper [21.65]. These
authors agree in maintaining that in thought experimen-
tation we gain new knowledge through manipulating
a model. They have, however, advanced different the-
ses pivoting on different notions of model.

Miščević and Nersessian appeal to the cognitive lit-
erature concerning mental modeling, and more specif-
ically to the notion of the mental model proposed
by Philip Johnson-Laird [21.228, 229]. In a nutshell,
a mental model is a structure stored in short or long
term memory and it is defined by cognitive scientists as
a third type of mental representation, half way between
propositional and pictorial. Indeed, mental models are
structurally analogous to that which they represent,
but not all such models can be visualized. This is
clearly seen in Nersessian’s account [21.86], whereas
Miščević holds a more pictorialist view about mental
models. Indeed, Miščević claims that the mental model

is a “quasi-spatial picture” and has a “concrete and
quasi-spatial character” [21.149, p. 220].

By contrast, Nersessian argues that the mental
model manipulated in thought experimentation is nei-
ther a picture in the head nor a linguistic representation.
Following Johnson-Laird, she maintains that it is rather
a structural analog of the situation depicted in the
thought experimental narrative [21.73, p. 297]. Nev-
ertheless, Nersessian highlights the role of nonpropo-
sitional representations much more than Miščević: In
her view the reasoning proper to thought experiments
is entirely rather than partially nonpropositional. For
that reason, Nersessian maintains that deductive and in-
ductive inferences do not have a central part in thought
experimentation.

Cooper disagrees with both Miščević and Nerses-
sian and holds a much more liberal view. On the one
hand, she maintains that the hypothesis of mental mod-
els is debatable as it is based on contestable empirical
data. On the other hand, she argues that [21.65, p.
341]

“whether the thought experimenter reasons through
the situation via manipulating a set of propositions,
or a mental picture, or even plasticine characters
makes no difference.”

For Cooper, a thought experimenter can manipulate
physical models in addition to mental representations,
and she can carry out deductive or inductive inferences,
as well as diagrammatical ones. Another point of dis-
agreement is that for Nersessian and Miščević, “models
are restricted to simulating the way in which phenom-
ena would unfold in the real world”. Cooper replies that
“the thought experimenter may model a world in which
some laws of nature are suspended or altered” ([21.65,
p. 341] – see what has been said about Wilkes on this
point Sect. 21.4.3).

Two other views that fall within the mental-model
approach are worth mentioning. First, by following
Nersessian’s account, Michael Bishop [21.132] has put
forward a very liberal view according to which men-
tal models of actualized experiments and at least some
computer simulations count as thought experiments
(see what has been said about numerical experiments
Sect. 21.3.2). Second, David Gooding [21.85, 147] was
in line with Nersessian’s approach too. However, he did
not rely on the notion of a mental model and devel-
oped an embodied view on thought experiments where
the bodily and visual components play a central role
(see [21.230] for a more phenomenological and less
naturalistic embodied approach on thought experimen-
tation).

According to the Machian tradition, thought exper-
iments are species of simulative-based reasoning. This
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idea is implicit in Gendler’s analysis, but it is only in
the model-based approach that it is made fully explicit
and linked to the notion of a (physical or mental) model.
John Zeimbekis [21.231] has criticized simulationist ap-
proaches to thought experiments by arguing that we
should distinguish between two kinds of mental simu-
lation: mental–mental simulation and mental–physical
simulation (see also the similar distinction between
recreative and icastic imagination drawn in [21.223]).
He claims that while only the latter is captured by
mental models, the former is a source of epistemic
bias, at least, for moral thought experiments. Zeimbekis
grounds his argumentation on the literature in philoso-
phy of mind about simulation theory. However, it is not
entirely clear, whether he is dealing with high-level or
low-level mental simulations. While the former comes
at the personal level and can be interpreted as con-
scious imagination, the latter comes at the subpersonal
level and is realized by mirroring processes, for exam-
ple, the activation of mirror neurons in the observation
mode [21.232, 233].

Imagination is often cited by all these authors, but
it is not crystal clear how imagination is defined and
what the link is between mental or physical models
and imagination. More generally, the role of imagi-
nation in thought experiment is a controversial topic
(see [21.196]; on imagination and thought experiments
see also [21.234, 235]). Indeed, some authors, like
Gendler [21.145], give it a central role, while oth-
ers, such as Norton [21.115], maintain that thought
experimenters could and should do without it, imagi-
nation being here a source of error (see also [21.54]).
Moreover, an additional complication arises once we
acknowledge that accounts of imagination provided by
the cognitive literature have pointed out that imag-
ination comes in many varieties, for instance there
would be sensory and nonsensory forms of imagina-
tion (e.g., [21.232]). A closer look at the expressions
used in the literature to describe thought experimenta-
tion suggests that most authors think of imagination as
the means by which the thought experimenter gains ac-
cess to a scenario which is not directly accessible to her
senses: in thought experimenting she quasi-observes.
For instance, Brown [21.55, 70–72] speaks of seeing the
laws of nature and he claims that the pictorial and sen-
sory aspects are essential to thought experimentation
(see also [21.136] on that point). Nersessian [21.73]
stresses that when we perform a thought experiment,
we feel ourselves as observers.Martin Cohen takes the
second rule of good thought experimenting to be that
the thought experiment must be imaginable, that is, “the
clearer the picture, the stronger the image, the better the
experiment” [21.64, p. 106]. Gooding [21.85] claims
that visualization is a necessary and sufficient condition

to most if not all thought experiments. Norton [21.115]
admits that thought experiments involve visualization,
though he denies its epistemic role. Thought experi-
mentation, thus, seems to involve a sensory – specifi-
cally, visual – variety of imagination. Although they are
in the minority, other authors have suggested that non-
sensory forms of imagination may be necessary to the
thought experimenter, like supposition [21.236] or con-
ceiving [21.237]. Indeed, Mach himself seems to have
given to imagination in all its forms a role in thought
experimenting [21.223].

21.5.3 The Narrative Dimension
of Thought Experimentation

The model-based approach has underlined a rather ne-
glected aspect of thought experimentation, namely its
narrative dimension [21.73, 85]. Thought experiments
are extremely important because they are intentional
products related to the sharing and the spreading of
knowledge. Moreover, they are publicly presented to
different audiences through narratives [21.219]. In dis-
agreement with Norton, Nersessian has stressed that
the aesthetic details in thought experimental narratives
are not simply rhetorical, but “serve to reinforce cru-
cial aspects of the [thought] experiment” ([21.73, p.
296] – she also sees a parallel between thought and
real experiments, since also the latter when published
are presented in a narrative form). Still, according to
Lawrence Souder [21.238], even in Nersessian’s ac-
count the role played by the narrative aspect of thought
experimentation is underestimated. The same holds for
other views that deny to thought experimentation a life
of its own (the reference is mainly to [21.74], as we
have seen before Sect. 21.3.3).

The narrative dimension of thought experimentation
has led some authors to conclude that the reasoning
underlying thought experimentation is closely related
to the one used in the consumption of fiction [21.73,
149, 186, 234]. Some have proposed to consider thought
experiments as a genre, like science fiction [21.239].
This view is in line with David Davies’ one. Indeed,
he argues [21.240, 241] that both philosophical and
scientific thought experimentation meet two necessary
and sufficient conditions for the fictionality of a nar-
rative. That is, first, they involve to make believe,
rather than to believe, that the state of affairs described
holds (this point brings us back to the issue about
the role played by imagination in thought experimen-
tation, since make-believing is a form of imagining,
see [21.234, 242], Sect. 21.5.2); second, they involve
a narrative constrained by some specific purpose “such
as entertaining or perhaps instructing readers in certain
specific ways” ([21.241]; in [21.240] he specifies that
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the imaginary world should not be constrained by ac-
tual events).

If, on the one hand, we can put thought experimen-
tation on the level of literary fiction, on the other hand,
we can also do it the other way around and put the
latter on the level of the former. Fictions themselves
can be seen as thought experiments aiming at enrich-
ing the subject’s knowledge via journeys in more or less
far possible worlds [21.219, 243]. Precisely, on this ba-
sis, both Carroll [21.244] and Elgin [21.245, 246] have
tried to defend literary cognitivism, that is, the view ac-
cording to which fictional narratives can be a source

of knowledge or understanding of the real world
(in [21.246], the author also argues that the process of
exemplification is common to literary fiction, thought
and real experimentation). Some caveats to this move
have been raised byDavies ([21.241]; see also [21.80]),
in particular when applied to films [21.247].
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The use of models in mathematics can broadly be
distinguished as two categories. Most commonly, math-
ematical models are applied to the formal sciences and
engineering, as well as to social sciences and other
modes of quantitative reasoning. Secondly, models are
also used within formal mathematics and in mathemat-
ical practice. This part of the book is mostly concerned
with the latter use of models. In this sense, mod-
els are tools for reasoning in mathematics or teaching
mathematics, and as a consequence also a means for un-
derstanding mathematical practice. The oldest and most
common use of models in mathematical practice are
applications of extended cognition. Chinese counting
rods, the Roman abacus, medieval jetons or reckoning
counters, or modern day computers are all material aids
that allow us to delegate part of the cognitive load in
performing complex calculations to the external envi-
ronment. The operations that we carry out using these
contrivances represent specific calculating procedures
and in that sense they act as specific models of algo-
rithms in arithmetic.

Diagrams are a more interesting application of ex-
tended cognition in mathematics. It is rather surprising
that after more than 2000 years of practice with dia-
grams in mathematics, a study of their precise meaning,
use, and function in mathematical reasoning has be-
come a subject of serious study only during the past
20 years. Chapter 22 by Valeria Giardino provides us
with a comprehensive state of the art in recent research
on mathematical diagrams. The new approach from
the philosophy of mathematical practice – studying
what mathematicians are actually doing when produc-
ing mathematics – has focused on the role of diagrams
as a reasoning model rather than a visual representa-
tion of a mathematical object. Especially, the classic
lettered diagram from Euclidean geometry has come
under scrutiny, with the role of its constituent elements,
their ontology, their epistemic functions, and their re-
lation with the text and inherent ambiguities being
inspected. It turns out that the diagram is not just a static
object in a textbook, but as Giardino calls it, the dia-
gram is kinaesthetic, as the text referring to it treats it
as a constructed and manipulative object in which its
inherent ambiguities become productive and open up
modes of reasoning which are inhibited in more formal
representations.

Chapter 23 is a contribution by John Mumma that
builds further on research from the philosophy on math-
ematical practice on Euclidean diagrams, in particular
the work of Ken Manders (2008). Mumma presents
a formalization of the model-based reasoning involved
in mathematical diagrams, not only accounting for the

construction of the geometrical diagram but also its use
in the demonstration.

A third application of extended cognition worth
mentioning, while not treated as a dedicated subject
below, are symbolic representations. It might be less
obvious to view mathematical symbolism as a form of
model-based reasoning, but recent research indicates
that symbolism is not just a game of meaningless sym-
bols and that modern symbolism, as it is taught and
practiced today, relies on the visual processing of el-
ements in a way that is similar to the interpretation
of diagrams. Spatial organization, directionality, group-
ing, and mental operations like picking up and moving
elements across symbolic expressions, appear to be cru-
cial for our understanding of mathematical symbolism
(Heeffer 2014).

Chapter 24 is the reflection of a joint project by
two philosophers of mathematical practice, Joachim
Frans and Bart Van Kerkhove, and the mathemati-
cian Isar Goyvaerts. This contribution provides a more
general account of model-based reasoning in mathemat-
ical practice, concentrating on the processes that are
required to arrive at higher levels of abstraction in math-
ematics. Three examples from different mathematical
disciplines show howmodels facilitate additional layers
of abstraction. The first one is from Euclidean geome-
try and deals with the abstraction from concrete shapes
and measures to mathematical objects to which deduc-
tive reasoning can be applied. The second one is from
approximation theory, in which functions can be mod-
eled by other, more nicer and simpler functions. The
third example is more technical and describes how the
highest level of abstraction is achieved by the modeling
of the inferences on certain algebraic objects by cate-
gory theory.

Chapter 25 deals with abduction, which is well
suited for modeling mathematical inferences within
the context of discovery. Abduction is the response
to observations or findings which appear surprising or
anomalous, and formulating hypotheses which allow
us to evaluate their consequences. Abductive reasoning
can thus lead to the emergence of newmathematical ob-
jects, ideas, or even theories. An earlier historical case
study has shown how imaginary numbers appear from
practice in Renaissance algebra (Heeffer 2007). By
means of empirical case studies, Ferdie Rivera shows
how abductive processes are prominent within students’
understanding of mathematics in the classroom, while
previous studies have only focused on deductive or
inductive reasoning. Four concrete suggestions are for-
mulated to illustrate how abduction can be applied to
mathematics education in a more systematic way.
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22. Diagrammatic Reasoning in Mathematics

Valeria Giardino

The objective of the present chapter will be to re-
view the most recent studies about diagrammatic
reasoning in mathematics. Section 22.3 will focus
on the very much discussed topic of the role and
of the features of diagrams and diagrammatic rea-
soning in Euclidean geometry. Section 22.4 will be
devoted to the proposal of considering diagrams as
representations that are introduced in support of
other symbolic practices and whose power resides
in their ambiguity. In Sect. 22.5, the attention will
turn toward studies discussing diagrammatic rea-
soning in contemporarymathematics. In Sect. 22.6,
computational perspectives on how to implement
diagrammatic reasoning in computer programs will
be introduced, both for Euclidean geometry and
theory of numbers. In Sect. 22.7, it will be dis-
cussed how the study of diagrammatic reasoning
can shed light onto the nature of mathematical
thinking in general. Finally, in Sect. 22.8, some
brief conclusions about diagrammatic reasoning in
mathematics will be drawn. The choice of review-
ing the research about diagrammatic reasoning
along these lines is of course at least in part arbi-
trary. The aim of such a regrouping is to provide the
reader with a map that can be helpful for explor-
ing the various and already copious literature that
has been recently produced on the subject. The
ambition is that such a map will be as extensive
as possible.

22.1 Diagrams as Cognitive Tools ............... 499
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22.1 Diagrams as Cognitive Tools

In his Parallel Lives, Plutarch famously reported the
murder of Archimedes. He relates three different ver-
sions of the circumstances that brought about his death.
According to the first one, Archimedes was so intent
upon inspecting a diagram to work out some problem
that he never noticed the incursion of the Romans, nor
that the city was taken. His absorption in study and con-
templation of the diagram was so deep that he declined
to follow a soldier who had unexpectedly come up to
him and commanded him to do so. Given his refusal,
the soldier drew his sword and ran him through. In the

same spirit, in one of the most celebrated frescoes of
the Italian Renaissance, The School of Athens, Raphael
depicts a group of men attentively watching a scholar –
most likely to be interpreted as Archimedes or Euclid –
while he draws a geometrical figure on a clay tablet.

The mathematician is thus often portrayed as in-
tensely working on a diagram; this popular image at-
tests to what extent the resource to diagrams, figures, or
sketches – among other possible available instruments –
is commonly considered as an outstanding element of
the practice of mathematics. Is this picture true to the
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facts? Are diagrams really part and parcel of the mathe-
matical practice? And if it is so, what can be said about
their features, use, and relations with other elements of
the same practice? The objective of the present chapter
is to introduce the most recent works on diagrammatic
reasoning in mathematics and to review the answers
that have been proposed so far for these questions. In
this first section, the domain of inquiry – diagrammatic
reasoning in mathematics – and the issues at stake in
exploring it will be defined.

First of all, a clarification is needed on the meaning
of the term diagram in diagrammatic reasoning, so as to
avoid misinterpretations. Throughout the chapter – and
possibly in contrast with other views – the term will
be used in a very broad sense, that is, to include all
cases of two-dimensional representations where their
two dimensionality is relevant for the way in which in-
formation is displayed and read off from them. This
seemingly too vague definition is actually appropriate
to refer to many different phenomena that are found in
mathematics. Moreover, diagrams will be intended here
as cognitive tools that are meant to spatially display
information in order to improve memory and promote
inference, and not necessarily to depict mathematical
objects. This will have two consequences: first, the fo-
cus of the analysis will be on diagrams and not on
visualizations; second, lengthy discussions about the
implications for the ontology of mathematics will be
avoided. For these issues, one can refer among others to
Brown, who claims that diagrams are not really pictures
but rather “windows to Plato’s heaven” [22.1, p. 40], or
to Sherry, who argues that some particular uses of dia-
grams make a realist view problematic [22.2].

Diagrammatic reasoning is surely relevant for hu-
man reasoning in general. As has been pointed out,
human reasoning is heterogeneous: humans happen to
rely on many different sorts of instruments with the
aim of externalizing thought, diagrams being among
them [22.3]. A common saying is that we are halfway
to finding a solution to a problem when we are able to
draw the right diagram for it. Nonetheless, in relation
to mathematics, it is necessary to distinguish between
mere sketches and diagrams. Sketches are certainly
widespread and useful for the mathematician to reason
about a problem or to communicate with one’s peers.
However, they will not be the topic of this chapter,
which will be devoted to diagrams as parts of a system
of representation. Such diagrams obey some (more or
less explicit) rules and their manipulation is controlled
by the particular practice, in terms that will be defined
later.

Not surprisingly, most analyses of diagrammatic
reasoning in mathematics have dealt with Euclidean ge-
ometry, where the recourse to diagrams is so natural

and spontaneous that there is a tendency to take the
presence and the effectiveness of diagrams for granted.
Moreover, most diagrams in Euclidean geometry be-
come part of our visual repertoire from a very early age
at school. Think of the Pythagorean theorem and the
impressive number of so-called visual proofs that have
been given for it [22.4]. According to this theorem, the
square of the hypotenuse .c/ of a right triangle equals
the sum of the squares of its other two sides (a and b).
In letters,

a2C b2 D c2 : (22.1)

One of the possible visualizations for the
Pythagorean theorem is offered in Fig. 22.1.

In Fig. 22.1a, four identical right triangles have been
arranged into two rectangles. To obtain a square of side
aC b, these two rectangles are added to two squares:
one of side a, and the other of side b. In Fig. 22.1b,
the same four triangles have been rearranged inside the
square of side aC b and they now individuate another
square of side c. By looking at the two diagrams to-
gether and by applying subtraction of the same objects –
the four right triangles – to the same object – the square
of side aC b – the Pythagorean theorem is obtained.

However, there are cases of diagrammatic reasoning
that may be less obvious than in Euclidean geometry,
for example, for statements about numerical properties.
Consider the following geometric series

1

2
C 1

4
C 1

8
C � � � D 1 (22.2)

and its possible spatial arrangement in Fig. 22.2, in
which each new rectangle or square drawn in the dia-
gram – each new element added to the series – brings
us closer to the square of area 1 (the example is taken
from [22.1, pp. 36–38]).

As Brown points out, this picture proof should be
contrasted with a traditional proof using "-ı techniques.
In such a proof, we first have to note that an infinite
series converges to the sum S whenever the sequence of

a b

a b

b a

ba

a

c c

c
c

ca

b c

a

b

a

b

b

a) b)

Fig. 22.1a,b Pythagorean theorem
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Fig. 22.2 A geometric series

partial sums fsng converges to S. In this case, we have

s1 D 1

2
; s2 D 1

2
C 1

4
; s3 D 1

2
C 1

4
C 1

8
;

sn D 1

2
C 1

4
C 1

8
C � � �C 1

2n
: (22.3)

The values of these partial sums are

1

2
;
3

4
;
7

8
; : : : ;

2n� 1

2n
: (22.4)

This infinite sequence has the limit 1, provided that
for any number " > 0, no matter how small, there is
a number N."/, such that whenever n> N, the differ-
ence between the general term of the sequence 2n�1

2n and
1 is less than ".

In symbols,

lim
n!1

2n � 1
2n
D 1

” .8"/.9N/n> N!
ˇ̌
ˇ̌2

n � 1
2n
� 1

ˇ̌
ˇ̌< " :

(22.5)

By applying some algebra, one obtains
ˇ̌
ˇ̌2

n � 1

2n
� 1

ˇ̌
ˇ̌< " ”

ˇ̌
ˇ̌�1
2n

ˇ̌
ˇ̌ < " ” 2n >

1

"

” log2
1

"
< n : (22.6)

Let now N."/D log2
1
"
. As a consequence,

n> log2
1

"
!
ˇ̌
ˇ̌2

n� 1

2n
� 1

ˇ̌
ˇ̌< " : (22.7)

We have thus proven that the sum of the series is 1.
Compare now the easiness of forming the belief that
the sum of the series is 1 by looking at the diagram
in Fig. 22.2 with the resources required to prove the
same result in a traditional way. The topic of the chap-
ter will thus not only be Euclidean geometry. Other
studies will be presented that analyze the usefulness of
diagrammatic reasoning also in other branches of math-
ematics.

For the sake of completeness, there exists also
very interesting work on ancient mathematics other
than in Greece, involving, in some cases, also visual
tools [22.5, 6]. Nonetheless, for reasons of space and
given the specificity of the research, these works will
not be among the subjects of the present chapter. It
must also be noted that analogous considerations about
the importance of diagrammatic reasoning in math-
ematics can be made to logic. Many scholars have
discussed diagrammatic reasoning in logic, in an in-
terdisciplinary fashion. Some studies have focused on
the cognitive impact of diagrams in reasoning [22.7]
and others on the importance of heterogeneous reason-
ing in logical proofs [22.8] and on the characteristics
of nonsymbolic, in particular diagrammatic, systems
of representation [22.9]. Very recently, and coherently
with what will be later said about diagrammatic rea-
soning in mathematics, it was claimed that different
forms of representation in logic are complementary to
one another, and that future research should look into
more accurate road maps among various kinds of rep-
resentation so that the appropriate one may be chosen
for any given purpose [22.10]. However, for reasons of
space and despite the numerous parallels with the case
of mathematics, the use of diagrammatic reasoning in
logic will not be a topic of the present chapter.

22.2 Diagrams and (the Philosophy of) Mathematical Practice

The subject of diagrammatic reasoning in mathemat-
ics has recently gained new attention in the philosophy
of mathematics. By contrast, in the nineteenth and
twentieth centuries, this topic was neglected and not
considered to be of philosophical interest; the heuris-

tic power of diagrams in mathematics was never denied,
but visual mathematical tools were commonly relegated
to the domain of psychology or to the context of discov-
ery – by referring to a distinction between the context
of discovery and that of justification that was very pop-
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ular and that has become more and more precarious in
recent years.

Famously, among others, Russell criticized Eu-
clidean geometry for not being rigorous enough from
a logical point of view [22.11, p. 404ff]. Consider the
very first proposition of the Elements, which corre-
sponds to the diagram in Fig. 22.3. The proposition
invites the reader to construct an equilateral triangle
from a segment AB by tracing two circles with cen-
ters A and B, respectively, and then connecting the
extremes of the segment with the point that is created
at the intersection of the two circles. According to Rus-
sell, “There is no evidence whatever that the circles
which we are told to construct intersect, and if they
do not, the whole propositions fails” [22.11, p. 404].
The proposition does, in fact, contain an implicit as-
sumption based on the diagram – the assumption that
the circles drawn in the proposition will actually meet.
From Russell’s and analogous points of view, diagrams
do not entirely belong to the formal or logical level,
and therefore they should be considered as epistemi-
cally fragile. If this is assumed, then a proof is valid
only when it is shown to be independent from the corre-
sponding diagram or figure. In order to save Euclidean
geometry from the potential fallacies derived from the
appeal of diagrams, such as the one just shown, some
assumptions, sometimes called Pasch axioms, were in-
troduced. For example, it is necessary to assume that
A line touching a triangle and passing inside it touches
that triangle at two points, so as to avoid the refer-
ence to the corresponding diagram and make it a logical
truth. By contrast, prior to the nineteenth century, such
assumptions were generally taken to be “diagrammati-
cally obvious” [22.12, p. 46].

There were historical reasons for this kind of scep-
ticism in relation to the use of visual tools in math-
ematics. At the end of the nineteenth century, due to
progress in disciplines such as analysis and algebra on
the one hand, and the development of non-Euclidean
geometries on the other, the request for a foundation of

C

BA

Fig. 22.3 Euclid, Proposition I.1

mathematics expressed a genuine mathematical need.
Euclidean geometry was not the only logically possible
geometry, and therefore it did not necessarily convey
truth about the physical world: perception, motion, and
superposition of figures had to be excluded as illegiti-
mate procedures. In the course of the twentieth century,
this search for certainty – as Giaquinto called it –
became a sort of philosophical obsession [22.13]. Fig-
ures were considered as definitely unreliable, since they
did not any more represent our knowledge of physi-
cal space. Moreover, they give rise to errors. Famously,
Klein presented a case of a diagram that is apparently
correct, but which in fact induces one to draw the –
false – conclusion that all triangles are isosceles tri-
angles [22.14, p. 202]. Paradigmatic in this sense was
Hilbert’s program, who attempted to rewrite geome-
try without any unarticulated assumptions [22.15]. For
such post-nineteenth century philosophy of mathemat-
ics, a proof should be followed, not seen.

However, some studies based on the scrutiny of
the practice of mathematics have recently challenged
this standard point of view. As editors of a book
on visualization, explanation, and reasoning styles in
mathematics, Mancosu et al. explained in 2005 how it
was necessary to extend the range of questions to raise
about mathematics besides the ones coming from the
traditional foundational programs. The focus should be
turned toward the consideration of “what mathemati-
cians are actually doing when they produce mathemat-
ics” [22.16, p . 1]:

“Questions concerning concept-formation, under-
standing, heuristics, changes in style of reasoning,
the role of analogies and diagrams etc. have become
the subject of intense interest. [. . . ] How are mathe-
matical objects and concepts generated? How does
the process tie up with justification? What role do
visual images and diagrams play in mathematical
activity?”

This invitation to widen the topics of philosophi-
cal inquiry about mathematics has developed into a sort
of movement, the so-called philosophy of mathemati-
cal practice, which also criticizes the “single-minded
focus on the problem of access to mathematical ob-
jects that has reduced the epistemology of mathematics
to a torso” [22.16, p. 1]. Epistemology of mathemat-
ics can venture beyond the present confines and address
epistemological issues that have to do with [22.16,
p. 1]

“fruitfulness, evidence, visualization, diagrammatic
reasoning, understanding, explanation and other
aspects of mathematical epistemology which are
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orthogonal to the problem of access to abstract
objects.”

This approach would be more in line with what
at least some of the very practitioners seem to think
about the practice of mathematics. As Jones, a topolo-
gist and former Field medallist, summarizes, it is quite
usual among mathematicians to have very little un-
derstanding of its philosophical underpinnings; in his
view, for a mathematician, it is actually not at all dif-
ficult to live with worries such as Russell’s paradox
while having complete confidence in one’s mathemat-
ics [22.17].

In this perspective, the study of diagrammatic rea-
soning in mathematics thus resumes its philosophical
interest, by taking into account the appropriate areas of
mathematics. Before presenting the different analyses
that have been provided about diagrammatic reasoning
in mathematics, three features of diagrammatic reason-
ing that will characterize most of the studies reviewed
should be pointed out. First, diagrammatic reasoning
in mathematics is not only visual reasoning. In fact,
in most cases, a diagram comes with a text, and, as
a consequence, any analysis of diagrammatic reason-
ing cannot disregard the role of the text accompanying
diagrams. In two very fascinating volumes, Nelsen
collected a series of proofs, taken from the Mathemat-
ics Magazine, that he calls “without words” [22.18,
19]. Nonetheless, these proofs are not exactly “without

words,” since to use a diagram is not only a matter of
applying specific perceptual capacities but also of mas-
tering the relevant background knowledge. In Nelsen’s
proofs, diagrams refer to mathematical statements that
can in some way be found in them. Diagrams and texts
are, in fact, related: each practice will in turn define the
terms of this relation. Second, there is another sense
in which diagrammatic reasoning is not only visual. In
most cases, diagrams are kinaesthetic objects, that is,
they are intended to be changed and manipulated ac-
cording to practice. A diagram can be conceived as an
experimental ground, where mathematicians are quali-
fied to apply epistemic actions, which are – following
Kirsch and Maglio’s definition – “actions that are per-
formed to uncover information that is hidden or hard
to compute mentally” [22.20]. Third, as will be dis-
cussed in the Conclusions, the philosophical interest in
studying diagrammatic reasoning is due to the cogni-
tively hybrid status of diagrams. In fact, diagrams are
certainly related to text, but at the same time, they are
more than a mere visual translation of it; moreover,
they are not only synoptic images, but also tools sub-
ject to manipulation; finally, they are not only part of
the process of discovery, but in the appropriate context
of use they are also able to constitute evidence for jus-
tification. The inquiry into diagrammatic reasoning in
mathematics will in the end force us to blur the standard
boundaries between the various elements of the mathe-
matical practice.

22.3 The Euclidean Diagram

A review of the literature on diagrammatic reasoning
in mathematics has to start from the research on Eu-
clidean geometry. This section will be thus focused in
particular on some of the most influential studies on the
role and use of diagrams in the Euclidean system, both
from a historical and a cognitive perspective. Given the
complexity of such a discussion, details beyond the con-
sideration of diagrammatic reasoning in mathematics
will not be treated.

The reason for devoting one whole section of the
chapter to Euclidean geometry is that the Euclidean di-
agram has always been considered as the paradigm of
diagrammatic reasoning in mathematics. As Ferreiros
has proposed, the mathematical practice of Greek ge-
ometers summarized in the Elements can be considered
as a theoretical study of practical geometry [22.21,
Chap. 5]. Its theoretical nature comes not only from
the new goals and values that are identified as guiding
the practice, but also from the idealizations introduced.
This picture of Greek geometry contrasts with the ab-

stract tendency of reflections on the subject since Pasch
and Hilbert. I have already pointed out in Sect. 22.1 that
the post-nineteenth century approach tried to formal-
ize mathematical proofs in such a way that diagrams
are not part of them. One of the consequences of such
an attitude was to consider diagrams as simple heuris-
tic tools that are possibly useful in illustrating a result,
but not constitutive of it. Therefore, there was an inter-
est in translating Euclid’s Elements – maybe the most
widely read text in the entire history of mathematics –
into formal sentences of quantificational logic, so as to
show that the reference to implicit assumptions based
on the diagram could be avoided. A common feature
of the studies that will be presented in this section will
be precisely to point out that such a move would not
represent Euclidean geometry as was originally con-
ceived. If this is true, then it is necessary to provide
a plausible explanation for the way in which informa-
tion that is relevant for the proof can be read off from an
Euclidean diagram. The post-nineteenth century philos-
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ophy of mathematics gave foundations of logic for what
was implicitly assumed in reference to a particular dia-
gram. But what is implicit in a diagram?What cognitive
abilities are needed to recognize this information and
use it in a proof? Some proposals gave a Kantian read-
ing of the spatial intuition that is involved in reasoning
with a Euclidean diagram, as, for example, in the works
of Shabel [22.22] and Norman [22.23]. According to
these views, in Euclid’s time, spatial and visual intu-
ition was considered as mathematically reliable, and
tacit assumptions were warranted on the basis of spatial
and visual information. Nonetheless, these works have
a wider scope than that of the present chapter, that is,
they aim to give evidence in favor of the plausibility of
a Kantian philosophy of mathematics, or at least of part
of it. For this reason, they will not be discussed here.

Despite the specificity of the Euclidean case, in the
remainder of the chapter, it will become evident how
some of the characteristics of diagrammatic reasoning
in Euclidean geometry can also be adapted to other
mathematical practices involving diagrams. As already
mentioned, the literature about diagrammatic reasoning
in ancient Greek geometry is vast. The studies pre-
sented here are among the most influential ones. For
other works, one can refer to the bibliography at the end
of the chapter and to the references given in the single
studies.

22.3.1 The (Greek) Lettered Diagram

The first analysis that will be introduced is the original
and fascinating contribution on the shaping of Greek
deduction provided by Netz [22.12]. Netz’ aim is to
reconstruct a cognitive history of the use of diagrams
and text in Greek mathematics. According to his def-
inition, cognitive history lies at the intersection of the
history of science and cognitive science: it is analogous
to the history of science, because it takes into account
cultural artifacts, but it is also comparable to cognitive
science because it approaches knowledge not through
its specific propositional contents but by looking at its
forms and practice. In Netz’ words, such an intersection
is “an interesting but dangerous place to be in” [22.12,
p. 7]. In fact, his worry is that historians might see his
research as over-theoretical and too open to generaliza-
tion, while cognitive scientists might consider it as too
“impressionistic” [22.12, p. 7].

Netz’s idea, in line with the philosophical approach
described in Sect. 22.1, is to look at specific prac-
tices and consider the influence that they might have
(or might have had) on the cognitive possibilities of
science. His case study is Greek geometry. Note that
Netz’ analysis concerns Greek geometry in general and,
differently from the studies that will be presented be-

low, does not focus on Euclid only. He starts from
the observation that despite the already discussed post-
nineteenth century criticisms, when doing Euclidean
geometry, one would find it difficult [22.12, p. 23]

“to unsee the diagram, to teach oneself to disregard
it and to imagine that the only information there is is
that supplied by the text. Visual information is itself
compelling in an unobtrusive way.”

Euclidean diagrams seem to be part of the visual
repertoire of shapes and figures that we are familiar
with. If this is the case, then any analysis of Euclidean
geometry must take this fact into account. One possible
strategy would be to try to reconstruct the geometric
practice of the time and focus on what Netz believes is
the distinctive mark of Greek mathematics, something
that has not been developed independently by any other
culture: the lettered diagram.

Following Netz’ definition, the lettered diagram is
a combination of distinct elements that taken together
make it possible to generalize an argument that is given
in a single diagram having specific geometrical prop-
erties. The lettered diagram can thus be considered at
different levels. At the logical level, it is composed,
as the name suggests, by a combination of the con-
tinuous – the diagram – and the discrete – the letters
added to it. At the cognitive level, it is a mixture of
the visual resources that are triggered by it, and the
finite manageable models that the letters made acces-
sible. By following Peirce’s distinction among icons,
indexes, and symbols [22.24], the lettered diagram as-
sociates, at the semiotic level, an icon – the diagram –
with some indices – the letters. As will be shown in
the next sections, Peirce’s distinction will be a refer-
ence also for other studies on diagrammatic reasoning
in mathematics. It is interesting to point out from now
that the Peircean terminology, despite being a com-
mon background for many of these authors, is applied
in a variety of ways to different elements of diagram-
matic reasoning in mathematics. The lettered diagram
can be considered also from an historical point of view.
Against this background, the same diagram is a combi-
nation of two elements. First, it refers to an art related
to the construction of the diagram which, in Netz’ anal-
ysis, is most likely a banausic art, that is, a practical
art serving utilitarian purposes only. Second, it exploits
a form of very sophisticated reflexivity, which is related
to the use of the letters. The lettered diagram is an ef-
fective geometric tool precisely because of the richness
of these different aspects characterizing it. In a lettered
diagram, we see how almost antagonistic elements are
integrated, so as to make it the appropriate instrument
to promote and justify deduction [22.12, p. 67].
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In Netz’ reconstruction, Greek mathematics is con-
stituted by a whole set of procedures for argumentation.
These procedures are based on the diagram, which con-
sequently serves as a source of evidence. Thanks to the
procedure described in the text accompanying the let-
tered diagram in Fig. 22.3, one knows that the circles
will actually meet at the intersection point. An inter-
esting consequence of this reading is that the lettered
diagram supplies a universe of discourse, without re-
ferring to any ontological principle. According to Netz,
this would be a characteristic feature of Greek mathe-
matics: the proof is done at an object level – the level
of the lettered diagram – and no abstract objects corre-
sponding to it need to be assumed. As he explains, in
Greek practice [22.12, p. 57]:

“One went directly to diagrams, did the dirty work,
and, when asked what the ontology behind it was,
one mumbled something about the weather and
went back to work. [. . . ] There is a certain single-
mindedness about Greek mathematics, a deliberate
choice to do mathematics and nothing else. That
this was at all possible is partly explicable through
the role of the diagram, which acted, effectively, as
a substitute for ontology.”

This point on the ontology of the Euclidean dia-
gram is not uncontroversial. Other studies dealing with
the Euclidean practice consider it necessary to take into
account the abstract objects to which, in a way to de-
fine, the diagrams seem to refer. For example, Azzouni
conjectures that the Greek geometers had to posit an
ontology of geometrical objects, even if, in his stip-
ulationalist reading, this drive was not motivated by
sensitivity to the presence of anything ontologically in-
dependent from us that mathematical terms refer to, but
rather by geometers’ need to prove things in a greater
generality and to make applications easier [22.25]. We
will see later how Panza introduces quasi-concrete geo-
metrical objects (Sect. 22.3.4).

In this perspective, the paradox that Netz has to
solve is how to explain that one proof – done by refer-
ring to a particular diagram, inevitably having specific
properties – can be considered as a general result. In
his interpretation, a proof in the Greek practice is an
event occurring on a papyrus or in a given oral com-
munication, and, despite this singularity, is something
that is felt to be valid. Nonetheless, validity must be in-
tended here in a different sense than the standard one.
When looking at Greek mathematics, and contrary to
the post-nineteenth century philosophy of mathematics,
logic seems to collapse back into cognition.

In order to reply to this challenge, Netz first points
out that generality in Greek mathematics exists only on
a global plane: a theorem is proved having the global

system of Greek mathematics as a background. Thanks
to this feature, the proof can be considered as invari-
ant under the variability of the single action of drawing
one diagram on the papyrus or of presenting the par-
ticular proof orally. Therefore, in Greek mathematics,
what counts is the repeatability of the proof rather than
the generalizability of the result (for details, see [22.12,
Chap. 5]). According to Netz, to understand Greek ge-
ometry, a change of mentality is required: while we are
used to generalizing a particular result, Greek mathe-
maticians were used to extending the particular proof
to other proofs using other and different objects that
are nonetheless characterized by the same invariant el-
ements. A particular construction, given by the lettered
diagrams – the diagram plus the text accompanying it –
can be repeated, and this is considered as certain.

The lettered diagram was a very powerful tool, be-
cause it allowed Greek mathematicians to automatize
and elide many of the general cognitive processes that
are implied in doing geometry. This was connected to
expertise: the more expert a mathematician was, the
more immediately he became aware of relations of form
and the more readily he read off information from the
diagram. Interestingly enough, such a feature of the
practice with the Greek diagrams seems to be found
in other contemporary mathematical practices as well.
As the topologist and former Field medallist Thurston
has proposed, mathematicians working in the same field
and thus familiar with the same practice share the same
“mental model” [22.26], which seems to refer precisely
to the structure of the particular field and the amount
of procedures that can be automatized or elided. To
sum up, the diagram is a static object, but it becomes
kinaesthetic thanks to the language that refers to it
as a constructed and manipulable object: the proof is
based on a practical invariance. In Netz’ careful analy-
sis, this is the best solution to the problem of generality
that could be afforded at the time, given the means of
communication at hand. If this is true, then any recon-
struction as formalization, such as the one proposed by
Hilbert, would not be faithful to the Greek practice.
Moreover, Netz argues that Greek mathematics did not
deal with philosophical matters. In the sources, nothing
like a developed theory supporting this solution can be
found.

22.3.2 Exact and Co-Exact Properties

Netz’ approach is not the only one based on practical in-
variances. Consider Manders’ contribution in an article
that has been – in Mancosu’s words – “an underground
classic” [22.27, p. 14] and that was finally published
in 2008 (in its original version, which dates back to
1995) [22.28]. In a later introductory paper, Manders
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presents some of the philosophical issues that emerge
from diagrammatic reasoning in geometry [22.29]. For
him, Euclidean practice deserves philosophical atten-
tion, even only for the simple reason that it has been
a stable and fruitful tool of investigation across diverse
cultural contexts for over 2000 years. Up to the nine-
teenth century, no one would have denied that such
a practice was rigorous; by contrast, it was rather con-
sidered as the most rigorous practice among the various
human ways of knowing. Also in Manders’ view, the
Euclidean practice is based on a distribution of labor
between two artifact types – the diagram and the text se-
quence – that have to be considered together. Note that
once again the notion of artifact comes onto the scene
as referring to diagrams as well as to text, that is, natural
language plus letters linking the text to the diagram. Hu-
mans, due to their limited cognitive capabilities, cannot
control the production and the interpretation of a dia-
gram so as to avoid any case of alternative responses to
it. For this reason, the text is introduced with the aim of
tracking equality information. As Manders explains, in
practice, the diagram and the text share the responsibil-
ity of allowing the practitioners to respond to physical
artifacts in a “stable and stably shared fashion” [22.28,
p. 83].

In Manders’ reconstruction, proofs in traditional ge-
ometry have two parts: one verbal – the discursive text –
and the other graphical – the diagram. The very objects
of traditional geometry seem to arise in the diagram:
in his words, “We enter a diagonal in a rectangle, and
presto, two new triangles pop up” [22.28, p. 83]. The
text ascribes some features to the diagram, and these
features are called diagram attributions. Letters are in-
troduced to facilitate cross-references between the text
and the diagram – also Manders’ Euclidean diagram is
lettered. Defining diagram attributions, Manders intro-
duces a distinction between co-exact and exact features
of the diagram that has become, as will be shown, very
influential. A co-exact feature is a directly attributable
feature of the diagram, which has certain perceptual
cues that are fairly stable across a range of variations.
Moreover, such a feature cannot be readily eliminated,
thanks to what Manders calls diagram discipline, that
is, the proper exercise of skill in producing diagrams
that is required by the practice. To clarify, if one con-
tinuously varies the diagram in Fig. 22.3, its co-exact
attributes will not be affected. Imagine deforming the
two circles no matter how: this would not change the
fact that there still is a point at which the two fig-
ures intersect. The distinction thus concerns the control
that one can have on the diagram and on its possible
continuous deformations. This would be in line with
the basic general resource of traditional geometrical
practice, that, is diagram discipline: the appearance of

diagrams is controlled by standards for their proper pro-
duction and refinement. Diagram discipline governs the
possible constructions.

Consider the features of the diagram of a triangle.
Such a diagram would have to be a nonempty region
bounded by three visible curves, and these curves are
straight lines. The first property is co-exact and the
second is exact. Paradigmatic co-exact properties are
thus features such as a region containing another – un-
affected if the boundaries are shifted or deformed –
or the existence of an intersection point such as the
one required in Euclid I.1, as already discussed. By
contrast, exact features are affected by deformation,
except in some isolated cases. If one varies the dia-
gram of the equilateral triangle, lines might no longer
be straight or angles might lose their equality. In this
framework, what is typically alleged as fallacy of di-
agram use rests on reading off from a diagram exact
conditions of this kind – for example, that the lines
in a triangle are not straight. However, the practice –
the diagram discipline – never allows such a situation
to happen. As already mentioned, practitioners created
the resources to control the recourse to diagrams, so
as to allow the resolution of disagreement among al-
ternative judgements that are based on the appearance
of diagrams, and therefore to limit the risk of disagree-
ment for co-exact attributions. Things become trickier
when it comes to exact properties, and this is the reason
why the text comes in as support. In fact, since exact
attributes are, by definition, unstable under the pertur-
bation of a diagram, they can be priorly licensed by the
discursive text. To go back to Euclid I.1, that the curves
introduced in the course of the proof are circles is li-
censed, for example, by Postulate 3; furthermore, it is
recorded in the discursive text that other subsequent ex-
act attributions are to be licensed, such as the equality
of radii (by Definition 15, again in the discursive text).

To sum up, for Manders, the diagram discipline is
such that it is able to supervise the use of appropriate di-
agrams. In the remainder of the chapter, it will be shown
how Manders’ ideas have influenced other research in
diagrammatic reasoning also going beyond traditional
Euclidean geometry.

22.3.3 Reasoning in the Diagram

Macbeth has proposed a reading of the Euclidean dia-
gram that is in line with the ones that have just been
presented [22.30]. For the purpose of the chapter, it is
interesting to note that her aim in reconstructing the
practice of Euclidean geometry is to see whether a clar-
ification of the nature of this practice might ultimately
tell us something about the nature of mathematical prac-
tice in general. She criticizes the interpretation of the
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Elements as an axiomatic system and proposes to see it
instead as a system of natural deduction. Common no-
tions, postulates, and definitions are not to be intended
as premises, but as rules or principles according to
which to reason. Moreover, in her view, a diagram is not
an instance of a geometrical figure, but an icon. Such
a feature of the Euclidean diagram makes the demon-
stration in the Euclidean system general throughout.

In order to clarify such a claim, Macbeth introduces
Grice’s distinction between natural and nonnatural
meaning [22.31]. For Grice, natural meaning is exem-
plified by sentences, such as These spots mean measles.
By contrast, a sentence, such as Schnee means snow,
expresses nonnatural meaning. Let us suppose then that
a drawing is an instance of a geometrical figure, that
is a particular geometrical figure. If this is the case, it
would have natural meaning and a semantic counter-
part. For example, in Fig. 22.3, one sees a particular
triangle ABC that is one instance of some sort of ge-
ometrical entity called an equilateral triangle. But let
us instead hypothesize that the drawing has nonnatural
meaning and therefore is not an instance of an equi-
lateral triangle but is taken for an equilateral triangle.
Then, the crucial step would be to recognize the inten-
tion that is behind the making of the drawing. This is
the reason one can also draw an imprecise diagram –
for example, drawing a circle that looks like an ovoid –
as long as the intention – the one of drawing a circle –
is clear. Such an intention is expressed throughout the
course of the demonstration. Also, Azzouni has sug-
gested that the proof-relevant properties are not the
actual (physical) properties of singular diagrammatic
figures, but conventionally stipulated ones, the recog-
nition of which is mechanically executable [22.25].

To sum up, in Macbeth’s reconstruction, the Eu-
clidean diagram has nonnatural meaning and is, by
intention, general. Moreover, by following Pierce’s dis-
tinction again, it is an icon because it resembles what
it signifies. However, resemblance here cannot be in-
tended as resemblance in appearance. The Euclidean
diagram resembles what it signifies by displaying the
same relations of parts, that is, by being isomorphic to
it. The circles in Fig. 22.3 are icons of a geometrical
circle because there is a likeness in the relationship of
the parts of the drawings. Specifically, the resemblance
is in the relation of the points on the drawn circum-
ference to the drawn center compared to the relation
of the corresponding parts of the geometrical concept.
Such a resemblance can be a feature of the diagram be-
cause the geometer means or intends to draw a circle,
that is, to represent points on the circumference that are
equidistant from the center. Given this intention, it is
not important whether or not the figure is precise, that
is, whether or not the points on the circumference in the

drawn figure really look that way. There is a correspon-
dence between the iconicity of the Euclidean diagram as
introduced by Macbeth and co-exact properties in Man-
ders’ terms. Also in Macbeth’s reading, the diagram is
intended to show the relations that are constitutive of
the various kinds of geometrical entities involved. As
she summarizes, “A Euclidean diagram does not instan-
tiate content but instead formulates it” [22.30, p. 250].

Finally, Macbeth aims to show that the chain of rea-
soning in Euclidean geometry involving diagrams is not
diagram-based but diagrammatic. According to her ter-
minology, a reasoning is diagram-based when its moves
are licensed or justified by the diagram; by contrast,
it is diagrammatic when the mathematician is asked
to reason in the diagram. Consider again Fig. 22.3.
There is a sense in which this figure is analogous to
the Wittgensteinian duck–rabbit picture, where one al-
ternates between seeing it as the picture of a duck and
seeing it as the picture of a rabbit. In a similar fashion,
in order for the demonstration to go through, the math-
ematician has to alternate between seeing certain lines
in the figure as icons of radii – and therefore equal in
length – and as icons of the sides of a triangle – so as to
draw the conclusion that the appropriately constructed
triangle is in fact equilateral. The point then is that the
physical marks on the page have the potential to be re-
garded in radically different ways. By pointing at such
a feature of the Euclidean diagram, Macbeth aims to
make sense of Manders’ view, saying that geometrical
relations pop out of the diagram as lines are added to it.
The mathematician uses the diagram to reason in it and
to make new relations appear.

Moreover, according to Macbeth, the Euclidean di-
agram has three levels of articulation in the way it can
be parsed by the geometer’s gaze. At a first level, there
are the primitive parts: points, lines, angles, and areas.
At the second level, there are geometrical objects that
are intended to be represented in the diagram. At the
third level, there is the whole diagram, which is not
in itself a geometrical figure but, in some sense, con-
tains the objects at the other levels. In the course of
the demonstration, the diagram can thus be configured
and reconfigured according to different intermediate
wholes. Thanks to such a function of diagrams, sig-
nificant and often surprising geometrical truths can be
proved. In Macbeth’s account, the site of reasoning is
the diagram, and not the accompanying text. Her con-
clusion is that Euclidean geometry is [22.30, p. 266]

“a mode of mathematical enquiry, a mathematical
practice that uses diagrams to explore the myr-
iad discoverable necessary relationships that obtain
among geometrical concepts, from the most obvi-
ous to the very subtle.”
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Another more recent study has complemented Man-
ders and Macbeth’s account by emphasizing even more
strongly how the Euclidean diagram has a role of
practical synthesis: to draw a figure means to balance
multiple desiderata, making it possible to put together
insight – that is timeless – and constructions – that
are given in time [22.32]. We also mention here that
Macbeth has applied similar arguments to the role of
Frege’s Begriffschrift as exhibiting the inferentially ar-
ticulated contents of mathematical concepts [22.33].
Despite the interest of this account, for the reasons
given in Sect. 22.1, we will not give here the details
of such a study.

In Sect. 22.4, we will come back to the notion
of iconicity and see how the productive ambiguity to
whichMacbeth alludes to in talking about the parsing of
the Euclidean diagram can also be found in other cases
of diagrammatic reasoning.

22.3.4 Concrete Diagrams and
Quasi-Concrete Geometrical Objects

Another view on the generality of the Euclidean dia-
grams has recently been proposed by Panza [22.34].
His aim is to analyze the role of diagrams in Euclid’s
plane geometry, that is, the geometry as expounded by
Euclid in the first six books of the Elements and in the
Data, and as largely practiced up to early-modern age
(see also [22.35]). In his view, Euclid’s propositions are
general insofar as they assert that there are some ad-
mitted rules that have to be followed in constructing
geometric objects. Once again, what matters for gener-
ality are construction procedures. These admitted rules
allow the geometer to construct an object having certain
properties and relations. To put it briefly, it would be
impossible for one to follow the rules and end up with
constructing an object without the requested properties.

Panza argues that arguments in the Euclidean sys-
tem are about geometrical objects: points, segments of
straight lines, circles, plane angles, and polygons. Tak-
ing inspiration from Parsons [22.36], he defines such
geometrical objects as quasi-concrete. Their quasi-
concreteness depends precisely on the relation they
have with the relevant diagrams, which are instead con-
crete objects: the Euclidean diagram is a configuration
of points and lines, or better is what is common to
equivalence classes of such configurations. Two claims
describe the peculiarity of the relation between quasi-
concrete geometrical objects and concrete diagrams.
First, the identity conditions of the geometrical objects
are provided by the identity conditions of the diagrams
that represent them. In his definition, this is the global
role of diagrams in Euclid’s arguments: a diagram is
taken as a starting point of licensed procedures for

drawing diagrams and a geometrical object can be given
in the Euclidean system when a procedure is stipu-
lated for drawing a diagram representing it. Second,
the geometrical objects inherit some properties and re-
lations from these diagrams. This is the local role of
Euclidean diagrams. Such properties and relations are
recognized because a diagram is compositional. So un-
derstood, a diagram is a configuration of concrete lines
drawn on an appropriate flat material support. Accord-
ing to Panza, Euclid’s geometry is, therefore, neither
an empirical theory nor a contentual one in Hilbert’s
sense, that is, a theory of “extra-logical discrete ob-
jects, which exist intuitively as immediate experience
before all thought” [22.37, p. 202]. In his view, differ-
ently from the approaches described so far, it is crucial
to define an appropriate ontology for the Euclidean dia-
gram. In fact, his objective is to argue against the view
that arguments in Euclid’s geometry are not about sin-
gular objects, but rather about something like general
schemas, or only about concepts. Such a view, ac-
cording to which Euclidean geometry would deal with
purely ideal objects, is often taken to be Platonic in
spirit and is supposed to have been suggested by Pro-
clus [22.38, 39]. Panza’s proposal is instead closer to
an Aristotelian view that geometric objects result by
abstraction from physical ones, but the author claims
that it is not his intention to argue that Euclid was ac-
tually guided by an Aristotelian rather than a Platonic
insight.

In the same spirit, also Ferreiros suggests that the
objects of Greek geometry are taken to be the diagrams
and other similarly shaped objects [22.21, Chap. 5]. Of
course, the diagram in this context is not intended to
refer to the physically drawn lines that are empirically
given, but to the interpreted diagram, which is per-
ceived by taking into account the idealizations and the
exact conditions conveyed in the text and derived from
the theoretical framework in the background. For the
geometer, the figure one works with is not intended as
an empirical token but as an ideal type. Nonetheless, it
is crucial to remark that such an ideal type does not exist
outside the mind of the geometer and becomes available
only thanks the diagram. Therefore, on the one hand,
the object of geometry is the diagram, and, as a conse-
quence, the diagram constitutes the object of geometry;
on the other hand, the diagram has to be interpreted in
order to make the object emerge, and accordingly it also
represents the object of geometry. Moreover, quoting
Aristotle, Ferreiros points out that Greek geometry re-
mains a form of theoretical and not practical geometry,
for the reason that its objects are conceived as immov-
able and separable, without this necessarily leading to
the thesis that there exist immovable and separable en-
tities [22.40].
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22.4 The Productive Ambiguity of Diagrams

This brief section will be devoted to the discussion
of the role of ambiguity in diagrammatic reasoning.
Grosholz has devoted her work to develop a pragmatic
approach to mathematical representations, by arguing
that the appropriate epistemology for mathematics has
to take into account the pragmatic as well as the syn-
tactic and semantic features of the tools that are used in
the practice of mathematics. The post-nineteenth cen-
tury philosophy of mathematics wants all mathematics
to be reduced to logic; by contrast, Grosholz claims
that philosophy should account for all kinds of math-
ematical representations, since they are all means to
convey mathematical information. Moreover, the pow-
ers and limits of each of them should be explored. One
format might be chosen among the others for reasons
of convenience, depending on the problem to solve in
the context of a specific theory or in a particular his-
torical moment. Even the analysis of the use of formal
language can thus be framed in terms of its represen-
tational role in a historical context of problem-solving.
As Grosholz explains [22.41, p. 258],

“Different modes of representation in mathematics
bring out different aspects of the items they aim
to explain and precipitate with differing degrees of
success and accuracy.”

In such a picture, a central cognitive role is played
in mathematics by a form of controlled and highly
structured ambiguity that potentially involves all repre-
sentations, and is particularly interesting in the case of
diagrams. Grosholz as well adopts the general Peircean
terminology and distinguishes between iconic and sym-
bolic uses of the same representation. These two differ-
ent uses make representations potentially ambiguous.

To clarify, consider as an example Galileo’s treat-
ment of free fall and projectile motion in the third
and fourth days of his Discourses and Mathemati-
cal Demonstrations Concerning Two New Sciences.
Galileo draws a geometrical figure to prove that
(Fig. 22.4),

“The spaces described by a body falling from rest
with uniformly accelerated motion are to each other
as the squares of the time-intervals employed in
traversing these distances.”

In the right-hand figure, the line HI stands for the
spatial trajectory of the falling body, but is articulated
into a sort of ruler, where the intervals representing
distances traversed during equal stretches of time, HL,
LM, MN, etc., are indicated in terms of unit inter-
vals, which are represented by a short cross-bar, and

in terms of intervals, whose lengths form the sequence
of odd numbers .1;3; 5; 7; : : :/, which are represented
by a slightly longer cross-bar. The unit intervals are
intended to be counted as well as measured. In the
left-hand figure, AB represents time, divided into equal
intervals AD, DE, EF, etc., with perpendicular instan-
taneous velocities raised upon it – EP, for example,
represents the greatest velocity attained by the falling
body in the time interval AE – generating a series
of areas which are also a series of similar triangles.
Thanks to an already proven result from Th. I, Prop.1,
Galileo builds the first proposition, according to which
the distance covered in time AD (or AE) is equal to
the distance covered at speed 1=2 DO (or 1=2 EP) in
time AD (or AE). Therefore, the two spaces that we are
looking for are to each other as the distance covered
at speed 1=2 DO in time AD and the distance covered
at speed 1=2 EP in AE. Th. IV, Prop. IV tells us that
“the spaces traversed by two particles in uniform mo-
tion bear to one another a ratio which is equal to the
product of the ratio of the velocities by the ratio of the
times”; in this case, given the similarity of the triangles
ADO and AEP, AD and AE are to each other 1=2 DO
and 1=2 EP. Then, the proportion between the two ve-
locities compounded with the time intervals is equal to
the proportion of the time intervals compounded with
the time intervals, and therefore ŒV1 W V2� compounded
with ŒT1 W T2� equals ŒT1 W T2�2. As a consequence, the
spaces described by the falling body are proportional to
the squares of the time intervals: ŒD1 W D2�

2 D ŒT1 W T2�2.
Look now at the left-hand diagram. Consider the sums

DO

EP

F

L

M

G

BC

N

I

A H

Fig. 22.4 Galileo, Discorsi, third day, naturally acceler-
ated motion, Theorem II, Proposition II
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1C 3D 22, 1C 3C 5D 32, 1C 3C 5C 7D 42, and so
forth. These sums represent distances and are propor-
tional to the squares of the intervals. Therefore, the time
elapsed is proportional to the final velocity and the dis-
tance fallen will be proportional to the square of the
final velocity.

Galileo’s use of the diagram can be analyzed in re-
lation to the different modes of representation that are
employed to express his argument to prove the theorem.
First, he refers to at least four modes of representation:
proportions, geometrical figures, numbers, and natural
language. Second, the same geometrical diagram serves
as an icon and at the same time as a symbol. As an
icon, it is configured in such a way that it can stand
for a geometrical figure and exhibit patterns of rela-
tions among the data it contains. For example, when
proportions are taken as finite, they are represented
iconically. When the proportions are taken as infinitesi-
mal (because one may take “any equal interval of time
whatsoever” [22.41, p. 14]), the diagram is instead used
as a symbol. In this case, the configuration of the dia-
gram changes because it is now intended to represent
dynamical, temporal processes. Therefore, despite the
fact that an appropriate parsing of the diagram can-
not represent iconically something that is dynamical or
temporal, it can still do it symbolically. In Grosholz’
view, the distinction between iconic and symbolic use
of a mode of representation sheds light on the impor-
tance of semantics in mathematics. In fact, for a mode
of representation to be intended not only iconically but
also symbolically, the reference to some background
knowledge is necessary. The representation does not
have to be intended in its literal configuration but from
within a more elaborated context of use, which provides
a new interpretation and a new meaning for it. Galileo’s
diagram must thus be interpreted in two ways: inter-
vals have to be seen as finite – so that Euclidean results
can be applied – and also as infinitesimals – so as to
represent accelerated motion. In the proof, errors are
prevented by a careful use of ratios.

Compare this example withMacbeth’s discussion of
Euclid I.1 in the previous section. Here as well, there is
only one set of diagrams, but, in order for the demon-
stration to go through, it must be read and interpreted
in different ways. However, Macbeth and Grosholz em-
ploy Peirce’s distinction in a different way. Macbeth

talks of Euclidean diagrams as icons for geometrical
relations, while Grosholz refers to two possible differ-
ent uses – iconic or symbolic – of the same diagram.
Moreover, Macbeth’s Gricean distinction between nat-
ural and nonnatural meaning does not coincide with
the distinction between the literal and nonliteral – con-
ventional – uses of the representation made here by
Grosholz.

Grosholz’ approach is not limited to diagrams in
mathematics, unless one wants to say that all mathe-
matical representations are diagrammatic. In fact, in her
view, another straightforward example of productive
ambiguity is Gödel’s representation of well-formed for-
mulas through natural numbers, whose efficacy stems
from their unique prime decomposition. In her termi-
nology, the peculiarity of Gödel’s proof of incomplete-
ness is that the numbers in it must stand iconically for
themselves – so as to allow the application of num-
ber theoretic results – and symbolically for well-formed
formulas – so as to allow transferring those results to
the study of completeness and incompleteness of logi-
cal systems. Without going into details, it is sufficient
to say that Grosholz points out that this particular case
shows how much even logicians exploit the constitu-
tive ambiguity of some of the representations they use.
In her view, the recourse to ambiguous formats is, in
fact, typical of mathematical reasoning in general, and
this is precisely the feature of mathematics that has not
been recognized by the standard post-nineteenth cen-
tury approaches, which have focused on the possibility
of providing a formal language that would avoid ambi-
guities. As Grosholz explains [22.41, p. 19]

“the symbolic language of logistics is allegedly an
ideal mode of representation that makes all content
explicit; it stands in isomorphic relation to the ob-
jects it describes, and that one-one correspondence
insures that its definitions are ‘neither ambiguous
nor empty’.”

In Grosholz’s view, ambiguity and iconicity then
seem to be not only a mark of diagrams such as
Galileo’s one, but also crucial features of mathematical
representations – formulas not being an exception.

In the following sections, other examples of pro-
ductive ambiguity and iconicity in contemporary math-
ematics will be given.

22.5 Diagrams in Contemporary Mathematics

As shown in the previous sections, most examples of di-
agrams that have been discussed in the literature so far
are taken from the history of mathematics; furthermore,
the focus has been on geometric diagrams. It is worth

mentioning here an interesting study by Chemla about
Carnot’s ideas on how to reach generality in geometry,
where she analyzes Carnot’s treatment of the so-called
theorem of Menelaus [22.42]. In her reconstruction,
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Carnot believes that, at least in the case of the theorem
of Menelaus, the diagram must be considered as a con-
figuration, appropriately chosen with the aim of finding
the solution to the problem in question. As a con-
sequence, the theorem no longer concerns a specific
quadrilateral, but any intersection between a triangle
and a straight line. Chemla claims that Carnot’s ideas
were nonstandard at his time, because he introduced
a way of processing information that relies on indi-
viduating what a general diagram is in opposition to
a multitude of particular figures.

This section will be devoted to briefly introducing
some works on diagrammatic reasoning in present-day
mathematics. The studies have been divided into three
categories: analysis, algebra, and topology. Differently
from the Euclidean or the theory of number case, the
examples taken from contemporary mathematics de-
serve much more technical machinery in order to be
understood, that is, even only to introduce the diagram,
much mathematics is required. For reasons of space, it
is therefore impossible to give here all the mathemati-
cal details, and I invite the reader to refer to the original
papers.

22.5.1 Analysis

In two different articles, Carter analyzed a case study
of diagrammatic reasoning in free probability theory, an
area introduced by Voiculescu during the 1980s [22.43,
44]. The aim of free probability theory was to formu-
late a noncommutative analog to classical probability
theory, with the hope that this would lead to new results
in analysis. In particular, Carter discusses a section of
a paper written by Haagerup and Thorbjørnsen [22.45],
where a combinatorial expression for the expectation of
the trace of the product of so-called Gaussian random
matrices (GRMs) of the following form is found

E ı TrnŒB�Bp� : (22.8)

The authors show that this expression depends on
the following

E ı TrnŒB�

1 B�.1/ : : :B
�

p B�.p/� : (22.9)

The indices 
.i/ are symbols denoting the values of
a permutation 
 on f1; 2; : : : ; pg. Therefore, the value
of the expression depends on the existence and proper-
ties of the permutation that pairs the matrices off 2� 2.

Diagrams can be introduced to represent the permu-
tations, and this is a crucial move, since such diagrams
make it possible to study permutations independently
from the fact that they were set forth as indices of the
GRM.Moreover, the recourse to diagrams makes it eas-
ier to evaluate the properties of the permutations. Once

the relevant properties of the permutation are identified,
thanks to the diagram, they can then be reintroduced
into the original setting.

To give an idea of what the diagrams represent-
ing permutations look like, consider two examples of
constructing the permutation O
 . Let pD 4, so that 
 W
f1; 2; 3; 4g! f1; 2; 3; 4g.

Instead of writing

B�

1 B�.1/B
�

2 B�.2/B
�

3 B�.3/B
�

4 B�.4/ ; (22.10)

we rewrite the expression in the following form

C�

1 �C2 �C�

3 �C4 �C�

5 �C6 �C�

7 �C8 : (22.11)

Suppose then that 
.1/D 2 and 
.3/D 4, giving

B�

1 �B2 �B�

2 �B1 �B�

3 �B4 �B�

4 �B3 : (22.12)

What the permutation O
 is supposed to do is to tell
us which of the Cs are identical, in terms of their in-
dices. By comparing the two expressions, we see that
C1 D C4, C2 D C3, C5 D C8, and C6 D C7. In terms
of the permutation O
 , this means that O
.1/D 4 and
O
.2/D 3, and so on. Both permutations can be repre-
sented by the diagrams in Fig. 22.5.

Another example could be 
.1/D 3 and 
.2/D 4,
giving

B�

1 �B3 �B�

2 �B4 �B�

3 �B1 �B�

4 �B2 : (22.13)

By rewriting it in terms of Ci’s and comparing
again, we obtainC1 D C6, C2 D C5, C3 D C8, and C4 D
C7, as shown in Fig. 22.6.

First, diagrams would suggest definitions and proof
strategies. In Carter’s example, the definitions of a pair
of neighbors, or of a noncrossing and a crossing permu-
tation as well as of cancellation of pairs – manipulations
that are all clearly visible in the diagrams – are in-
spired by them. Moreover, as confirmed by the very
authors of the study, also the formal version of at least
a part of the proofs is inspired by the proof based on

1
4

a) b)

3
2

18

7

6

5 4

3

2

Fig. 22.5 (a) 
 is the permutation (12)(34); (b) the correspondent O
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Fig. 22.6 (a) 
 is the permutation (13)(24); (b) the correspondent O


diagrams. Second, diagrams function as frameworks in
parts of proofs: Although they are not used directly to
give rigorous proofs, they still play an essential role
in the discovery and formulation of both mathemati-
cal theorems and proofs, and thus in the practice of the
mathematical reasoning.

Carter’s idea is that certain properties of the di-
agrams correspond to formal definitions. In her case
study, some diagrams are used to represent permu-
tations and similar diagrams to represent equivalence
classes. Diagrams thus make it possible to perform ex-
periments on them; for example, the crossings identify
the number of the equivalence classes and therefore
the definition of a crossing is given an algebraic for-
mulation. Likewise, the concepts of a neighboring pair
and of removing pairs (from the diagram) are translated
into an algebraic setting. To sum up, the relations used
in the proof based on the diagram represent relations
that also hold in the algebraic setting. As Carter ex-
plains, the notions of crossing and neighboring pairs
are, in Manders-inspired terminology, examples of co-
exact properties of the diagrams. In a Piercean semiotic
perspective, the diagram in this case would again be
iconic, and it is for this reason that one can translate
the diagrammatic proof into an algebraic proof. In this
example, from contemporary mathematics, we are in
a sense certainly far from the Euclidean diagram, but we
still see that the proof includes an accompanying text;
only when the appropriate text is added, do text and di-
agram – taken together – constitute a proof. The text
is also important to disambiguate diagrams that can be
interpreted as representing different things (recall Man-
ders’ view on the Euclidean diagram).

In a more recent article, Carter discusses at length
her reference to Peirce’s terminology. Her reconstruc-
tion of Peirce’s discussion of the use of representa-
tion in mathematics is based on some of the most
recent studies about Peirce’s mathematical philoso-
phy [22.46]. Note that the central notion for Peirce is
the one of sign, that is, in his words, “Something that
stands for something else” [22.24, 2.228]. A sign can
stand for something else not in virtue of some of its

particular features, but thanks to an interpretant that
links the sign to the object. For Peirce, signs are then
divided into three categories: icons, indices, and sym-
bols; icons are signs in virtue of a relation of likeness
with their objects, indices are actually connected to
the objects they represent, and symbols represent an
object because of a rule stipulating such a relation.
Central to Peirce’s conception of reasoning in math-
ematics is that all such reasoning is diagrammatic –
and therefore iconic. Moreover, Peirce employs the
term diagram in a much wider sense than usual. In
his view, even spoken language can be diagrammatic.
Consider a mathematical theorem that contains certain
hypotheses. By fixing the reference with certain in-
dices, it is possible to produce a diagram that displays
the relations of these referents. In statements concern-
ing basic geometry, the diagram could be a geometric
diagram such as the Euclidean diagram. But in other
parts of mathematics, it may take a different form. In
Carter’s view, the diagrams in her case study are iconic
because they display properties that can be used to for-
mulate their algebraic analogs. Moreover, the role of
indices – the numbers – in the diagram is to allow
for reinserting the result into its original setting. Once
such a framework is assumed, then diagrams as well
as other kinds of representations used in mathematics
become an interesting domain of research. As already
discussed when presenting Grosholz’s work, the ob-
jects of inquiry extend from mathematical diagrams to
mathematical signs – mathematical representations –
in general, including, for example, also linear or two-
dimensional notations. In the final section, we will
say more about this issue. A further point made by
Carter is that the introduced diagrams also enable us
to break down proofs into manageable parts, and thus
to focus on certain details of a proof. By using dia-
grams at a particular step of the proof, one needs only
to focus on one component, thus getting rid of irrel-
evant information. In an unpublished paper, Manders
makes a similar point by introducing the notions of re-
sponsiveness and indifference in order to address the
topic of progress in mathematics [22.47]. In the fol-
lowing section, more details about this paper will be
given.

It is interesting to note that Carter discusses a po-
tential ambiguity of the term visualization, used as
(i) representation, as in the example given, and as
(ii) mental picture, helping the mathematician see that
something is the case. In this second meaning, diagrams
would be fruitful frameworks to trigger imagination.
Carter’s claim is that there is not a sharp distinction
to be drawn here between concrete pictures and men-
tal ones, but quite the opposite: a material picture may
trigger our imagination, producing a mental picture, and
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vice versa a mental picture may be reproduced by a con-
crete drawing.Wewill come back also to this issue later.

22.5.2 Algebra

Another case study from contemporary mathematics
is taken from a relatively recent mathematical subject:
geometric group theory. Starikova has discussed how
the representation of groups by using Cayley graphs
made it possible to discover new geometric properties
of groups [22.48, 49]. In this case study, groups are rep-
resented as graphs. Thanks to the consideration of the
graphs as metric spaces, many geometric properties of
groups are revealed. As a result, it is shown that many
combinatorial problems can be solved through the ap-
plication of geometry and topology to the graphs and by
their means to groups.

The background behind Starikova’s work is the
analysis proposed byManders in the unpublished paper
already mentioned in presenting Carter’s work [22.47].
In this paper, Manders elaborates more on his study
on Euclidean diagrams, this time taking into account
the contribution of Descartes’ Géométrie compared to
Euclid’s plane geometry. He gives particular stress to
the introduction of the algebraic notation. In fact, in
mathematical reasoning, we often produce and respond
to artifacts that can be of different kinds: natural lan-
guage expressions, Euclidean diagrams, algebraic or
logical formulas. In general, mathematical practice can
be defined as the control of the selective responses
to given information, where response is meant to be
emphasizing some properties of an object while ne-
glecting others. According to Manders, artifacts help
to implement and control these selective responses,
and therefore their analysis is crucial if the target is
the practice of the mathematics in question. More-
over, selective responses are often applied from other
domains. Think of the introduction of algebraic nota-
tion to apply fast algebraic algorithms. In Descartes’
geometry, geometric problems are solved through solv-
ing algebraic equations, which represent the geometric
curves. Also here, the idea is that by using differ-
ent representations of the same concepts, new proper-
ties might become noticeable. Starikova’s study would
show a case where a change in representation is a valu-
able means of finding new properties: drawing the
graphs for groups would help discovering new features
characterizing them. In this perspective, mathemati-
cal problem-solving involves the creation of the right
strategies of selection: at each stage of practice, some
information is taken into account and some other in-
formation is disregarded. It is only by responding to
some elements coming from the mathematical context
and not paying attention to others that we can control

each step of our reasoning. Of course, this control and
coordination may have different levels of quality across
practices. Manders’ conclusion is that mathematical
progress is based on this coordinated and systematic
use of responsiveness and indifference, and that such
a coordination is implemented by the introduction and
the use of the various representations. The role of the
accompanying text is still crucial, since diagrams are
produced according to the specifications in the text.
Thanks to the text, the depicted relations become re-
producible and therefore stable; diagram and text keep
supporting each other.

To give the reader an idea of what a Cayley graph
for a group looks like, we consider first the definition
of a generating set. Let G be a group. Then, a subset
S� G is called a generating set for the group G if every
element of G can be expressed as a product of the ele-
ments of S or the inverses of the elements of S. There
may be several generating sets for the same group. The
largest generating set is the set of all group elements.
For example, the subsets f1g and f2; 3g generate the
group .Z;C/.

A group with a specified set of generators S is called
a generated group and is designated as .G; S/. If a group
has a finite set of generators, it is called a finitely gen-
erated group. For example, the group Z is a finitely
generated group, for it has a finite generating set, for ex-
ample, SD f1g. The generated group Z with respect to
the generating set f1g is usually designated as .Z; f1g/.
The group .Q;C/ of rational numbers under addition
cannot be finitely generated. Generators provide us with
a compact representation of finitely generated groups,
that is, a finite set of elements, which by the appli-
cation of the group operation gives us the rest of the
group.

We can now define a Cayley graph. Let .G; S/
be a finitely generated group. Then the Cayley graph
� .G; S/ of a group G with respect to the choice of S
is a directed colored graph, where vertices are identi-
fied with the elements of G and the directed edges of
a color s connect all possible pairs of vertices .x; sx/,
x 2 G, s 2 S.

In the following, we can see three examples of
Cayley graphs: the Cayley graph for the first given ex-
ample, .Z; f1g/, that is, an infinite chain (Fig. 22.7),
another Cayley graph for the same group Z with gen-
erators f1; 2g, which can be depicted as an infinite
ladder (Fig. 22.8), and finally the Cayley graph for the
group .Zf2;3g/ (Fig. 22.9). By geometric properties of
groups, Starikova intends the properties of groups that
can be revealed by thinking of their corresponding Cay-
ley graphs as metric spaces. In other words, the idea is
to look at groups through their Cayley graphs and try
to see new (geometric) properties of groups, and then
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–1 0 1–2
... ...

Fig. 22.7 The Cayley graph of the group .Zf1g/

–1 1

0 2–2
... ...

Fig. 22.8 The Cayley graph of the group .Zf1; 2g/, where
bold stands for f1g

–2 –1 0 1 2 3

... ...

Fig. 22.9 The Cayley graph of the group .Zf2; 3g/, where bold
stands for f3g

to return to the algebra and check which groups share
these properties and under which constraints. Many
of these geometric properties turn out, in fact, to be
independent from the choice of generators for a Cay-
ley graph. For this reason, they are considered to be
the properties of the groups themselves. Such a prac-
tice of introducing graphs to represent groups makes it
possible to place groups in the same research–object
category as classical metric spaces. This can happen
because, in Manders’s terminology, we can be indiffer-
ent to the discrete structure of the group metric space
and at the same time respond to the perceptual similar-
ity of particular Cayley graphs having the same metric
space. These responses would be unavailable to the
combinatorial approach. Moreover, when responding
geometrically to Cayley graphs, we perceive them as
objects embedded in a space and having geometric el-
ements. But then the response is modified, and some
diagrammatic features are neglected in order to high-
light more abstract properties. By introducing Cayley
graphs, a group theorist thus has the opportunity to use
them to define a metric of the group and then exploit
its geometry, to define geometric counterparts to some
algebraic properties of the group, and finally to clas-

sify groups having these geometric properties. This case
study would show how sometimes the right choice of
representation of an abstract object might lead to a sig-
nificant development of a key concept.

22.5.3 Topology

Other case studies from contemporary mathematics
concern topology.

The first one focuses on the identification and the
discussion of the role of diagrammatic reasoning in
knot theory, a branch of topology dealing with knots.
A knot is a smooth closed simple curve in the Euclidean
three-dimensional space, and a knot diagram is a regu-
lar projection of a knot with relative height information
at the intersection points. De Toffoli and Giardino have
discussed how knot diagrams are privileged points of
view on knots: they display only a certain number of
properties by selecting the relevant ones [22.50]. In
fact, a single knot diagram cannot exhaust all the in-
formation about the knot type, and, for this reason, it is
necessary to look at many diagrams of the same knot
in order to see its different aspects. For example, both
diagrams in Fig. 22.10 represent the unknot – that is, as
the name suggests, a not knotted knot type – and we can
transform the first into the second by pulling down the
middle arc. However, this move alone does not allow us
to conclude that both diagrams represent the unknot; to
see that, we would have to apply further similar moves.
In the article, a formalization for these possible modifi-
cations is provided.

The general idea behind this work is that diagrams
are kinaesthetic, that is, their use is related to proce-
dures and possible moves imagined on them. In topol-
ogy, which is informally referred to as rubber-band
geometry, a practitioner develops the ability to imagine
continuous deformations. Manipulations of topologi-
cal objects are guided by the consideration of concrete
manipulations that would be performed on rubber or
other deformable material. Accordingly, experts have
acquired a form of imagination that prompt them to
re-draw diagrams and calculate with them, performing
“epistemic actions” [22.20]. This form of imagination

a) b)

Fig. 22.10a,b Two nontrivial diagrams of the unknot
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derives from our interaction with concrete objects and
our familiarity with manipulating them. Moreover, the
meaning of a knot diagram is fixed by its context of use:
diagrams are the results of the interpretation of a fig-
ure, depending on the moves that are allowed on them
and at the same time on the space in which they are
embedded. Once the appropriate moves are established,
the ambient space is fixed, thus determining the differ-
ent equivalence relations. The context of use does not
have to be predefined, preserving this kind of ambiguity
that is not “damaging” [22.9], but productive. Actually,
the indetermination of meaning makes different inter-
pretations co-habit, and, therefore, allows attending to
various properties and moves.

The same authors have also analyzed the practice
of proving in low-dimensional topology [22.51]. As
a case study, they have taken a specific proof: Rolfsen’s
demonstration of the equivalence of two presentations
of the Poincaré homology sphere. This proof is taken
from a popular graduate textbook: Knots and Links by
Rolfsen [22.52]. The first presentation of Poincaré ho-
mology sphere is a Dehn surgery, while the second one
is a Heegaard diagram (Fig. 22.11).

Without going into the details, the aim of the authors
is to use this case study to show that, analogously to
knot theory, seeing in low-dimensional topology means
imagining a series of possible manipulations on the rep-
resentations that are used, and is, of course, modulated
by expertise. Moreover, the actual practice of prov-
ing in low-dimensional topology cannot be reduced to
formal statements without loss of intuition. Several ex-
amples of representationally heterogeneous reasoning –
that is neither entirely propositional nor entirely visual –
are given. Both the very representations introduced and
the manipulations allowed on them – what the authors,
following a terminology proposed by Larvor [22.53],
call permissible actions – are epistemologically rele-
vant, since they are integral parts both of the reasoning
and the justification provided. To claim that inferences
involving visual representations are permissible only
within a specific practice is to consider them as context
dependent. A consequence would be that it is no longer

a) b)
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Fig. 22.11a,b The surgery code and the Heegaard diagram
for the Poincaré homology sphere

possible to establish general criteria for mathematical
validity, since they can only be local. The picture of
mathematics emerging from these kinds of studies is
thus very different from the one proposed from the post-
nineteenth century philosophy of mathematics.

A final remark about representations in topology
concerns a point about their materiality, already raised
by Carter in a different context. To avoid confusion, it
is necessary to keep in mind the distinction between the
material pictures and the imagination process, which,
especially in the case of trained practitioners, tends to
vanish. Actual topological pictures trigger imagination
and help see modifications on them, but experts may
not find it necessary to actually draw all the physical
pictures. The same holds for algebra where experts skip
transitions that nontrained practitioners cannot avoid
writing down explicitly. This does not mean that experts
do not need pictures to grasp the reasoning, but only
that, thanks to training and thus to their familiarity with
drawing and manipulating pictures, they are sometimes
able to determine what these pictures would look like
even without actually drawing them. More generally,
for each subfield, it would be possible to define a set of
background pictures that are common to all practition-
ers, which would determine what Thurston has called
the mental model. To go back to Netz’ analysis of the
Euclidean diagram, here as well diagrams allow for pro-
cedures to be automatized or elided.

22.6 Computational Approaches

In this section, studies about the possibility of au-
tomatizing diagrammatic reasoning in mathematics are
briefly introduced. Such attempts are worth being men-
tioned because they start from the observation that
diagrammatic reasoning is crucial, at least in some ar-

eas of mathematics, and furthermore that any possible
formalization for it should reflect its straightforward-
ness and directness. We will introduce the attempts of
developing an automated reasoning program for plane
geometry and for theory of numbers in turn.
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22.6.1 (Manders’) Euclid Reloaded

The analysis and the definitions provided by Man-
ders about Euclidean geometrical reasoning were used
to establish a formalization for diagrams in line with
what he calls the diagram discipline. Such a project
has brought about the creation of two logical systems,
E [22.54] and Eu [22.55, 56], thanks to the work of Avi-
gad, Dean and Mumma. Both systems produce formal
derivations that line up closely with Euclid’s proofs,
in many cases following them step by step. (Another
system that has been created to formalize Euclidean
geometry is FG [22.57]. For details about FG and Eu
and for a general discussion of the project in relation
to model-based reasoning, see Chap. 23.). As summa-
rized in a recent paper [22.58], the proof systems are
designed to bring into sharp relief those attributes that
are fundamental to Euclid’s reasoning as characterized
by Manders in his distinction between exact and co-
exact properties. Nonetheless, the distinction is made
with respect to a more restricted domain.

The Euclidean diagram has some components,
which can be simple objects, such as points, lines,
segments, and circles, and more complex ones, such
as angles, triangles, and quadrilaterals. These compo-
nents are organized according to some relations, which
are the diagram attributes. Exact relations are obtained
between objects having the same kind of magnitude:
for example, for any two angles, the magnitude of
one can be greater than the magnitude of the other
or the same. Co-exact relations are instead positional:
for example, a point can lie inside a region, outside
it, or on its boundary. Co-exact relations concern-
ing one-dimensional objects exclusively, such as line
segments or circles, are intersection and nonintersec-
tion, while those concerning regions, one-dimensional
or two-dimensional, are containment, intersection, and
disjointness. Take the diagram in Fig. 22.12, represent-
ing the endpoint A as lying inside the circle H (a co-
exact property), along with a certain distance between
the point A and the circle’s center B (an exact prop-
erty). (Consider that in reproducing the diagram from
Mumma’s original article, the co-exact features were
not affected, while the exact ones probably were.) Fol-
lowingManders, in a proof in Euclid’s system, premises
and conclusions of diagrammatic inferences are com-
posed of co-exact relations between geometric objects.
In Fig. 22.13, an inference is shown (Fig. 22.13a) to-
gether with one of its possible associated diagrams
(Fig. 22.13b).

In order to develop a formal system for these in-
ferences, the main tasks in developing the programs
were two: first, to specify the formal elements repre-

H

C
B

A

Fig. 22.12 A Euclidean diagram depicting exact and co-
exact relations

Points A and B are on opposite sides of line l
Points A and B are on line m

a)

b)

Line m interects line l

A

B

m

l

Fig. 22.13a,b An inference in Euclid’s system according
to Manders’ reconstruction

senting co-exact relations; and second, to formulate the
rules in terms of the elements whereby diagrammatic
inferences can be represented in derivations. The main
difference between Eu and E is how the first task is
modulated. Eu possesses a diagrammatic symbol type
intended to model what is perceived in concrete phys-
ical diagrams, while E models the information directly
extracted from concrete physical diagrams by providing
a list of primitive relations recording co-exact informa-
tion among three object types: points, lines, and circles.
In Fig. 22.14, the formalization in Eu of the inference
in Fig. 22.13a is shown. In Fig. 22.15, the formalization
of the same inference in E is shown, with the primitive
on.A; l/ meaning point A is on line l.

In addition, the formalizations do not only have for-
mal elements corresponding to Euclidean diagrams, but
also formal elements corresponding to the Euclidean
text, so as to also record exact information. In order to
give a proof, the two kinds of representations have to in-
teract.
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22.6.2 Theorem Provers

Not only formalizations of Euclidean geometry have
been provided. Jamnik developed a semi-automatic
proof system, called DIAMOND (Diagrammatic
Reasoning and Deduction), to formalize and mecha-
nize diagrammatic reasoning in mathematics, and in
particular to prove theorems of arithmetic using dia-
grams [22.59]. Interestingly, Jamnik starts by recording
a simple cognitive fact, that is that given some basic
mathematical training and our familiarity with spatial
manipulations – remember the study on knot theory – it
suffices to look at the diagram representing a theorem
to understand not only what particular theorem it
represents, but also that it constitutes a proof for it. As
a consequence, one arrives at the belief that the theorem
is correct. From here, the question is: Is it possible
to simulate and formalize this kind of diagrammatic
reasoning on machines? In other words, is this an
example of intuitive reasoning that is particular to
humans and machines are incapable of?

The first part of Jamnik’s book provides a nice
overview of the different diagrammatic reasoning sys-
tems that have been developed in the past century, such
as, for example,Gelernter’s Geometry Machine [22.60]
or Koedinger and Anderson’s Diagram Configuration
Model [22.61]. For reasons of space, these systems will
not be discussed here. In order to develop her proof sys-
tem, she considers many different visual proofs in arith-
metic and some of the analyses that have been given for
them, by relying on the already mentioned collection
edited by Nelsen [22.18, 19]. Such an analysis enables
her to define a schematic proof as “a recursive function
which outputs a proof of some proposition P.n/ given
some n as input” [22.59, p. 52].

Consider inductive theorems with a parameter,
which, in Jamnik’s proposed taxonomy, are theorems
where the diagram that is used to prove them repre-
sents one particular instance. An example of a theorem
pertaining to this category is the sum of squares of Fi-
bonacci numbers. According to this theorem, the sum
of n squares of Fibonacci numbers equals the product
of the n-th and .nC 1/-th Fibonacci numbers. In sym-
bols,

Fib.nC 1/�Fib.n/D Fib.1/2CFib.2/2

C � � �CFib.n/2 : (22.14)

The formal recursive definition of the Fibonacci
numbers is given as

Fib.0/D 0 ; Fib.1/D 1 ; Fib.2/D 1 ;

Fib.nC 2/D Fib.nC 1/CFib.n/ : (22.15)
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Fig. 22.14a–c The given inference in EU
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intersects (l, m)
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Fig. 22.15a–c The given inference in E

Consider now Fig. 22.16. By looking at the spatial
arrangement of the dots, we first take the rectangle of
length Fib.nC1/ and height Fib.n/. Then, we split it in
a square of magnitude Fib.n/, that is, the smaller side of
the rectangle. We continue decomposing the remaining
rectangle in a similar fashion until it is exhausted, that
is, for all n. The sides of the created squares represent
the consecutive Fibonacci numbers, and the longer side
of every new rectangle is equal to the sum of the sides
of two consecutive squares, which is precisely how the
Fibonacci numbers are defined. As noted by Jamnik, the
proof can also be carried out inversely, that is, starting
from a square of unit magnitude .Fib.1/2/ and joining
it on one of its sides with another square of unit magni-

Fig. 22.16 Sum of squares of Fibonacci numbers
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tude .Fib.2/2/: we have a rectangle. Then we can take
the rectangle and join to it a square of the magnitude
of its longer side, so as to create another rectangle. The
procedure can be repeated for all n.

The schematic diagrammatic proof for this theorem
would then be a sequence of steps that need to be per-
formed on the diagram in Fig. 22.16:

1. Split a square from a rectangle. The square should
be of a magnitude that is equal to the smaller side of
a rectangle (note that aligning squares of Fibonacci
numbers in this way is a method of generating
Fibonacci numbers, that is, 1,1,1C 1D 2,1C 2D
3,2C 3D 5, etc.).

2. Repeat this step on the remaining rectangle until it
is exhausted.

These steps are sufficient to transform a rectangle
of magnitude Fib.nC 1/ by Fib.n/ to a representa-
tion of the right-hand side of the theorem, that is, n
squares of magnitudes that are increasing Fibonacci
numbers [22.59, p. 66].

A schematic proof is thus a schematic program
which by instantiation at n gives a proof of every propo-
sition P.n/. The constructive !-rule justifies that such
a recursive program is indeed a proof of a proposi-
tion for all n. This rule is based on the !-rule, that
is, an infinitary logical rule that requires an infinite
number of premises to be proved in order to conclude
a universal statement. The uniformity of this proce-
dure is captured in the recursive program, for example,
proof.n/. Jamnik’s attempt is thus to formalize and
implement the idea that the generality of a proof is
captured in a variable number of applications of geo-
metrical operations on a diagram, and as a consequence
to challenge the argument according to which human
mathematical reasoning is fundamentally noncomputa-
tional, and, therefore, cannot be automatized. Details
about DIAMOND’s functioning cannot be given here.
We just point out that also in this case diagrammatic
reasoning is interpreted as a series of operations on
a particular diagram, which can be repeated on other
diagrams displaying the same geometric features.

22.7 Mathematical Thinking: Beyond Binary Classifications

The reader already acquainted with the topic of di-
agrammatic reasoning in mathematics might wonder
why there has not yet been any explicit reference to
the work of Giaquinto, who was undeniably one of the
first philosophers to revive the attention toward mathe-
matical visualization [22.62]. In one of his papers, we
also find a nice overview of the literature concerning the
possibility of obtaining rigorous proofs by reasoning
diagrammatically [22.63]. The reason for this choice
is that Giaquinto has not only been a pioneer in the
renewed study of diagrammatic reasoning in mathemat-
ics, but also and even more interestingly he has given
suggestions about the directions that future research
should take. In this section, first his ideas on the role of
visualization in mathematical discovery will be briefly
presented, and then his proposal about how to consider
mathematical thinking in general will be discussed (in
the course of the final revisions of the present chap-
ter, I discovered that Giaquinto recently published an
entry on a topic that is related to ours, see for refer-
ence [22.64]).

As Giaquinto makes it clear, his original motiva-
tion for studying visual thinking in mathematics was to
provide an epistemology of individual discovery and of
actual mathematical thinking, so as to reopen the in-
vestigation of early thinkers from Plato to Kant, who
indeed had as an objective to explore the nature of
the individual’s basic mathematical beliefs and skills.

His strategy is thus first to acknowledge that there is
more than one kind of thinking in mathematics, and
then to assess the epistemic status of each of these
kinds of mathematical thinking. For this reason, and
as he himself admits, his view is in some sense much
more traditional than many of the works produced
by the post-nineteenth philosophers of mathematics.
Discovery is a very crucial issue for the practice of
mathematics and another topic that unfortunately has
been neglected by post-nineteenth century approaches,
which focused mainly on logic, proof, and justifica-
tion. Giaquinto tries to give an account of the com-
plexity of mathematical thinking, and to this aim he
also inquires into fields of research other than phi-
losophy, thus trespassing disciplinary boundaries. His
belief is that cognitive science constitutes a new tool
that can be helpful for understanding mathematical
thinking: though cognition has always been the object
of philosophy, the development of cognitive science
surely represents an advantage for the philosophers of
our century over the scholars of earlier times. An-
other discipline that could be an ally in disclosing
mathematical thinking is mathematical education, tra-
ditionally categorized as an applied field unable to
provide conclusive hints for theoretical research. More-
over, Giaquinto assigns an important role to history,
both the history of mathematics and the history of
philosophy.
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The main epistemological thesis of the book is that
there is no reason to assume a uniform evaluation that
would fit all cases of visual thinking in mathematics,
since visual operations are diverse depending on the
mathematical context. Moreover, in order to assess this
thesis, we do not need to refer to advanced mathemat-
ics: basic mathematics is already enough to account for
the process of mathematical discovery by an individual
who reasons visually. In fact, only the final part of the
book goes beyond very elementary mathematics.

It should be mentioned that also Giaquinto defends
a neo-Kantian view according to which in geometry
we can find cases of synthetic a priori knowledge, that
is cases that do not involve either analysis of mean-
ings or deduction from definitions. In fact, he refers
to the already mentioned study by Norman, which is
neo-Kantian in spirit, as a strong case showing that
following Euclid’s proof of the proposition that the
internal angles of a triangle sum to two right angles
require visual thinking, and that visual thinking is not
replaceable by nonvisual thinking [22.23]. Nonetheless,
the focus in this section will be mostly on the last chap-
ter of the book, where Giaquinto discusses how the
traditional twofold division between algebraic thinking
versus geometric thinking is not appropriate for ac-
counting for mathematical reasoning. His conclusion,
which can be borrowed also as a conclusion of the
present chapter, is that there is a need for a much more
comprehensive taxonomy for spatial reasoning in math-
ematics, which that would include operations such as
visualizing motion, noticing reflection symmetry, and
shifting aspects. In fact, if one considers thinking in
mathematics as a whole, then there arises a sense of dis-
satisfaction with any of the common binary distinctions
that have been proposed between algebraic thinking on
the one hand and geometric thinking on the other; the
philosopher’s aim should be to move toward a much
more discriminating taxonomy of kinds of mathemat-
ical reasoning.

Consider, for example, aspect shifting as precisely
one form of mathematical thinking that seems to elude
standard distinctions. Aspect shifting is the same cog-
nitive ability that Macbeth describes in discussing the
way in which the Greek geometer – and every one of
us today who practices Euclidean geometry – reasoned
in the Euclidean diagram. Take again the visual proof
given in Sect. 22.1 for the Pythagorean theorem. As Gi-
aquinto explains, it is possible to look at the square in
Fig. 22.1b – that has letters in it, and, therefore, is a kind
of lettered diagram – and see that the area of the larger
square is equal to the area of the smaller square plus the
area of the four right-angled triangles [22.62, pp. 240–
241]. How do we acquire this belief? Giaquinto’s reply
is that first we have to reason geometrically and shift

between aspects, so as to recognize that the area of the
square is both .aCb/2 and 2abCc2. From here, we then
have to proceed algebraically as follows

a2C2abCb2 D 2abCc2 ; a2Cb2 D c2 : (22.16)

At this point, by looking back at the figure, we real-
ize – geometrically again – that the smaller square is also
the square of the hypotenuseof the right-angled triangle.
Finally, from the formula, we conclude that the area of
the square of the hypotenuse is equal to the sum of the
squares of its other two sides. Then the question is: Is
this argument as a whole to be considered as primary al-
gebraic or geometric? It seems that neither of these two
categories would be fully appropriate to capture it.

This is an interesting point also relative to other
kinds of mathematical reasoning by means of some par-
ticular representation. Consider a notation that is used
in topology and take as an example the torus that can
be defined as a square with its sides identified. In order
to obtain the torus from a square, we identify all its four
sides in pairs. The square in Fig. 22.17a has arrows in it
indicating the gluings, that is, the identifications. First,
we identify two sides in the same direction, so as to
obtain the cylinder (Fig. 22.17b); then, we identify the
other two, again in the same direction: in Fig. 22.17c,
one can see the torus with two marked curves, where
the gluings, that is, the identifications, were made.

In discussing the role of notation in mathematics,
Colyvan takes into consideration diagrams such as the
one in Fig. 22.17a, and points out that this notation is
“something of a halfway house between pure algebra
and pure geometry” [22.65, p. 163]. In Colyvan’s view
these diagrams are, on the one hand, a piece of notation,
but, on the other, also an indication on how to con-
struct the object in question. The first feature seems to
belong to algebra, while the second to geometry. More-
over, note that if we identify two sides of the square

a) b)

c)

Fig. 22.17a–c Constructing the torus
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in the same direction and the other two in the opposite
direction, we obtain the Klein bottle, which is a very
peculiar object, since it is three-dimensional but needs
four spatial dimensions for its construction, and, even
more interestingly, has no inside or outside. The Klein
bottle demonstrates how powerful such a notation is: it
leads to objects that would be otherwise considered as
nonsense, and it also allows us to deduce their prop-
erties. As Colyvan summarizes, “Whichever way you
look at it, we have a powerful piece of notation here that
does some genuine mathematical work for us” ([22.65,
p. 163], emphasis added). Diagrams, as well as other
powerful notations, operate at our place. Moreover, at
least some of them seem to be some kinds of hybrid ob-
jects, trespassing boundaries. They are geometric and
algebraic at the same time.

Consider again the relations between the algebra of
combinatorial groups and their geometry (Sect. 22.5.2).
As Starikova tells us, first the combinatorial group the-
ory was amplified with a geometric element – a graph –

where geometric refers mostly to geometric construc-
tions as methods of geometry rather than algebra. But
eventually this geometric element was significantly ex-
panded and groups became geometric objects in virtue
of their revealed geometric properties. The introduction
of graphs thus provided mathematicians with a power-
ful instrument for facilitating their intuitive capacities
and furthermore gave a good start for further intu-
itions which finally lead to advanced conceptual links
with geometry and the definition of a broader geomet-
ric arsenal to algebra. Also in the knot theory example
(Sect. 22.5.3), knot diagrams are shown to have at the
same time diagrammatic and symbolic elements, and,
as a consequence, their nature cannot be captured by
the traditional dichotomy between geometric and alge-
braic reasoning. All this is to show that Giaquinto’s
invitation to define a “more discriminating and more
comprehensive” [22.13, p. 260] taxonomy for mathe-
matical thinking going beyond twofold divisions is still
valid, and that more on this topic needs to be done.

22.8 Conclusions

The objective of the present chapter was to introduce
the different studies that have recently been devoted to
diagrammatic reasoning in mathematics. The first topic
discussed was the role of diagrams in Euclidean and
Greek geometry in general (Sect. 22.3); then, the pro-
ductive ambiguity of diagrams was defined (Sect. 22.4)
and case studies in contemporary mathematics were
briefly reviewed (Sect. 22.5). It has been shown how
some attempts have tried to automatize diagrammatic
reasoning in mathematics, in particular to formalize ar-
guments in Euclidean geometry and proofs in theory of
numbers (Sect. 22.6); finally, it has been argued that
the attention to diagrammatic reasoning in mathemat-
ics can shed light on the fact that mathematics makes
use of different kinds of representations that are so in-
tertwined that it is difficult to draw sharp distinctions
between the different subpractices and the correspond-
ing reasoning (Sect. 22.7). We started from the study
of diagrammatic reasoning and we arrived at the con-
sideration of mathematical thinking as a whole, and of
the role of notations and representations in it. Mathe-
maticians use a vast range of cognitive tools to reason
and communicate mathematical information; some of
these tools are material, and, therefore, they can easily
be shared, inspected, and reproduced. Specific repre-
sentations are introduced in a specific practice and, once
they enter into the set of the available tools, they may
have an influence on the very same practice. This pro-
cess plays a significant role in mathematics.

There is a last remark to make at the end of this sur-
vey, that is, that in diagrammatic reasoning, we have
seen the continuity and the discreteness of space operat-
ing. Continuouswas the space of the Euclidean diagram,
discrete (at least in part) the space of the diagrams for
Galileo’s theorem and for the sum of the Fibonacci num-
bers. Diagrammatic reasoning thus seems to have fun-
damentally a geometric nature, since it organizes space.
Nonetheless, we have also shown that a diagram never
comes alone, but always with some form of text giving
indications for its construction or stipulating its correct
interpretation. The relation between the diagram and text
is defined each time by the specific practice. As a con-
sequence, diagrams appear to be very interesting hybrid
objects, whose nature cannot be totally captured by stan-
dard oppositions. They are cognitive tools available for
thought, whose effectiveness depends on both our spa-
tial and our linguistic cognitive nature.
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23. Deduction, Diagrams and Model-Based Reasoning

John Mumma

A key piece of data in understanding mathematics
from the perspective of model-based reasoning
is the use of diagrams to discover and to convey
mathematical concepts and proofs. A paradig-
matic example of such use is found in the classical
demonstrations of elementary Euclidean geometry.
These are invariably presented with accompany-
ing geometric diagrams. Great progress has been
made recently with respect to the precise role the
diagrams plays in the demonstrations, so much
so that diagrammatic formalizations of elemen-
tary Euclidean geometry have been developed.
The purpose of this chapter is to introduce these
formalizations to those who seek to understand
mathematics from the perspective of model-based
reasoning.

The formalizations are named FG and Eu. Both
are based on insights articulated in Ken Manders’
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seminal analysis of Euclid’s diagrammatic proofs.
The chapter presents these insights, the challenges
involved in realizing them in a formalization, and
the way FG and Eu each meet these challenges.
The chapter closes with a discussion of how the
formalizations can each be thought to prespecify
a species of model-based reasoning.

The formalization of mathematical knowledge has been
a mainstay of the philosophy of mathematics since the
end of the nineteenth century. The goals and assump-
tions characteristic of the enterprise are foundationalist.
A piece of mathematics is formalized to obtain a clear
view of it within the context of justification. The various
lemmas, theorems and corollaries of the mathematics
are translated into sentences of a fixed formal language,
whereby it becomes possible to ascertain with precision
the logical relationships of the lemmas, theorems and
corollaries to one another and to a group of sentences
distinguished as axioms. The end result is a picture
of the how the mathematics is – or at least can be –
grounded on a collection of its basic truths.

Formalization would thus seem to be of little use
to those who seek to understand mathematics from the
perspective of model-based reasoning. The goal from
this perspective is to obtain a clear view of the math-
ematics within the context of discovery. What is of
interest is how the lemmas, theorems, and corollar-
ies of the mathematics came to be known in the first
place. A fundamental premise is that the process is
a reasoning process, where the reasoning involved is

different in kind from the strictly regulated procedures
of inference prescribed by a formalization. Inference
concerning some mathematical subject is driven by the
reasoner’s engagement with representations modeling
X, rather than the logical form of sentences express-
ing claims about X. For a paradigmatic example of
such an X consider elementary geometry. From the
perspective of the tradition that investigates mathemat-
ical knowledge via formalization, what is fundamen-
tal are sentences expressing the axioms and theorems
of elementary geometry in a fixed formal language.
Geometric reasoning is depicted as a progression of
sentences laid out along the rigid pathways defined
by the formalization’s rules. From the perspective of
model-based reasoning, what is fundamental are the
diagrams that model the geometric situations that the
axioms and theorems concern. Geometric reasoning is
an open-ended process in which mind and diagram in-
teract.

A curious recent development has been the appear-
ance of formalizations advanced to show that diagrams
of elementary geometry can be understood as part of the
formal syntax of the subject’s proofs. These specifically
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are the proof systems FG [23.1] and Eu [23.2]. Since
the target of the formalizations is the use of diagrams
in proving geometric theorems, one may think that they
provide a model-based reasoning picture of mathemati-
cal proof. At the same time, by the very fact that they are
formalizations, one may take them to miss what is im-
portant about geometric diagrams from the perspective
of model-based reasoning. Perhaps the formal objects
identified as geometric diagrams within them are best
understood as sentences formulated with an unconven-
tional notation.

In this chapter I present FG and Eu with the aim
of illuminating their potential relevance to researchers

in model-based reasoning. For the presentation of a for-
mal proof system closely related to Eu – termed E –
see [23.3]. For a discussion of the utility of the analyses
of Eu and E in understanding Euclidean diagrammatic
reasoning from a cognitive perspective, see [23.4].
The formalizations are based on principles formulated
in [23.5], Ken Manders’ seminal analysis of Euclid’s
diagrammatic proof method in the Elements. In the
chapter’s first section I present this analysis. In the sec-
ond, I sketch FG and Eu as formal proof systems.
Finally, in the chapter’s third section, I advance an inter-
pretation of the systemswhere each characterizes a kind
of model-based reasoning.

23.1 Euclid’s Systematic Use of Geometric Diagrams

For most of its long history, Euclid’s Elements was the
paradigm for careful and exact mathematical reasoning.
In the past century, however, it has been just the oppo-
site. Its proofs are often invoked to illustrate what rigor
in mathematics does not consist of. Though some steps
of Euclid’s proofs are respectable as logical inferences,
a goodmany are not.With these, one cannot look only at
the logical formof the claims in the proof and understand
what underlies them. One is forced, rather, to look at the
accompanying diagram. The modern opinion is that Eu-
clid’s proofs exhibit deductive gaps at such places.

Ken Manders set out to explode this story in [23.5].
His analysis of Euclid’s diagrammatic proof method
reveals that Euclid employs diagrams in a controlled,
systematic way. It thus calls into question the common,
negative assessment of the rigor of the Elements. More-
over, the specifics of Manders’ analysis suggest that
Euclid’s proof can be understood to adhere to a formal
diagrammatic logic.

The first step in understanding the role of diagrams
in Euclid’s Elements is simply to recognize them as
components of proofs, rather than as mere illustrations
of the proofs’ sentences. Accordingly, Manders char-
acterizes the proofs as proceeding along two tracks:
a discursive one resulting in a sequence of assertions,
and a graphic one resulting in a geometric diagram.
A proof step within the discursive, or sentential, track
consists of the addition of a new assertion to the se-
quence, and a proof step within the diagrammatic track
consists of the addition of a new graphic object to the di-
agram. The graphic objects in the diagram are linked to
assertions in the text via labels. Crucially, it is not just
previous assertions that license the addition of a new
assertion within the sentential track; the diagram can
directly license such an addition as well.

Central to Manders’ account of how diagrams do
this is his distinction between the exact and co-exact
features of diagrams. Being drawn by human hands,
Euclidean diagrams cannot fully realize the properties
geometric lines and circles are conceived to possess.
There are bound to be small variations from the ideal
of perfectly straight lines and perfectly circular circles
in the diagrams produced by ruler and compass. Man-
ders defines as co-exact any attribute of a diagram that
is stable under such variations or perturbations. Exact
attributes are then whatever is not so stable. In a dia-
gram in which a segment is extended from a vertex of
a triangle to the side opposite the vertex, for example,
the triangle’s containment of the segment is a co-exact
attribute of the diagram. The precise ratio between the
two angles induced by the segment is not.

Manders’ key observation is that Euclid’s diagrams
contribute to proofs only through their co-exact at-
tributes. Euclid never infers an exact attribute from
a diagram unless it follows directly from a co-exact
attribute. Geometric claims concerning other exact at-
tributes either are assumed from the outset or are proved
via a chain of inferences in the text. It is not diffi-
cult to hypothesize why Euclid would have restricted
himself in such a way. It is only in their capacity to ex-
hibit co-exact relations that diagrams seem capable of
functioning effectively as symbols of proof. The exact
relations depicted by diagrams are too refined to be eas-
ily reproducible and to support determinate judgments
[23.5, Sect. 4.2.2].

For an example of how diagrams carry co-exact in-
formation for Euclid, consider the proof of proposition
5 of the Elements. The proposition states that all isosce-
les triangles have equal base angles. The proof as given
in [23.6] is as follows:
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Proof:

A

CB

GF

ED

Let ABC be an isosceles triangle having the side
AB equal to the side AC; and let the straight lines BD,
CE be produced further in a straight line with AB, AC
(postulate 2).

I say that the angle †ABC is equal to the †ACB,
and the angle †CBD to the angle †BCE.

Let a point F be taken at random on BD; from AE
the greater let AG be cut off equal to AF the less (propo-
sition I, 3); and let the straight lines FC, GB be joined
(postulate 1).

Then, since AF is equal to AG and AB to AC, the
two sides FA, AC are equal to the two sides GA, AB,
respectively; and they contain a common angle, the an-
gle †FAG. Therefore, the base FC is equalto the base
GB, and the triangle AFC is equal to the triangle AGB,
and the remaining angles will be equal to the remaining
angles respectively, namely those which the equal sides
subtend, that is, the angle †ACF to the angle †ABG,
and the angle†AFC to the angle†AGB (proposition I,
4).

And, since the whole AF is equal to the whole AG,
and in these AB is equal to AC, the remainder BF is
equal to the remainder CG.

But FC was also proved equal to GB; therefore the
two sides BF, FC are equal to the two sides CG, GB
respectively; and the angle †BFC is equal to the an-
gle †CGB, while the base BC is common to them;

therefore the triangle BFC is also equal to the trian-
gle CGB, and the remaining angleswill be equal to the
remaining angles respectively, namely those which the
equal sides subtend; therefore angle †FBC is equal to
the angle †GCB, and the angle †BCF to the angle
†CBG.

Accordingly, since the whole angle †ABG was
proved equal to the angle †ACF, and in these the angle
†CBG is equal to the angle †BCF, the remaining an-
gle †ABC is equal to the remaining angle †ACB; and
they are at the base of the triangle ABC. But the angle
†FBC was also proved equal to the angle †GCB; and
they are under the base. �

Two steps of the proof rely on the diagram. The
first is the application of the equals-subtracted-from-
equals rule (common notion 3 in the Elements) to infer
the equality of lengths BF and CG, the second is the
application of the same rule to infer the equality of
angles †ABC and †ACB. A requirement for the cor-
rect application of the common notion is that certain
co-exact containment relations hold. In order to apply
equals-subtracted-from-equals in the last step for in-
stance, angle †ABG is required to contain †ABC and
†CBG, and angle †ACF is required to contain †ACB
and †BCF. On Manders’ account the diagram of the
proof licenses the inference that these co-exact condi-
tions are satisfied.

Generally, the results of elementary geometry de-
pend on nonmetric positional relations holding between
the components of a configuration. A method for prov-
ing the results, then, must provide a means for recording
such information about a configuration, and grounding
inferences with respect to it. According to Manders’ ac-
count of Euclid’s method, diagrams fulfill this function,
and do so in a mathematically legitimate way – i. e.,
they do not compromise the rigor of the method.

23.2 Formalizing Euclid’s Diagrammatic Proof Method

Both FG and Eu were created to flesh out Manders’
account in formal terms by characterizing Euclid’s di-
agrams as syntactic objects in a formal proof system.
Carrying the project out amounts to three tasks:

1. The definition of a class of syntactical objects that
serve to represent Euclid’s diagrams in the formal
system

2. The specification of the geometric information ex-
pressible with the formal diagrams of the system

3. The specification of a method for regulating the in-
formation expressible by formal diagrams of the
system in geometric proofs.

The structure of the concrete diagrams accompany-
ing presentations of Euclid’s arguments defines the first
task. The abstract formal diagrams of the formal proof
system ought somehow to embody this structure. How
the formal system accomplishes task 2 constitutes the
system’s analysis of Manders’ notion of co-exactness.
With such an analysis in place, the third task becomes
possible. The method furnished by the proof system for
employing diagrams in proofs must be geometrically
sound relative to the geometric information expressed
by the system’s diagrams.

Below I describe how FG and Eu fulfill tasks 1)–3).
Beforehand it is worth discussing in more detail what
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task 3 involves, as its successful completion amounts
to a solution of the generality problem surrounding Eu-
clid’s proofs.

The generality problem arises with Euclid’s proofs
because the diagram used for a proof is always a partic-
ular diagram. Euclid clearly did not intend his propo-
sitions to concern just the figure on display beside the
proposition. They are applied in subsequent proofs to
other figures which are not exact duplicates of the orig-
inal. And so, for Euclid, consultation of the original
diagram, with all its particular features, is somehow
supposed to license a generalization. But Euclid leaves
the process by which this is done obscure. And so
we are left with some doubt as to whether the jump
from the particular to general is justified. Even before
the nineteenth century, when the legitimacy of Euclid’s
methods was taken for granted, philosophers recog-
nized that there was something to be explained with this
jump.

Manders’ exact/co-exact distinction provides the
basis for a partial explanation. The co-exact properties
of a diagram can be shared by all geometric configura-
tions in the range of a proof, and so in such cases one
is justified in reading off co-exact properties from the
diagram. In a proof about triangles for instance, varia-
tion among the configurations in the range of the proof
is variation of exact properties – e.g., the measure of the
triangles’ angles or the ratios between their sides. They
all share the same co-exact properties – i. e., they all
consists of three bounded linear regions which together
define an area.

This is not a full answer because Euclid’s proofs
typically involve constructions on an initial configura-
tion type. With the proof of proposition 5, for example,
a construction on a triangle is specified. In such cases,
a diagram may adequately represent the co-exact prop-
erties of an initial configuration. But the result of ap-
plying a proof’s construction to the diagram cannot be
assumed to represent the co-exact properties of all con-
figurations resulting from the construction. One does
not need to consider complex geometric constructions
to see this. Suppose for instance the initial configura-
tion type of a proof is a triangle. Then the diagram

serves to represent the co-exact properties of this type.
Suppose further that the first step of a proof’s construc-
tion is to drop the perpendicular from a vertex of the
triangle to the line containing the side opposite the ver-
tex. Then the result of carrying this step out on the
diagram, i. e.,

ceases to be representative. That the perpendicular falls
within the triangle in the diagram is a co-exact fea-
ture of it. But there are triangles with exact properties
different from the initial diagram where applying the
construction step results in a perpendicular lying out-
side the triangle. For example, with the triangle

the result of applying the construction step is

And so, carrying out a Euclidean construction on a rep-
resentative diagram can result in an unrepresentative
diagram. If a formal system is to provide a compelling
analysis of Euclid’s diagrammatic proofs it must ac-
count for this in carrying out task 3.

23.2.1 The Formal System FG
Task 1 in FG: FG Diagrams

The four fundamental syntactical notions of FG are
frame, dot, solid segment, and dotted segment. Ev-
ery FG diagram possesses a frame, characterized as
“a rectangular box drawn in the plane” [23.1, p. 22]).
Within it dots, solid segments, and dotted segments can
lie. The dots of an FG diagram are point-like graphic
objects. Solid segments and dotted segments are one-
dimensional graphic objects that do not intersect any
other objects of the diagram and terminate either in
dots or the diagram’s frame. Solid segments serve to
represent line segments, and dotted segments serve to
represent arcs of circles. Accordingly, an FG diagram
comes equipped with a partition on its set of solid seg-
ments and a partition on its set of its dotted segments.
The dlines of the diagram are the components of the
former partition, and the dcircles of the diagram are the
components of the latter. See Fig. 23.1 for an example
of an FG diagram.

Aside from the requirement that solid and dotted
segments do not intersect anything (including them-
selves), there are no constraints imposed upon them.
They are free to bend and curve any which way be-
tween the dots that bound them. Consequently, there is
no upper bound on the number of times sets of such
objects can intersect one another at dots within an FG
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Fig. 23.1 Example FG diagram

frame. There are upper bounds, however, on the num-
ber of times Euclidean lines and circles can intersect
one another in points. Two distinct lines, for instance,
intersect in at most one point. Thus, so that dlines and
dcircles intersect one another like Euclidean lines and
circles, they are required to satisfy a variety of con-
ditions. One of these conditions, for instance, ensures
that two dlines do not intersect at more than one dot in
an FG diagram. For the details see [23.1, Sect. 2.1]. As
illustrated in the discussion of FG’s completion of task
3 below, such conditions play an essential role in FG’s
formalization of Euclid’s proofs.

Task 2 in FG: Corresponding Graph Structures
These conditions notwithstanding, the FG definition of
a diagram leaves room for a great deal of variation.
Consider those FG diagrams with a fixed number of
dots, dlines and dcircles – say k, m and n. The range
of ways such objects can differ from one another is
vast. Task 2 within FG amounts to specifying which
differences matter in proofs. The task, in particular, is
to specify which differences among FG diagrams with
k dots,m dlines, and n dcircles express geometric differ-
ences among planar configurations of k points, m lines
and n circles.

This is done in topological terms. What matters
about a FG diagram in a proof, roughly, are the way
its dlines and dcircles divide the region defined by
the frame into smaller connected regions, and the po-
sition (inside or outside) of its dots and dsegments
relative to these regions. The notion making this pre-
cise is that of a FG diagram’s corresponding graph
structure [23.1, Sect. 2.2]. It is via this notion that the
representational link is made between FG diagrams as
proof symbols and Euclidean configurations as mathe-
matical objects. Any Euclidean configuration of points,
lines and circles can be understood as an FG diagram
by enclosing the configuration within a suitably large
rectangle. Consequently, any Euclidean configuration
has its own corresponding graph structure (as any suit-
ably large rectangle is decomposed into regions by the
configuration in the same way that the frame of an
FG diagram is decomposed by its dlines and dcircles).
What an FG diagram represents, then, are all Euclidean

configurations that have the diagram’s corresponding
graph structure.

Task 3 in FG: FG Case Analysis
The generality problem arises in FG as follows. The
basic Euclidean operations of constructing a segment,
extending a segment, and constructing a circle are par-
alleled within FG by the syntactic operations of adding
a dline, extending a dline, and adding a dcircle. And so
for any Euclidean construction there is a parallel FG
construction. Yet Euclidean constructions, in general,
do not yield unique corresponding graphs structures.
Consequently, if we are given a Euclidean construc-
tion and produce an FG diagram D according to the
parallel FG construction, we cannot assume that the
corresponding graph structure of D is shared by all con-
figurations produced by the construction. For a simple
example, suppose that D0 is the diagram

and a circle is constructed on the segment as radius to
obtain D

The Euclidean configurations that have D0’s corre-
sponding graph structure are simply those consisting of
a segment and a point off of it. Constructing a circle
from the segment in each such configuration does not
alway result in a configuration with the corresponding
graph structure of D. The point may not lie outside the
circle.

The problem is resolved in FG via the implementa-
tion of a uniform case-branching method. Suppose that
within an FG derivation a construction step is to be
applied to a configuration represented by the diagram
D0. In performing the construction step, one must not
only add to D0 the object of the construction step to
obtain a diagram D. One must also produce diagrams
for all FG cases that could result from the construc-
tion step, where the notion of ‘FG case’ is specified in
terms of the notions of a corresponding graph structure
and an FG diagram. Specifically, if E0 is a diagram with
the same corresponding graph structure as D0 and E is
an FG diagram obtained by adding the object of the
construction step to E, then the corresponding graph
structure of E is an FG case of the construction step.
Since the definition of an FG diagram does not require
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dlines to be straight or dcircles to be circular, there may
be FG cases that are not Euclidean cases – i. e., some
corresponding graph structures may not be realized by
any Euclidean configuration. But all Euclidean cases
will be an FG case. And so a relation that appears in all
FG cases of the construction step holds in all Euclidean
cases of the construction step.

Accordingly, the FGmethod for isolating the invari-
ant co-exact relations of a construction is to produce all
FG cases of the construction, and determine which co-
exact relations are obtained in all cases. Such a method
is satisfactory, of course, only if there is a procedure for
producing all the FG cases of the construction. Miller
has implemented such a procedure in a computer pro-
gram CDEG, the general principles behind which he
describes in section 3.5 of [23.1]. To understand how
the procedure works, consider the step in the construc-
tion of proposition I, 5 in which the segment from F to
C is added. The configuration on which the construc-
tion is performed can be represented by the following
FG diagram (the hashmarks in the diagram represent
equality of lengths according to the standard conven-
tion).

The parallel construction step in FG is to add a dline
connecting the points representing F and G. The cases
that result from this step are individuated by the ways
the new dline can snake through the regions of the
corresponding graph structure of D0. If the dline were
conceived simply as a one-dimensional curve, some of
these cases would be

A dline, however, is a one-dimensional curve required
to satisfy certain constraints. One of these, as pointed
out above, is that a dline cannot intersect another dline
in more than one dot. This eliminates all but the first
and last case

Generally, FG cases can arise when a dline is added
to a diagram, when a dcircle is added to a diagram,
or when a dline is extended. For each possibility, the
conditions on dlines and dcircles are such that the
possible routes of the added element through the corre-
sponding graph structure of the diagram are sufficiently
restricted – i. e., the resulting FG cases are finite in
number and can be systematically enumerated.

A side note: FG is a purely diagrammatic formal
system. Thus, the techniques whereby one recognizes
parts of an FG diagram (e.g., its dots) in terms of Eu-
clid’s verbal presentation of a construction (e.g., the
point F, the point G) are taken from the beginning
to be external to it. As discussed in the next section,
Eu is a heterogenous system – i. e., it possesses both
a diagrammatic and a sentential syntax. Sentential sym-
bols label its diagrams, and formalize (to a certain
extent) a means for relating sentential and diagram-
matic representations. The labels also provide a means
for classifying two diagrams as equivalent with respect
to the geometric information they express. Nothing in
the definition of FG diagrams prevents the development
of a heterogeneous version of FG with these features.

23.2.2 The Formal System Eu
Task 1 in Eu: Eu Diagrams

Common to all Eu diagrams is a discrete two-
dimensional array structure that serves to model the
spatial background within which diagrammatic points,
lines and circles are constructed. The arrays are square
and of arbitrary finite dimension. An example is the
7� 7 array
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The array elements are identified by their coordinates,
with the lowest, left-most element having coordinates
.0;0/ and the highest, right-most element in an n� n
array having coordinates .n� 1; n� 1/.

A point of anEu diagram is a distinguished array el-
ement. An example of an Eu diagram with two points is

A linear element of an Eu diagram is a linear subset
of its array elements – i. e., a subset of array elements
whose coordinates satisfy a linear equation. The
elements of a linear element can be further constrained
by inequalities on its first or second coordinate. If
there is one inequality to be satisfied the linear element
is a ray; if there are two it is a segment. The linear
element of the diagram below is a segment defined by
the conditions: yD xC 1; 1
 x
 5

Finally, a circle of anEu diagram is a subset of array
elements that form the perimeter of a convex polygon.

The correspondence between the abstract, formal
diagrams ofEu and the concrete diagrams theymodel is
not one-to-one, but many-to-one. Specifically, a single
concrete diagram is modeled in Eu by a set of Eu dia-
grams with the same syntactic type. What is and is not
possible with the concrete diagram modeled is deter-
mined by all Eu diagrams with the concrete diagram’s
syntactic type.

Roughly, having the same syntactic type means dif-
fering only with respect to the number of underlying
array entries. Given a diagram ı we can increase the
number of array entries it contains while leaving the rel-
ative position of its objects within the array fixed. Since
the resulting Eu diagram has the same objects with the
same relative positions, it is taken to model the same
concrete diagram ı does.

The procedure of refinement addresses a worry one
may have about the suitability ofEu’s diagrams. As dis-
crete objects, they will fail in general to produce the
intersection points that appear in Euclid’s diagrams. For
instance, in the diagram

we can join the points above and below the line to ob-
tain the diagram

Given what this diagram is intended to represent, we
ought to be able to produce an intersection point be-
tween the segment and the line. But the underlying
array of the diagram is too coarse. An array entry does
not exist where a point ought to be.

This can always be dealt with by refining an Eu dia-
gram into one of the same syntactic type. The equation
that characterizes a line (and the circumference of a cir-
cle) is linear, expressed in terms of the coordinates of
the array entries. Since the arrays are discrete, the co-
efficients of the equation are always integers. Thus, the
solution for two equations characterizing geometric el-
ements of a diagram will always be rational.

This means that if two geometric elements ought
to intersect but don’t in a diagram, we can always find
a diagram of the same syntactic type where they do. It
will just be the original diagram with a more refined un-
derlying array. In particular, if the original diagram has
dimension n and the solution between the two equations
is a rational with an m in its denominator, the new dia-
gram will have dimension m.n� 1/C 1.

For the diagram above, then, adding the desired in-
tersection point is a two-step process. First, the diagram
is refined to an equivalent diagram of dimension 7.

Then the intersection point is added.

Another natural worry has to do with the circles of
diagrams. The circles that appear in Euclid’s diagrams
actually appear circular. The circles of diagrams, how-
ever, are rectilinear. If Euclid exploits the circularity of
his circles in his proofs, then the diagrams of Eu would
fail to capture this aspect of Euclid’s mathematics. Eu-
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clid, however, never does this. All he seems to assume
about circles is that they have an interior. Thus, with
respect to the project of formalizing Euclid’s proofs,
Eu circles suffice. If on the other hand the circular
appearance of Euclid’s circles were deemed for other
reasons to be important, the Eu syntax could be modi-
fied accordingly. Eu circles could be defined as regular
polygons with, say, at least 1000 sides.

Task 2: Semantic Equivalence
The relation syntactic equivalence, discussed above,
serves to abstract from the features of Eu diagrams ir-
relevant to them as representations of concrete symbols.
The relation of semantic equivalence serves to abstract
from those features irrelevant to them as proof symbols.
Two Eu diagrams carry the same information in a proof
if and only if they satisfy the relation of semantic equiv-
alence. It is an equivalence relation analogous to that
of two FG having the same corresponding graph struc-
ture.

The relation is based ultimately on certain posi-
tional relations that can hold between pairs of objects
in a diagram. For any two kinds of objects of an Eu
diagram, we can stipulate a disjunctive range of mutu-
ally exclusive qualitative relations. For instance, with
point p and circle c the range of relations stipulated
are

p lies inside c; p lies on c; p lies outside c

Similarly, the relation range of a point and a linear el-
ement contains all the possible positions a point can
have to a linear element. For a point p and a line l these
are

p on one side of l; p on the other side of l;

p lies on l

where sidedness is determined by labels on the end-
arrows of l fixing the line’s orientation. When the
linear element l is a ray (or segment), the relation range
contains the additional possibility (or possibilities) of
p lying on an extension of l. The relation range for
a line and circle lists the possible relations of tangency,
intersection or nonintersection between them, and the
relation range for two circles lists the possible relations
of containment, tangency or intersection between them.
Finally, the relation range between two linear elements
is defined in terms of the positions of their endpoints
and/or end arrows to one another.

The rough idea is that two diagrams are semanti-
cally equivalent if pairs of corresponding objects realize
the same qualitative relation in the relation range stip-
ulated for object types of the pair. More precisely,

semantic equivalence is a relation between labeled
Eu diagrams. A labeling of an Eu diagram assigns
variables to the points, circles and end arrows of the di-
agram. If the same variables label the same object types
in two diagrams, then the labeling induces a one-to-one
correspondence between the objects of the two dia-
grams. This is a precondition of semantic equivalence.
The two diagrams are then semantically equivalent if
corresponding pairs of objects realize the same relation
in the appropriate relation range. For an example of two
semantically equivalent Eu diagrams, see Fig. 23.2.

Task 3: Single Diagram Proofs
The generality problem arises in Eu similarly to the
way it does in FG. The syntactic operations that parallel
the basic Euclidean operations do not in general pre-
serve semantic equivalence. That is, applying the same
syntactic operation to two semantically equivalent Eu
diagrams does not in general result in two semantically
equivalentEu diagrams. In contrast to FG, however,Eu
does not demand that every case be listed in the course
of a geometric construction. A guiding ideal behind the
design of Eu derivations is what could be called the one
proof-one diagram conception of geometric proof. (The
name is taken from [23.5]. In the second footnote of the
paper Manders comments “Euclid, by and large, lives
by one proof, one diagram” [23.5, p. 85]). According
to it, a single diagram ought to be enough to establish
a geometric proposition. Not all Eu derivations can be
understood to correspond to proofs that rely on a sin-
gle diagram. The formal system provides a framework,
however, in which many of Euclid’s proofs can be un-
derstood as such.

Within the framework, the task of establishing a ge-
ometric proposition with a single diagram divides into
two subtasks. The first is the task of producing a geo-
metric diagram as a concrete graphic object satisfying
certain formal conditions. The second is the task of
reasoningwith the object produced. The reasoning con-
sists, specifically, of verifying that certain qualitative
positional relations exhibited by the diagram – such as
the position of a segment within an angle – are repre-
sentative of all the configurations within the scope of
the proposition.

A

CB

GE
FD

A

C

B

G

E

F

D

Fig. 23.2 Two equivalent Eu diagrams
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Fig. 23.3 Eu demonstration
sequence for proposition I, 5

An Eu derivation thus splits into two stages, a con-
struction stage and a demonstration stage. The con-
struction stage is intended to correspond to the pro-
duction of a geometric diagram as a concrete object,
while the demonstration stage is intended to corre-
spond, in part, to the reasoning carried out with the
concrete object. (The demonstration stage also serves
to record reasoning carried out with sentences repre-
senting relations between geometric magnitudes.) Both
the construction and the demonstration stage in an Eu
derivation can (and in most cases of interest do) con-
tain many distinct Eu diagrams, even in the canonical
case of a derivation that is intended to model a sin-
gle diagram proof. And so, how the distinct, abstract
Eu diagrams of such a derivation are to be understood
in relation to the concrete diagram of single diagram
proof requires some explanation. The general idea is

as follows: the different Eu diagrams of the construc-
tion correspond to different stages in the construction of
a single concrete diagram D; each of the different Eu
diagrams of the demonstration correspond to the prod-
uct of an act of attention directed at D.

Consider for instance the Eu diagrams in Figs. 23.3
and 23.4. These are the diagrams that appear in an Eu
derivation modeling a single diagram proof of proposi-
tion 5, book I of the Elements. The final Eu diagram
of the construction sequence (Fig. 23.4) corresponds
to the proof’s concrete diagram D. The Eu diagrams
preceding it correspond to stages in the construction of
D. All the Eu diagrams of the demonstration sequence
(Fig. 23.3) are subdiagrams of the final diagram of the
construction sequence. They correspond to acts of at-
tention whereby certain relationships present in D are
verified to hold in general. The sequence thus repre-
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Fig. 23.4 Eu construction
sequence for propostion I, 5

sents a reasoning process verifying that the position of
CB within angle †ACE and the position of BC within
†ABG hold in general.

As it is only the demonstration sequence that is in-
tended to correspond to a reasoning process, it is only

the demonstration stage that is governed by the relation
of semantic equivalence in Eu. Specifically, the rules
that license the addition of a diagram to the demonstra-
tion sequence given previous diagrams in the sequence
must preserve semantic equivalence.

23.3 Formal Geometric Diagrams as Models

In itself, a formalization is just a system of rules for
producing formal objects. They must be interpreted in
order to have any epistemological significance. For in-
stance Peano arithmetic, understood purely as a formal
system, simply prescribes a method for producing for-
mal symbols from a fixed formal vocabulary. It is only
after one systematically relates the formal structure of
these sequences to logical and arithmetical concepts
that we arrive at a foundational analysis of arithmetic.
The sequences then come to be seen as sentences as-
serting facts about natural numbers.

Similarly, when understood purely as formaliza-
tions, FG and Eu simply provide rules for producing
certain kinds of formal structures. These structures are,
to be sure, different in kind from an axiomatization in
first-order logic like Peano arithmetic. They are never-
theless formal and have no epistemological significance
with respect to elementary geometry without some kind
of interpretation.

One option for such an interpretation is furnished
by a first-order axiomatization of elementary geome-
try (e.g.,the axiomatization given in [23.7]). The formal
structures of FG and Eu can be systematically related
to the formal sentences of the axiomatization. Accord-
ingly, the formal structures of FG and Eu would then
amount to an idiosyncratic, and very indirect, notation
for sentences asserting facts about the Euclidean plane.
In this concluding section I explore the prospect of an

alternative interpretation of the proof systems where
each formalizes a species of model-based reasoning.

Elementary geometry is a mathematical subject,
and proofs in mathematical subjects are deductive.
And so, an interpretation of FG and Eu in line with
the model-based reasoning perspective ought to pro-
ceed from a conception of deduction in line with the
model-based reasoning perspective. Lorenzo Magnani
articulates such a conception in [23.8]. Interestingly, he
does so by considering proofs in elementary geometry.

Magnani specifically refers to Hintikka and Remes’
investigations into the logic of geometric proof
in [23.9]. (For Hintikka’s most recent discussion of ge-
ometric proof see [23.10].) One of Hintikka’s central
points is that the logic of proof in elementary geometry
is best understood in terms of the method of semantic
tableau. Take the proof of proposition 5 from book 1
of the Elements as an example. The proposition asserts
that for any collection of points and segments forming
an isosceles triangle, the angles opposite the equal sides
of the triangle are equal. Thus the logical form of the
proposition is

8x1; x2; : : : ; xnŒ'1.x1; : : : ; xn/! '2.x1; : : : ; xn/� ;

where '1 corresponds to the conditions defining an
isosceles triangle, and '2 to the condition that the an-
gles opposite the equal sides of the triangle are equal.
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Now, at the heart of the proof of a statement of the
above form within the semantic tableau setting is the
proof of a conditional

'1.a1; : : : ; an/! '2.a1; : : : ; an/

in which a1; : : : ; an are understood as arbitrary, and
the formulas '1.a1; : : : ; an/ and '2.a1; : : : ; an/ come
to be linked via logical operations, axioms and previ-
ously proven theorems. With respect to proposition 5,
the a1; : : : ; an represent an instantiation of the theorem.
Thus, according to the framework of semantic tableau,
at the heart of the reasoning establishing proposition
5 is the consideration of representations understood to
instantiate the theorem. The a1; : : : ; an serve, in other
words, to model the type of configuration the proposi-
tion concerns, and it is by interacting with this modeling
that the proposition is established.

Hintikka’s work leads us thus to the following ab-
stract characterization of deduction from a model-based
reasoning perspective. Deductive inference concerns
a complex of interrelated objects. The complex is as-
sumed to satisfy certain conditions '1, and is inferred
to satisfy further conditions '2. The inference proceeds
via consideration of a representation modeling the com-
plex. An important aspect of deduction understood in
this way, emphasized by both Hintikka and Magnani
but passed over in the above discussion of proposition
5, is that the representation modeling the complex can
be enriched. One need not restrict oneself to the ob-
jects the deduction explicitly concerns in constructing
a model for it. One may add to the representation ad-
ditional objects to facilitate the reasoning. With respect
to a proof of elementary geometry, this simply amounts
to performing a construction on the initial configuration
of the proof.

Call this the model-based reasoning, or MBR, con-
ception of deduction. The conception differs from the
standardly accepted one in that what is front and cen-
ter are representations of objects and their relations,
rather than sentences asserting relations between ob-
jects. It is such representations that drive the deductive
inference that any collection of objects satisfying con-
ditions '1 also satisfy the conditions '2. To perform
such an inference, one must recognize that the condi-
tions '1 impose constraints upon a collection of objects
with respect to the relations in '2. This act is accom-
plished by representing an instantiation of '1 and '2,
augmented perhaps with additional objects. The repre-
sentation serves to reveal the constraints the conditions
'1 impose upon objects with respect to the relations in
'2 directly.

How do representations of instantiations do this? It
is not immediately clear from the general logical per-
spective Hintikka assumes. From this perspective, the
only way to represent an instantiation is sententially –
i. e., via predicates and singular terms. If the singular
terms are understood simply to denote objects in the
broadest logical sense, a listing of predicates that the
singular terms satisfy reveals on its own only trivial
constraints. Suppose we have a three-place predicate B
and singular terms a1; a2; a3 and a4. Then

B.a1a2a3/ B.a2a3a4/

qualifies as a sentential representation of an instan-
tiation. But the only constraint on a1; a2; a3 and a4
that the representation reveals, if our conception of the
objects is the broadly logical one, is that the triples
ha1; a2; a3i and ha2; a3; a4i must satisfy B. Aside from
the two sentential expressions that negate B.a1a2a3/
and B.a2a3a4/ – i. e., :B.a1a2a3/ and :B.a2a3a4/ –
we are free to add to the representation any senten-
tial expression with the singular terms a1; a2; a3 and
a4.

This observation shows, at the very least, that if the
MBR conception of deduction is to be of any interest,
the operative conception of object in a deductive in-
ference has to be richer than the austere one furnished
by logic. There has to be, in other words, background
knowledge with respect to the objects and their com-
bination in complexes – e.g., what relations can and
cannot obtain among the objects of a complex, what ad-
ditions can be made to a given complex, and so on. If
this is accepted, the question then becomes: how does
this background knowledge exert itself when a repre-
sentation of an instantiation is considered in the course
of a deduction?

Here is where proven theorems and/or axioms come
into play in a semantic tableau formalization. At the
initial stage, before any theorems are proven, all back-
ground knowledge about the objects under considera-
tion is encoded in unproven axioms. We look to these
for what can and cannot be done with representations
of instantiations. These then allow us to use such rep-
resentations to deduce nontrivial theorems via semantic
tableau, which then can be used in future deductions.
For an example of how this works, consider the three-
place predicate B again, and suppose that it denotes the
relation of betweenness for points on a geometric line.
Suppose further we are at a point where the basic fact
about betweenness given by

8x; y; z;w Œ.B.xyz/^B.yzw //! B.xyw /�
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is known, either as an axiom or a theorem. Then in any
instantiation

B.a1a2a3/ B.a2a3a4/

within a semantic tableau, we can add

.B.a1a2a3/^B.a2a3a4//! B.a1a2a4/

Application of the rules of the semantic tableau to these
formal representations eventually shows that the condi-
tions B.a1a2a3/ and B.a2a3a4/ impose a constraint on
betweenness with respect to a1; a2 and a4 – i. e., the re-
lation B.a1a2a4/ in fact holds.

The virtue of semantic tableau is that it provides
a topic-neutral formal framework for investigating the
MBR conception of deduction. It does not follow from
this, however, that it is the only formal framework
that functions in accordance with the MBR conception.
It does not follow, that is, if the conception’s central
principle is that that deduction is accomplished via
representations of instantiations. A formal framework
could very well be designed for representing instantia-
tions of object complexes of a particular kind. Within
such a framework, the formal structures for represent-
ing instantiations would do (at least some of) the work
done by the axioms in the semantic tableau framework.
Background knowledge of what is and is not possible
within a complex would be embedded in the constraints
on producing these formal structures.

This is what is in fact happening, I maintain, with
the FG and Eu formalizations. The function of its di-
agrammatic syntax is not to convey conjunctions of
geometric conditions with an idiosyncratic notation,
but to present instantiations of geometric configurations
for the sake of facilitating deductions. Consider again
a configuration made up of points a1; a2; a3 and a4 on
a geometric line, where a2 is between a1 and a3, and a3
is between a2 and a4. Within FG, such a configuration
is represented as

while in Eu it is represented as:

A1 A2 A3 A4

With both, the constraint that B.a1a2a3/ and
B.a2a3a4/ imposes on the relative positions of a1; a2
and a4 is immediately evident. Generally, the diagram-
matic syntax of Eu and FG embodies what must be laid
down as axioms in an axiomatization. As Miller puts it
with respect to his system [23.1, p. 40]

“[. . . ] many of the facts that Hilbert adopts as his
axioms of incidence and order [in [23.11]] are con-
sequences of the diagrammatic machinery built into
the definitions of FG.”

We thus have, I maintain, with FG and Eu two
formal characterizations of deduction carried out ac-
cording the principles of model-based reasoning. With
FG, the diagrammatic representation of instantiations
serve to give the reasoner direct access to a range of
geometrical possibilities. The diagrams of Eu, in con-
trast, allow the reasoner to consider all the components
of a geometric configuration in one place and to focus
on those components relevant to a proof. The precise
formal pictures they provide can provide a basis for
further investigations into the relation between instan-
tiation and deduction in mathematics.
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24. Model-Based Reasoning in Mathematical Practice

Joachim Frans, Isar Goyvaerts, Bart Van Kerkhove

The nature of mathematical reasoning has been
the scope of many discussions in philosophy of
mathematics. This chapter addresses how math-
ematicians engage in specific modeling practices.
We show, by making only minor alterations to ac-
counts of scientific modeling, that these are also
suitable for analyzing mathematical reasoning. In
order to defend such a claim, we take a closer look
at three specific cases from diverse mathematical
subdisciplines, namely Euclidean geometry, ap-
proximation theory, and category theory. These
examples also display various levels of abstraction,
which makes it possible to show that the use of
models occurs at different points in mathematical
reasoning. Next, we reflect on how certain steps
in our model-based approach could be achieved,
connecting it with other philosophical reflections
on the nature of mathematical reasoning. In the
final part, we discuss a number of specific pur-
poses for which mathematical models can be used
in this context. The goal of this chapter is, accord-
ingly, to show that embracing modeling processes
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as an important part of mathematical practice
enables us to gain new insights in the nature of
mathematical reasoning.

In this chapter, we explore the significance of
model-based reasoning for mathematical research. In
Sect. 24.1, we start by outlining an account of the
nature of scientific modeling, and how it could be
applied to mathematics. This becomes more clear in
Sect. 24.2, where this account will be briefly ap-
plied to three specific examples coming from differ-
ent mathematical subdisciplines, and also exhibiting
a different level of abstraction, namely Euclidean ge-
ometry, approximation theory, and category theory re-

spectively. Section 24.3 reflects on how specific tran-
sitional steps in the model-based argument schemes
presented are to be achieved, and more particularly
on what are commonly called types of plausible rea-
soning that thus arguably play an important role in
mathematical discovery. In Sect. 24.4, some of the
alleged epistemic merits or purposes of model-based
reasoning as presented in the context of mathemati-
cal practice are considered. Section 24.5 concludes the
chapter.

24.1 Preliminaries

Aris [24.1] has proposed the following definition (as
quoted in Davis and Hersh [24.2, p. 78]):

“A mathematical model is any complete and con-
sistent set of mathematical equations which are
designed to correspond to some other entity, its pro-

totype. The prototype may be a physical, biological,
social, psychological or conceptual entity, perhaps
even another mathematical model.”

Davis and Hersh [24.2, p. 78–79] have commented
on this:
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“One might substitute the word structure for equa-
tions [in the above quote], for one does not always
work with a numerical model. Some of the purposes
for which models are constructed are:

1. To obtain answers about what will happen in the
physical world.

2. To influence further experimentation or observation.
3. To foster conceptual progress and understanding.
4. To assist the axiomatization of the physical situa-

tion.
5. To foster mathematics and the art of making mathe-

matical models.

The realization that physical theories may
change or may be modified [. . . ], that there may
be competing theories, that the available mathemat-
ics may be inadequate to deal with a theory in the
fullest sense, all this has led to a pragmatic accep-
tance of a model as a sometime thing, a convenient
approximation to a state of affairs rather than an ex-
pression of eternal truth.”

De Vries [24.3], for another, has depicted the pro-
cess of mathematical modeling as follows:

Model

Real world data

Formulation

Mathematical conclusions

Predictions/explanations

Interpretation

Analysis

Test

We from our part shall argue that, making abstrac-
tion from mathematical reality, in the sense explained
below, aspects of mathematical practice can be seen as
a sort of modeling, in case the prototypes referred to in

the Aris quote already are certain mathematical struc-
tures.

First of all, let us specify what can be meant by
making abstraction from mathematical reality in our
present context. We intimately follow the treatment of
this subject byDavis andHersh [24.2, pp. 126–36]. The
term abstraction is used in different but related senses
in mathematics; Davis and Hersh distinguish abstrac-
tion as idealization and abstraction as extraction. The
idealizations in this context proceed from the world of
spatial experience to the mathematical world. Aristo-
tle is referred to in this respect, pointing out that [24.2,
p. 127]:

“the mathematician strips away everything that is
sensible, for example, weight, hardness, heat, and
leaves only quantity and spatial continuity.”

It is then said that the development of contemporary
mathematical models exhibits updated versions of this
(Aristotle’s) process. The visualization of this type of
abstraction process provided by Davis and Hersh [24.2,
pp. 129], has quite some similarities with the sketch
of the process of mathematical modeling of de Vries
quoted above (To serve comparison though, we have
rotated Davis and Hersh’s diagram 90ı counter clock-
wise.):

Ideal object

Real object

Idealization/model
building

Property of ideal object

Property of real object

Real world
implication

Mathematical
inference

Real world
verification

Therefore, as already mentioned earlier, we dare
claim that model-based reasoning can and does occur
within mathematical practice.

24.2 Model-Based Reasoning: Examples

In this section, we briefly elaborate three examples;
a very basic problem-solving one, one at an intermedi-
ate level of abstraction, and finally an utmost conceptual
one, calling on some notions from category theory. In
Sect. 24.4, we shall argue that this model-based way of
reasoning exhibits features that are similar to the five
purposes models are designed for in other sciences (as
described earlier by Davis and Hersh).

24.2.1 First Example:
From Euclidean Geometry

Imagine one is given a right-angled triangle T , whose
legs a and b measure 4 and 3 cm respectively. A second

right-angled triangle T 0 is given as well, its legs a0 and
b0 measuring 3 and 2 cm, respectively. Now suppose we
care about knowing the length of the hypotenuses of T
and T 0, denoted by c and c0. Clearly, a first and most ev-
ident technique consists in just measuring these lengths
with a marked ruler. One finds that this is something
like 5 cm for c and approximately 3:6 cm for c0.

One satisfied with these results can carry on without
asking the question of why c and c0 measure exactly as
they do. If however one does not suffice with these mere
numerical results, he or she might notice at some point,
after further inquiry, that indeed something deeper is
going on. Note that we largely ignore at this point how
this is realized, as we also disregard for the sake of
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the present discussion how the following observations
are (to be) made. We indeed suppose that all steps in
the cycle described can actually be carried out at some
point. In Sect. 24.3, we shall explore the alleged impor-
tance of informal reasoning (including analogies and
visualizations) in the process of inductive and deduc-
tive mathematical inference (see however also the other
contributions in the current part of this volume.).

Thus, in whichever way, inductive reasoning, by
reading and taking in the given information described
above, makes one realize that a and b, a0 and b0 are legs
of two right-angled triangles. Mathematical inference
teaches us that for such triangles, the universal regular-
ity called Pythagoras’ theorem holds, which assures us
that the square of the length of the hypothenuse equals
the sum of the squares of the lengths of the legs. This
means that by deduction, plugging in the values of a
and b in this result, we find that

c2 D a2C b2 I

hence cD 5, as lengths are positive real numbers. Sim-
ilarly, plugging in a0 and b0 in Pythagoras’ theorem, we
find that c0 Dp13 (observing that 3:6 is relatively close
to this). Schematically depicted, we arrive at the follow-
ingmore or less commutative diagram (by commutative
diagram we mean that the diagram has the property that
all directed paths with the same start and endpoint lead
to the same result by following the arrows.):

Right–angled triangle(s)

a = 4, b = 3; a′ = 3, b′ = 2

Induction

Pythagoras′ theorem

c = 5; c′ = √
—
13

Deduction

Mathematical
inference

Measuring

Some brief remarks with respect to this diagram are
appropriate. First of all, we added more or less when
talking about the above diagram’s being commutative.
This is because we indeed are disregarding the issue
of actually establishing the link between measuring the
hypothenuses on the one hand, and theoretically deduc-
ing their real lengths from Pythagoras’ theorem on the
other. Given the discussion of ever perfectly measur-
ing length, 5 as well as

p
13 in this case, one might

indeed wonder if it could at all be feasible to render
a down-to-earth diagram as the one given (involv-
ing empirical verification) commutative. We do hold
that for both pedagogical and conceptual reasons, ar-
riving at the measures of c and c0 by following the
induction–mathematical inference–deduction route of
the diagram, is way more satisfactory than just measur-
ing their approximate values.

24.2.2 Second Example:
From Approximation Theory

Our second case comes from the mathematical field
called approximation theory, one of the central goals
of which it is to “represent an arbitrary function in
terms of other functions which are nicer or simpler or
both” (Hrushikesh and Devidas [24.4, p. 1]). This area
of research is thus mostly concerned with how func-
tions can be better approximated with easier functions,
and with how the errors occurring in this process can
be characterized. The point is that, in many cases, it
is difficult or even impossible to extract exact analyt-
ical information from an arbitrary function f . In such
cases, it is nevertheless useful and therefore important
to be able to approximate f with a simpler function. In-
tuitively speaking, in cases like these, mathematicians
sometimes look for a function g, such that the relevant
calculation can be performed on the function g while g
is close enough to f in the sense that the outcome of the
calculation performed on g gives us meaningful infor-
mation about f .

Let us give a concrete and simple example to clar-
ify what the role of approximation theory can be.
The example is inspired by Christensen and Chris-
tensen [24.5]. Assume that we want to compute the
following integral

1Z

0

e�
x2
2 dx :

Now, a primitive function of the function

f .x/D e�
x2
2

cannot be expressed as a combination (sum, composi-
tion, multiplication, quotient) of elementary functions
(polynomials, trigonometric, logarithmic functions, and
their inverses). So in order to obtain numerical val-
ues of the above integral, other means are called for.
This is where approximation theory enters the picture.
One of the goals is to search a function g for which (i)R 1
0 g.x/dx can be calculated, and (ii) g.x/ is close to

e�
x2
2

for x 2 Œ0; 1�, in the sense that we can keep under control
how much

R 1
0 g.x/dx deviates from

1Z

0

e�
x2
2 dx :
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A possible way of doing so, is to find a positive in-
tegrable function g for which, for some � > 0,

�� 
 e�
x2
2 � g.x/
 �; 8x 2 Œ0; 1� ;

��C g.x/
 e�
x2
2 
 �C g.x/; 8x 2 Œ0; 1� :

Consequently, one can obtain that

��C
1Z

0

g.x/dx

1Z

0

e�
x2
2 dx
 �C

1Z

0

g.x/dx :

As a result,
R 1
0 g.x/dx gives us an approximate value

for the desired integral. Now the question remains, of
course, of how to determine or choose g. Approxima-
tion theory is the field where precisely this type of
questions are further discussed and developed. This
quest has led to several powerful and useful mathe-
matical techniques, such as the theory of Chebyshev
polynomials or Fourier analysis. From the point of view
of concrete numerical computations, such a transforma-
tion is often preferable, because it gives a simple way of
obtaining information about the function which would
otherwise be difficult to collect, or could not even be
traced at all. Following our take on model-based rea-
soning in mathematics, we can present this practice in
the following, by now familiar scheme:

Function g

Function f

Induction
(transformation)

Value of g

Approximated value of f

Deduction

Mathematical
inference

Impossible
inference?

24.2.3 Third Example: From Category
Theory

Finally, we would also like to provide an illustra-
tion from higher level mathematical practice, sketching
some of the features of research in category theory. In
order to appreciate the results and techniques from this

field, it might be helpful to recall some of the mathe-
matical notions involved. Therefore, without going into
full detail, we briefly develop some of those ideas, or at
least an interpretation of them which is relevant to our
setting, in the appendix.

Groups are algebraic objects intimately related to
the notion of symmetry. Hopf algebras (over a field
k) are – slightly more complicated – algebraic objects,
group algebras being an important class of examples of
such structure. As explained in the appendix, groups
can be seen as Hopf monoids (HM) in the braided
monoidal category of sets, denoted eSets. Similarly,
Hopf algebras are simply Hopf monoids inAVectk.

As remarked in Vercruysse [24.6] (§5.1), most of
the theory of (classical) Hopf algebras can be lifted
to the setting of Hopf monoids in arbitrary braided
monoidal categories (BMN), sometimes under addi-
tional assumptions (such as the existence and preser-
vation of certain (co)limits); one such a result being
the so-called Fundamental theorem (FT) for Hopf mod-
ules for instance (cf. Takeuchi [24.7]). Plugging in your
favorite braided monoidal category (satisfying the nec-
essary assumptions) will then give you a version of
this theorem for Hopf monoids in that particular cate-
gory.

This result can also be obtained through direct ma-
nipulation of particular objects in the chosen category
as well. For Hopf algebras for instance, FT can be
obtained directly by applying techniques from linear al-
gebra (i. e., manipulation of k-vector spaces), that is, in
case you choose to plug inAVectk (actually, botheSets and
AVectk satisfy the necessary conditions for FT to hold).
It should be noted that in many cases, the categorical
proof is inspired by a classical (often linear algebraic)
proof of the statement for some particular algebraic ob-
ject. Again, this whole practice can schematically be
recapitulated in the following way:

HM in BMN

Groups/
Hopf algebras

Induction

FT in BMN

FT for groups/
Hopf algebras

Deduction

Categorical inference

Algebraic inference

24.3 The Power of Heuristics and Plausible Reasoning

Before considering the epistemic merits of the reason-
ing model just presented, we want to briefly pause to
reflect on how the appropriate steps or transitions in
the above model-based diagrams are to be achieved,
particularly in the induction and mathematical infer-
ence phases. Indeed, in the previous section, we have

remained utterly silent on how mathematicians safely
arrive at the nodes in the upper half of the diagrams, that
is, what particular intellectual processes are required in
order to reach such a higher abstraction level. While it
would take an in-depth study of these aspects as applied
to the specific cases presented, in order to fully substan-
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tiate why this is in fact possible, we nevertheless want
to briefly explore this context of discovery-dimension
here in somewhat more general terms.

An interesting starting point can be found in the
work of Pólya. In Induction and analogy in mathemat-
ics, he states that all our knowledge outside mathemat-
ics and demonstrative logic consists of conjectures. It is
certainly the case that some of these conjectures, such
as those expressed in general laws of physical science,
are highly reliable and commonly accepted. Other con-
jectures are neither reliable or respectable.

The support for conjectures is obtained by plausible
reasoning, while our mathematical knowledge is se-
cured by demonstrative reasoning. Mathematical proofs
are part of demonstrative reasoning, while the induc-
tive, circumstantial, or statistical evidence for a scientist
belongs to plausible reasoning. One of the main dif-
ferences between these two kinds of reasoning is that
demonstrative reasoning leads to safe and final knowl-
edge that is beyond revision. Plausible reasoning, on
the other hand, leads to provisional and controversial
knowledge.

What Pólya argues for is that, while mathematics
is regarded as a demonstrative science, plausible rea-
soning also plays an important role in mathematics.
He clarifies this by referring to finished mathematics
and mathematics in the making (by way of a very nice
metaphor, Reuben Hersh later called this the distinc-
tion between the front and the back in mathematics
Hersh [24.8].). Finished mathematics appears to be
purely demonstrative, consisting of only proofs. Yet
mathematics in the making is similar to other human
knowledge in the making. The following passage clari-
fies this (Pólya [24.9, p. 100]):

“You have to guess a mathematical theorem be-
fore you prove it, you have to guess the idea of
the proof before you carry through the details. You
have to combine observations and follow analo-
gies, you have to try and try again. The results of
the mathematician’s creative work is demonstrative
reasoning, a proof; but the proof is discovered by
plausible reasoning, by guessing.”

From this observation, Pólya concludes that stu-
dents of mathematics should learn both kinds of rea-
soning.

A very similar story is told by Lakatos in his land-
mark study Proofs and refutations (Lakatos [24.10]),
where he identifies three rough stages in mathemati-
cal reasoning. First, mathematicians use induction (in
the sense of generalization on the basis of particular in-
stances) to discover conjectures worth trying to prove.
Then they develop and criticize highly informal proofs

of these conjectures. Only in a last phase of mathe-
matical labor, they formalize these informal theories,
establishing the deduction of the (by then) theorems by
means of formal transformations on an axiomatic basis.
Lakatos famously illustrates this practice with a (ratio-
nally) reconstructed history of how the proof of Euler’s
polyhedron formula V �ECFD 2 came about, V be-
ing the number of vertices, E the number of edges, and
F the number of faces of any given polyhedron.

Let us take a somewhat closer look at some of
Lakatos’ terminology, which he used to outline various
methods by which mathematical discovery (and subse-
quent justification) can occur. These methods describe
ways in which mathematical concepts, conjectures, and
proofs gradually evolve through interaction between
mathematicians. Central to these practices, so Lakatos
claims, are counterexamples, and he discusses sev-
eral ways in which mathematicians or students can
react to these: by surrender, monster-barring, exception-
barring, monster-adjusting, or lemma-incorporation. In
what follows, we briefly sketch the essence.

First of all, surrender amounts to abandoning a con-
jecture in the light of a counterexample. This is however
not done lightly, so more frequent are other reactions.
Monster-barring, for instance, which consists in ig-
noring or excluding an alleged counterexample. This
implies that one has to show why it is not within the rel-
evant concept definition. One can claim, for example,
that a hollow cube, that is a cube with a cube-shaped
hole in it, is not a counterexample to Euler’s conjecture,
by arguing that the hollow cube is not in fact a poly-
hedron, and thus cannot threaten the conjecture. This
means that the concept polyhedron is under discussion,
soliciting a further explication of its definition.

As for exception-barring, Lakatos argues that ex-
ceptions, rather than simply being problematic for cases
and thus dismissed as monsters, can lead to new knowl-
edge. Two ways to deal with exceptions are discussed.
One is piecemeal exclusion, for example, by excluding
one type of polyhedron from the conjecture in order to
set aside a whole class of counterexamples. The other
is strategic withdrawal, which does not directly rely on
counterexamples. Instead, positive examples of a con-
jecture are used in order to generalize to a class of
objects, and consequently limit the domain of the con-
jecture to this class.

Yet another way of responding to counterexamples
is termed monster adjusting. It is intended to meet
the possible criticism that both monster-barring and
exception-barring are not taking counterexamples seri-
ous enough. Here, the mathematicians reinterpret the
counterexamples so that they indeed fall within the
scope of the original formulation of the conjecture, and
thus show how the anomalies are in fact unproblematic.
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The method of lemma-incorporation differs from
all the above methods in that it uses properties of the
proof itself. The idea is to examine the proof in order
to determine exactly which lemma has been refuted by
the counterexample. The guilty lemma is then added as
a condition to the conjecture, and is consequently no
longer refuted by the counterexample.

The most important or general method for Lakatos,
as the title of his work suggests, is that of proofs and
refutations, which in a certain sense amounts to a di-
alectic form of the method of lemma incorporation.
Lemma incorporation enables one to make a distinc-
tion between global and local counterexamples. Global
counterexamples refute the main conjecture, while local
counterexamples are counterexamples to specific proof
steps only. If a counterexample is both global and lo-
cal, and thus constitutes a problem for both argument
and conclusion, one should modify the conjecture by
incorporating the problematic step as a condition. If
the counterexample is not global but just local, which
means the conclusion can still be correct while one of
the reasons for believing it is flawed, one should leave
the conjecture unchanged and modify the proof. Finally,
if the counterexample is global but not local, which

means that there is a problem with the conclusion with-
out obvious problems for any of the reasoning steps,
then one should look for a possible hidden assumption
in one of the proof steps and modify the proof by mak-
ing this assumption explicit.

Summarized, Lakatos’ proposed method consists
in exploiting proof steps to suggest counterexamples.
By looking for objects violating an argumentative step,
one can identify possible such candidates. Whenever
a counterexample is actually found, one needs to de-
termine of its kind and accordingly modify the proof or
conjecture. Note that other modes of model-based rea-
soning, such as several ones touched upon elsewhere in
this collection (metaphorical, analogical, and/or visual
reasoning) can very much be at play in these partic-
ular stages of mathematical inquiry. Indeed are these
not your exemplary instances of heuristic or plausible
reasoning in the context of discovery? We shall not fur-
ther explore this issue ourselves, and after this interlude
return to our central topic, in order to consider how
and why the reasoning model introduced in Sect. 24.2
should work, that is what its original (if perhaps
not essential) contributions to mathematical research
might be.

24.4 Mathematical Fruits of Model-Based Reasoning

Let us recall the purposes of model-based reasoning as
listed byDavis andHersh [24.2, pp. 78–9] in Sect. 24.2,
and consider their translation to a mathematical context:

“(1) To obtain answers about what will happen in
the physical world.
(2) To influence further experimentation or observa-
tion.
(3) To foster conceptual progress and understand-
ing.
(4) To assist the axiomatization of the physical situ-
ation.
(5) To foster mathematics and the art of making
mathematical models.”

As this entire collection may testify, mathemati-
cal models are most important and powerful tools for
the empirical sciences in order to gain fresh insights
about aspects of the physical world. These insights
can come in different forms, for example, as a predic-
tion about what will probably happen, an explanation
of something that has already happened, or a deeper
understanding of (part of) the physical situation un-
der investigation. A satisfactory account of how indeed
a model can help answer such questions about reality

is the mapping account (Pincock [24.11]), where one
adopts the view that there is an appropriate mapping be-
tween the target system and the model. The knowledge
obtained in the model can be translated into knowledge
about the target system, because the model’s various as-
pects correspond (at least to a large enough extent) to
elements in the real world.

Now it would be strange to argue that all the pur-
poses of models exhibited in empirical science have
their exact counterparts in mathematical practices. Take
prediction (purpose 1), which obviously plays a crucial
role in the sciences. Mathematics, on the other hand, is
not exactly your kind of discipline that has room for the
same kind of prediction. Surely, mathematicians make
guesses about the nature of mathematical objects (facts)
or about how a certain proof will (or should) look like,
but this does not warrant the drawing of too a strong
connection between mathematical and scientific predic-
tion. Be that as it may, the central purpose of using
models does remain in place, namely the conversion of
knowledge obtained in the model into knowledge about
the target system. Also, the reason for making this pos-
sible is similar: it is is due to the existence of a mapping
relation between the two domains. This, we think, has
been nicely illustrated by the various examples we have
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developed above on the basis of the diagram we had
first introduced to visualize the process of model-based
reasoning in mathematical practice. Mathematicians do
not simply use abstraction in order to find a result at
that particular level. For after obtaining results there,
they often translate them back to the original target sys-
tem, and consequently, via an abstraction detour, obtain
their answers about this more basic mathematical do-
main.

Indeed, in our example of Euclidean geometry, one
theoretically predicts the (approximated) length of the
triangles in the real world or one verifies the theoretical
result in the real world. Category theory tells us a sim-
ilar story. Suppose one has some algebraic structure A
of which one can prove that it is a (Hopf) monoid in
a certain (braided) monoidal category eC. At the level
of monoidal category theory, some general theorem
T.�/ that holds for all (Hopf) monoids in any (braided)
monoidal category exists (sometimes assuming some
small extra conditions on eC), such as the Fundamental
theorem for instance. If you then plug in the category
eC you get a version of the theorem T.A/ for the al-
gebraic structure A you started from. Sometimes this
theorem T.A/ is known and has been shown to be true
before. Then we can speak of algebraic world verifi-
cation in some sense. This verification is not always
a priori possible in every field of mathematical research.
For instance, in the example of approximation theory,
we are given answers to questions that would be un-
solvable in certain cases. However, it is always the case
that the information gained within the model can be and
often is translated back to the mathematical structure it
represents.

Does this also imply (purpose 2) that modeling
allows for further experimentation or observation in
mathematics? To answer this, one may first have to
wonder what a mathematical experiment is or can be.
First of all, the experimental mood of the mathematician
might be referred to, as a way of personal exploration
in the mathematical field. However, this will not do
here. A genuine experiment should at least have an el-
ement of systematic data-generating or testing. Notice
that a field called experimental mathematics does in fact
exist, and also has its own journal of that name. Let us
quote from its editorial policy statement [24.12]:

“While we value the theorem-proof method of ex-
position, and do not depart from the established
view that a result can only become part of mathe-
matical knowledge once it is supported by a logical
proof, we consider it anomalous that an important
component of the process of mathematical creation
is hidden from public discussion. It is to our loss
that most of us in the mathematical community are

almost always unaware of how new results have
been discovered. [. . . ]

Experimental Mathematics was founded in the
belief that theory and experiment feed on each
other, and that the mathematical community stands
to benefit from a more complete exposure to the
experimental process. The early sharing of insights
increases the possibility that they will lead to theo-
rems [. . . ] Even when the person who had the initial
insight goes on to find a proof, a discussion of the
heuristic process can be of help, or at least of inter-
est, to other researchers. There is value not only in
the discovery itself, but also in the road that leads to
it. [. . . ]

The word experimental is conceived broadly:
Many mathematical experiments these days are car-
ried out on computers, but others are still the result
of pencil-and-paper work, and there are other exper-
imental techniques, like building physical models.”

Obviously, we particularly have to pick up this last
sentence here. Next to number crunching (checking as
many cases as possible) or probabilistic reasoning tech-
niques, which – either or not aided by computers – have
a distinct inductive and thus experimental ring to them,
clearly also model building enters the picture.

This issue has been touched upon by Van Ben-
degem [24.13], characterizing an experiment as involv-
ing certain actions such as the manipulation of objects,
setting up processes in the real world and observ-
ing possible outcomes of these processes. An example
from mathematics that he discusses is the work of
nineteenth-century Belgian physicist Plateau on min-
imal surface area problems. Plateau builded several
geometrical shapes of wire, and by dipping these into
a soap solution he was able to investigate specific
aspects of the minimum surface bounding various par-
ticular shapes. Here, we see how a physical experiment
leads to relevant information of a mathematical prob-
lem. In such cases, we see how both the model and the
physical prototype can influence further experiments
and observations. On one hand, the physical experi-
ments help one to formulate some general principles
about a connected mathematical domain. On the other
hand, the mathematician will set up his experiment in
such a way to answer specific mathematical questions.
However, such experiments are extremely rare in math-
ematical practice.

Another starting point can be the notion of
a mathematical thought experiment, which Van Ben-
degem [24.14, pp. 9–10] characterizes as follows:

“If it is so that what mathematicians are searching
for are proofs within the framework of a mathemati-
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cal theory, then any consideration that (a) in the case
were the proof is not yet available, can lead to an in-
sight to what the proof could possibly look like, and,
(b) in the case where the proof is available, can lead
to a better understanding of that proof, can be con-
sidered to be a mathematical thought experiment.”

A specific example is a description of the octonions
by means of (monoidal) category theory (rudimentary
background information for this case is presented in the
appendix.). It was shown in Bulacu [24.15] that octo-
nions are in fact a weak Hopf algebra in the (braided)
monoidal category constructed in Albuquerque andMa-
jid [24.16], revealing thus more details of their alge-
braic structure. So in this sense, the work executed
by Albuquerque and Majid influenced further exper-
imentation/observation, leading eventually to a result
which might have not been easily deduced by algebraic
world verification alone, that is without using the results
from [24.16]. The similarity with approximation theory,
where the model provides information that remains hid-
den in the target system, should be clear. Since models
can give us new information, this can lead to further ex-
perimenation or observation.

The notion of understanding (purpose 3), in its
turn, is closely linked to that of explanation. Indeed,
most of the traditional accounts of explanation state
that understanding is centrally involved in it. Achin-
stein [24.17, p. 16] writes that there is a “fundamen-
tal relation between explanation and understanding”.
Kitcher [24.18] argues that a “a theory of explana-
tion shows us how scientific explanation advances our
understanding” (p. 330). Woodward [24.19, p. 249]
similarly says that any theory of explanation should
“identify the structural features of such explanation
which function so as to produce understanding in the
ordinary user”.

Recently, we have seen an increasing interest in
the topic of mathematical explanation as well (See
Mancosu [24.20] for a useful overview of the lit-
erature.). Philosophical work on it can be divided
into two main strands, namely focussing on extra-
mathematical and intra-mathematical explanation, re-
spectively. Extra-mathematical explanation is essen-
tially about the role mathematics plays in the natural
or social sciences, more precisely whether mathematics
is or can provide explanations for physical phenomena.
When considering intra-mathematical explanation, on
the other hand, one looks into the role of explanation
within mathematics itself, for example by distinguish-
ing between explanatory and nonexplanatory proofs.
The underlying idea is that all proofs tell us that a theo-
rem is true, but only some proofs go further and tell us
why a theorem is true. Steiner and Kitcher provided the

two best-known and the most discussed approaches to
intra-mathematical explanation.

Steiner [24.21] uses the concept of characteriz-
ing property to draw a distinction between explanatory
and nonexplanatory proofs. A characterizing property
is a property unique to a given entity or structure within
a family or domain of such entities or structures. The
concept of a family is left undefined. According to
Steiner, an explanatory proof always makes reference to
a characterizing property of an entity or structure men-
tioned in the theorem. Furthermore, it must be evident
that the result depends on the property (if we substi-
tute the entity for another entity in the family which
does not have the property, the proof fails to go through)
and that by suitably deforming the proof while holding
the proof-idea constant, we can get a proof of a related
theorem. Though many of Steiner’s concepts (family,
deformation, proof-idea) remain vague, he discusses
several examples to clarify his account. He presents, for
example, a proof of the irrationality of the square root of
2 as an explanatory proof since it depends on the unique
prime factorization of 2 and since similar proofs for the
irrationality of the square roots of other numbers can be
given. Following this approach to explanations, models
can foster understanding if the model produces proofs
that depend on characterizing properties, or where it is
easier for the mathematicians to identify these charac-
terizing properties.

Kitcher [24.22, p. 437] also argues that his account
covers mathematical explanations as well:

“The fact that the unification approach provides an
account of explanation, and explanatory asymme-
tries, in mathematics stands to its credit.”

Let us briefly go over the model of unification that
Kitcher proposes. Take a consistent and deductively
closed set K of beliefs. A systematization of K is any
set of arguments that derive some sentences of K from
other sentences of K. The explanatory story, called
E.K/, corresponds to the systematization with the high-
est degree of unification. The degree of unification is
determined by the number of argument patterns, the
stringency of patters and the set of consequences deriv-
able. Finally, an argument pattern is an argument that
consists of schematic sentences, filling in instructions
and classification of the sentences. Following Kitcher,
and contrary to Steiner, there are no criteria that help
us to analyze the explanatory power of a singular proof.
Rather, explanation is presented as a value of a unified
theory or systematization. Within this view, models can
foster understanding if the model shows howmathemat-
ical results that were considered unrelated are in fact
related. We can see, for example, how category the-
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ory can advance such understanding. Category theory
allows us to see the universal components of a family
of structures of a given kind, and show how structures
of different kinds are interrelated. Mathematical models
can thus advance our understanding of mathematical re-
sults. But there are often different models that address
the same mathematical result. Furthermore, the back-
ground knowledge and skills of a certain mathematician
will play a role in determining whether a model grants
understanding for this mathematician. The explanatory
value of a mathematical model is, in this sense, a con-
textual notion.

Axiomatization (purpose 4) is undoubtedly another
important aspect of mathematical practice. How can
models assist it? A first observation is that axioma-
tization can appear quite arbitrary. Although axioms
were once seen as self-evident truths about the consti-
tution of the physical world, the emphasis nowadays
mostly seems to be on deducing as much as possible
from a minimum number of axioms, while the exact
nature of these axioms is of secondary importance. Nev-
ertheless, several mathematicians have argued against
this so-called arbitrariness (Weyl [24.23], pp. 523–524),
(Nevanlinna [24.24, p. 457]):

“One very conspicuous aspect of twentieth cen-
tury mathematics is the enormously increased role
which the axiomatic approach plays. Whereas the
axiomatic method was formerly used merely for the
purpose of elucidating the foundations on which we
build, it has now become a tool for concrete mathe-
matical research. [. . . ] [However] without inventing
new constructive processes no mathematician will
get very far. It is perhaps proper to say that the
strength of modern mathematics lies in the interac-
tion between axiomatics and construction.

The setting up of entirely arbitrary axiom sys-
tems as a starting point for logical research has
never led to significant results. [. . . ] The aware-
ness of this truth seems to have been dulled in the
last few decades, particularly among younger math-
ematicians.”

Schlimm [24.25] (Sect. 3) has identified four nonar-
bitrary sources of (new or adapted) axioms from within
mathematical practice:

1. Reasoning from accepted theorems, that is back-
ward so to say, by wondering what axioms would
be in need in order to substantiate current theories

2. Manipulation of existing axioms, as a way of
(game-like) exploration

3. Conceptual analysis of a mathematical domain,
such as e.g., number or set theory; and

4. Proofs and refutations, or the combination of the
previous origins through the “various applications
of initial conjectures, deductive arguments, seman-
tic considerations, and different kinds of refine-
ments” [24.25, p. 62].

It should be rather easily appreciated that model-
based reasoning as it has been proposed by us here has
an obvious role to play in processes like these.

The following example about structures called Hopf
algebroids may be a good illustration [24.26]:

“A Hopf algebroid is a (possibly noncommuta-
tive) generalization of a structure which is dual to
a groupoid (equipped with atlas) in the sense of
space-algebra duality. This is the concept that gen-
eralizes Hopf algebras with their relation to groups
from groups to groupoids.”

In Vercruysse [24.6], it is remarked that due to the
asymetry in this notion, several different notions of
Hopf algebroid were introduced in the literature. Some
of these were shown to be equivalent, although this was
far from being trivial. The now seemingly overall ac-
cepted notion of a Hopf algebroid was introduced by
Böhm and Szlachányi [24.27]. Lu [24.28] introduced
a nonsymmetric version over a noncommutative base
ring, hereby being able to include quite some examples.
The definition by Schauenburg [24.29] allows one to
recover a version of FT (Sect. 24.2) in this noncom-
mutative setting, amongst other things. Only recently,
Bruguières et al. [24.30] provided an interpretation of
Schauenburg’s notion by means of so-called Hopf mon-
ads (Vercruysse [24.6, §5.2.2.1]):

“It took quite a long time to establish the correct
Hopf-algebraic notion over a noncommutative base.
The reasons for the difficulties are quite clear. First
of all, if R is a noncommutative ring then the cate-
gory of right R-modules is no longer monoidal (in
general). Therefore we have to look instead to the
category of R-bimodules, which is monoidal, but in
general still not braided. So Hopf monoids cannot
be computed inside this category. However, we can
compute Hopf monads on this category (: : :) His-
torically, Hopf algebroids were constructed first in
a more direct way, and the interpretation via Hopf
monads is only very recent.”

The latter approach shows that for certain applica-
tions, it is preferable to use Schauenburg’s definition
as being conceptually the most interesting one. The
price to pay, however, is that it cannot include exam-
ples that are included in the slightly weaker notions
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of Böhm and Szlachányi [24.27] and Lu [24.28], the
definition from the latter source in its turn not being
adapted to prove categorically flavored theorems (such
as e.g., FT). As it seems, all depends what flavor one
prefers.

Finally, that model-based reasoning should be able
to foster mathematics and the art of making mathe-
matical models (purpose 5), is of course self-evident
in the context of mathematical inquiry itself, at least
given all that has been elaborated above. The essence
of mathematics resides in inventing methods, tools,
strategies, and concepts for solving problems. That is
the very answer to the question of why mathemati-
cians prove theorems. From this view, Rav [24.31]
concludes that proofs are the primary focus of mathe-
matical interests, because these particular end products
embody the methods, tools, strategies and concepts
mentioned, and are therefore the true bearers of math-
ematical knowledge. Note that this goes against the
received view that mathematicians are only interested
in the mere truth of a theorem. Dawson [24.32] has
in this respect discussed no less than eight reasons for
mathematicians to look for multiple proofs of the same
theorem:

1. To remedy perceived gaps or deficiencies in earlier
arguments

2. To employ reasoning that is simpler, or more per-
spicuous, than earlier proofs

3. To demonstrate the power of different methodolo-
gies

4. To provide a rational reconstruction (or justifica-
tion) of historical practices

5. To extend a result, or to generalize it to other con-
texts

6. To discover a new route
7. Concerns for methodological purity
8. Role analogous to the role of confirmation in the

natural sciences.

Note that several of these reasons have been dis-
cussed in previous paragraphs. Indeed it is not hard to
see that model-based reasoning plays an important role
in fostering mathematics in the sense that its practition-
ers are interested in the values of specific (and not just
of any) proofs of both conjectures and existing theo-
rems, which enables the mathematician to discover new
routes, demonstrate the power of different methodolo-
gies, search for a simple argument, etc.

24.5 Conclusion
As announced at the outset of this chapter, we have
been focusing here on the philosophical significance of
one specific aspect of mathematical practice, namely
model-based reasoning as a general methodological
framework. By presenting three cases, taken from dif-
ferent mathematical subdisciplines and with varying
levels of abstraction, we showed how mathematicians
engage in model-based reasoning. We are well aware
that the general account of such reasoning remains
silent on how mathematicians go from one level to an-
other level. Philosophers such as Pólya and Lakatos
discuss the richness of different intellectual heuris-

tics that mathematicians use, and further research into
these processes is certainly welcome. Nevertheless, the
discussion of the mathematical fruits of model-based
reasoning should convince the reader of the significance
of the general framework of model-based reasoning,
as it shows us how mathematical modeling is linked
with several specific purposes of mathematical practice
such as experimentation, understanding, or axiomati-
zation. Hence, future reflections on the specifications
of model-based reasoning in mathematics can provide
crucial insights in several interesting questions about
mathematical practice.

24.A Appendix

In this appendix, we briefly recall some notions from
(monoidal) category theory. Classical references for cat-
egory theoretical notions and constructions are Borceux
[24.33] andMac Lane [24.34]. We start with some basic
notions from set theory. Let us consider two nonempty
sets A and B and a set-theoretical map (or function) f be-
tween them. This situation can be depicted as follows:

A B
 f

that is, this process f can be visualized by an arrow;
the only requirement being that one must be able to tell
for every element of the departure set A where it is go-
ing to. Now, let A;B;C be three sets and consider two
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functions f and g as follows:

BA
f

C
g

We can now consider the composition, denoted by gı f :

BA
f

g° f

C
g

The composition of functions has the associative prop-
erty: whenever f ; g; h are functions (that can be com-
posed), one has .hıg/ı f D hı .gı f /. Remark also that
for any set A, we can consider the function that maps
any element of A onto itself:

AA
1A

This function 1A is called the identity function on A.
It has the property that for any function f W A! B, the
following holds: f ı 1A D 1B ı f D f .

Let us now consider a more general scenario, not
necessarily set-theoretic. Let A and B be objects:

A B

and replace the set-theoretical notion of map by just an
arrow between these objects:

A B
 f

We can now give an idea of the notion of category:
Roughly speaking, a category C consists of objects

and arrows (between objects) such that there is a com-
position ı for the arrows and an identity arrow 1A for
any object A of C. These ingredients have to satisfy
some conditions that mimic the associative behavior of
composition of functions between sets and the above-
mentioned property of the identity function on any set.

In this sense, following Awodey [24.35], category
theory might be called abstract function theory.

We give some basic examples of categories:

� C D Sets
objects: sets
arrows: functions between sets� C D Vectk (k being a field)
objects: k-vector spaces
arrows: k-linear maps.

Now we would like to illustrate the adjective
monoidal in the term monoidal category. Therefore, let
us introduce monoids.

A monoid .M;	; 1M/ consists of a setM, a function
	 WM�M!M and an element 1M 2M such that:

� We have 1M 	mDm 	 1M D m, for any m 2M� For any three m; n; p 2M the following holds

.m	 n/	 pD m	 .n	 p/ :
We are ready to sketch what a monoidal category

looks like. Very roughly speaking, a monoidal category
is a category C, in which we canmultiply objects and ar-
rows (this multiplication is denoted by˝) and in which
a unit object exists (denoted by I) such that this˝ (resp.
I) imitate the behavior of the operation 	 (resp. the ele-
ment 1M) from the monoid structure .M;	; 1M/.

We will denote such a monoidal category .C;˝; I/
briefly by C in the sequel.

Actually, in technical terms, the definition of
monoidal category is precisely the categorification of
the definition of monoid (here categorification aims at
the name for the process as it was coined by Crane and
Yetter in [24.36]).

Here are some examples of monoidal categorical
structures:

� .C;˝; I/D .Sets;�; f	g/, where:
– � is the Cartesian product of sets.
– f	g is any singleton.
We will briefly denote this monoidal category by
Sets.� .C;˝; I/D .Vectk;˝k; k/, where:
– ˝k is the tensor product over k
– k is any field.

This example will be briefly denoted by Vectk.
Now we have a vague idea of what it means to

be a monoidal category, in order to illustrate an ex-
ample, we wish to glance at certain objects in such
categories. More precisely, we start with considering
monoids (sometimes called algebras in literature) in
a monoidal category C. The idea is that these objects
mimic the behavior of classical monoids (i. e., sets
with an associative, unital binary operation), the lan-
guage of monoidal categories offering a natural setting
to do so; this is an instance of the so-called micro-
cosm principle of Baez and Dolan [24.37], affirming
that “certain algebraic structures can be defined in any
category equipped with a categorified version of the
same structure.”

Amonoid in C is a triple AD .A;m; �/, where A 2 C
and m W A˝A! A and � W I! A are arrows in C (such
that two diagrams – respectively mimicing the associa-
tivity and unitality condition – commute; we refer the
reader to [24.6, Sect. 5.3.1] for instance).

Many algebraic structures can be seen as monoids
in an appropriate monoidal category; we present some
examples here, for details and more examples we refer
the reader again to [24.6, Sect. 5.3.1] e.g.:
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� Taking C to be the monoidal category Sets, one can
easily verify that, taking a monoid in C, one recov-
ers exactly the definition of a classical monoid, as
one expects.� Similarly, a monoid in Vectk gives precisely
the classical notion of (an associative, unital) k-
algebra.� A more surprising example is given by the oc-
tonions. The octonions O are a normed division
algebra over the real numbers. There are only four
such algebras, the other three being the real num-
bers, the complex numbers, and the quaternions.
Although not as well known as the quaternions or
the complex numbers, the octonions are related to
a number of exceptional structures in mathemat-
ics, among them the exceptional Lie groups. For
more details, we refer to the excellent paper by
Baez on this subject [24.38]. One of the proper-
ties of the octonions is that they are nonassociative
(that is, considered as monoid in Vectk). They can
be seen, however, as an (associative) monoid in the
monoidal category constructed by Albuquerque and
Majid in [24.16].

In case a monoidal category C exhibits moreover
a braided structure (whatever this means), we denote
C equiped with this braided structure as eC. In this case,
one can not only considermonoids ineC, one can impose
more structure on the definition of monoid, obtaining
such notion as Hopf monoid in eC. To be a bit more
precise, a Hopf monoid in eC is a bimonoid (which is
a monoid also having a so-called comonoid structure,
both structures being compatible), having an antipode.
The reader is referred to [24.6, Sect. 5.3.2] for more de-
tails.

The categories Sets and Vectk can be given
a braided structure, which we denote by eSets andAVectk
respectively, such that – without going into the details –
the notions of group andHopf algebra can be recovered
as being Hopf monoids in eSets andAVectk, respectively.
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25. Abduction and the Emergence of Necessary
Mathematical Knowledge

Ferdinand Rivera

The prevailing epistemological perspective on
school mathematical knowledge values the central
role of induction and deduction in the develop-
ment of necessary mathematical knowledge with
a rather taken-for-granted view of abduction. This
chapter will present empirical evidence that illus-
trates the relationship between abductive action
and the emergence of necessary mathematical
knowledge.

Recent empirical studies on abduction and
mathematical knowledge construction have be-
gun to explore ways in which abduction could be
implemented in more systematic terms. In this
chapter four types of inferences that students
develop in mathematical activity are presented
and compared followed by a presentation of key
findings from current research on abduction in
mathematics and science education. The chap-
ter closes with an exploration of ways in which
students can effectively enact meaningful and
purposeful abductive thinking processes through
activities that enable them to focus on relational or
orientation understandings. Four suggestions are
provided, which convey the need for meaning-
ful, structured, and productive abduction actions.
Together the suggestions target central features in
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abductive cognition, that is, thinking, reasoning,
processing, and disposition.

25.1 An Example from the Classroom

Table 25.1 provides a short transcript of a very interest-
ing classroom episode on counting by six that happened
in a US first-grade class. The task, which was about
determining the total number of faces for four sep-
arate cubes, was given to the students to help them
apply and practice the arithmetical strategy of count-
ing on. Anna, Betsy, and all the students together in
a chorus-like manner in lines 9, 13, and 17, respectively,
eagerly modeled the same process of putting the last
known number in their head and counting six more. The
episode became interesting when Ian started to employ
counting by five, an arithmetical skill that the class al-
ready knew, to help him count by six in a systematic

way. As conveyed in line 20, Ian initially saw multi-
ples of five in the sequence (6, 12, 18, 24). In line 21,
when he added the ones and saw that the numbers in his
head matched the same numbers he saw on the teacher’s
board, the feeling of having discovered a wonderful
idea caused him to exclaim I was right! and encouraged
him to share his abduction with his classmates (lines
22–26).

Shotter [25.1] captures the following sense in which
first-grade student Ian has embodied abductive thinking
in relation to the number sequence (6, 12, 18, and 24):
Ian was “carried away unexpectedly by an other or oth-
erness to a place not previously familiar to him” [25.1,
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Table 25.1 Ian’s counting-by-six rule

Ms. Marla [M] presented the following task below during a board math session with her first-grade class
Number of cubes Number of faces
1 –
2 –
3 –
4 –
How many faces do four cubes have in all?
1 M: Let’s say I have four cubes. I want to know how many faces four cubes have in
2 all. So let’s count how many faces one cube would have.
3 Students [Ss]: M points to the faces one by one. One, two, three, four, five, six.
4 M: Okay so how many faces does one cube have?
5 Ss: Six!
6 M: Now I want to know how many faces two cubes would have.
7 Ss: Twelve!
8 M: Let’s see. How would I figure that out?
9 Anna: Put six in your head and count six more.
10 M: Okay so?
11 Ss: 6, 7, 8, 9, 10, 11, 12.
12 M: Okay next.
13 Betsy: You put 12 in your head and count six more.
14 M: Okay everybody!
15 Ss: 12, 13, 14, 15, 16, 17, 18.
16 M: Then?
17 Ss: You put 18 in your head and count. 18, 19, 20, 21, 22, 23, 24.
18 M: So how many faces are there in all?
19 Ss: 24.
As the students began to count by six, Ian [I] decided to count by five using his right hand to indicate one set of 5.
20 I: 5, 10, 15, 20.
He then used his right thumb and continued to count by one.
21 I: And then you add the ones. 21, 22, 23, 24. I was right!
Ian eagerly raised his hand and shared his strategy with Ms. Marla and his classmates.
22 I: Ms. M, I was thinking that in my head. . . . Ms. M I know another idea . . .
23 because you have all those sixes and you count by fives and there’s only ones
24 left.
25 M: So you went 5, 10, 15, 20. [Ian nods].
26 I: 21, 22, 23, 24.
27 M: Excellent!

p. 225]. He was pleasantly surprised about how easy
it was to count “all the sixes” by “counting by fives
and adding the ones left”, which generated in him an
intense feeling of discovering something new through
a guess that made sense and that he was able to ver-
ify to be correct. The following passage below from El
Khachab [25.2] provides another, and yet deeper, way
of thinking about Ian’s experience. El Khachab fore-
grounds the significance of having a purpose as a way
of motivating the emergence of new ideas, which is one
way of explaining how learners sometimes find them-
selves being carried away during the process of discov-
ery. The second sentence in the passage articulates in
very clear terms the primary purpose of abduction and
its central and unique role in the establishment of new
knowledge [25.2, p. 172]:

“Before asking where new ideas come from, we
need to ask what new ideas are for, and knowing
what they are for, we can attune their newness to
their purpose. And their purpose is, in the case of
abduction, to provide true explanations following
experimental verification.”

Ian saw purpose in counting by five plus one that
encouraged him to further pursue his new idea. Af-
ter verifying that his strategy actually worked on the
available cases, he then articulated an explanation that
matched what he was thinking in his head. The nature
of what counts as a true explanation in abduction is ex-
plored in some detail in the succeeding sections. For
now, it makes sense to think of abductive explanations
as modeling instances of “relational or orientational
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way of knowing”, which is a type of “embodied cop-
ing” that attends to [25.2, p. 172]

“the possible relations – what we might call the
relational dimensions – that exist as a dynamical
outcome of the interacting of objectively observable
phenomena which are not in themselves objectively
observable.”

Ian’s abductive thinking about counting by six is
worth noting early in this chapter in light of recent
findings on children’s algebraic thinking that show how
many of them tend to use their knowledge of the mul-
tiplication table to help them generate and establish
mathematical relationships and support their ability to
construct explicit or function-based formulas involving
linear patterns [25.3].

US eighth-grade student Dung’s figural process-
ing of the two pattern generalization tasks shown in
Figs. 25.1 and 25.2 illustrates another characteriza-
tion of abductive thinking that “carries over a deeper
similarity to a number of seemingly rather different sit-

Stage 1 Stage 2

Below are the first two stages in a growing pattern of squares

1. Continue the pattern until stage 5.
2. Find a direct formula in two different ways. Justify each formula.
3. If none of your formulas above involve taking into account overlaps, find a direct formula
 that takes into account overlaps. Justify your formula.
4. How do you know for sure that your pattern will continue that way and not some other way?
5. Find a different way of continuing the pattern and obtain a direct formula for this pattern. 

Fig. 25.1 Ambiguous
patterning task in compressed
form (after [25.4])

Stage 1 Stage 2 Stage 3

Consider the following array of sticks below

A. Find a direct formula for the total number of sticks at any stage in the pattern. Justify your
 formula.
B. Find a direct formula for the total number of points at any stage in the pattern. Justify your
 formula. 

Fig. 25.2 Square array
pattern (after [25.4])

uations” [25.1, p. 225]. Dung’s processing illustrates
a kind of double description (i. e., in Bateson’s [25.5,
p. 31] sense of “cases in which two or more infor-
mation sources come together to give information of
a sort different from what was in either source sepa-
rately”) that is a necessary condition when students are
engaged in mathematical thinking and learning. When
Dung was presented with the ambiguous Fig. 25.1 task
consisting of two beginning stages in a growing pattern,
he constructed a growing sequence of L-shaped figures
(Fig. 25.3). When he was asked to generate explicit
rules for his pattern, he suggested sD nC n� 1 and
sD 2n� 1. When he was asked to justify them, Dung
saw the pattern stages in terms of groups of squares. In
the case of his first rule, each stage in his growing pat-
tern consisted of the union of two variable units having
cardinalities n and (n� 1) corresponding to the column
and row of squares, respectively (see Fig. 25.3 stage 3
for an illustration). In the case of his second rule, two
composite sides of squares that had the same number of
squares on each side overlapped along the corner square
(see Fig. 25.3 stage 5 for an example).
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Stage 4Stage 3Stage 2Stage 1 Stage 5

3 + 2

2 · 5 – 1

Fig. 25.3 Dung’s growing L
shaped pattern (after [25.4])

For Dung, seeing pattern stages in terms of groups
enabled him to justify his explicit rules, which became
his abductive resource for constructing and justifying
an explicit rule for the square array pattern shown in
Fig. 25.2. Dung initially saw each pattern stage into
parts of separate rows of squares and separate smaller
squares per row (Fig. 25.4). Using stage 4, he parsed
the whole figure into four disjoint rows and counted the
number of sticks per row. In counting the number of
sticks per row, he saw four disjoint squares for a total of
4� 4D 16 sticks and then subtracted the three overlap-
ping vertical sticks. He then counted the total number of
horizontal and vertical sticks counting repetitions and
obtained .4�4/�4D 52. In his written work, he imme-
diately resorted to the use of a variable n to convey that
he was thinking in general terms, which explains the
expression .4n� .n�1//�n. Since he also saw that the
four disjoint rows had overlapping sides (i. e., the inte-
rior horizontal sticks), he then took away three .D 4�1/
groups of such four horizontal sticks from 52. That con-
crete step allowed him to complete his explicit rule

[4n – (n – 1)]n

4n – (n – 1)

(n – 1)n

4 rows of
[4(4) – 3]

sticks 4 groups of
4 sticks

3 overlapping vertical
adjacent sides

Take away
3 groups of
overlapping
horizontal

adjacent sides
of 4 sticks

A. Find a direct formula for the total number of sticks at any stage in the pattern. Justify your
 formula.

Fig. 25.4 Dung’s construc-
tion and justification of his
formula for the Fig. 25.2
pattern (after [25.4])

for the pattern, that is, sD .4n� .n� 1//n� .n� 1/n,
which he then simplified to sD 2n2C2n. Dung’s multi-
plicative thinking ability became his abductive – that is,
double descriptive – abstracting resource that enabled
him to infer deeper similarity among, and thus general-
ize to, different kinds of patterns.

In this chapter, we explore the relationship between
abductive action and the emergence of necessary math-
ematical knowledge. The prevailing epistemological
perspective on mathematical knowledge values the cen-
tral role of induction and deduction in the development
of necessary mathematical knowledge with a rather
taken-for-granted view of abduction that in the past
has been characterized as the creative, wild, and messy
space of theory generation or construction. However,
recent empirical studies on abduction and mathemati-
cal knowledge construction have begun to explore ways
in which abduction could be implemented in more sys-
tematic terms beyond a way of reasoning by detectives
from observations to explanations [25.6, p. 24] and
merely “studying facts and devising a theory to ex-
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plain them” because “its only justification is that if we
are ever to understand things at all, it just be in that
way” [25.7, p. 40]. For instance, Mason et al. [25.8]
associate abductive processing with the construction
of structural generalizations, while Pedemonte [25.9]
situates abduction within a cognitive unity thesis that
sees it as being prior and necessary to induction and
ultimately deduction. Recent investigations in science
and science education that pursue an abductive frame-
work also underscore the central role of abduction in
inference systems that model everyday phenomena. For
instance, Addis and Gooding propose the iterative cycle
of “abduction (generation) ! deduction (prediction)
! induction (validation) ! abduction” in modeling
the “scientific process of interpreting new or surpris-
ing findings by generating a hypothesis whose conse-
quences are then evaluated empirically” [25.10, p. 38].
Another instance involves Magnani’s [25.11] formu-
lation of actual computational models in which case
abduction is seen as central to the development of cre-
ative reasoning in scientific discoveries and can thus be
used to generate rational models.

In Sect. 25.2, we provide a characterization of the
four types of inferences that students develop in mathe-
matical activity. In Sect. 25.3 we note two key findings

from current research on abduction in mathematics
and science education, which should provide the nec-
essary context for understanding the ideas we pursue
in the succeeding section. In Sect. 25.4 we explore
ways in which students can effectively enact meaning-
ful and purposeful abductive thinking processes and
other [25.1, p. 224]

“kinds of preparing activities in mathematical
learning contexts that will enable learners to be-
come self-consciously engaged in, can get them
ready to notice, immediately and spontaneously, the
kinds of events relevant to their acquiring such re-
lational or orientation understandings – where, by
being ready to do something means what we often
talk of as being in possessions of a habit, an instinct,
an inclination, etc.”

Central to such processes and activities involves
orchestrating effective tasks and other learning con-
texts that will engage all students in abductive thinking,
which will go a long way in supporting growth in
necessary mathematical knowledge and excellence in
reasoning that is strategic and has “logical virtue (i. e.,
avoiding logical fallacies and learning what is and what
is not admissible and valid)” [25.12, p. 269].

25.2 Inference Types

Table 25.2 lists the characteristics of four types of in-
ferences that students develop in mathematical activity.
Abduction involves generating a hypothesis or narrow-
ing down a range of hypotheses that is then verified via
induction. Abduction is the source of original ideas and
is initially influenced by prior knowledge and experi-
ences, unlike induction that basically tests an abductive
claim on specific instances. The hope, of course, is
that possible errors get corrected through the inductive
route, which results in the construction of a generaliza-
tion that draws on the available instances. Like induc-
tion, which performs the role of verifying an abductive
claim, deduction produces results from general rules
or laws and thus does not produce any original ideas.
Unlike abduction, which is sensitive to empirical data,
deduction relies on unambiguous premises in order to
ascertain the necessity of a single valid conclusion. An
unambiguouswell-defined set or model assumes the ex-
istence of “a finite set of rules and without reference
to context” that clearly defines membership or relation-
ships among the elements in the set [25.10, p. 38].

Another useful way to think about abduction and
deduction involves truth tables. Deductions depend on
truth tables for validity, which also means to say that

the objects and rules of deduction all have to be well
established and well defined. Abductions do not de-
pend on truth tables and their validity is established
via induction [25.10, p. 37–38]. Deductive closure con-
veys deductively derived arguments and instances and
is a necessary condition for algebraic thinking in both
symbolic and nonsymbolic contexts [25.13].

Consider, for example, the following four state-
ments below that have been extracted from eighth-grade
student Cherrie’s generalization of the Fig. 25.3 pattern:

Law (L): I think the rule is xD 2.nC 1/n.
Case (C): In stage 2, there’s two groups of three twice.

There’s two four groups of three in stage 3. There’s
two five groups of four in stage 4.

Result (R): Stages 1 through 4 follow the rule x equals
two times .nC 1/ times n.

All future outcomes (O): Stage 5 has 26.5/D
60 sticks, stage 10 has 211.10/D 220 sticks,
and stage 2035 has 8 286 520 sticks in all.

Deduction assumes a general law and an observed
case (or cases) and infers a necessary valid result, which
also means that it does not have to depend on real
or empirical knowledge for verification [25.14]. Cases
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Table 25.2 Types of inferences in mathematical activity and their characteristics

Inferential
type

Inferential
form

Intent Inferential attitude Sources Desired
construction

Nature of context,
verification,
and justification

Abduction From result
and law
to case

Depth
(intentional)

Entertains a plausible
inference toward a rule
Generates and selects
an explanatory theory –
that something maybe
(conjectural)

Unpredictable
(surprising facts;
flashes; intelligent
guesses; spontaneous
conjectures)

Un/
Structured

Context-bound;
Structured via induction

Induction From result
and more
cases to law

Breadth
(extensional)

Tests an abduced in-
ference; measures the
value and degree of
concordance of an ex-
planatory theory to
cases – that something
actually is operative
(approximate)

Predictable (examples) Structural
based on
abduction

Context-derived;
empirical
(e.g., enumeration,
analogy,
and experiments)

Deduction From rule
and case
to result

Logical
proof

Predicts in a methodical
way a valid result –
that something must be
(certain)

Predictable (premises) Structural
(canonical
form)

Decontextualized;
Steps in a proof

Deductive
closure

From an
established
deduction
to future
outcomes

Breadth
(apply)

Assumes that all future
outcomes will behave
in the same manner
as a result of a valid
deductive hypothesis

Predictable (premises
are valid deductions)

Structural
based on an
established
deduction

Decontextualized;
Mathematical induction
(e.g., demonstration of
a valid deductive claim)

are occurrences or instantiations of the stipulated law.
When the first three statements above are switched
in two different ways, we obtain the canonical struc-
tures for abduction and induction, which are ampliative
because the conclusions “amplify or go beyond the in-
formation incorporated in the premises” [25.11, p. 511]
and invalid (i. e., not necessary) from a deductive point
of view. In a deductive closure, an established deduction
becomes the cause or hypothesis that is then applied to
future outcomes, which are effects. Figure 25.5 visually
captures the fundamental differences among the four in-
ferential types.

From a logicopsychological perspective, students
need to learn to anticipate inferences that are sensible
and valid in any mathematical activity. Peirce [25.15,
p. 449], of course, reminds us that context matters
despite our naturally drawn disposition toward “per-
petually making deductions”. As an aside, kindergarten
students (ages five to six years) in the absence of formal

Deduction

R

L and C

Abduction

C

R and L

Induction

L

C and R

Deductive closure

O

L & C R

Fig. 25.5 Differences among the four inferential types

learning experiences appear to consider deductive in-
ferences as being more certain than inductive ones and
other guesses [25.16].

Students also need to understand the limitations
of each inferential process. For Polya [25.17], de-
duction exemplifies demonstrative reasoning, which is
the basis of the “security of our mathematical knowl-
edge” [25.17, p. v] since it is “safe, beyond contro-
versy, and final”. Abduction and induction exemplify
plausible reasoning, which “supports our conjectures”
and could be “hazardous, controversial, and provi-
sional” [25.17]. Despite such constraints, however,
Peirce and Polya seem to share the view that abduction,
induction, and deduction are epistemologically neces-
sary. According to Polya [25.17], while “anything new
that we learn about the world involves plausible reason-
ing”, demonstrative reasoning uses “rigid standards that
are codified and clarified by logic” [25.17, p. v]. Polya’s
perspectives are narrowly confined to how we come to
understand and explain the nature of mathematical ob-
jects, unlike Peirce who formulates his view by drawing
on his understanding of the nature of scientific practice.
“All ideas of science come to it by way of abduction”,
Peirce writes, which is the fundamental source of the
emergence of ideas and “consists in studying facts and
devising a theory to explain them” [25.7, p. 90].

In the next three subsections below, we discuss ad-
ditional characteristics of each inferential type.
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25.2.1 Abduction

Abduction, the source of original ideas, discoveries, and
explanatory theories, emerges and evolves in a contin-
uum of thought processes, uncontrolled and instinctual
(e.g., as initial impressions based on perceptions and
informed guesses) in the early phase and structured
and inferential (e.g., quasideductive) in a much later
phase [25.2]. Through abduction, “descriptions of data,
patterns, or phenomena” are inferred leading to plausi-
ble explanations, hypotheses, or theories “that deserve
to be seriously entertained and further investigated”
([25.18, p. 1021], [25.11, p. 511]). Perceptual-like clues
provide one possible source of abductive ideas [25.19].
The steps below outline a percept-based “formula that
is similar to abduction” [25.19, p. 305].

“A well-recognized kind of object, M, has for its or-
dinary predicates P[1], P[2], P[3], etc., indistinctly
recognized. The suggesting object, S, has these
same predicates, P[1], P[2], P[3], etc. Hence, S is
of the kind M.”

Iconic-based inferences also provide another possi-
ble source of abduction [25.19]. Icons, unlike percepts,
are pure possible forms of the objects they represent or
resemble. Iconic-based abductions employ the follow-
ing abductive process [25.19, p. 306]:

P1
H1
!
�
An iconic relationship between P1 and P2

P1 and P2 are similar (iconically)

)Maybe H1 (or something that is similar to H1) :

Abduction also involves “the problem of logical good-
ness, i. e., how ideas fulfill their logical purpose in the
world” [25.2, pp. 159, 162]. El Khachab [25.2] uses
the example of global warming to show how different
stakeholders tend to model different kinds of good-
ness based on their purpose. Following Peirce, he notes
that “the purpose of abduction is to provide hypothe-
ses which, when subjected to experimental verification,
will provide true explanations” [25.2, p. 162]. True ex-
planations refer to “sustainable belief-habits, that is, as
recurring settlements of belief about the world which
rely on experientially or experimentally verifiable state-
ments” [25.2, p. 163].

We note the following four important points below
about abduction.

First, Tschaepe [25.20] underscores the significance
of guessing in abduction, that is [25.20, p. 117],

“guessing is the initial deliberate originary activity
of creating, selecting, or dismissing potential solu-

tions to a problem as a response to the surprising
experience of that problem.”

Having a guess enables learners to transition from
the first to the second premise in Peirce’s general syl-
logism for abduction (i. e., the surprising fact, C, is
observed; but if A were true, C would be a matter of
course; hence, there is reason to suspect that A is true).
FollowingKruijff [25.21], Tschaepe notes that guessing
and perceptual judgment (i. e., observing a surprising
fact C) are “the two essential aspects that characterize
the generation of ideas” [25.20, p. 117], where the event
of surprise emerges from every individual knower’s
experiences, which is perceptual in nature. Guessing,
then [25.20, p. 117],

“follows perceptual judgment, signifying a transi-
tion between uncontrolled thought and controlled
reasoning. [. . . ] We guess in an attempt to address
the surprising phenomenon that has led to doubt; it
is our inchoate attempt to provide an explanation.”

Second, Thagard [25.22] makes sense in saying that
an abductive process involves developing and enter-
taining inferences toward a law that will be tested via
induction, which will then produce inferences about
a case. For Eco [25.23], however [25.23, p. 203],

“the real problem is not whether to find first the
Case or the Law, but rather how to figure out both
the Law and the Case at the same time, since they
are inversely related, tied together by a sort of chi-
asmus.”

Third, while the original meaning of abduction
based on Peirce’s work refers to inferences that yield
plausible or explanatory hypotheses, Josephson and
Josephson’s [25.24] additional condition of inferences
that yield the best explanation revises the structure of
the original meaning of abduction in the followingman-
ner:

Case: D is a collection of data (facts, observations,
givens).

Law: H explains D (would, if true, explain D).
Strong Claim: No other hypothesis can explain D as

well as H does.
Result: H is probably true.

Paavola [25.25] notes that while the original and re-
vised versions of abductions share the concern toward
generating explanations, they are different in several
ways. The original version addresses issues related
to the processes of discovery and the construction of
plausible hypotheses, while the revised version mod-
els a nondeductive form of reasoning (except induction)
that eventually establishes the true explanation. Across
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the differences, it is instructive to keep in mind both
Adler’s “simple, conservative, unifying, and yields the
most understanding” conditions for constructing strong
abductions [25.26, p. 19] and El Khachab’s logical
goodness conditions that characterize good abductions.
That is, they [25.2, p. 164]

“(1) need to be clear, i. e., they need to have distin-
guishable practical effects; (2) they need to explain
available facts; and (3) they need to be liable to fu-
ture experimental verification.”

Fourth, it is important to emphasize that abduc-
tions provide explanations or justifications that do not
prove. Instead, they provide explanations or justifi-
cations that primarily assign causal responsibility in
Josephson’s [25.27, p. 7] sense below.

“Explanations give causes. Explaining something,
whether that something is particular or general,
gives something else upon which the first thing de-
pends for its existence, or for being the way that it is.
[. . . ] It is common in science for an empirical gener-
alization, an observed generality, to be explained by
reference to underlying structure and mechanisms.”

25.2.2 Induction

Unlike abduction, induction tests a preliminary or an
ongoing abduction in order to support a most reason-
able law and thus develop a generalization that would
both link and unite both the known and projected cases
together in a meaningful way. By testing an abductive
claim over several cases, induction determines whether
the claim is right or wrong. So defined, a correct in-
duction does not produce a new concept that explains
(i. e., an explanatory theory), which is the primary pur-
pose of abductive processing. Instead, it seeks to show
that once the premises hold (i. e., the case/s and the
result/s), then the relevant conclusions (i. e., the law)
must be true by enumeration (number of observed
cases), analogy (i. e., structural or relational similarity
of features among cases), or scientific analysis (through
actual or mental experiments) [25.28] and thus reflect
causal relationships that are expressed in the form of
(categorical inductive or universally quantified) gen-
eralizations [25.11]. In the case of enumeration, in
particular, the goal is not to establish an exhaustive
count leading to a precise numerical value, but it is
about “producing a certain psychological impression
[. . . ] brought about through the laws of association,
and creating an expectation of a continuous repetition
of the experience” [25.28, p. 184]. In all three con-
texts of inductive justification, inductive inferences do

not necessarily yield true generalizations. However, “in
the long run they approximate to the truth” [25.29, p.
207].

Four important points are worth noting about the re-
lationship between abduction and induction, as follows:

First, El Khachab points out how both abduction
and induction appear to be “unclear” about their “practi-
cal effects which are essentially similar” [25.2, p. 166].
However, they are different in terms of “degree”, that is
[25.2, p. 166],

“an induction is an inference to a rule; an abduc-
tion is an inference to a rule about an occurrence, or
in Peirce’s own words, an induction from qualities
[. . . ] Induction is a method of experimental verifi-
cation leading to the establishment of truth in its
long-term application.”

Second, abduction is not a requirement for in-
duction. That is, there can be an abduction without
induction (i. e., abductive generalizations). Some ge-
ometry theorems, for example, do not need inductive
verification. In some cases, abduction is framed as con-
jectures that are used to further explain the development
of schemes ([25.30] in the case of fractions). However,
it is useful to note the insights of Pedemonte [25.9] and
Prusak et al. [25.31] about the necessity of a structural
continuity between an abduction argument process and
its corresponding justification in the form of a logical
proof. That is, a productive abductive process in what-
ever modal form (visual, verbal) should simultaneously
convey the steps in a deductive proof.

Even in the most naïve and complex cases of induc-
tions (e.g., number patterns with no meaningful context
other than the appearance of behaving like objects in
some sequence), learners initially tend to produce an
abductive claim as a practical embodied coping strat-
egy, that is, as a way of imposing some order or
structure that may or may not prove to make sense in
the long haul. Euler’s numerical-driven generalization
of the infinite series

P
1

nD1
1
n2

is a good example. He
initially established an analogical relationship between
two different types of equations (i. e., a polynomial P of
degree n having n distinct nonzero roots and a trigono-
metric equation that can be transformed algebraically
into something like P but with an infinite number of
terms). Euler’s abductive claim had him hypothesizing
an anticipated solution drawn from similarities between
the forms of the two equations. Upon inductively ver-
ifying that the initial four terms of the two equations
were indeed the same, Euler concluded that [25.17, pp.
17–22]

1X

nD1

1

n2
D  2

6
:
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Third, another consequence of the preceding dis-
cussion involves the so-called inductive leap, which
involves establishing a generalization from concrete in-
stances to a conclusion that seems to contain more than
the instances themselves. On the basis of the character-
izations we have assigned to abduction and induction,
such a leap is no longer an issue since the leap itself is
settled by abduction. Hence, criticisms that in effect cite
“hazardous inductive leap” as an argument in relation to
erroneous patterning questions such as the one shown
in Fig. 25.6 is more appropriately and fundamentally
a problem of abduction.

Fourth, neither abduction nor induction can settle
the issue of reasonable of context. For example, the
patterning situation in Fig. 25.7 can have a stipulated
abduction and an inductively verified set of outcomes
based on an interpreted explicit formula. However, as
Parker and Baldridge [25.32] have noted, “there is no
reason why the rainfall will continue to be given by that
expression, or any expression”, which implies that the
“question cannot be answered” [25.32, p. 90].

25.2.3 Deduction and Deductive Closure

While abduction and induction provide support in
constructing or producing a theory, both deduction
and deductive closure aim to exhibit necessity. Pace
Smith [25.33]: “(R)epeated co-instantiation via induc-
tion is not the same as inferential necessity” [25.33,
p. 5]. A valid deduction demonstrates a logical im-
plication, that is, it shows how a law and a case as
premises or hypotheses together imply a necessary re-
sult, conclusion, or consequence. It is a “self-contained
process” because the validation process relies on “the
existence of well-defined sets” and preserves an already
established law, thus, “freeing us from the vagaries
and changeability of an external world” [25.10, p.
37].

A certain pattern begins with 1, 2, 4. If the pattern continues,
what is the next number?

A. 1
B. 2
C. 7
D. 8

Fig. 25.6 An example of an erroneous generalization
problem

It started to rain. Every hour Sarah checked her rain
gauge. She recorded the total rainfall in a table.
How much rain would have fallen after h hours? 

Hours Rainfall
1 0.5 in
2 1 in
3 1.5 in

Fig. 25.7 An Example of
a patterning task with an erro-
neous context (after [25.32])

Deductive closure emerges in students’ mathemati-
cal thinking and reasoning in at least two ways depend-
ing on grade-level expectations, as follows. Among
elementary and middle school students, once they (im-
plicitly) form a deduction, they tend to provide an
empirical (numerical or visual) structural argument then
a formal deductive proof as a form of explanation or
justification. For example, Cherrie’s algebraic gener-
alization relative to the pattern in Fig. 25.3 could be
expressed in deductive form. When she began to cor-
rectly apply her result to any stage in her pattern beyond
the known ones, her reasoning entered the deductive
closure phase.

Among high school students and older adults, once
they formulate a deduction, they tend to provide any of
the following types of justification that overlap in some
situations: an empirical structural argument; a logical
deductive proof; or a mathematical induction proof.
Figure 25.8 illustrates how a group of 34 US Alge-
bra 1 middle school students (mean age of 13 years)
empirically justified the fact that �a��bD�.a�
�b/by demonstrating a numerical argument following
a statement-to-reason template [25.34, pp. 126–130].
Note that when the numbers in the empirical argument
shown in Fig. 25.8 are replaced with variables, the argu-
ment transforms into a logical deductive proof in which
case the steps follow a logical “recycling process” (Du-
val, quoted in Pedemonte [25.9, p. 24]), that is, the
conclusion of a foregoing step becomes the premise of
a succeeding step from beginning to end. Deductive clo-
sure for these students occurred when they began to
obtain products of integers (and, much later, rational
numbers) involving negative factors without providing
a justification.

Figure 25.9 shows a mathematical inductive proof
of a classic theorem involving the sum of the interior an-
gles in an n-sided convex polygon that has been drawn
from Pedemonte’s [25.9] work with 102 Grade 13 stu-
dents (ages 16–17 years) in France and in Italy. The
“multimodal argumentative process of proof” [25.31,
35] evolved as a result of a structural continuity be-
tween a combined abductive-inductive action that was
performed on a dynamic geometry tool, which focused
on a perceived relationship between the process of con-
structing nonoverlapping triangles in a polygon and
the effects on the resulting interior angle sums, and
the accompanying steps that reflected the structure of
a mathematical induction proof.
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–3 × 2  =   (–3 × 2) + 0 Additive identity property
 =   (–3 × 2) + [(3 × 2) + –(3 × 2)] Additive inverse property
 =   [(–3 × 2) + (3 × 2)] + –(3 × 2) Associative property
 =   [(–3 + 3) × 2] + –(3 × 2) Distributive property
 =   0 + –(3 × 2) Additive inverse property
 =   –(3 × 2) Additive identity property

Based on the figure below, Let us illustrate why –3 × 2 = –(3 × 2) using properties
of integers. –3 × 2 = –(3 × 2) means pull 3 groups of 2 cubes on the positive region
to the negative region

+– +–

Fig. 25.8 An empirical structural
argument for �a��bD�.a��b/
(after [25.34])

66. M: If n is equal to 3, f(n) is equal to 180 × 1...
 If n is equal to 4, f(n) is equal to 360, which is
 equal to 180 × 2
67. L: N equal to 5, f(n) is equal to 540, which is
 equal to 180 × 3...
68. M: So f(n) is equal to 180 × (n–2) ...
69. L: OK, now we have to understand why ... 

Base F(3) = 180°
F(n + 1) = 180°(n – 1)
F(n + 1) = F(n) + 180°
It is necessary to add 180° to F(n) because if we
add a side to the polygon, we add a triangle too.
The sum of the triangles angles is 180°.
So:
F(n + 1) = 180°(n – 2) + 180°
F(n + 1) = 180°(n – 2 + 1)
F(n + 1) = 180°(n – 1)

70. M: OK... wait!
71. L: F(4) is equal to 180 + f(3) because there is one
 triangle more... so 180 + 180...
72. M: OK, then f(5) is... is f(4) + 180... that means
 that f(n) is equal to f(n – 1) + 180
73. L: You always add 180 to the previous one
74. M: OK we can write f(n + 1) as f(n) + 180...

Fig. 25.9 A mathematical inductive proof for the sum of the interior angles in an n-sided convex polygon (after [25.8,
p. 37–38])

The work shown in Fig. 25.10 was also drawn from
the same sample of students that participated in Pede-
monte’s [25.9] study. Unlike Fig. 25.9, the analysis that
the students exhibited in Fig. 25.10 shows a structural
discontinuity between a combined abductive-inductive
action, which primarily focused on the results or out-

comes in a table of values, and steps that might have
produced either a valid empirical justification or a logi-
cal mathematical induction proof. Deductive closure for
these students occurred when they began to obtain the
interior angle sum measures of any convex polygon be-
yond the typical ones.
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Alice constructs the following table: Base for n = 3
180°(3–2) = 180°

Step
Hp: 180°(n–2)
Ts: 180°(n–1)

S(n) = 180° (n–2) = 180n –360
S(n+1) = 180° (n+1) –360 =180n +180 – 360 = n +1–2 =
n –1 Th
We have proved the thesis by a mathematical
induction

29. A: So the rule is probably 180 × (n–2) for an
 n-sided polygon
30. L: Yes... n is the number of sides

Sides Sum (Angles)
3
4
5
6

180°
360° 180° × 2
540° 180° × 3
720° 180° × 4

Fig. 25.10 Example of an erroneous mathematical inductive argument for the sum of the interior angles in an n-sided
convex polygon (after [25.8, p. 36])

25.3 Abduction in Math and Science Education

A nonexhaustive survey of recent published studies
dealing with abduction in mathematical and scientific
thinking and learning yields two interesting findings, as
follows.

25.3.1 Different Kinds of Abduction

Drawing on Eco’s [25.23] work, Pedemonte and
Reid [25.36] provided instances in which traditional
15–17-year-old Grades 12 and 13 students in France
and Italy modeled overcoded, undercoded, and cre-
ative abductions in the context of proving statements
in mathematics. For Pedemonte and Reid, abduction
comes before deduction. Some students in their study
generated overcoded abductions, which involve using
a single rule to generate a case, while others produced
undercoded abductions, which involve choosing from
among several different rules to establish a case. Over-
coded and undercoded abductions for Magnani [25.11]
exemplify instances of selective abductions because
the basic task involves selecting one rule that would
make sense, which, hopefully, would also yield the best
explanation. Medical diagnosis, for instance, employs
selective abductions [25.11]. In cases when no such
rules exist, students who develop new rules of their
own yield what Eco [25.23] refers to as creative abduc-
tions, which also account for “the growth of scientific
knowledge” [25.11, p. 511]. Pedemonte and Reid have
noted that students are usually able to construct a de-
ductive proof in cases involving overcoded abductions
due to the limited number of possible sets of rules to
choose from. Furthermore, they tend to experience con-
siderable difficulties in cases that involve undercoded
and creative abductions since they have to deal with

“irrelevant information in the argumentation process,
thus confusing, and creating disorder” in their process-
ing [25.36, p. 302]. An additional dilemma that students
have with creative abductions is the need to justify
them prior to using them as rules in a proof process.
“Consequently”, Pedemonte and Reid write [25.36, p.
302],

“it seems that there is not a simple link between the
use of abduction in argumentation and constructing
a deductive proof. Both the claim that abduction
is an obstacle to proof and the claim that abduc-
tion is a support, if considered in a general sense,
are oversimplifications. Some kinds of abductions,
in some context may make the elements required
for the deductions used in a proof more accessi-
ble. Some are probably less dangerous to use and
can make the construction of a proof easier to get
to because they could make easier to find and to
select the theorem and the theory necessary to pro-
duce a proof. However, other kinds of abductions
present genuine obstacles to constructing the proof.
This suggests that teaching approaches that involve
students conjecturing in a problem solving process
prior to proving have potential, but great care must
be taken that the abductions expected of the students
do not become obstacles to their later proving.”

Aside from selective and creative abductions,Mag-
nani [25.11] pointed out the significance of theoretical
and manipulative abductions in other aspects of every-
day and scientific work that involve creative processing.
Theoretical abductions involve the use of logical, verbal
or symbolic, and model-based (e.g., diagrams and pic-
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tures) processing in reasoning. While valuable, they are
unable to account for other possible types of explana-
tions (e.g., statistical reasoning, which is probabilistic;
sufficient explanations; high-level kinds and types of
creative and model-based abductions; etc.). Manipula-
tive abductions emerge in cases that involve “thinking
and discovering through doing”, where actions are piv-
otal in enabling learners to model and develop insights
simultaneously leading to the construction of creative
or selective abductions. They operate beyond the usual
purpose of experiments and create “extra-theoretical
behaviors” that [25.11, p. 517]

“create communicable accounts of new experiences
in order to integrate them into previously existing
systems of experimental and linguistic (theoreti-
cal) practices. The existence of this kind of extra-
theoretical cognitive behavior is also testified by
the many everyday situations in which humans are
perfectly able to perform very efficacious (and ha-
bitual) tasks without the immediate possibility of
realizing their conceptual explanation.”

Typical accounts of conceptual change processes in
science tend to highlight theoretical abductions, how-
ever [25.11, p. 519],

“a large part of these processes are instead to due
practical and external manipulations of some kind,
prerequisite to the subsequent work of theoretical
arrangement and knowledge creation.”

Manipulative abductions may also emerge in learn-
ing situations that provide “conceptual and theoretical
details to already automatized manipulative executions”
in which case either teacher or learner [25.11, p. 519]

“does not discover anything new from the point
of view of the objective knowledge about the in-
volved skill, however, we can say that his concep-
tual awareness is new from the local perspective of
his individuality.”

For example, Rivera [25.37] provides a narrative
account of US third-grade Mark’s evolving understand-
ing of the long division algorithm involving multidigit
whole numbers by a single-digit whole number. Mark’s
initial visual representation processing of (sharing-
partitive) division (Fig. 25.11) employed the use of
place value-driven squares, sticks, and circles. In the
case of the division task 126� 6, when he could not
divide a single (hundreds) box into six (equal) groups,
he recorded it as a 0. He then ungrouped the box into
ten sticks, regrouped the sticks together, divided the

Thousand Hundred Tens

Check your answer

Ones

Fig. 25.11 Mark’s initial visual processing of 126� 6

sticks into six groups, recorded accordingly, and so on
until he completed the division process for all subcol-
lections. His numerical recording in Fig. 25.11 also
captured every step in his sequence of visual actions.
Results of consistent visual processing enabled him to
shift his attention away from the visual form and to-
ward the rule for division, which was accompanied by
two remarkable changes in his numerical processing. In
Fig. 25.12, he performed division on each digit in the
dividend from left to right with the superscripts indi-
cating partial remainders that had to be ungrouped and
regrouped. In Fig. 25.13, he made another subtle cre-
ative revision that remained consistent with his earlier
work and experiences. When he was asked to explain
his division method, Mark claimed that “it’s like how
we do adding and subtracting with regrouping, we’re
just doing it with division”.Mark’s manipulative abduc-
tive processing for division involving whole numbers
necessitated a dynamic experience in which “ a first
rough and concrete experience” [25.11, p. 519] of the
process enabled him to eventually develop a version of
the long division process that “unfolded in real time”
via thinking through doing.

25.3.2 Abduction
in Mathematical Relationships

A study by Arzarello and Sabena [25.38] illustrates
the important role of abduction in constructing math-
ematical relationships involving different signs. Signs
pertain to the triad of signifier, signified, and an individ-
ual learner’s mental construct that enables the linking
between signifier and signified possible. Arzarello and
Sabena underscore their students’ use of semiotic and
theoretic control when they argued and proved state-
ments in mathematics. Semiotic control involves choos-
ing and implementing particular semiotic resources
(e.g., graphs, tables, equations, etc.) when they manip-
ulate and interpret signs (i. e., type-1 semiotic action),
while theoretic control involves choosing and imple-
menting appropriate theories (e.g., Euclidean theorems)
or parts of those theories and related conceptions when
they “elaborate an argument or a proof” (i. e., type-3
semiotic action; [25.38, p. 191]). Between type-1 and
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7. Eight-hundred thirty-seven divided by
three

8. Eight-hundred fifty-two divided by
three

Fig. 25.12 Mark’s initial numerical
division processing

11. Eighty-four divided by 7 8. Nine-hundred eighty-four divided by 8
Fig. 25.13 Mark’s manipulative
abductive processing of the numerical
methods shown in Figs. 25.11 and
25.12

type-3 semiotic action is a type-2 semiotic action that
involves using abduction to identify relationships be-
tween signs and assessing the arguments. Based on their
qualitative work with Grade 9 students, such [25.38, p.
202]

“relationships between signs are examined and
checked with redundant local arguments, and (eco-
nomic, explanatory, and testable) hypotheses are
detected and made explicit by means of abduc-
tions.”

Furthermore, they note how [25.38, p. 204]:

“abduction has an important role at this point. There
is an evolution from a phase where the attention is
mainly on the given signs, towards a phase where
the logical-theoretical organization of the argument
becomes the center of the activities and evolves
from abductive to deductive and more formal struc-
tures. [. . . ] Such an evolution implies a passage
from actions of type 1 to actions of type 2 and then
3, and a shift of control by the student, i. e., passing
from actions guided by semiotic control to actions
guided by theoretical control. [. . . ] Passing from
type 1- to type 3-semiotic actions means an evolu-
tion from the data to the truth because of theoretical
reasons. It is exactly this distinction that makes the
difference between [. . . ] a substantial argument and
an analytical argument, which is a mathematical
proof.”

Arzarello and Sabena’s study foregrounds the role
of abduction in inferential processing and documents
how a shift from abduction to deduction is likely to
occur when students’ mathematical thinking shifts in

focus from the semiotic to theoretical, respectively.
Studies by Pedemonte and colleagues [25.9, 36, 39] and
Boero and colleagues [25.40, 41] also note the same
findings in both algebra and geometry contexts. Across
such studies we note how abduction is conceptualized
in terms of its complex relationships with induction
and deduction. Other studies do not deliberately fo-
cus on such shifts and relationships, making it difficult
for students to see the value of engaging in abductive
processing in the first place. For example, Watson and
Shipman [25.42] documented the classroom event that
happened in a Year 9 class of 13–14 year-old students
in the UK that investigated the following task: Find
a way to multiply pairs of numbers of the form aCpb
that results in integer products. While the emphasis
of their study focused on learning through exempli-
fication by using special examples to help students
develop meaningful plausible structures, it seems that
the abductive process for them became a matter of con-
jecturing relationships based on their experiences with
their constructed examples. But certainly there is more
to abductive processing than merely generating conjec-
tures, as follows.

Several studies have suggested inferential model
systems that show relationships between and among
abduction, induction, and deduction. Addis and Good-
ing [25.10], for example, illustrate how the iterative
cycle of

abduction (generation)! deduction (prediction)!
induction (validation)! abduction

might work in the formation of consensus from beliefs.
Radford’s [25.43] architecture of algebraic pattern gen-
eralizations emphasizes a tight link between abduction
and deduction, that is, hypothetico-deduction, in the fol-
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Stage 4Stage 3Stage 2Stage 1

Fig. 25.14 Cross-squares pattern

lowing manner:

abduction (from particulars p1; p2; : : : ; pk
to noticing a commonality C)

! transforming the abduction

(from noticing C to making C a hypothesis)

! deduction (from hypothesis C

to producing the expression of pn) :

The studies conducted by Rivera [25.44] with
groups of elementary (i. e., first through third grade) and
middle school (i. e., sixth through eighth grade) students
in the US on similar pattern generalization tasks capture
two different inferential structures. Prior to a teaching
intervention that involved using multiplicative thinking
to establish pattern rules, both elementary and middle
school student groups employed the same inferential
structure of

abduction! induction! deduction

! deductive closure

that enabled them to generalize (correctly and incor-
rectly). The abductive phase in such a structure tended
to be instinctual and iconic- or perceptual-driven. Af-
ter the teaching intervention, however, Rivera observed
that while the elementary student groups continued to
model the same inferential structure in pattern gener-

alizing, the middle school student groups skipped the
induction phase and instead exhibited the following
structure:

abduction and deduction! deductive closure :

Abduction in this phase was combined with de-
duction and thus became structured and inferential as
a consequence of their ability to express generalizations
in multiplicative form. For example, when the pattern
generalization task shown in Fig. 25.14 was presented
to both elementary andmiddle school student groups af-
ter the teaching experiment, sixth-grade student Tamara
initially abduced the recursive relation C4, which en-
abled her to deduce the explicit rule sD n� 4C 1.
She then used her combined abductive-deductive infer-
ence to perform deductive closure, in which case she
induced the given stages and predicted the correct num-
ber of squares for any stage in her pattern. Tamara’s
empirical justification of her explicit rule for the to-
tal number of squares s involves seeing a fixed square
and four copies of the same leg that grew according to
the stage number n. In the case of third-grade Anna,
her multiplicative-driven abductive processing enabled
her to both construct and justify the same explicit rule
that Tamara established for the pattern. However, she
needed to express her answers inductively, as follows

4�1C1; 4�2C1; 4�3C1; : : : ; 4�100C1; : : :

25.4 Enacting Abductive Action in Mathematical Contexts

We close this chapter by providing four suggestions for
assisting students to enact meaningful, structured, and
productive abduction action. Together the suggestions
target central features in abductive cognition, that is,
thinking, reasoning, processing, and disposition. Em-
pirical research in mathematics education along these
features is needed to fully assess the extent and impact
of their power in shaping mathematical knowledge con-
struction.

25.4.1 Cultivate Abductively-Infused
Guesses with Deduction

Students will benefit from knowing how to generate
new guesses and conjectures that can explain a prob-
lem and occur “within the wider scope of the process
of inquiry” [25.20, p. 116]. That is, while abductions
certainly emerge from perceptual judgments, in actual
practice the more useful ones are usually constrained
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and logical as a consequence of knowing the problem
context and being “compounds of deductions from gen-
eral rules” (i. e., hypothetico-deductivist) that individ-
ual knowers are already familiar with (Peirce, quoted
in [25.20, p. 119]). Tschaepe writes, “(w)e guess in an
attempt to address the surprising phenomenon that has
led to doubt; it is our inchoate attempt to provide an ex-
planation” [25.20, p. 118]. Viewed in this sense [25.20,
p. 122],

“[a]bduction is a logical operation, and guess is log-
ical insofar as it is a type of reasoning by which
an explanation of a surprising phenomenon is first
created, selected, or dismissed [. . . ] Guessing is the
creative component of abductive inference in which
a new idea is first suggested through reasoning.”

25.4.2 Support Logically-Good Abductive
Reasoning

Students will benefit from knowing how to develop ab-
ductions that are logically good, that is, they are: clear
(i. e., can be confirmed or discomfirmed); can explain
the facts; are capable of being tested and verified; and
can lead to true explanations that establish “sustainable
belief-habits” [25.2, p. 163]. Such explanations may be
new and may emerge from guesses and instincts, but,
Khachab writes [25.2, pp. 171–172],

“logical goodness is the reason for abduction, under
its diverse meanings. No matter how abduction ac-
tually generates new ideas – whether it is abductive
inference, strategic inference, instinctive insight,
etc. – its purpose is, ultimately, to provide true
explanatory hypotheses for inquiry. And, in this re-
gard, new hypotheses should always be evaluated in
reference to their goodness.”

25.4.3 Foster the Development of Strategic
Rules in Abductive Processing

Paavola [25.12] distinguishes between definitory and
strategic rules. While definitory rules focus on logic and
logical relationships, strategic rules pertain to “goal-
directed activity, where the ability to anticipate things,
and to assess or choose between different possibili-
ties, are important” [25.12, p. 270]. Thus, abductive
strategies produce justifications for given explanatory
hypotheses, including justifications for “why there can-
not be any further explanation” [25.12, p. 271]. Hence,
all generated abductive inferences conveyed in the form
of discoveries provide an analysis or explanation of

the underlying conceptual issues and are not merely
reflective of mechanical recipes or algorithms for gen-
erating ideas and discoveries. Furthermore, the analysis
or explanation should present “a viable way of solving
a particular problem and that it works more gener-
ally (and not only in relationship to one, particular
anomalous phenomenon)” [25.12, p. 273] and fit the
“constraints and clues that are involved in the problem
situation in question” [25.12, p. 274].

25.4.4 Encourage an Abductive
Knowledge-Seeking Disposition

Sintonen’s [25.45] interrogative model of inquiry that
employs an explicit logic of questions demonstrates the
significance of using certain strategic principles and
why-questions as starting points in abductiveprocessing.
Questions as well as answers drive discoveries and the
scientific process.Questions, especially, “pick out some-
thing salient that requires special attention, and that it
also gives heuristic power and guidance in the search for
answers” [25.45, p. 250]. Furthermore, [25.45, p. 263],

“principal questions are often explanation-seeking
in nature and arise when an agent tries to fit new
phenomena to his or her already existing knowl-
edge. Advancement of inquiry can be captured
by examining a chain of questions generated. By
finding answers to subordinate questions, an agent
approaches step by step toward answering the big
initial question, and thus changes his or her epis-
temic situation.”

Students will benefit from situations and circum-
stances that engage them in a knowledge-seeking game
in which they “subject a source of information [. . . ]
to a series of strategically organized questions. This
Sherlock Holmes method therefore is at the heart of ab-
ductive reasoning” [25.45, p. 254]. Furthermore, the in-
terrogative model allows conclusions (i. e., answers) to
emerge. “For abductive tasks”, Sintonen writes [25.45,
p. 256],

“the goal must be understanding and not just knowl-
edge. A rational inquirer who wants to know why
and not only that something is the case must, after
hearing the answer, be in the position to say Now
I know (or rather understand) why the (singular
or general) fact obtains. Obviously this condition
is fulfilled only if she or he knows enough of the
background to able to insert the offered piece of in-
formation into a coherent explanatory account.”
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Model-based reasoning refers to the kinds of infer-
ences performed on the basis of a knowledge-context
that guides them. This context constitutes a model of
a domain of reality, that is, an approximative and sim-
plifying to various degrees representation of the factors
that underlie, and the interrelations that govern, the
behavior of the entities in this domain. Model-based
reasoning is ubiquitous in the human (and not only
the human) brain. Various studies have shown that
most likely we do not draw inferences by applying
some abstract, formal rules; instead inference rules are
applied within concrete-knowledge contexts that deter-
mine which rules should be used and when.

Model-based reasoning is not limited to the cogni-
tive functions of the brain but it is likely that it extends
to perceptual functions that retrieve information from
the environment. Chapter 26 defends the view that
the processes of visual perception constitute a case of
model-based reasoning. It discusses, first, the problem
of whether vision involves model-based inferences and,
if so, what kind. Secondly, it discusses the problem of
the nature of the context that guides visual inferences.
It finally addresses the broader problem of the relation
between visual processing and thinking; various modes
of inferences, the most predominant conceptions about
visual perception, the stages of visual processing, the
problem of the cognitive penetrability of perception,
and the logical status of the processes involved in all
stages of visual processing are discussed and assessed.

Reasoning is usually considered to consist of ac-
tions that occur exclusively within the brain of the agent
that reasons. Reasoning is a mental activity in which
various inference rules are applied to mentally rep-
resented sentences. This is not always true, however.
On many occasions agents use external representations
to enhance their inferential capabilities by overcoming
limitations in working memory capacities, by simplify-
ing the problem space, etc. In the second chapter, Bech-
tel argues that humans often reason by constructing,
manipulating, and responding to external representa-
tions, whether the reasoning be deductive, abductive, or
inductive. These representations are not only linguistic
expressions (symbols on a piece of paper, for instance)
but also include diagrams. Although diagrams are used
in everyday reasoning, they are particularly important in
science; diagrams, for example, figure in the processes
through which scientists analyze data and construct
their explanations. In Chap. 27 Bechtel discusses what
is known about how people, including scientists, reason
with diagrams.

Another consequence of the assumption that reason-
ing takes place within the human mind is that reasoning

depends only on the mental properties of the reason-
ing agent and is independent of the agent’s body. More
generally, cognition is limited within the mind of the
cognitive agent. This assumption has been recently
challenged on many grounds and the argument has been
made that reasoning is embodied in that it constitutively
and not merely causally involves the body of the rea-
soning agent. In this vein, Chap. 28 focuses on the
role of the concept of mental imagery as a fundamen-
tal cognitive capability that enhances the performance
of cognitive robots. The authors discuss the embodied
imagery mechanisms applied to build artificial cogni-
tive models of motor imagery and mental simulation to
control complex behaviors of humanoid platforms that
represent the artificial body.

If reasoning is model based, the reasoning agent
draws from a variety of sources in order to choose
the more salient and useful rules in a particular prob-
lem context, to choose the information that will be
brought to bear on the problem at hand, to determine
how to update her knowledge basis in view of the out-
puts of the rule, etc. The complexity of the task paves
the way for dynamic approaches to cognition, as they
are better suited to handle complexities of this mag-
nitude and explain animals’ intelligent behavior more
adequately. Dynamical models of cognition put empha-
sis on time and complexity, both of which relate context
to behavior. In Chap. 29, Metzger argues that temporal
processes allow memory, feedback, the effects of non-
linear recursion, and the generation of expectation to be
brought to bear on cognitive activities, whereas com-
plexity allows stable patterns of coordination to emerge
from the interaction of sub-processes. Metzger reviews
several models of cognition, and their dynamical fea-
tures. She focuses on the manner in which each model
deals with time and complexity, thought, and action.

Dynamical models could also be used to model
the ways that humans continuously adapt their behav-
ior to changes in their environment, and the way their
cognitive abilities continuously develop over time. In
Chap. 30, P. van Geert, R. den Hartigh, and R. Cox
argue that an important question for psychologists in
this direction has been the discovery of the (cognitive)
mechanism that underlies the control of human behav-
ior in real time, as well as the process of cognitive
development in the long term. Their chapter discusses
two kinds of general approaches, namely, the reduction-
ist approach and the complex dynamic systems (CDS)
approach. The reductionist approach, on the one hand,
assumes that separate components, such as brain ar-
eas or cognitive processing mechanisms, are the main
determinants of behavior and development, by process-
ing (and responding to) specific environmental inputs.
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The CDS approach, on the other hand, assumes that
cognition, and, hence, the control of behavior and de-
velopment, are distributed over the brain, the body, and
the environment, all three continuously interacting over
time.

Thus, dynamic system theory proposes ways in
which embodied cognition (that is, the view that cog-
nitive processes constitutively involve the body) and
extended cognition (that is, the view that cognitive
processes constitutively involves the environment and,
in this sense, are extended to the world breaking the
boundaries of the mind/brain) could be brought to-
gether with the received view that cognition is restricted
to what happens within the boundaries of the brain,
and provide a more adequate account of animal cog-
nition. To substantiate this claim, the authors compare
the two approaches with respect to their assumptions,
research strategies, and analyses. Furthermore, they
discuss the extent to which current research data in
the cognitive domain can be explained by the two

different approaches. They conclude that the CDS ap-
proach provides the most plausible approach to cogni-
tion.

In Chap. 31, Waskan argues that model-based rea-
soning in science is often carried out in an attempt to
understand the kinds of mechanical interactions that
might give rise to particular occurrences. Scientists do
that by constructing and using mental models that are
like scale models in crucial respects. Behavioral evi-
dence points to the existence of these mental models,
but the neural plausibility of this hypothesis is still
questioned. Waskan provides an overview of the psy-
chological literature on mental models of mechanisms,
focusing on the problem of how representations that
share the distinctive features of scale models might be
realized by neural machinations. He argues that lessons
brought together from the computational simulation of
mechanisms and from neurological research on mental
maps in rats, could be applied to explain how neuro-
physiological processes might realize mental models.
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26. Vision, Thinking, and Model-Based Inferences

Athanassios Raftopoulos

Model-based reasoning refers to the sorts of in-
ferences performed on the basis of a knowledge
context that guides them. This context constitutes
a model of a domain of reality, that is, an ap-
proximative and simplifying to various degrees
representation of the factors that underlie, and
the interrelations that govern, the behavior of this
domain.

This chapter addresses both the problem of
whether vision involves model-based inferences
and, if yes, of what kind; and the problem of the
nature of the context that acts as the model guid-
ing visual inferences. It also addresses the broader
problem of the relation between visual process-
ing and thinking. To this end, the various modes
of inferences, the most predominant conceptions
about visual perception, the stages of visual pro-
cessing, the problem of the cognitive penetrability
of perception, and the logical status of the pro-
cesses involved in all stages of visual processing
will be discussed and assessed.

The goal of this chapter is, on the one hand,
to provide the reader with an overview of the
main broad problems that are currently debated
in philosophy, cognitive science, and visual sci-
ence, and, on the other hand, to equip them with
the knowledge necessary to allow them to follow
and assess current discussions on the nature of vi-
sual processes, and their relation to thinking and
cognition in general.
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Helmholtz [26.1] famously maintained that perception
is a form of inference; the brain uses probabilistic
knowledge-driven inferences to induce the causes of the
sensory input from this input, that is, to extract from the
bodily effects of the light emanating from the objects in
a visual scene as it impinges on our transducers the var-
ious aspects of the world that cause the input. The brain
integrates computationally the retinal properties of the
image of an object with other relevant sources of in-
formation to determine the object’s intrinsic properties.
Rock [26.2] claimed that the perceptual system com-
bines inferential information to form the percept. From
visual angle and distance information, for example, the
perceptual system infers and perceives size. This infer-
ence may be automatic and outside the authority of the
viewer who does not have control over it, but is an in-
ference nevertheless.

Similarly, Spelke [26.3] suggests “perceiving ob-
jects may be more akin to thinking about the physical
world than to sensing the immediate environment”. The
reason is that the perceptual system, to solve the under-
determination problem of both the distal object from the
retinal image and of the percept from the retinal image,
employs a set of object principles (the Spelke princi-
ples) that reflect the geometry and the physics of our
environment. Since the principles can be thought of as
some form of knowledge about the world, perception
engages in inferential processes from some pieces of
worldly knowledge and visual information to the per-
cept, that is, the object of our ordinary visual encounters
with the world.

Recently Clark [26.4] argued that:

“To perceive the world just is to use what you know
to explain away the sensory signal across multiple
spatial and temporal scales. The process of per-
ception is thus inseparable from rational (broadly
Bayesian) processes of belief fixation [. . . ] As
thought, sensing, and movement here unfold, we
discover no stable or well-specified interface or in-
terfaces between cognition and perception. Believ-
ing and perceiving, although conceptually distinct,
emerge as deeply mechanically intertwined.”

The aim of this conglomeration of faculties that
constitute perception is, therefore, to enable perceivers
to respond, modify their responses, and eventually
adapt their responses as they interact with the environ-
ment so as to tune themselves to the environment in
such a way that this interaction be successful; success in
such an endeavor relies on inferring correctly (or nearly
so) the nature of the source of the incoming signal from
the signal itself.

In all these views, the visual system constructs the
percept in the way thinking constructs new thoughts on

the basis of thoughts that are already entertained. In this
sense, vision is a cognitive, that is, thought involving,
process.

If perception is to be thought of as some sort of
thinking, its processes must necessarily first include
transformations of states that are expressed in symbolic
or propositional form, and, second, these transforma-
tions must be inferences from some states that function
as premises to a state that is the conclusion of the infer-
ence. That is to say, visual processes must be inferences
or arguments, exactly like the processes of rational be-
lief formation. These two conditions follow directly
from the claim that perception is some sort of thinking,
since the characteristic trait of thinking is drawing infer-
ences (whether it be deductive, abductive, or inductive)
operating on symbolic forms by means of inference
rules that are represented in the system, although think-
ing is not reduced to drawing inferences this way. In
view of these considerations, the principles guiding the
transformations of perceptual states, that is, the princi-
ples (such as Spelke’s principles) acting as the inference
rules in perceptual inferences, must be expressed in the
system and, specifically, must be represented in a sym-
bolic form. Whenever the system needs some of the
principles to draw an inference, it simply activates and
uses them. In addition, the premises and the conclusion
of a visual argument be represented in the viewer in
a propositional-like, symbolic form.

If these conditions are met, perception involves
discursive inferences, that is, drawing propositions or
conclusions from other propositions acting as premises
by applying (explicitly or implicitly) inferential rules
that are also represented in the system. Clark’s view
quoted above seems to echo this thesis in so far as
Clark conceives the processes of visual perception as
a rational process of belief fixation. It follows that the
inferences used in perception are no different from the
inferences used in thought. That is, they are discursive
inferences.

A short digression is needed here, however, lest
we attribute to Clark intentions that he may not have.
The previous analysis assumes the standard view of the
brain as a physical machine that processes symbols in
purely formal or syntactic way on the basis of the physi-
cal properties of the symbols; the brain performs digital
computations. These symbols have meaning, of course,
and so do the transformations of these symbols, but the
processes in the brain are independent of any meaning.
To put it differently, the brain is a syntactic machine
that processes symbols that have meaning. The stan-
dard view can be modified by adding the thesis that
digital computations are not merely formal syntactic
manipulations but also involve semantics, that is, the
contents of the states that participate in computations
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are causally relevant in the production of the computa-
tions’ outputs [26.5].

Although this is the standard, algorithmic, view of
cognition, it is by no means unequivocally endorsed.
There is another, competing view of cognition, accord-
ing to which the brain is not a syntactic machine that
processes symbols through algorithms. The brain rep-
resents information in a nonsymbolic, analogue-like
form, as activation patterns across a number of units.
Furthermore, the processes in the brain do not assume
the form of algorithmic but of algebraic transforma-
tions; this is the connectionist view of cognition, of
which Clark is a stern proponent. This is not the place to
expand and explain connectionism, but I wish to stress
that in this view of cognition, the brain does not use at
all discursive inferences, although some of its behavior
certainly simulates the usage of discursive inferences.
If this is so, Clark’s thesis that perception is inseparable
from the rational processes of belief fixation does not
commit him to the view that perception employs dis-
cursive inferences for the simple reason that thinking
itself does not implicate such inferences.

Furthermore, given the propositional or symbolic
form of the format in which the states of the visual
system must be represented if vision is akin to think-
ing, the contents of these states, that is the information
carried by the states, consists of concepts that roughly
correspond to the symbols implicated; it is conceptual
content. If vision is some sort of thinking, therefore,
its contents must be conceptual contents. This means
two things. Either the visual circuits store conceptual
information that they use to process the incoming in-
formation, or they receive from the inception of their
function such information from the cognitive areas of
the brain while they are processing the information im-
pinging on the retina. Spelke’s principles that guide
visual processing and render the percept possible are
examples of conceptual content.

It should be noted that discursive inferences are
distinguished from inferences as understood by vision
scientists according to whom any transformation of sig-
nals carrying information according to some rule is an
inference [26.6]:

“Every system that makes an estimate about unob-
served variables based on observed variables per-
forms inference [. . . ] We refer to such inference
problems that involve choosing between distinct
and mutually exclusive causal structures as causal
inference.”

One could claim, therefore, that although infer-
ences, in this liberal sense, occur in the brain during
visual perception, they are not like the inferences used

in thought. One might even go further than that and
claim that these inferences, or rather state transforma-
tions, do not involve representational states at all [26.7].
Although the percept is certainly a representational
state, the processes that lead to its formation are not
representations. It follows that visual perception is not
a cognitive process, if cognitive is taken to entail the
use of mental representations; “a system is cognitive be-
cause it issues mental representations” [26.7].

In this chapter, I examine vision and its processes
and discuss the relation of vision with thinking. I do not
have the space here to discuss the problem of whether
visual processes involve representations. I proceed by
assuming that they do although, first, as I will argue,
the state transformations do not presuppose the appli-
cation of inference rules that are represented in the
system, and, second, not all visual states are represen-
tational.

In Sect. 26.1, in view of the close relationship be-
tween thinking and inference, I chart and briefly discuss
inference and its modes, namely, deduction, induction,
and abduction or inference to the best explanation.

In Sect. 26.2, I sketch an overview of the main con-
ceptions concerning vision, to wit constructivism, direct
or ecological theory of vision, and the more recent pro-
posals that view vision as inseparable from action.

In Sect. 26.3, I present the two stages of which vi-
sual perception consists, namely early vision and late
vision.

In Sect. 26.4, I discuss the problem of the cogni-
tive penetrability (CP) of perception, because if vision
is akin to thinking, visual processes necessarily involve
concepts and are thus cognitively penetrated. If it turns
out that some stage of vision is cognitively impenetra-
ble (CI) and conceptually encapsulated, the status of
the logical characterization of the visual processes of
that stage remains open since, being nonconceptual in
nature, they cannot be discursive inferences. I am go-
ing to argue that a stage of vision, early vision, is CI
and has nonconceptual content. This content is probably
iconic, analogue-like and not symbolic. By not being
symbolic, the contents of the states of early vision can-
not be transformed to some other contents by means of
discursive inferences in so far as the latter operate on
symbolic forms. The second main visual stage, namely
late vision, is CP and implicates concepts. I also ad-
dress in this section two problems with my claim that
early vision is conceptually encapsulated. The first is
raised by the existence of some general regularities that
seem to guide the functioning of the perceptual sys-
tem, of which the Spelke principles are a subset, and
which operate at all levels of visual processing. The
problem is, first, whether the existence of such princi-
ples entails that at least some part of the information
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processed in early vision is inherently conceptual, and,
second, whether the existence of such principles entails
that vision in general is theory-laden. The second con-
cerns the effects of perceptual learning, since one might
argue that through perceptual learning some concepts
are embedded in the perceptual circuits of early vision.
If either of these two is correct, the states of early vi-
sion have conceptual contents and thus the processes of
early vision may involve discursive inferences render-
ing early vision akin to thought and belief formation.
I argue, however, that neither the principle nor the ef-
fects of perceptual learning entail that early vision has
conceptual content.

In Sect. 26.5, I examine the logical status of the
processes of early and late vision and argue that the
processes of early vision are abductive nondiscursive
inferences that do not involve any concepts, while the
processes of late vision despite the fact that they are
abductive inferences guided by concepts, are not dis-
cursive inferences either. I argue that the abductive in-
ferences involved in visual perception are not sentential
inferences but, instead, they rely on pattern-matching
mechanisms that explore both iconic, analogue-like
information and symbolic information. In this sense,
visual abduction could be construed as consisting of
a series of model-based inferences.

26.1 Inference and Its Modes

Let us grant that vision is like thinking and, therefore,
involves discursive inferences. The question that arises
concerns the nature of the inferences involved; are they
deductive, inductive, or abductive? (Appendix 26.A for
a definition of deductive, inductive, and abductive infer-
ence).

I think it is safe to assume that the whole visual pro-
cess fits better the description of an abductive inference.
The main reason for this thesis is that vision constructs
a representation, (i. e., the percept) that best fits the vi-
sual scene. Specifically, given that the retinal image is
sparse and thus underdetermines both the distal object
and the percept, the visual system has to fill in the miss-
ing information to arrive at the best explanation, that
is, the percept that best fits the retinal information. In
essence, given the sparsity of the incoming informa-
tion in the retinal image, the brain attempts to construct
a representation that consists of the properties that an
object should have in order to produce the specific
retinal image. That is, the brain works back from the
information that the retinal image contains to the object
that could produce such a retinal image. Many objects
could produce this image and the brain attempts to fig-
ure out which one of them best fits the retinal image.
This is the trait par excellence of an abductive infer-
ence. Recent work (see [26.4] for an overview) suggests
that this abductive inference or inference to the best ex-
planation is a Bayesian inferences in which the brain
constructs the percept that best explains the visual input
by selecting the hypothesis that has the highest proba-
bility given the visual input.

It follows that the inference is ampliative, that is, the
conclusion has a wider content than that of the premises
and thus is not implicitly included in the premises;
as such, the inference is not deductive. This is easy
to grasp if we consider that the only information im-

pinging on the retina consists of differences of light
intensities and electromagnetic wavelengths. The per-
cept that which the visual processes output (and since
we have assumed that vision is a complex inference,
the premises of the inference consist in the impinging
information and the percept is the conclusion of this
inference), however, is the object of our ordinary ex-
perience with its shape, size, color, motion, texture, etc.
All these properties far exceed the impinging informa-
tion concerning light intensities and wavelengths.

Moreover, and related to the first consideration,
even if the premises of a visual inference that outputs
the percept are correct, that is, even if the principles
that guide perception reflect correctly the physical and
geometrical regularities, and the impinging information
being what it is, the percept may still not be a correct
representation of the object in the environment that em-
anated the light rays and caused the perception. In other
words, the conclusion may be wrong even though the
premises are correct. This is why vision should be better
understood as an abductive process or as an inference to
the best explanation. Traditionally, abduction is thought
as synonymous to the inference to the best explanation
(for a recent reaffirmation see [26.8]). Recently, how-
ever, this thesis has come under attack mainly on the
ground that abduction is for the generation of theories,
whereas the inference to the best explanation is for their
evaluation [26.9, 10]. Although I agree with Lipton, I
will not dwell on this issue here any further. I will con-
tinue to use abduction as synonymous to inference to
the best explanation because nothing important in the
discussion in this chapter hinges on the outcome of this
debate.

One may wonder why this ampliative, non-truth-
preserving inference should be construed as an abduc-
tive inference and not as an inductive inference. One
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might argue that all inductions are abductions or in-
ferences to the best explanation [26.11]. Most authors,
however, think that abduction is a subspecies of induc-
tion since it bears the basic marks of induction as it is
ampliative and does not preserve truth. However, it is
more specific than induction since it aims exclusively to
pinpoint the cause or causes for some phenomena, that
is, it aims to yield an explanation of a set of phenom-
ena. Not all inductions are focused towards this aim.
Several times a good induction leads to a generalization
that subsumes a set of phenomena under the heading of
a generalization, which, however, does not explain the
phenomena. Consider the following induction.

Bird ˛ is a crow and is black .Ca&Ba/

Bird ˇ is a crow and is black .Cb&Bb/

: : :

Bird � is a crow and is black .CK&Bk/

Therefore (inductively)

All crows are probably black ..x/.Cx!Bx//

Under certain conditions this is a good induction in
which from the colors of specific specimens of crows

one infers the color of all crows. This is hardly a good
explanation though. A good explanation seeks to ex-
plain, that is, make us or the scientific community
understand why crows ˛ and ˇ are black. The general-
ization All crows are probably black fails to accomplish
this since all that it does is gather together all instances
of black crows in a generalization. Moreover, a good
explanation of a set of phenomena is expected to have
a wider range than these specific phenomena in the
sense that it can be used as a springboard to explain
a wider class of phenomena. In our case, a good expla-
nation of why crows ˛ and ˇ are black should certainly
involve genetics. Such an account not only would pro-
vide understanding of the correlation of crows with the
color black, but it could also be used to explain the col-
ors of other species. Now, it is widely agreed that the
discovery of the relevant laws of genetics would fall
within the purview of abduction. To put this point dif-
ferently, all abductions are inductive inferences but not
all inductions are abductions.

When I examine in Sects. 26.3 and 26.5 the visual
processes in some detail, I shall adduce more evidence
supporting the claim that visual processing is an abduc-
tive inference.

26.2 Theories of Vision

I have claimed that vision is a complex process that
starts when light impinges on the retina and culminates
with the formation of the percept, that is, the object
of our ordinary experience and its properties. If vision
as a whole is a complex process, it consists of a se-
ries of processes, or, in other words, in a series of state
transformations in which one state containing some in-
formation is transformed via the visual mechanisms to
a state containing some other sort of information. Ac-
cording to this view, vision is a process in which the
visual system constructs the percept from the incom-
ing visual information. All these processes take place
within the visual system and although information from
the other modalities and the actions of the viewer may
either facilitate or inhibit the visual processing, vision
in principle is autonomous from the other modalities
and action.

This thesis can be assaulted from at least two fronts.
The first is to deny that vision is a complex process
involving information processing. It may be the direct
retrieval of visual information from the environment
without any need for mediating processes. The pro-
ponents of this view are divided into two camps. The
first maintain that the retrieval of information from the
environment is mediated by representations, while the

second deny the necessity of invoking representations
to explain how visual perception works. The second is
to claim that although vision necessarily involves infer-
ences, vision cannot be separated from action in that
actions figure inherently and constitutively in vision. In
this section, I present the three different conceptions of
vision.

26.2.1 Constructivism

Visual perception begins with information impinging
on the retina, this is the stimulation of the sensory
organs, and culminates with the construction of the per-
cept, which is a visual representation of the worldly
objects (they are called distal objects) that emanate the
light that stimulates the sensory organs. This is made
possible through a series of transformations whereby
the information impinging on the retina is progressively
transformed into a final visual representation, the per-
cept. The construction of the final visual representation
is preceded by the construction of a host of intermediate
visual representations of increasing complexity.

The transformation from one visual representation
to the other, which are both mental representations
being located in the brain, is effectuated through the
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processes of vision that consist of the application of
transformational rules that take as input representation
r1 at time t1 and output representation rtC 1 at time
t2. These rules could be construed as abductive infer-
ences since the brain is called upon to fill in the gaps
in the information contained in the retinal image in or-
der to construct a representation of the distal object that
is the most likely candidate for being the object that
could have produced the retinal image. It could be ar-
gued, hence, that the brain guesses which object is the
best fit to explain the retinal image.

Since visual perception consists of a series of con-
structions of visual representations, vision is a con-
structive process. Let us call this construal of visual
perception constructivism. According to one of the most
influential visual scientists that espouse constructivism,
Marr [26.12], there are three levels of representation.
The initial level of representation involves Marr’s pri-
mal sketch, which consists of the raw primal sketch
and the full primal sketch. The raw primal sketch pro-
vides information about the edges and blobs present
in a scene, their location and their orientation; this
information is gathered by locating and coding indi-
vidual intensity changes. Grouping procedures applied
to the edge fragments formed in the raw primal sketch
yield the full primal sketch, in which larger structures
with boundaries and regions are recovered. Through
the primal sketch contours and textures in an image
are captured. The primal sketch can be thought of as
a description of the image of a scene but not as a de-
scription of the real scene. This latter involves the
relative distances of the objects and their motions. This
information is provided by the viewer-centered repre-
sentation, which is Marr’s 21=2 sketch. At this level
information about the distance and layout of each sur-
face is computed using various depth cues and by means
of analysis of motion and of shading. This information
describes only the parts of the object that are visible to
the viewer and thus is relative to the viewer.

The computations leading to the formation of the
21=2 sketch are determined by three factors:

1. The input to the visual system, that is, the optical
array

2. The physiological mechanisms involved in vision,
and the computations they allow, and

3. Certain principles that restrict and guide the compu-
tation.

These principles are constraints that the system
must satisfy in processing the input. These constraints
are needed because perception is underdetermined by
any particular retinal image; the same retinal image
could lead to distinct perceptions. Thus, unless the

observer makes some assumptions about the physical
world that give rise to the particular retinal image, per-
ception is not feasible.

It is important at this juncture to stress that accord-
ing to Marr, all the processes that lead to the formation
of the 2 1

2D sketch are data-riven; they are driven solely
by the input.

One of the aims of vision is the recognition of
objects. This requires the matching of the shape of
a structure with a particular object, a matching that re-
quires an object-centered representation. This is Marr’s
three-dimensional (3-D) model. The recovery of the ob-
jects present in a scene cannot be purely data-driven,
since what is regarded as an object depends on the
subsequent usage of the information, and thus is task
dependent and cognitively penetrable. Most computa-
tional theories of vision [26.12, 13] hold that object
recognition is based on part decomposition, which is
the first stage in forming a structural description of
an object. It is doubtful, however, whether this de-
composition can be determined by general principles
reflecting the structure of the world alone, since the
process appears to depend upon knowledge of specific
objects [26.14]. Object recognition, which is a top-
down process and requires knowledge about specific
objects, is accomplished by the high-end vision. The
construction of the percept, which is the end product of
visual perception, therefore requires the synergy of both
top-down and bottom-up transfer of information be-
tween the visual circuits and the cognitive centers of the
brain. Object recognition requires matching the internal
representation of an object stored in memory against the
representation of an object generated from the image. In
Marr’s model of object recognition the 3-D model pro-
vides the representation extracted from the image that
will be matched against the stored structural descrip-
tions of objects (perceptual classification). (It should be
emphasized that these object recognition units are not
necessarily semantic, since we may recognize an object
that we had seen before, even though we have no idea
of its name, of what it does and how it functions, that
is, even if we have no semantic and lexical information
about it. Ref. [26.15] introduces a distinction between
the perceptual classification and semantic classification
and naming. These processes are independent one of
the other. ). See Appendix 26.B for an overview of con-
structivism.

Marr’s and Biederman’s hypothesis that object
recognition occurs through part decomposition is based
on the conception of three-dimensional objects as ar-
rangements of some set of primitive 3-D shapes. Ac-
cording to Marr, these primitive 3-D shapes are gener-
alized cylinders (Fig. 26.1) that are defined in terms of
major axes and radii of objects.
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According to Biederman, the primitive 3-D shapes
are the so-called geons (Fig. 26.2). All objects can be
decomposed into a set of 36 specific geons related in
various ways. The properties that identify geons and
allow them to function as volumetric perceptual primi-
tives are viewpoint invariant, that is, they do not change
as the angle of view changes. As such, they are called
nonaccidental features since they are features not only
of the image but also of the worldly objects (that is, they
are properties that exist in the environment outside the
viewer) that do not depend on what the viewpoint may
be accidentally. Examples of nonaccidental properties
are parallel lines and collinearity. If an object has paral-
lel lines many rotations of this object yield an image in
which these lines are still nearly parallel; that is to say,
parallelism is a property that is rotation- or perspective-
invariant.

Let me close the account of constructivism by re-
minding the reader that the theories of visual perception
presented in this part of the chapter are some among
the many different theoretical accounts of visual pro-
cessing. The differences between the various theories
notwithstanding, all constructivist theories share a com-
mon core, namely that visual perception involves state
transformations in the course of which visual repre-
sentations of increasing complexity are being gradually
constructed by the visual system. The visual processes
start from the meager information contained in the reti-
nal image and which consists of local distributions of
light intensities and wavelengths. These transforma-
tions can also be construed as computations in which
the brain computes an output state given an input state.
Many of these transformations (but not all of them)
act on and therefore essentially involve mental repre-
sentations that are within the brain of the viewer, and
can be independent of any other activities on the part
of the viewer. The transformations are made possible
through the application of transformational rules, such
as, for example, the rule that abrupt changes in light
intensity signify the presence of edges that is used
by the perceptual system to construct the raw primal
sketch. Such a rule takes as input states that carry in-
formation about various light intensities distributed in
space and delivers states that carry information about
edges. It follows that the transformations taking place
in visual processing are information-processing opera-
tions. (I said that not all of the transformations operate
on representations because many of these transforma-
tions operate on states that are not representational.
It would require another chapter to discuss the con-
ditions under which a state is representational or not
and, of course, much depends on how one defines the
term representation. I confine myself to pointing out
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that many of the earlier visual states are probably not
representational because they do not meet the criteria
that an adequate definition of representation posits, and
to referring the reader to the discussion in Chap. 4.
As we shall see in Sect. 26.4, one could claim that
there is a sharp distinction between internal probabilis-
tic dependencies between states that can be explained
by internal causal connections between the circuits of
the brain and those that cannot; only those that can-
not be explained internally carry information about
the external world and thus involve representational
states.)

The fact that the visual brain transforms states to
other states through the usage of some rules means that
the function of the brain can be understood as a series
of inferences from some state/premises to some other
states/conclusion. In view of our discussion in the be-
ginning of this section, as well as in the previous one,
the inferences most likely are abductive in nature.
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26.2.2 Theory of Direct Vision or Ecological
Theory of Visual Perception

Gibson [26.16] started from a very different assump-
tion than that of constructivism. In contradistinction to
the latter, Gibson argued that perception begins not with
the informationally sparse retinal image but with the
informationally rich optic array. The spatial pattern of
light intensities and the mixture of wavelengths that im-
pinge on the receptors of the retina form the optic array.
This light, however, carries a lot of information about
the solid objects in the environment (the distal objects)
because the intensities of light and its wavelengths vary
from one solid visual angle to another (as the rays of
light emanating from solid objects travel in space and
between the surfaces of the objects that fill the space,
given that at any point in space light converges from
all directions, at each point in space there is a nested
set of solid visual angles). As a result, the optical ar-
ray is determined by, and therefore carries information
about, the nature and location of the three-dimensional
worldly surfaces from which it is being reflected.

Unlike the retinal image, the optic array is an ex-
ternal source of information, or, better, an external
information-bearing structure since it exists outside the
viewer, is independent of the constitution of the brain
of the viewer, and carries information about the envi-
ronment. Gibson’s central claim is that the information
contained in the optic array suffices to allow perceivers
to specify the visual scene that causes the optic array,
that is, to specify the solid surfaces that surround them,
and to use the information included in the optic array to
interact with their environment.

When perceivers move in their environment, more-
over, the entire optic array is transformed to reflect the
new environment since it depends exclusively on it. As
perceivers move around, they sample different optic ar-
rays and therefore receive a variety of information about
the changing environment, since the transformations of
the optic array as perceivers move contain information
about the layout of the objects in the environment as
well. As in realistic situations perceivers are not static,
motion enriches the visual information that the per-
ceivers receive from the environment enabling them
to recover the visual scene much easier than if they
were static. Furthermore, this motion by effecting trans-
formations of the optic array allows the perceivers to
identify those aspects of objects that remain invariant
under movement (the nonaccidental properties that we
have discussed). It goes without saying that this infor-
mation is made available only to perceivers that move
in their environment and effect a change in the optic
array that they receive from the environment; a static
perceiver would never be able to detect the properties

of objects that remain invariant under motion. Note that
information about the invariant properties is available
in the environment, but viewers can retrieve or detect it
only as they move. This entails that perception becomes
entangled with action, since moving around is a form of
action.

The richer the information that the light impinging
on the retina carries, the less information processing
the visual brain is required to do in order to form the
percept. Taking this view to its extreme end, one might
claim that if the optic array suffices all by itself to en-
able viewers to recover the visual scene, there is no
need to posit any internal information processing on
information-bearing states. Visual perception involves
no information processing and no inferences of any
sort; it just recovers the visual scene directly from the
information contained in the optic array (which ex-
plains coining this theory a theory of direct vision).
This interpretation of the theory received a devastating
criticism in Fodor and Pylyshyn’s [26.17] paper enti-
tled How Direct is Visual Perception. I think it safe
to assume that the radical interpretation that excludes
information processing from visual perception has not
recovered from this critique since most of the counter-
arguments raised in that paper have not been adequately
answered. Whether, however, Gibson subscribed to this
radical view is debatable. Be that as it may, the radical
interpretation is not the only possible interpretation of
direct vision.

The fact that the input to the visual system may
contain more information than that envisaged by con-
structivism does not entail that visual perception does
not involve any internal information processing. It only
entails that the internal information processing needed
for the formation of the percept is less than in con-
structivist theories since a part of it is being replaced
by the manipulation through motion and transformation
of the optic array, which as you recall is an external
information-bearing structure. Nor does the richness of
the information in the input entail that no representa-
tions are needed; it entails that visual perception allows
positing less representations than those required in con-
structivist theories. As Rowlands [26.18] remarks:

“Here is nothing in Gibson’s theory itself – as op-
posed, perhaps, to his statements about his theory –
that entails or even suggests that all of the role
traditionally assigned to manipulation and trans-
formation of internal information-bearing structures
can be taken over by the manipulation and transfor-
mation of external information-bearing structures.”

In this moderate interpretation of Gibson’s theory of
direct vision, the need for some information processing
over internal representational states still persists, except
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that, in view of the fact that the information contained
in the visual input is richer than previously thought,
this need is attenuated. Therefore, visual perception in-
volves some sort of inferences.

Gibson’s theory was coined the theory of direct per-
ception because it relinquished the need for internal
information processing; instead, the viewers retrieve all
the information they need to detect the environment
directly from the environment without any internal pro-
cessing of any sort mediating the process of information
retrieval. If, however, some information processing over
internal representations is needed as well, as a moderate
form of Gibson’s theory asserts, can the qualification di-
rect be salvaged?

There is a sense in which it might. Suppose that
direct is construed so as to emphasize not the lack of
information processing operating on internal represen-
tations, but the fact that the information processing is
entirely data-driven, that is, guided by environmental
input and some principles that reflect regularities in the
environment, and the whole process is not influenced by
other internal nonvisual states of the viewer, such as the
viewer’s cognitive or emotional states. If this supposi-
tion is borne out, then visual perception is direct in the
sense that the whole process is data-driven and, as such,
the information processing used operates over informa-
tion retrieved exclusively from the environment. Note
that this presupposes that the principles guiding visual
processing do not constitute some form of intervention
on the part of the viewer whose contribution exceeds
what is given in the environment.

This assumption is borne out if visual perception
or at least some stage of it, is purely data-driven, that
is, cognitively and emotionally impenetrable. If cog-
nitive states penetrate and thus influence perceptual
processing, the viewer’s cognitive states actively con-
tribute to the formation of the percept and the visual
processing does not retrieve information directly from
the environment but only through some cognitive in-
tervention; visual perception, in this case, is not direct.
Norman [26.19] has argued along this line that the pro-
cessing along the dorsal visual pathway that guides our
on-line interactions with the environment, owing to the
fact that when it operates immediately on the visual in-
put it is entirely data-driven, is a visual function that
conforms very closely to Gibson’s direct theory. The
ventral visual pathway, in contradistinction that is re-
sponsible for object recognition and categorization is
clearly affected by cognition and, in this sense, is not
a direct visual function. Since both visual pathways are
found in the brain, the constructivist and the ecological
theories of perception can be reconciled.

Even though it seems abundantly clear that visual
perception requires a significant amount of information

processing, and in this sense one of Gibson’s main in-
sights is considered to be wrong, several of Gibson’s
insights have been incorporated in the constructivist
information-processing research program. For exam-
ple, most, if not all, information-processing theories
hold that most of the ambiguities that occur during the
information processing of the retinal input cannot be
resolved by that input alone and need top-down as-
sistance only when information comes from a static
monocular image. When additional information can be
derived from stereopsis and motion of real scenes, then
the information-processing program can resolve the
ambiguity without the need of a top-down flow of infor-
mation. If one takes into account the real input to human
vision, which is binocular and dynamic, there are few
ambiguities that cannot be resolved through a full con-
sideration of the products of the early visual processing
modules [26.20]. This shows that the dynamic and inter-
active character of vision solves several problems en-
countered within the information-processing research
program.

Our discussion about direct vision revealed an as-
pect of visual processing that traditional constructivist
theories did not initially consider, namely the interac-
tion of perception and action. The next kind of theory
of perceptual processing that we will examine views vi-
sual perception as inextricably linked with action and
uses the most recent neuropsychological evidence, vi-
sion science research, and computer modeling to both
substantiate this claim, and draw the details of how the
active visual brain works in order to provide a fully
fledged unifying model of perception and action. Al-
though this model aims to cover all modalities, for the
purpose of this chapter I will restrict the presentation
and discussion to visual perception.

26.2.3 Predictive Visual Brain: Vision
and Action

The basic tenet of the theory of ecological or direct vi-
sion is that all the information viewers need to recover
the visual scene that causes the retinal image is already
included in the incoming information in the optic ar-
ray. Little or no information processing is required for
the construction of the percept. The constructivist theo-
ries of visual perception, in contradistinction, underline
the necessity of information processing and state trans-
formations in the brain. The flow of information in the
brain is bidirectional; both top-down and bottom-up
signals are transmitted and the ensuing percept is the
result of the synergy between top-down and bottom-
up processing. This class of theories assumes that the
representation constructed at some level is transmit-
ted bottom-up to the neuronal assembly at the next
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immediate level where it is further processed. More-
over, recurrent signals return top-down to earlier levels
mainly to test hypotheses concerning aspects of the vi-
sual scene (recall that visual perception aims to recover
the visual scene that causes the retinal image and does
that by constructing increasingly more complex repre-
sentations of the probable aspects of the visual scene at
various spatial and temporal scales) until the percept is
constructed.

Recent empirical findings and modeling shed light
on the way the brain actually effectuates these pro-
cesses. These details, as we shall see, entail certain
deviations from the traditional constructivism image,
which concern (a) the sort of information transmitted
bottom-up; only prediction errors are transmitted to the
next level, (b) the nature of the representations con-
structed; they are distributions of probabilities rather
than having a unique value (note that this new approach
emphasizes the indispensable role of representations in
visual processing), and (c) the interaction between per-
ception and cognition. This last trait is very important
has important repercussions for our discussion on the
relation between visual processing and thinking.

According to this view of visual perception, brains
are predictive machines [26.4]:

“They are bundles of cells that support perception
and action by constantly attempting to match in-
coming sensory inputs with top-down expectations
or predictions. This is achieved using a hierarchical
generative model that aims to minimize prediction
error within a bidirectional cascade of cortical pro-
cessing.”

A hierarchical generative model as applied to visual
processing is a model of perceptual processes according
to which the brain uses top-down flow of information
(enabled by top-down neural connections) in an attempt
to generate a visual (meaning, in the brain) representa-
tion of the visual scene (in the environment) that causes
the light pattern impinging on the transducers and the
low-level visual responses to this light pattern. The
brain attempts to recover gradually the causal matrix
(the various aspects of a visual scene) that causes and
thus is responsible, for the retinal image seen as a data-
structure (i. e., the sensory data). The brain does that
by capturing the statistical structure of the sensory data,
that is, by discovering the deep regularities underlying
the retinal structure, on the very plausible assumption
that the deep structure underneath the sensory data re-
flects, so to speak, the causal structure of the visual
scene.

Hierarchical generative models attempt to achieve
this by constructing, at each level, hypotheses about
the probable cause of the information represented in

the immediately previous level, and testing these hy-
potheses by matching their predictions with the actual
sensory data at the preceding processing level. Sup-
pose, for example that a neuronal assembly at level l
receives from level l-1 information concerning differ-
ences in light intensities. The higher level attempts to
recover the probable edges that cause the variation in
light intensity and forms a hypothesis involving such
edges. Now, and this is the crucial part, if this hypoth-
esis were correct, that is, if the edges as represented in
the hypothesis were present in the environment, then
a certain pattern of variation of light intensities at the
appropriate local scale would have been present in the
sensory data. This prediction is transmitted top-down to
level l-1 and matched against the actual pattern of vari-
ations in light intensities. If there is a match (with an
acceptable degree of error deviation due to the inher-
ent noise of the signal, of course) no further action is
needed since the perceptual system assumes that it has
constructed the correct, at this spatial scale, represen-
tation of the relevant environmental input. If the match
reveals a discrepancy, that is, if an error in the prediction
is detected, this prediction error is transmitted bottom-
up to level l so that a new hypothesis be formulated
and tested until, eventually, no unacceptable prediction
error persists. If one thinks of the discovered error as
a surprise for the system, the system strives to correct
its hypotheses so that by making correct predictions,
the testing of the hypotheses yields no surprises; this is
a typical error-driven learning process where a system
learns, i. e., constructs a correct representation, by grad-
ually reducing error. The hierarchical generative models
hence generate, in essence, low-level states (the predic-
tions they make about the activities at the lower levels)
from high-level causes (the hypotheses that would, if
correct, explain the activity at the lower levels).

Bidirectional hierarchical structure allows the sys-
tem to [26.4]:

“infer its own priors (the prior beliefs essential to
the predicting routines) as it goes along. It does this
by using its best current model at one level as the
source of the priors for the level below, engaging in
a process of iterative estimation that allows priors
and models to coevolve across multiple linked lay-
ers of processing so as to account for the sensory
data.”

To form hypotheses concerning the probable cause
of the sensory data at a certain level, at a specific spa-
tial and temporal scale, the neuronal assembly at the
next level, say level l, uses information not only about
the sensory data at the previous level (or, to be precise,
information regarding its prediction error) that is trans-
mitted bottom-up, but also higher-level information that
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is transmitted to l either laterally, that is, from neuronal
assemblies at the same level (neurons in V1 process-
ing wavelengths inform other neurons in V1 processing
shape information, for example), or top-down from lev-
els higher in the hierarchy (neurons in V4, for instance,
are informed about the color of incoming information
from neurons in the inferotemporal cortex in the brain
(IT) as a result of precueing – that is, when a viewer
has been informed about the color of an object that will
appear on a screen). This higher-level information may
and usually does concern general aspects of the world
(such as solid objects do not penetrate each other, or
solid objects do not occupy exactly the same space at
the same time, etc.), and may also reflect knowledge
about specific objects learned through experience. All
this lateral and top-down flow of information provides
the context in which each neuronal assembly constructs
the most probable hypothesis that would explain the
sensory data at the lower level. Thus, context-sensitivity
is a fundamental and pervasive trait of the processing
of hierarchical predictive coding; the contextualized in-
formation significantly affects, and on occasions (as in
hallucinations)may override, the information carried by
the input.

The hierarchical predictive processing model can be
naturally extended to include action and thus closely
ties perception with action [26.4]. This is the action-
oriented predictive processing. Action-oriented predic-
tive processing extends the standard hierarchical predic-
tive model by suggesting that motor intentions actively
elicit, via the motor actions they induce, the ongo-
ing streams of sensory data at various levels that our
brains predict. In other words, once a prediction is made
about the state in the world that causes the transduced
information, the action-oriented predictive processes
engage in a search in the environment of the appropriate
worldly state. Suppose, for example, that owing to bad
illumination conditions, a perceiver is unsure about the
identity of an object in view. Its brain makes a predic-
tion about the putative object that causes the sensory
data the perceiver receives, and the perceiver moves
around the object in order to acquire a better view
that will confirm the prediction. By moving around,
the perceiver’s expectations about the proprioceptive
consequences of moving and acting directly cause the
moving and acting since where and when the perceiver
moves is guided by the aim that the perceiver’s action
brings the object into a better view.

It is worth pausing at this point to discuss briefly the
problem of nature of the relation between visual percep-
tion and action and, specifically, motion. Is this relation
constitutional, which means that if someone cannot
or does not move they cannot visually perceive any-
thing? This claim was initially made by Noe although,

in view of vehement criticism, Noe has attempted to
modify it without compromising the main tenets of his
views [26.21]:

“When you experience an object as cubical merely
on the basis of its aspect, you do so because you
bring to bear, in this experience, your sensorimo-
tor knowledge of the relation between changes in
cube aspects and movement. To experience a figure
as a cube, on the basis of how it looks, is to under-
stand how it looks changes as you move (emphasis
added).”

The sensorimotor knowledge consists of the expec-
tations of how our perception of an object changes as
we move around it, or as this object moves with respect
to us. These expectations constitute a form of practi-
cal knowledge, a knowing how as opposed to a knowing
that. Thus, to be able to experience visually an object,
one needs to have the ability to move around the object
and explore it. Visually experiencing the object literally
consists of grasping the relevant sensorimotor contin-
gencies, that is, the sensorimotor knowledge associated
with this specific object. There are two ways to read this
claim. According to the first reading, which Noe seems
to espouse judging from the previously cited passage,
to be able to visually perceive requires the actual exer-
cise of the ability to probe the world. According to the
second reading, visually perceiving an object only re-
quires the ability to probe the world but not the actual
exercise of this ability. The first reading entails imme-
diately that prior to exercising this ability, one does not
visually perceive the object. Since this is absurd, one
has to concede that viewers do not need to exercise ac-
tually the ability to probe the environment, it suffices
that they take recourse to their experience with similar
objects and retrieve the requisite sensorimotor contin-
gencies from experience. Even if one takes this line,
however, the problem remains that at the time of a first
encounter with an object to be able to see its, say, shape,
one should be able to probe the object either by mov-
ing around the object, or by having the object move
around them. Thus, when stationary viewers perceive
a stationary novel object, lacking any knowledge of sen-
sorimotor contingencies, they do not see its shape or its
other properties.

It follows that infants upon opening their eyes for
the first time and facing the world, by lacking any sen-
sorimotor knowledge and by not probing the environ-
ment, they do not see anything. This claim flies to face
of countless empirical evidence, which shows that there
is something fundamentally wrong with equating visual
perception with understanding sensorimotor contingen-
cies and deploying the relevant practical knowledge.
This entails, in turn, that the relation between visual
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perception and action, no matter how important it is,
is not a constitutional relation; one gets to see the world
even if both they and the world are stationary, although
it goes without saying that their experience will be re-
stricted compared to other viewers who can probe the
environment. They could not visually experience, for
example, Marr’s 3-D sketch because they lack knowl-
edge of the unseen surfaces of objects.

This unity between perception and action emerges
most clearly in the context of active inference, where
the agent moves its sensors in ways that amount to ac-
tively seeking or generating the sensory consequences
that their brains expect. “Perception, cognition, and ac-
tion work closely together to minimize sensory predic-
tion errors by selectively sampling, and actively sculpt-
ing, the stimulus array” [26.4]. Their synergy moves
a perceiver in ways that fulfill a set of expectations
that constantly change in space and time. Accordingly,
perceptual inference is necessary to induce prior expec-
tations about how the sensorium unfolds and action is
engaged to resample the world to fulfill these expecta-
tions.

Since the construction of the representations of the
putative causes of the sensory inputs is made possible
through a synergy of bottom-up processing transmitting
the prediction errors and top-down processing transmit-
ting for testing the hypotheses concerning the probable
causes of the input and in so far as the processes con-
structing these hypotheses are informed by high-level
knowledge of the sort discussed above, visual percep-
tion unifies cognition and thinking with sensation; these
two become intertwined. This means that perception in-
extricably involves thinking. Notice that this account
of visual perception necessarily involves representa-
tions; it requires that each level retain a representation
of the data represented at this level so that the top-
down transmitted predictions of the hypotheses formed
at subsequent higher levels be matched against the in-
formation represented at the lower level in order for
the hypothesis to be tested. It also requires the repre-
sentation of the putative causes of the sensory data at
the preceding level; these are called the representation-
units, which operate along the error units (the units
that compute the error signal, that is, the discrepancy
between prediction and actual data) in a hierarchical
generative system.

Furthermore, testing hypotheses and altering them
as a result of any prediction errors until the prediction
error is minimized and thus until the most probable
cause of the sensory data has been discovered, is an
inference. Being a probabilistic inference that aims to

discover the most probable hypothesis that explains
away a set of data, it is most likely a Bayesian inference.
It is very plausible, therefore, that the computational
framework of hierarchical predictive processing real-
izes a Bayesian inferential strategy (see Appendix 26.C
for an analysis of Bayes’ theorem). Indeed, recent work
on Bayesian causal networks [26.22] presents the brain
as a Bayesian net operating at various space and time
scales.

What Bayes’ theorem, on which this strategy is
based, ensures is that a hypothesis is eventually selected
that makes the best prediction about the sensory data
minimizing thereby the prediction error and thus best
explains them away; that is a hypothesis that by hav-
ing the highest posterior probability provides the best
fit for the sensory data. The construction of this hypoth-
esis crucially and necessarily involves the context, as
it is clearly expressed in Bayes’ equation in the form
of the prior probability for the hypothesis P.A/, whose
value depends on the context. That is to say, it is the
context that provides the initial plausibility of a hypoth-
esis before the hypothesis is tested.

This enables Clark [26.4] to claim that in the
framework of predictive brains that use hierarchical
generative processing perception becomes theory-laden
in the specific sense that what viewers perceive de-
pends crucially on the set of priors (that is, the hy-
potheses that guide the predictions about the matrix
of the sensory data at the lower processing levels,
which the hypothesis projects) that the brain brings
to bear in its attempt to predict the current sensory
data. This remark brings us back to the main theme
of this chapter, namely, the relation between perceiving
and thinking. If thinking necessarily implicates discur-
sive inferences and deploying concepts, as it usually
does, Clark’s claims entail that perception employs
from its onset concepts and draws discursive inferences.
To assess this dual claim, we must examine the pro-
cesses of vision to determine first whether concepts
are used and if the answer is affirmative the extent
to which they are being used, and second, whether
the inferences that are undoubtedly used in percep-
tion must necessarily be discursive. I hasten to note
that, with respect to this last problem, nowhere in his
account does Clark suggest that the inferences must
be discursive. In fact, the sources he refers to, espe-
cially those concerning connectionist neural networks,
suggest that the inferences on which perception re-
lies may take another form and need not necessarily
involve propositionally structured premises and conclu-
sions.
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26.3 Stages of Visual Processing

I said above that we must examine the processes of
vision with a view to determine whether and, depend-
ing on the answer to this question, the extent to which,
cognition penetrates visual perception in the sense that
perceptual processing uses conceptual information that
is either transmitted top-down to perceptual circuits, or
is inherently embedded in visual circuits. In the litera-
ture, visual processing is divided into two main stages,
to wit, early vision and late vision.

26.3.1 Early Vision

Early vision is a term used to denote the part of
perceptual processing that is preattentive, where at-
tention means top-down, cognitively driven attention.
Lamme [26.23, 24] argues for two kinds of process-
ing that take place in the brain, the feedforward sweep
(FFS) and recurrent processes (RP). In the FFS, the sig-
nal is transmitted only from the lower (hierarchical) or
peripheral (structural) levels of the brain to the higher
or more central ones. There is no feedback; no sig-
nal can be transmitted top-down as in RP. Feedforward
connections in conjunction with lateral modulation and
recurrent feedback that occurs and is restricted within
the early perceptual areas (local recurrent processing –
LRP) extract high-level information that is sufficient to
lead to some initial categorization of the visual scene
and selective behavioral responses.

When a visual scene is being presented, the feedfor-
ward sweep reaches V1 in about 40ms. Multiple stimuli
are all represented at this stage. The unconscious FFS
extracts high-level information that could lead to cate-
gorization, and results in some initial feature detection.
LRP produces further binding and segregation. The
representations formed at this stage are restricted to in-
formation about spatiotemporal and surface properties
(color, texture, orientation, motion, and perhaps to the
affordances of objects), in addition to the representa-
tions of objects as bounded, solid entities that persist in
space and time. (Affordances is the term Gibson [26.16]
used to refer to the functional properties of objects (an
object affords eating to an organism, grasping to an or-
ganism, etc.). Clark [26.25] defines affordance as “the
possibilities for use, intervention and action which the
physical world offers a given agent and are determined
by the fit between the agent’s physical structure, capac-
ities and skills and the action-related properties of the
environment itself”. Affordances are directly perceiv-
able by an organism in the sense that an object does
not have to be classified as a member of a certain cate-
gory in order for the organism to draw the conclusion,
or use the relevant knowledge, that this object can be

used in a certain way by the organism; the organism
just perceives the affordance, that is, the opportunity
of action on this specific object. Affordances have two
important properties. First, they are determined by the
functional form of an object, that is, a combination of
the object’s visible properties should suffice to deter-
mine whether this object has an affordance relative to
some viewer. Affordances are based on certain invariant
characteristics of the environment. Second, the affor-
dance is always relative to the viewing organism; this is
a consequence of the fact that affordances provide or-
ganisms with the opportunity to interact with objects in
their environment. This interaction depends on the ob-
jects’ properties but it also depends on the needs and the
constitution of the organism. A fly, for instance, affords
eating to a frog but not to a human.)

At this level there are nonattentional selective mech-
anisms that prevent many stimuli from reaching aware-
ness, even when attended to. Such stimuli are the high
temporal and spatial frequencies, physical wavelength
(instead of color), crowded or masked stimuli and so
forth. FFS results in some initial feature detection. Then
this information is fed forward to the extrastriate areas.
When it reaches area V4 recurrent processing occurs.
Horizontal and recurrent processing allows interaction
between the distributed information along the visual
stream. At this stage, features start to bind and an initial
coherent perceptual interpretation of the scene is pro-
vided. Initially, RP is limited to within visual areas; it
is local. At this level one can be phenomenally aware
of the content of perceptual states. At these interme-
diate levels there is already some competition between
multiple stimuli, especially between close-by stimuli.
The receptive fields that get larger and larger going up-
stream in the visual cortical cannot process all stimuli in
full and crowding phenomena occur. Attentional selec-
tion intervenes to resolve this competition. Signals from
higher cognitive centers and output areas intervene to
modulate processing; this is global RP and signifies the
inception of late vision.

Lamme [26.23, 24] discusses the nature of informa-
tion that has achieved local recurrent embedding. He
suggests that local RP may be the neural correlate of
binding or perceptual organization. However, it is not
clear whether at this preattentional stage the binding
problem has been solved. The binding of some features,
such as its color and shape, may require attention, while
other feature combinations are detected preattentively.
So, before attention has been allocated, the percept con-
sists of only tentatively but uniquely bound features that
form the proto-objects [26.26]. Lamme [26.24] argues
that Marr’s 2 1

2D surface representation of objects and
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their surface properties are extracted during the local
RP stage. Other research [26.27] suggests that spatial
relations are extracted at this recurrent stage. In addi-
tion motion and size are represented in cortical areas in
which local RP take place.

It should be added that Marr thought of the 2 1
2D

sketch as the final product of a cognitively unaffected
stage of visual processing, since, as we have seen, the
formation of the 3-D sketch relies on semantic, concep-
tual knowledge. If, as is usually thought, cognitive ef-
fects on perception are mediated by cognitively-driven
top-down attention, Lamme’s proposal that early vision
is not affected by this sort of attention echoes Marr’s
view that early vision is not affected by cognition and
is thus CI, a view shared by Pylyshyn [26.28].

Current research (see [26.4] for a discussion) sheds
light on the nature of inferences involved in the hy-
pothesis testing implicated in early vision. Specifically,
the top-down and lateral effects within early vision aim
to test hypotheses concerning the putative distal causes
of the sensory data encoded in the lower neuronal as-
semblies in the visual processing hierarchy. This testing
assumes the form of matching predictions made on the
basis of this hypothesis about the sensory information
that the lower levels should encode assuming that the
hypothesis is correct, with the current, actual sensory
information encoded at the lower levels. Eventually, the
hypothesis that best matches the sensory data is se-
lected and the whole process of hypothesis selection
can be construed as an abductive inference or infer-
ence to the best explanation, which could very well
be carried through by Bayesian nets. One should note
that this account of early vision shows that the standard
constructivist theories of visual processing can be rec-
onciled and greatly benefit from the recent conceptions
of the brain as a generative, predictive machine.

There seems to be, however, a crucial discrepancy
between the account of early vision presented here and
Clark’s account of generative hierarchical predictive
models. It concerns the role of context, or previously
acquired knowledge, in the formation of the work-
ing hypotheses and its direct consequence that because
of this trait, visual perception and discursive thinking
are inseparable. If early vision is restricted to pro-
cesses occurring within the visual cortex and excludes
any cognitive influences, then first, previous knowledge
seems to play no role in the formation of the working
hypotheses, and second, early vision does not involve
any thinking since the latter requires the participation of
the cognitive centers of the brain. Moreover, the repre-
sentations in early vision are analogue-like, iconic and
not symbolic and this entails that early vision cannot be
some sort of discursive thinking since the latter operates
on symbolic forms.

With respect to the first point, there is actually no
real discrepancy. Recall that lateral and local recur-
rent processes play a fundamental role in the formation
of the hypotheses that are constructed in early vision.
Moreover, as we shall see in the next section, all visual
processes including those of early vision, are restricted
by certain principles, or better constraints, that reflect
general regularities about the world and its geometry.
Now, one could say that these constraints constitute
a body of knowledge that informs early vision process-
ing and affects early vision from the within and not in
a top-down manner, since as we saw there are no cog-
nitive top-down effects in early vision. This as we shall
see, however, is misleading because these constraints do
not constitute some form of knowledge that by affect-
ing early vision renders it theory-laden, as Clark claims.
Finally, early vision is also affected by associations of
object properties that reflect statistical regularities in the
environment and are stored in the early visual circuits
through perceptual learning. I argue in the next sec-
tion that these associations do not constitute a body of
knowledge that affects early vision rendering it theory-
laden. The lateral and local recurrent processes, the
constraints, and the associations built in the early vi-
sual circuits constitute a rich context that contributes
significantly to the formation of the working hypothe-
ses that early vision neuronal assemblies construct to
explain the sensory data at the lower processing lev-
els. This context, however, does not involve any body
of knowledge that renders perception theory-laden, as
theories are traditionally understood.

As far as the second point is concerned, there is in-
deed a discrepancy because the account of early vision
and Clark’s views. Early vision, by being CI and con-
ceptually encapsulated does not involve thinking and is
radically different from thinking. In fact, as I argue in
Sect. 26.5, not even late vision that involves concepts
and is affected by the viewers’ knowledge about the
world is like thinking.

26.3.2 Late Vision

The conceptually modulated stage of visual process-
ing is called late vision. Starting at 150�200ms, sig-
nals from higher executive centers including mnemonic
circuits intervene and modulate perceptual process-
ing in the visual cortex and this signals the onset
of global recurrent processing (GRP). In 50ms low
spatial frequency (LSF) information reaches the IT
and in 100ms high spatial frequency (HSF) infor-
mation reaches the same area. (LSF signals precede
LSF signals. LSF information is transmitted through
fast magnocellular pathways, while HSF information
is transmitted through slower parvocellular pathways.)
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Within 130ms, parietal areas in the dorsal system but
also areas in the ventral pathway (IT cortex) semanti-
cally process the LSF information and determine the
gist of the scene based on stored knowledge that gener-
ates predictions about the most likely interpretation of
the input. This information reenters the extrastriate vi-
sual areas and modulates (at about 150ms) perceptual
processing facilitating the analysis of HSF, for example
by specifying certain cues in the image that might facil-
itate target identification [26.29–31]. Determining the
gist may speed up the FFS of HSF by allowing faster
processing of the pertinent cues, using top-down con-
nections to preset neurons coding these cues at various
levels of the visual pathway [26.32].

At about 150ms, specific hypotheses regarding the
identity of the object(s) in the scene are formed using
HSF information in the visual brain and information
from visual working memory (WM). The hypothesis is
tested against the detailed iconic information stored in
early visual circuits including V1. This testing requires
that top-down signals reenter the early visual areas
of the brain, and mainly V1. Indeed, evidence shows
that V1 is reentered by signals from higher cognitive
centers mediated by the effects of object- or feature-
centered attention at 235ms post-stimulus [26.33, 34].
This leads to the recognition of the object(s) in the
visual scene. This occurs, as signaled by the P3 event-
related-potentials (ERP) waveform, at about 300ms in
the IT cortex, whose neurons contribute to the integra-
tion of LSF and HSF information. (The P3 waveform
is elicited about 250�600ms and is generated in many
areas in the brain and is associated with cognitive pro-
cessing and the subjects’ reports. P3 may signify the
consolidation of the representation of the object(s) in
working memory.)

A detailed analysis of the form that the hypothesis
testing might take is provided by Kosslyn [26.35]. Note
that one need not subscribe to some of the assumptions
presupposed by Kosslyn’s account, but these disagree-
ments do not undermine the framework. Suppose that
one sees an object. A retinotopic image is formed in the
visual buffer, which is a set of visual areas in the occip-
ital lobe that is organized retinotopically. An attentional
window selects the input from a contiguous set of points
for detailed processing. This is allowed by the spatial
organization of the visual buffer. The information in-
cluded in the attention window is sent to the dorsal and
ventral system where different features of the image are
processed. The ventral system retrieves the features of
the object, whereas the dorsal system retrieves infor-
mation about the location, orientation, and size of the
object. Eventually, the shape, the color, and the texture
of the object are registered in anterior portions of the
ventral pathway. This information is transmitted to the

pattern activation subsystems in the IT cortex where the
image is matched against representations stored there,
and the compressed image representation of the ob-
ject is thereby activated. This representation (which is
a hypothesis regarding the identity, that is, class mem-
bership of an object) provides imagery feedback to
the visual buffer where it is matched against the input
image to test the hypothesis against the fine pictorial
details registered in the retinotopical areas of the visual
buffer. If the match is satisfactory, the category pattern
activation subsystem sends the relevant pattern code to
associative or WM, where the object is tentatively iden-
tified with the help of information arriving at the WM
through the dorsal system (information about size, lo-
cation, and orientation). Occasionally the match in the
pattern activation subsystems is enough to select the
appropriate representation in WM. On other occasions,
the input to the ventral system does not match well a vi-
sual memory in the pattern activation subsystems. Then,
a hypothesis is formed inWM. This hypothesis is tested
with the help of other subsystems (including cognitive
ones) that access representations of such objects and
highlight their more distinctive feature. The informa-
tion gathered shifts attention to a location in the image
where an informative characteristic or an object’s dis-
tinctive feature can be found, and the pattern code for
it is sent to the patternactivation subsystem and to the
visual buffer where a second cycle of matching com-
mences.

Thus, the processes of late vision rely on recurrent
interactions with areas outside the visual stream. This
set of interactions is called global recurrent processing
(GRP). In GRP, standing knowledge, i. e., information
stored in the synaptic weights is activated and modu-
lates visual processing that up to that point was concep-
tually encapsulated. During GRP the conceptualization
of perception starts and the states formed have partly
conceptual and eventually propositional contents. Thus,
late vision involves a synergy of perceptual bottom-up
processing and top-down processing, where knowledge
from past experiences guides the formation of hypothe-
ses about the identity of objects. This is the stage where
the 3-D sketch (that is, the representation of an object
as a volumetric structure independently of the viewer’s
perspective) is formed. This recovery cannot be purely
data-driven since what is regarded as an object depends
on the subsequent usage of the information and thus
depends on the knowledge about objects. Seeing 3-D
sketches is an instance of amodal completion, i. e., the
representation of object parts that are not visible from
the viewer’s standpoint. (Amodal completion is the per-
ception of the whole of an object or surface when only
parts of it affect the sensory receptors. An object will
be perceived as a complete volumetric structure even if
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only part of it, namely, its facing surface, projects to the
retina and thus is viewed by the viewer; it is perceived
as possessing internal volume and hidden rear surfaces
despite the fact that only some of its surfaces are ex-
posed to view. Whether this perception involves visual
awareness, in which case the brain completes the miss-
ing features through mental imagery, or visual under-
standing only, which means that the hidden features are
not present in the phenomenology of the visual scene
but are thought of, is a matter of debate.). In amodal
completion, one does not have a perceptual impression
of the object’s hidden features since the perceptual sys-
tem does not fill in the missing features as happens in
modal perception; the hidden features are not perceptu-
ally occurrent (see Appendix 26.D for a discussion of
modal and amodal perception or completion).

One readily notices that Kosslyn’s account of hy-
pothesis testing naturally fits the schema of hierar-
chical generative predictive models as discussed in
Clark [26.4]. The main themes of this schema are
present in Kosslyn’s account. These are: the generation
of hypotheses at a higher level of visual processing, the
crucial role of context or previously acquired knowl-
edge in the formation of these hypotheses, and the
testing of these hypotheses through their predictions
against the rich iconic information stored in the lower

levels in the visual hierarchy. The whole process fits the
scheme of an abductive inference or inference to the
best explanation that could be carried out by means of
Bayesian networks.

There is a marked difference between the abductive
inferences involved in early vision and those involved
in late vision; the latter but not the former are informed
by knowledge properly speaking, that is, by information
that is articulated in thought and thus contains concepts.
This might tempt one to think that late vision may be
akin to thought and thus that there is a stage of visual
processing that has the most crucial traits of thinking,
i. e., it involves discursive inferences justifying thus in
part Clark’s, Spelke’s and others’ belief to that effect.
Against this, I am going to argue in Sect. 26.5, that
late vision despite its being informed by conceptually
articulated knowledge, differs in significant ways from
thinking, the most important difference being that late
vision does not engage in discursive inferences.

I have claimed that late vision constructs gradu-
ally a representation that best matches the visual scene
through a set of processes that test a series of hypothe-
ses by matching these hypotheses against stored iconic
information. In other words, the output of late vision,
a recognitional belief, is the result of an abductive in-
ference.

26.4 Cognitive Penetrability of Perception and the Relation
Between Early Vision and Thinking

In assessing claims relating perception to thinking and
cognition, it is of paramount importance to examine
the role that concepts play in modulating perceptual
processing. This is so because if the processes of vi-
sual perception are the same as those that lead to belief
formation, which means that perception and thinking
are of the same nature and cannot be separated, then
since belief formation is a process that requires the de-
ployment of concepts, so should perception; perception
should be conceptual through and through.

I have argued elsewhere [26.36] that early vision,
the first stage of visual processing, is CI and concep-
tually encapsulated in the sense that its processes are
not affected directly, that is, in an on-line manner from
cognitive states. There are, as a mater of course, many
indirect cognitive effects on early vision, such as pre-
cueing effects and the effects of spatial attention in its
capacity as a determinant of the focus of gaze, but these
effects do not constitute cases of genuine CP [26.36]
because, first, concepts do not enter the content of the
states of early vision although they causally affect it,
and second, because of the preceding fact, these sorts

of cognitive effects can be mitigated and thus do not
threaten the epistemological role of early vision as
a neutral arbitrer of perceptual judgments. If this view
is correct, early vision being CI does not employ any
concepts and thus it cannot be like thinking, which nec-
essarily involves concepts.

One might object that this claim overlooks the
possibility that concepts are embedded in the circuits
subserving early vision, rendering it conceptual from
the within as it were and not because of any top-down
cognitive influences. Being conceptually affected and
by using inferences, there is no obstacle in thinking
of early vision as akin to thinking. This objection is
reinforced by two empirical facts. First, as we have
seen, all stages of visual processing are restricted by
a set of principles or constraints that aim to solve the
various problems of underdetermination. These prin-
ciples contain concepts and exemplify some form of
knowledge that renders early vision theory-laden; it
follows that early vision can be like thinking owing
to its inherent structure. Second, as a result of per-
ceptual learning, many an environmental regularity are
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learned and stored in the early visual circuits to fa-
cilitate the processing of familiar input. Since these
associations could arguably be construed as involving
concepts, a claim could be made that early vision if af-
fected by concepts.

In what follows, I examine these two objections and
argue that both sorts of phenomena do not signify the
CP and theory-ladenness of perception. This is so be-
cause, first, they do not entail that there are any concepts
embedded in early vision, and second, because it is
doubtful whether they contain any representations. This
is also important for the wider claim that visual percep-
tion is like thinking, since thinking necessarily involves
inferences driven by representations of both premises
and the rules of inferences. If it turns out, as I argue
here, that the transformation rules that visual percep-
tion employs to process its states are not represented
anywhere in the system, this would severely undermine
the claim that perceptual inferences are the same as the
inferences used in belief formation.

26.4.1 The Operational Constraints
in Visual Processing

There is extensive evidence that there is an impor-
tant body of information that affects perception not in
a top-down manner but from within and this might
be construed as evidence for the CP of visual percep-
tion from its inception. The perceptual system does not
function independently of any kind of internal restric-
tions. Visual processing at every level is constrained
by certain principles or rather operational constraints
that modulate information processing. Such constraints
are needed because distal objects are underdetermined
by the retinal image, and because the percept itself is
underdetermined by the retinal image. Unless the pro-
cessing of information in the perceptual system is con-
strained by some assumptions about the physical world,
perception is not feasible. Most computational accounts
hold that these constraints substantiate some reliable
generalities of the natural physical world as it relates to
the physical constitution and the needs of the perceiving
agents. There is evidence that the physiological visual
mechanisms reflect these constraints. Their physical
making is such that they implement these constraints,
which are thus hardwired in perceptual systems (see
Appendix 26.E for a list of some of these constraints).

These are Raftopoulos’ [26.36] operational con-
straints and Burge’s [26.37] formation principles. The
operational constraints reflect higher-order physical
regularities that govern the behavior of worldly objects
and the geometry of the environment and which have
been incorporated in the perceptual system through
causal interaction with the environment over the evolu-

tion of the species. They allow us to lock onto medium
size lumps of matter, by providing the discriminatory
capacities necessary for the individuation and tracking
of objects in a bottom-up way; they allow perception to
generate perceptual states that present worldly objects
as cohesive, bounded, solid, and spatiotemporally con-
tinuous entities.

The constraints are not available to introspection,
function outside the realm of consciousness, and can-
not be attributed as acts to the perceiver. One does not
believe implicitly or explicitly that an object moves in
continuous paths, that it persists in time, or that it is
rigid, though one uses this information to parse and
index the object. These constraints are not perceptu-
ally salient but one must be sensitive to them if one
is to be described as perceiving their world. The con-
straints constitute the modus operandi of the perceptual
system and not a set of rules used by the percep-
tual system as premises in perceptual inferences even
though the modus operandi of the visual system con-
sists of operations determined by laws describable in
terms of computation principles. They are reflected in
the functioning of the perceptual system and can be
used only by it. They are available only for visual pro-
cessing, whereas theoretical constraints are available
for a wide range of cognitive applications. These con-
straints cannot be overridden since they are not under
the perceiver’s control; one cannot decide to substi-
tute them with another body of constraints even if one
knows that they lead to errors.

Being hardwired, the constraints are not even con-
tentful states of the perceptual system. A state is formed
through the spreading of activation and its modification
as it passes through the synapses. The hardwired con-
straints specify the processing, i. e., the transformation
from one state to another, but they are not the result
of this processing. They are computational principles
that describe transitions between states in the perceptual
system. Although the states that are produced by means
of these mathematical transformations have contents,
there is no reason to suppose that the principles that
specify the mathematical transformation operations are
states of the system or contents of states in the system.
If they are not states of the visual system, the princi-
ples that express them linguistically cannot be contents
of any kind. Even though the perceptual system uses
the operational constraints to represent some entity in
the world and thus operates in accord with the princi-
ples reflected in the constraints (since the constraints are
hardwired in the perceptual system, physiological con-
ditions instantiate the constraints), the perceiver does
not represent these principles or the constraints in any
form. By the same token, these principles cannot be
thought of as implicating concepts, since concepts are
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representational. For this reason, perceptual operations
should not be construed as inference rules, although
they are describable as such, and they do not consti-
tute either a body of knowledge or some theory about
the world.

Recent work on Bayesian causal networks [26.4]
draws a picture of the brain as a Bayesian net oper-
ating at various space and time scales, and suggests
that there is a sharp distinction between internal prob-
abilistic dependencies that can be explained by internal
causal connections and those that cannot. Only those
that cannot be explained internally carry information
about the external world. Applying this to the case
of the neuronal mechanisms that implement the oper-
ational constraints at work in visual processing, one
could say that these mechanisms perform transforma-
tions that depend entirely on the internal probabilistic
dependencies in the system as they are determined by
the hardwired circuitry that realizes the internal causal
connections and thus there is nothing representational
about them.

These considerations allow us to address Ca-
vanagh’s [26.38] claim that the processes that lead to
the formation of a conscious percept constitute visual
cognition in virtue of their use of inferences. The con-
struction of a percept is “the task of visual cognition
and, in almost all cases, each construct is a choice
among an infinity of possibilities, chosen based on like-
hood, bias, or a whim, but chosen by rejecting other
valid competitors” [26.38]. This process is an inference
in that “it is not a guess. It is a rule-based extension
from partial data to the most appropriate solution”; in
the terminology of this chapter, the selection process is
an abduction.

According to Cavanagh [26.38], for inference to
take place the visual system should not rely to purely
bottom-up analyses of the image that use only retinal
information, such as sequences of filters that under-
lies facial recognition, or the cooperative networks that
converge on the best descriptions of surfaces and con-
tours. Instead, the visual system should use some object
knowledge, which is nonretinal, context-dependent in-
formation. By object knowledge Cavanagh means any
sort of nonretinal information that may be needed for
the filling in that leads to the construction of the percept.
This knowledge consists of rules that guide or constrain
visual processing in order to solve the underdetermina-
tion problem that I mentioned above; they provide the
rule-based extension from partial data that constitutes
an inference. These rules do not influence visual pro-
cessing in a top-down way, since they reside within the
visual system; they are “from the side” [26.39].

The discussion concerning the nature of the op-
erational constraints suggests that, their crucial role

in perceptual processing notwithstanding, these con-
straints do not justify Cavanagh’s characterization of
visual perception as visual cognition, if cognition is
thought of as involving discursive inferences.

26.4.2 Perceptual Learning

Evidence from studies showing early object classifica-
tion effects suggests that to the extent that object classi-
fication presupposes object knowledge, this knowledge
affects early vision in a top-down manner rendering it
theory-laden. Moreover, even if one could show that
these effects do not entail the CP of early vision, one
could argue that since perceptual learning affects the
way one sees the world, some experiences are learned
and form memories that are stored in visual memory
and affect perceptual processing from its inception. Our
experiences shape the way we see the world.

Indeed, visual memories affect perception. Famil-
iarity with objects or scenes that is built through
repeated exposure to objects or scenes (sometimes
one presentation is enough), or even repetition mem-
ory [26.40] facilitate search, affect figure from ground
segmentation, speed up object identification and image
classification, etc. [26.41–43].

Familiarity can affect visual processing in different
ways. It may facilitate object identification and catego-
rization, which are processes that take time since their
final stage occurs between 300�600ms after stimu-
lus onset as is evidenced by the P3 responses in the
brain, but their earlier stage starts about 150ms after
stimulus onset [26.44–46]. One notices that familiarity
intervenes during the latest stage of visual processing
(300�360ms). These effects involve the higher cogni-
tive levels of the brain at which semantic information
and processing, both being required for object identifi-
cation and categorization, occur [26.30]. In this sense,
these sort of familiarity effects do not threaten the CI of
early vision, which has ended about 120ms after stim-
ulus onset.

Familiarity, including repetition memory, also af-
fects object classification (whether an image portrays an
animal or a face), a process that occurs in short latencies
(95�100ms and 85�95ms respectively) [26.47–49].
These early effects may pose a threat to the CI of early
vision since they cannot be considered post-sensory.
The threat would materialize should the classification
processes either require semantic information to in-
tervene or require the representations of objects in
working memory to be activated, since that would, too,
mean conceptual involvement.

Researchers however unanimously agree that the
early classification effects in the brain result from the
FFS and do not involve top-down semantic information,
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nor do they require the activation of object memories.
The brain areas involved are low-level visual areas (in-
cluding the FEF – front eye fields) from V1 to no
higher than V4 [26.48] or perhaps a bit more upstream
to posterior IT [26.42] and lateral occipital complex
(LOC) [26.49].

The early effects of familiarity may be explained
by invoking contextual associations (target-context spa-
tial relationships) that are stored in early sensory ar-
eas to form unconscious perceptual memories [26.50]
which, when activated from incoming signals that bear
the same or similar target-context spatial relationships,
modify the FFS of neural activity resulting in the facil-
itating effects mentioned above. Thus, what is involved
in the phenomenon are certain associations built in the
early visual system that once activated speed up the
feedforward processing. This is a case of rigging-up the
early visual processing; it is not a case of top-down cog-
nitive effects on early visual processing.

The early effects may also be explained by appeal-
ing to configurations of properties of objects or scenes.
Currently, neurophysiological research [26.40, 49], psy-
chological research [26.42], and computation model-
ing [26.51] suggest that what is stored in early visual
areas are implicit associations representing fragments
of objects and shapes, or edge complexes, as opposed to
whole objects and shapes. One of the reasons that have
led researchers to argue that it is object and shape frag-
ments that are used in rapid classifications instead of
whole objects and shapes is the following: If these as-
sociations reflecting some sort of object recognition can
affect figure-ground segmentation as we have reasons to
believe [26.42] in view of the fact that figure-ground
segmentation occurs very early (80�100ms) [26.52]
these associations must be stored in early visual areas
(up to V4, LO and posterior IT) and cannot be the rep-
resentations stored in, say, anterior IT. The earlier visual
areas store object and shape fragments and not holistic
figures and shapes [26.40, 51].

The associations that are built in, through learn-
ing, in early visual circuits reflect in essence the
statistical distribution of properties in environmental
scenes [26.32, 53]. The statistical differences in physi-

cal properties of different subsets of images are detected
very early by the visual system before any top-down
semantic involvement as is evidenced by the elicita-
tion of an early deflection in the differential between
animal-target and nontarget ERP’s at about 98ms (in
the occipital lobe) and 120ms (in the frontal lobe). The
low-cues could be retrieved very early in the visual sys-
tem from a scene by analyzing the energy distribution
across a set of orientation and spatial frequency-tuned
channels [26.54]. This suggests that the rapid image
classification may rely on low-level, or intermediate-
level cues [26.51] that act diagnostically, that is, they
allow the visual system to predict the gist of the scene
and classify images very fast. These cues may be pro-
vided by coarse visual information, say by low-level
spatial frequency information and thus the visual sys-
tem does not have to rely on high-level fully integrated
object representations in order to be able to classify
rapidly visual scenes.

It follows that the classification of an object that oc-
curs very early during the fast FFS at about 85�100ms
is due to associations regarding shape and object frag-
ments stored in early visual areas and does not reflect
any top-down cognitive effects on, that is, the CP of,
early vision. Thus, early object classification is not
a sign of the theory-ladenness of early vision, since the
knowledge about the world does not affect it in a top-
down manner.

To recapitulate the results of our discussion in
this section, I have argued that neither the operational
constraints operating in visual perception, nor percep-
tual learning entail that concepts affect early vision.
Moreover, they do not entail that visual processing in
general is theory-laden because of the role of these con-
straints, since they are not representational elements
and any theory constitutively implicates representa-
tional elements. On the other hand, both the operational
constraints and the effects of perceptual learning pro-
vide the context in which early vision constructs its
hypotheses, and part of the context in which late vision
operate, the other part being the viewer’s knowledge of
the world, which, as I have said, affects late vision but
not early vision.

26.5 Late Vision, Inferences, and Thinking

Jackendoff [26.55] distinguishes visual awareness from
visual understanding. There is a qualitative difference
between the experience of a 3-D sketch and the expe-
rience of a 2 1

2D sketch. Although one is in some sense
aware of the 3-D sketch or of category-based represen-
tations, however, this is not visual awareness but some

other kind of awareness. Visual awareness is awareness
of Marr’s 2 1

2D sketch, which is the viewer-centered
representation of the visible surfaces of objects, while
the awareness of the 3-D sketch is visual understand-
ing. Thus, the 3-D sketch, which includes the unseen
surfaces that are not represented in the 2 1

2D sketch,
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is a result of an inference. These views belong to the
belief-based account of amodal completion: the 3-D
sketch is the result of beliefs abductively inferred from
the object’s visible features and other background in-
formation from past experiences (see Appendix 26.D
for an explanation of amodal and modal completion or
perception).

The problem is whether the object identification
that occurs in late vision (which, as we have seen
most likely constitutes in essence an abductive infer-
ence) and depends on concepts should be thought of as
a purely visual process or as a case of discursive under-
standing involving discursive inferences. If late vision
involves conceptual contents and if the role of con-
cepts and stored knowledge consists of providing some
initial interpretation of the visual scene and in form-
ing hypotheses about the identity of objects that are
tested against perceptual information, one is tempted
to say that this stage relies on inferences and thus dif-
fers in essence from the purely perceptual processes
of early vision. Perhaps it would be better to construe
late vision as a discursive stage involving thoughts, in
the way of epistemic seeing, where seeing is used in
a metaphorical nonperceptual sense, as where one says
of his friend whom she visited I see he has left, based
on perceptual evidence [26.56]. It is, also possible that
Dretske [26.57, 58] thinks that seeing in the doxastic
sense is not a visual but rather a discursive stage.

One might object, first, that abandoning this usage
of to see violates ordinary usage. A fundamental ingre-
dient of visual experience consists of meaningful 3-D
solid objects. Adopting this proposal would mean that
one should resist talking of seeing tigers and start talk-
ing about seeing viewer-centered visible surfaces. “By
this criterion, much of the information we normally take
to be visually conscious would not be, including the
3-D shape of objects as well as their categorical iden-
tity” [26.59].

More to the point, I think that one should not
assume either that late vision involves abductive in-
ferences construed as inferential discursive-state trans-
formations that constitutively involve thoughts in the
capacity of premises in inferences whose conclusion is
a recognitional belief, or that late vision consists of dis-
cursively entertaining thoughts; if thinking is construed
as constitutively implicating discursive argumentation,
visual perception is different from thinking in some
radical ways. The reason is twofold. First, seeing an ob-
ject is not the result of a discursive inference, that is,
a movement in thought from some premises to a con-
clusion, even though it involves concepts and intrastate
transformations. Second, late vision is a stage in which
conceptual modulation and perceptual processes form
an inextricable link that differentiates late vision from

discursive stages and renders it a different sort of a set of
processes than understanding, even though late vision
involves implicit beliefs regarding objects that guide
the formation of hypotheses concerning object identity,
and an explicit belief of the form that O is F eventually
arises in the final stages of late vision. Late vision has
an irreducible visual ingredient that makes it different
from discursive understanding.

Let me clarify two terminological issues. First,
judgments are occurrent states, whereas beliefs are dis-
positional states. To judge that O is F is to predicate
F-ness to O while endorsing the predication [26.60].
To believe that O is F is to be disposed to judge under
the right circumstances that O is F. This is one sense
in which beliefs are dispositional items. There is also
a distinction between standing knowledge (information
stored in long term memory, LTM) and information
that is activated in working memory (WM). The be-
lief that O is F may be a standing information in LTM,
a memory about O even though presently one does not
have an occurrent thought about O. Beliefs need not be
consciously or unconsciously apprehended, that is, acti-
vated in the mind, in order to be possessed by a subject,
which means that beliefs are dispositional rather than
occurrent items; this is a second sense in which beliefs
are dispositional. When this information is activated,
the thought that O is F emerges in WM; all thoughts
are occurrent states.

It follows that a belief qua dispositional state may
be either a piece of standing knowledge, in which case
it is dispositional in the sense that when activated it
becomes a thought, or a thought that awaits endorse-
ment to become a judgment, in which case the belief
is dispositional in the sense that it has the capacity to
become a judgment. In the first case, beliefs differ from
thoughts. In the second case, a belief is a thought held in
WM, albeit one that has not been yet endorsed. In what
follows, I assume that beliefs are either pieces of stand-
ing information or thoughts that have not been endorsed
and thus are not judgments. Finally, by implicit belief I
mean the belief held by a person who is not aware that
she is having that belief.

As I said in the introduction, this chapter exam-
ines whether the abductive processes that take place
in late vision should be construed as discursive infer-
ences. Specifically, my claim is that the processes in
late vision are not inferential processes where infer-
ence is understood as discursive, that is, as a process
that involves drawing propositions or conclusions from
other propositions, that are represented in the system,
acting as premises by applying (explicitly or implic-
itly) inferential rules that are also represented. As we
saw, these inferences are distinguished from inferences
as understood by vision scientists according to whom
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any transformation of signals carrying information ac-
cording to some rule is an inference.

26.5.1 Late Vision, Hypothesis Testing,
and Inference

I think that the states of late vision are not inferences
from premises that include the contents of early vi-
sion states, even though it is usual to find claims that
one infers that a tiger, for example, is present from the
perceptual information retrieved from a visual scene.
An inference relates some propositions in the form
of premises with some other proposition, the conclu-
sion. However, the objects and properties as they are
represented in early vision do not constitute contents
in the form of propositions, since they are part of
the nonpropositional, iconic nonconceptual content of
perception. In late vision, the perceptual content is con-
ceptualized but the conceptualization is not a kind of
inference but rather the application of stored concepts
to some input that enters the cognitive centers of the
brain and activates concepts by matching their content.
Thus, even though the states in late vision are formed
through the synergy of bottom-up visual information
and top-down conceptual influences, they are not infer-
ences from perceptual content.

Late vision involves hypotheses regarding the iden-
tity of objects and their testing against the sensory
information stored in iconic memory. One might think
that inferences are involved since testing hypotheses is
an inferential process even though it is not an inference
from perceptual content to a recognitional thought. It is,
rather, an argument of the form of: if A and B then (con-
clusion) C, where A and B are background assumptions
and the hypothesis regarding the identity of an object
respectively, and C is the set of visual features that the
object is likely to have. A consists of implicit beliefs
about the features of the hypothesized visual object. If
the predicted visual features of C match those that are
stored in iconic memory in the visual areas, then the hy-
pothesis about the identity of the object is likely correct.
The process ends when the best possible fit is achieved.
However, the test basis or evidence against which these
hypotheses are tested for a match, that is, the iconic
information stored in the sensory visual areas, is not
a set of propositions but patterns of neuronal activations
whose content is nonpropositional.

There is nothing inference-like in this matching. It
is just a comparison between the activations of neu-
ronal assemblies that encode the visual features in the
scene and the activations of the neuronal assemblies
that are activated top-down from the hypotheses. If the
same assemblies are activated then there is a match.
If they are not, the hypothesis fails to pass the test.

This can be done through purely associational processes
of the sort employed, say, in connectionist networks
that process information according to rules and thus
can be thought of as instantiating processing rules,
without either representing these rules or operating on
language-like symbolic representations. Such networks
perform vector completion and function by satisfying
soft constraints in order to produce the best output
given the input into the system and the task at hand.
Note that the algebraic and thus continuous nature of
state transformations in neural networks, as opposed to
the algorithmic discrete-like operations of classical AI
(which assumes that the brain is a syntactic machine
that processes discrete symbols according to rules that
are also represented in the system) suits best the ana-
logue nature of iconic representations.

In perceptual systems construed as neural networks,
the fundamental representational unit is not some lin-
guistic or linguistic-like entity but the activation pat-
tern across a proprietary population of neurons. If
one wishes to understand the workings of the visual
brain, one should eschew sentences and propositions
as bearers of representations and meanings and recon-
ceptualize representations as activation patterns. This
does not mean, of course, that the brain does not have
symbolic representations but only that, first, these are
a subset of the representations that the brain uses in
its various functions, and, second and most importantly,
the symbolic representations are constructed somehow
out of the more fundamental context-dependent rep-
resentations that the brain uses and are, consequently,
a later construct, phylogenetically speaking. This has
an important corollary for any theory of cognition that
employs activation patterns as the fundamental units of
representation, namely, that it must be able to explain
the existence and usage of symbolic representations.
This means also that the processing at work in the brain,
that is, the transformation of the representational units
to other representational units is not exclusively the
transformation of complex or simple symbols by means
of a set of syntactic rules as in the algorithms that, ac-
cording to the classical view, the brain is supposed to
run. Instead, it can be the algebraic transformation of
activation patterns (in essence the algebraic transfor-
mations from one multidimensional matrix or tensor to
another). The transformation is effected by the synap-
tic connections among the neurons as the signal passes
from one layer to another. These connections have
weights that constitute a filter through which the signal
is transformed as it passes through.

The above also explain the holistic nature of the
abductive visual processes that classical cognitive the-
ories (the family of theories that assume that the brain
is a syntactic machine that processes symbols that are
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constant, context independent, and freely repeatable el-
ements) have failed to capture. It is interesting that if I
am right, Fodor’s attempt to differentiate the perceptual
systems from cognitive functions in order to protect the
former from the abductive holistic reasoning implicated
in the latter fails since late vision is abductive and holis-
tic as well.

Since discursive inferences are carried out through
rules that are represented in the system and operate
on symbolic structures, the processing in a connec-
tionist network does not involve discursive inferences,
although it can be described in terms of inference mak-
ing. Thus, even though seeing an object in late vision
involves the application of concepts that unify the ap-
pearances of the object and of its features under some
category, it is not an inferential process.

I have said that the noninferential process that re-
sults in the formation of a recognitional thought or
belief can be recast in the form of an argument from
some premise to a conclusion. However, this does not
entail that the formation of the perceptual thought is
a piece of reasoning, that is, a transition from a set of
premises that act as a reason for holding the thought
to the thought itself. Admittedly, the perceiver can be
asked on what grounds she holds the thought that O is
F, in which case she may reply because I saw it or I saw
that O is F. However, this does not mean that the reason
she cites as a justification of her thought is a premise
from which she inferred the thought. The perceiver does
not argue from her thought I saw it to be thus and so to
the thought It is thus and so. She just forms the thought
on the basis of the evidence included in her relevant
perceptual state in the noninferential way I described
above. What warrants the recognitional thought O is F
is not the thought held by the perceiver that she sees O
to be F but the perceptual state that presents to her the
world as being such and such. “When one knows some-
thing to be so by virtue of seeing to be so, one’s warrant
for believing it to be so is that one sees it to be so, not
one’s believing that one sees it to be so” [26.57].

Spelke [26.3] who echoes Rock’s [26.2] views that
the perceptual system combines inferential information
to form the percept (for example, from visual an-
gle and distance information, one infers and perceives
size) – argues “perceiving objects may be more akin to
thinking about the physical world than to sensing the
immediate environment”. The reason is that the percep-
tual system, to solve the underdetermination problem of
both the distal object from the retinal image and of the
percept from the retinal image, employs a set of object
principles and that reflect the geometry and the physics
of our environment. Since the contents of these princi-
ples consist of concepts, and thus the principles can be
thought of as some form of knowledge about the world,

perception engages in discursive, inferential processes.
Against this, I argued above that the processes that con-
strain the operations of the visual system should not be
construed as discursive inferences. They are hardwired
in the perceptual circuits and are not represented in it.
Thus, perceptual operations should not be construed as
inference rules, although they are describable in terms
of discursive inferential rules. It follows that the abduc-
tion that takes place in late vision is not an Aristotelian
inference; it is better described by the ampliative vector
completion of connectionism.

26.5.2 Late Vision and Discursive
Understanding

Even if I am right that seeing in late vision is not the
result of a discursive abductive inference but the re-
sult of a pattern-matching process that ensures the best
fit with the available data, it is still arguable that late
vision should be better construed as a stage of dis-
cursive understanding rather than as a visual stage. If
object recognition involves forming a belief about class
membership, even if the belief is not the result of an
inference, why not say that recognizing an object is an
experience-based belief that is a case of understanding
rather than vision?

Late Vision Is more than Object Recognition
A first problemwith this view is that late vision involves
more than a recognitional belief. Suppose that S sees an
animal and recognizes it as a tiger. In the parallel preat-
tentive early vision, the proto-object that corresponds to
the tiger is being represented amongst the other objects
in the scene. After the proto-objects have been parsed,
the object recognition system forms hypotheses regard-
ing their identity. However, for the subject’s confidence
to reach the threshold that will allow her to form be-
liefs about the identity of the objects and report it, these
hypotheses must be tested [26.61].

For this to happen, the relevant sensory activations
enter the parietal and temporal lobes, and the prefrontal
cortex, where the neuronal assemblies encoding the in-
formation about the objects in the scene are activated
and the relevant hypotheses are formed. To test these
hypotheses, the visual system allocates resources to
features and regions that would confirm or disconfirm
the hypotheses. To accomplish this, activation spreads
through top-down signals from the cognitive centers
to the visual areas of the brain where the visual sen-
sory memory and the fragile visual memory store the
proto-objects extracted from the visual scene. This way,
conceptual information about the tiger affects visual
processing and after some hypothesis testing the an-
imal is recognized as a tiger through the synergy of
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visual circuits and WM. At this point the explicit be-
lief O is F is formed. This occurs after 300ms, when
the viewer consolidates the object in WM and identifies
it with enough confidence to report it, which means that
beliefs are formed at the final phases of late vision.

However, semantic modulation of visual process-
ing and the process of conceptualization that eventually
leads to object recognition starts at about 130�200ms.
There is thus a time gap between the onset of concep-
tualization and the recognition of an object, which is
a prerequisite for the formation of an explicit recog-
nitional belief. As Treisman and Kanwisher [26.62]
observe, although the formation of hypotheses regard-
ing the categorization of objects can occur within
130�200ms after stimulus onset, it takes another
100ms for subsequent processes to bring this informa-
tion into awareness so that the perceiver could be aware
of the presence of an object. To form the recognitional
belief that O is F, one must be aware of the pres-
ence of an object token and construct first a coherent
representation. This requires the enhancement through
attentional modulation of the visual responses in early
visual circuits that encode rich sensory information in
order to integrate them into a coherent representation,
which is why beliefs are delayed in time compared with
the onset of conceptualization; not all of late vision in-
volves explicit beliefs.

Late Vision as a Synergy of Bottom-Up
and Top-Down Information Processing

A second reason why the beliefs formed in late vi-
sion are partly visual constructs and not pure thoughts
is that the late stage of late vision in which explicit
beliefs concerning object identity are formed constitu-
tively involves visual circuits (that is, brain areas from
LGN to IT in the ventral system). Pure thought, on
the other hand, involves an amodal form of representa-
tion formed in higher centers of the brain, even though
these amodal representations can trigger in a top-down
manner the formation of mental images and can be trig-
gered by sensory stimulation. The point is that amodal
representations can be activated without a concomitant
activation of the visual cortex. The representations in
late vision, in contrast, are modal since they constitu-
tively involve visual areas. Thus, what distinguishes late
vision beliefs from pure thoughts is mostly the fact that
the beliefs in late vision are formed through a synergy
of bottom-up and top-down activation and their main-
tenance requires the active participation of the visual
circuits. Pure thoughts can be activated and maintained
in the absence of activation in visual circuits.

The constitutive reliance of late vision on the visual
circuits suggests that late vision relies on the presence
of the object of perception; it cannot cease to function

as a perceptual demonstrative that refers to the object
of perception, as this has been individuated though the
processes of early vision. As such, late vision is consti-
tutively context dependent since the demonstration of
the perceptual particular is always context dependent.
Thought, on the other hand, by its use of context in-
dependent symbols, is free of the particular perceptual
context. Even though recognitional beliefs in late vision
and pure perceptual beliefs involve concepts, the con-
cepts function differently in the two contexts [26.37]:

“Perceptual belief makes use of the singular and
attributive elements in perception. In perceptual
belief, pure attribution is separated from, and sup-
plements, attributive guidance of contextually pur-
ported reference to particulars. Correct conceptual-
ization of a perceptual attributive involves taking
over the perceptual attributive’s range of applica-
bility and making use of its (perceptual) mode of
presentation.”

The attributive and singular elements in perception
correspond to the perceived objects and their proper-
ties respectively. The attributive elements or properties
guide the contextual reference to particulars or objects
since the referent in a demonstrative perceptual refer-
ence is fixed through the properties of the referent as
these properties are presented in perception.

Concepts enter the game in their capacity as pure
attributions that make use of the perceptual mode of
presentation. Burge’s claim that in perceptual beliefs
pure attributions supplement attributions that are used
for contextual reference to particulars may be read to
mean that perceptual beliefs are hybrid states involv-
ing both visual elements (the contextual attributions
used for determining reference to objects and their
properties) and conceptualizations of these perceptual
attributives in the form of pure attributions. In this case,
the role of perceptual attributives is ineliminable. In late
vision, unlike in pure beliefs, there can be no case of
pure attribution, that is, of attribution of features in the
absence of perceptually relevant particulars since the at-
tributions are used to single out these particulars.

The inextricable link between thought and per-
ception in late vision explains the essentially contex-
tual [26.63, 64] character of beliefs in late vision. The
proposition expressed by the belief cannot be detached
from the perceptual context in which it is believed and
cannot be reduced to another belief in which some third
person or objective content is substituted for the in-
dexicals that figure in the thought (in the way one can
substitute via Kaplan’s characters the indexical terms
with their referents and get the objective truth-evaluable
content of the belief); the belief is tied to a idiosyncratic
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viewpoint by making use of the viewer’s physical pres-
ence and occupation of a certain location in space and
time; the context in which the indexical thought is be-
lieved is essential to the information conveyed.

The discussion on late vision and the inferences it
uses to construct the percept suggests that late vision,
its conceptual nature notwithstanding, does not involve
discursive inferences and in this sense is fundamentally
different from thinking, if the latter is thought to im-
plicate constitutively discursive inferences. Late vision
employs abductive inferences, in that it constructs the
representation that best fits the sensory image, but these
inferences are not the result of the application of rules
that are represented in the system. Even the operational
constraints that restrict visual processing in late vision
and could be thought of as transformation rules that the
system follows to make inferences, are not, as we have
seen, propositional structures or even representations
in the brain. The inferences involved are informed and
guided by conceptual information in pattern-matching
processes but fall short of being discursive inferences.

The fact that both conceptual and nonconceptual repre-
sentations are in essence activation patterns allows us to
understand how conceptual, symbolic information and
nonconceptual iconic information could interact. The
main difference between the two forms of representa-
tions is that the former are not homogeneous and have
a syntactic structure that has a canonical decomposition,
whereas the latter are homogeneous and lack a canon-
ical decomposition. To appreciate the difference think
of it in following way: the fact that a symbolic repre-
sentation has a canonical decomposition means that not
every subpart of the representation is a representation;
only those subparts that satisfy the syntactic rules of
the representational systems are symbols or representa-
tions. The expression (p&Q), for instance, is a symbol
or a representation, but the expression (p(&q) is not.
Any subpart of an image, on the other hand, is an image
and thus a representation.

The output of late vision, namely the percept, en-
ters the space of reasons and participates in discursive
inferences and thus in thought.

26.6 Concluding Discussion

I have argued in this chapter that visual processing
involves abductive inferences that aim to construct
a representation, namely, the percept, that best matches
the sensory information. To achieve this, the brain prob-
ably uses Bayesian strategies since abductive inferences
are probabilistic in nature. I also argued that these infer-
ences are not discursive inferences and since the latter
are the characteristic trait of thinking, visual processing
is not akin to thinking despite its usage of abductive in-
ferences; my claim applies to both early vision and late
vision.

The discussion in this chapter, and especially the
view on the relation between perceptual inference
and perceptual judgments, is in agreement with Mag-
nani’s [26.65] elaboration on Peirce’s [26.66, 67] views
on visual perception, which Peirce also conceived of
perception as an abductive inference. In particular, I
have tried to defend the thesis eloquently expressed
by Peirce that the transition between abductive infer-
ences and perceptual judgment is a continuous one
without any sharp line of demarcation between them de-
spite their many differences that I elaborated on in the
previous section. My discussion also reinforces Mag-
nani’s view that “judgments in perception are fallible
but indubitable abductions we are not in any condi-
tion to psychologically conceive that they are false, as
they are unconscious habits of inference” [26.65]. Most
importantly, my account of the abductive inferences in-

volved in visual perception fully justifies Magnani’s
claim that visual abduction is not sentential, that is, it
does not employ symbolic, or discursive as I have called
them, inferences. Instead it relies on pattern matching in
which activation patterns that take on continuous val-
ues are compared. Thus, the representational medium
employed is analogue and not symbolic in nature and
the usage of stored knowledge in drawing inferences
resembles more the use of models that put the incom-
ing information in a context so that conclusions could
be drawn rather than the recruitment of sentences and
inference rules. In other words, visual abduction is
model-based.

In constructing the percept, the brain uses a set of
operational constraints that aim to solve the various un-
derdetermination problems that the visual perception
encounters in order to construct the percept. I have ar-
gued that these constraints should not be thought of as
rules that are represented in the system or that have
some representational contents and guide the percep-
tual inferences rendering them discursive. Instead, they
are hardwired in the visual system and are not represen-
tations.

I also suggested, although I did not discuss this issue
in full, that the recent developments in vision studies
tend to bring together the different theories of vision by
showing the points of contact between them, rather than
to underline their differences.
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To recapitulate, the main conclusion of this chap-
ter is, first, that to the extent that thinking is associated
with the use of discursive inferences, perception dif-
fers radically from thinking. If the meaning of thinking
is extended to comprise nondiscursive inferences, the
claim may be made that perception is thinking. In
this case, however, a distinction should be drawn be-
tween discursive thinking that characterizes cognition
and nondiscursive thinking that characterizes percep-
tual processes. Second, if thinking also necessarily in-
volves the deployment of concepts, then there is a stage
of visual processing, namely, early vision, which is not
akin to thinking since its contents are nonconceptual.
The other stage of visual processing, namely late vision,
uses conceptual information. Since, as I will argue, the
processes of late vision are not discursive inferences,

Table 26.1 Visual perception and thinking

Thinking
Perception Thinking narrow Thinking wide
Early vision No Yes/no concepts
Late vision No Yes/yes concepts

if thinking is conceived as necessarily implicating dis-
cursive inferences late vision is not akin to thinking,
notwithstanding the conceptual involvement. If the con-
cept of thinking is extended to include other sorts of
inferences, such as the model-based abductive infer-
ences discussed in this chapter, late vision could be
thought of as a sort of thinking, which, unlike early
vision, implicates concepts (see Table 26.1 for a tax-
onomy).

26.A Appendix: Forms of Inferences

These are the three forms of inferences in which all syl-
logisms can be categorized.

26.A.1 Deduction

An inference is deductive if its logical structure is such
that the conclusion of the inference is a logical conse-
quence of the premises of the inference. This entails
that if the premises of a deductive argument are true
then its conclusion is necessarily true as well. In this
sense, deductive arguments are truth preserving. This
is equivalent to saying that in any interpretation of
the inference in which the premises are true, the con-
clusion is true too. Differently put, if an argument is
deductively valid, there is no model under which the
premises are true but the conclusion is false. This is
why deductive inferences are sometimes characterized
as conclusive.

A typical example of a deductive argument is this:
All men are mortal; Socrates is a man. Therefore
Socrates is mortal.

26.A.2 Induction

An argument is inductive if its conclusion does not fol-
low logically from the premises. The premises of an
inductive argument may be true and still its conclusion
false. The premises of an inductive argument provide
epistemic support or epistemic warrant for its conclu-
sion; they constitute evidence for the conclusion. By
definition, inductive arguments are not truth preserv-
ing.

A typical example of an inductive argument is the
following: Bird ˛ is a crow and is black; bird ˇ is a crow
and is black; . . . bird � is a crow and is black. Therefore:
All crows are probably black.

If the examined specimens are found in a variety
of places and under different environmental conditions,
the premises of the inference provide solid evidence for
the conclusion. Yet, the conclusion may still be wrong
since the next crow that we will examine may not be
black. This example shows that the conclusion does not
follow logically from the premises. It is still possible,
no matter how good the premises, that is the evidence,
are that the conclusion be false, which explains the
qualification probably in the conclusion of an inductive
argument. The world could be such that even crows ˛
through � are black, crow �C 1 is white. For this rea-
son inductions are considered to be nonconclusive but
tentative [26.68].

26.A.3 Abduction or Inference to the Best
Explanation

It is an inference in which a series of facts, which are
either new, or improbable, or surprising on their own or
in conjunction, are used as premises leading to a con-
clusion that constitutes an explanation of these facts.
This explanation makes them more probable and more
comprehensible in that it accounts for their appearance.
As such, with abductive inferences the mind reaches
conclusions that go far beyond what is given. For this
reason, abductions are the main theoretical tools for
building models and theories that explain reality. Ab-
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duction is inductive since it is ampliative, does not
preserve truth and is thus probabilistic in that the con-
clusion is tentative.

26.A.4 Differences Between the Modes
of Inference

Induction versus Deduction
Induction is an ampliative inference, whereas deduc-
tion is not ampliative. This means that the information
conveyed by the conclusion of an inductive argument
goes beyond the information conveyed by the premises
and, in this sense, the conclusion is not implicitly con-
tained in the premises. In deduction, the conclusion is
implicitly contained in the premises and the inference
just makes it explicit. If all men are mortal and Socrates
is a man, for example, the fact that Socrates is mortal is
implicitly contained in these two propositions.What the
deduction does is to render it explicit in the form of the
conclusion. When we deduce that Socrates is mortal,
our knowledge does not extend that which we already
knew; it only makes it explicit. When, on the other
hand, we inductively infer that all crows are probably
black from the premise that all the specimens of crows
that we have examined thus far are black, we extend the
scope of our knowledge because the conclusion con-
cerns all crows and not just the crows thus far examined.

The above discussion entails the main difference
between deductive and inductive arguments. Deductive
arguments are monotonous, while inductive arguments
are not. This means that a valid deductive argument
remains valid no matter how many premises we add
to the argument. The reason is that the validity of the
deductive argument presupposes that the conclusion is
a logical conclusion of its premises. This fact does
not change by the addition of new premises, no mat-
ter what these premises stipulate and thus the deductive
argument remains valid. Things are radically different
in induction. A new premise may change the conclu-
sion even if the previous premises strongly supported
the conclusion. For example, if we discover that crow
�C 1 is white, this undermines that previously drawn
and well-supported conclusion that all crows are black.

Induction versus Abduction
Both abduction and induction are tentative forms of in-
ference in that they do not warrant the truth of their
conclusion even if the premises are true. They are,
also, both ampliative in that the conclusion introduces
information that was not contained implicitly in the
premises. As we have seen, in abduction one aims to
explain or account for a set of data. Induction is a more
general form of inference. When, for instance, one suc-
cessfully tests a hypothesis by making predictions that
are borne out, the predicted data provide inductive, but
not abductive, support for the hypothesis. In general, the
evaluation phase in hypothesis, or theory, construction
is considered to be inductive. Conceiving the explana-
tory hypothesis, on the other hand, is an abductive
process that may assume the form of a pure, educated
guess that need not have involved any previous testing.
In this case, the abductively produced hypothesis is not,
a priori, the best explanation for the set of data that
need explanation; this is one of the occasions in which
abduction can be distinguished from the inference to
the best explanation. However, it should be stressed,
although I do not have the space to elaborate on this
problem, that in realistic scientific practice abduction
as theory construction could not be separated from the
evaluative inductive phase since they both form an in-
extricable link. This justifies the claim that abduction is
an inference to the best explanation.

A further difference between abduction and in-
duction is that even though both kinds of inference
are ampliative, in abduction the conclusion may, and
usually does, contain terms that do not figure in the
premises. Almost all theoretical entities in science were
conceived as a result of abduction. The nucleus of an
atom, for example, was posited as a way of explain-
ing the scattering of particles after the bombardment
of atoms. Nowhere in the premises of the abductive
argument was the notion of an atom present; the evi-
dence consisted in measurements of the deviation of the
pathways particles from their predicted values after the
bombardment. The conclusion all crows are probably
black, on the other hand, contains only terms that are
available in the premises.

26.B Appendix: Constructivism

Some of Marr’s particular proposals of his model
have been criticized on many grounds (see, for ex-
ample, [26.59]). In particular, against Marr’s model
of object recognition, it has been argued by several
researchers that object recognition may be more image-
based than based on object-centered representations,

which means that the latter may be less important than
Marr thought them to be. Neurophysiological stud-
ies [26.69] also suggest that both object-centered and
viewer-centered representations play a substantial role
in object recognition. Nevertheless, his general ideas
about the construction of gradual visual representations
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remain useful. According to this form of construc-
tivism, vision consists of four stages, each of which
outputs a different kind of visual representation:

1. The formation of the retinal image; the immediate
stimulus for vision, that is the first stimulus that af-
fects directly the sensory organs (this is called the
proximal stimulus) is the pair of two-dimensional
(2-D) images projected from the environment to
the eyes. This representation is based on a 2-D
retinal organization. At this stage, the information
impinging on the retina (which as you may recall
concerns intensity of illumination and wavelengths,
and which is captured by the retinal receptors) is
organized so that all of the information about the
spatial distribution of light (i. e., the light intensity
falling on each retinal receptor) be recast in a refer-
ence frame that consists of square image elements
(pixels), each indicating with a numerical value the
light intensity falling on each receptor. Sometimes,
the processes of this stage are called sensation.

2. The image-based stage; it includes operations that
receive as input the retinal image (that is, the nu-
merical array of values of light intensities in each
pixel) and process it in order to detect local edges
and lines, to link these edges and lines in a more
global scale, to match up corresponding images in
the two eyes, to define 2-D regions in the image,
and to detect line terminations and blobs. This stage
outputs 2-D surfaces at some particular slant that
are located at some distance from the viewer in 3-D
space.

In general, the image-based representation has the
following properties: First, it receives as input and thus
operates first on information about the 2-D structure of
the retinal image rather than on information concern-
ing the physical, distal, objects. Second, its geometry
is inherently two-dimensional. Third, the image-based
representation of the 2-D features is cast in a coordi-
nate reference system that is defined with respect to the
retina (as a result, the organization of the information is
called retino-topic). This means that the axes of the ref-
erence system are aligned with the eye rather than the
body or the environment. This stage is the first stage of
perception proper:

3. The surface-based; in this stage, vision constructs
representations of the intrinsic properties of sur-

faces in the environment that might have produced
the features constructed in the image-based model.
At this stage, and in contradistinction to the pre-
ceding stage, the information about the worldly
surfaces is represented in three dimensions. Marr’s
two-and-a-half-dimensional (2.5-D) sketch is a typ-
ical example of a surface-based representation. Note
that the surface-based representation of a visual
scene does not contain information about all the
surfaces that are present in the scene, but only
those that are visible for the viewer’s current view-
point.

In general, the surface-based representation has
the following properties: First, The elements that the
surface-based stage outputs consist of the output of
the image-based stage, that is, in 2-D surfaces at some
particular slant that are located at some distance from
the viewer in 3-D space. Second, these 2-D surfaces
are represented within a 3-D spatial framework. Third,
the aforementioned reference framework is defined in
terms of the direction and distance of the surfaces from
the observer’s standpoint (it is egocentric):

4. The object-based; this is the stage in which the
visual system constructs 3-D representations of ob-
jects that include at least some of the occluded
surfaces of the objects, that is, the surfaces that are
invisible from the standpoint of the viewer, such
as the back parts of objects. In this sense, this is
the stage in which explicit representations of whole
objects in the environment are constructed. It goes
without saying that in order for the visual system to
achieve this aim, it must use information about the
whole objects that viewers have stored from their
previous visual encounters with objects of the same
type. The viewer retrieves from memory this infor-
mation and fills in with it the surface-based image
constructed at the previous stage.

In general, the object-based representation has the
following properties: First, this stage outputs volumet-
ric representations of objects that may include informa-
tion about unseen surfaces. Second, the space in which
these objects are represented is three-dimensional.
Third, the frame of reference in which the object-based
representations are cast is defined in terms of the intrin-
sic structure of the objects and the visual scene (it is
scene-based or allocentric).
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26.C Appendix: Bayes’ Theorem and Some of Its Epistemological Aspects
Bayes’ theorem is the following probabilistic formula
(in its simple form because there is another formula-
tion when one considers two competing hypotheses),
where A is a hypothesis purporting to explain a set of
data B

P.A=B/D P.B=A/P.A/=P.B/ ;

where P.A/ is the prior probability, that is, the ini-
tial degree of belief in A; P.A=B/ is the conditional
probability of A given B, or posterior probability, that
is, the degree of belief in A after taking into con-
sideration B; P.B/ is the probability of B. P.B=A/ is
the likelihood of B given A, that is, the degree of
belief that B is true given that A is true. The ratio
P.B=A/=P.B/ represents the degree of support that B
provides for A.

Suppose that B is the sensory information encoded
by a neuronal assembly at level l-1, and A is the hypoth-
esis that the neuronal assembly at level l posits as an
explanation of B. Bayes’ theorem tells us that the prob-
ability that A is true, that is, the probability that level
l represent a true pattern in the environment given the
sensory data B, depends first on the prior probability of
hypothesis A, that is the probability of A before the pre-
dictions of A are tested. This prior probability depends
on both the incoming signal to l but, also and most cru-
cially because many different causes could have caused
the incoming signal, on the contextual effects because
these are the factors that determine which is the most

likely explanation of the data among the various possi-
ble alternative accounts.

The probability of A also depends on the P.B=A/,
that is, the probability that B be true given A. This re-
flects a significant epistemological insight, namely, that
since a correct account of a set of data explains away,
these data are a natural consequence of the explaining
hypothesis, or naturally fit into the conceptual frame-
work created by the hypothesis. The various gravity
phenomena, for instance, become very plausible in view
of the law of gravity; they are not so much so if the hy-
pothesis purporting to explain these same phenomena
involves some accidents of nature, even if they are sys-
tematic. To put in a reverse way, if gravity exists, then
the probability that unsupported objects will fall down
is greater than the probability of these objects falling
down if some other hypothesis is postulated to explain
the fall of unsupported objects.

The probability of the hypothesis A depends in-
versely on the probability of the data B. Since probabili-
ties take values from (0 to 1), the smaller the probability
in the denominator, that is, the more surprising and thus
improbable B is, the greater the probability that A be
true given B. This part of the equation also reflects an
important epistemological insight, namely that the more
surprising a set of data is, the more likely is to be true
a hypothesis that successfully explains them. Finally,
the ratio P.B=A/=P.B/ expresses the support B provides
to A in the sense that the greater this ratio, the greater
the probability that the hypothesis A is true.

26.D Appendix: Modal and Amodal Completion or Perception

There are two sorts of completion. In modal completion
the viewer has a distinct visual impression of a hidden
contour or other hidden features even though these fea-
tures are not occurrent sensory features. The perceptual
system fills in the missing features, which thus become
as phenomenally occurrent as the occurrent sensory fea-
tures of the object.

In amodal completion, one does not have a percep-
tual impression of the object’s hidden features since the
perceptual system does not fill in the missing features as
it happens in modal perception, although as we shall see
mental imagery can fill in the missing phenomenology;
the hidden features are not perceptually occurrent.

There are cases of amodal perception that are purely
perceptual, that is, bottom-up. In these cases, although
no direct signals from the hidden features impinge on
the retina (there is no local information available), the

perceptual system can extract information regarding
them from the global information contained in the vi-
sual scene without any cognitive involvement, as the
resistance of the ensuing percepts to beliefs indicates.
However, in such cases, the hidden features are not per-
ceived. One simply has the visual impression of a single
concrete object that is partially occluded and not the
visual impression of various disparate image regions.
Therefore, in these perceptually driven amodal com-
pletions there is no mental imagery involved, since no
top-down signals from cognitive areas are required for
the completion, and since the hidden features are not
phenomenologically present.

There are also cases of amodal completion that are
cognitively driven, such as the formation of the 3-D
sketch of an object, in which the hidden features of
the object are represented through the top-down acti-



Vision, Thinking, and Model-Based Inferences 26.E Appendix: Operational Constraints in Visual Processing 601
Part

F
|26.E

vation of the visual cortex from the cognitive centers of
the brain. In some of these cases, top-down processes
activate the early visual areas and fill in the missing
features that become phenomenologically present. In

other cases of cognitively driven amodal completion,
the viewer simply forms a pure thought concerning the
hidden structure in the absence of any activation of the
visual areas and thus in the absence of mental imagery.

26.E Appendix: Operational Constraints in Visual Processing

Studies by [26.3, 70–72] show that infants, almost from
the very beginning, are constrained by a number of
domain-specific principles about material objects and
some of their properties. As Karmiloff-Smith [26.72]
remarks, these constraints involve “attention biases to-
ward particular inputs and a certain number of prin-
cipled predispositions constraining the computation of
those inputs”. Such predispositions are the conception
of object persistence, and four basic principles (bound-
ness, cohesion, rigidity, and no action at a distance).

The cohesion principle: “two surface points lie on
the same object only if the points are linked by a path of
connected surface points”. This entails that if some rela-
tive motion alters the adjacency relations among points
at their borders, the surfaces lie on distinct objects, and
that “all points on an object move on connected paths
over space and time. When surface points appear at
different places and times such that no connected path
could unite their appearances, the surface points do not
lie on the same object”.

According to the boundness principle “two sur-
face points lie on distinct objects only if no path of
connected surface points links them”. This principle de-
termines the set of those points that define an object
boundary and entails that two distinct objects cannot in-
terpenetrate, because two distinct bodies cannot occupy
the same place at the same time.

Finally the rigidity and no action at a distance prin-
ciples specify that bodies move rigidly (unless the other
mechanisms show that a seemingly unique body is, in
fact, a set of two distinct bodies) and that they move
independently of one another (unless the mechanisms
show that two seemingly separate objects are in fact
connected).

Further studies shed light on the nature of these
principles or constraints and on the neuronal mecha-
nisms that may realize them. There is evidence that
the physiological mechanisms underlying vision re-
flect these constraints; their physical making is such
that they implement these constraints, from cells for
edge detection to mechanisms implementing the epipo-
lar constraint [26.73, 74]. Thus, one might claim that
these principles are hardwired in our perceptual system.

The formation of the full primal sketch in
Marr’s [26.12] theory relies upon the principles of lo-
cal proximity (adjacent elements are combined) and of
similarity (similarly oriented elements are combined).
It also relies upon [26.20] the more general principle
of closure (two edge-segments could be joined even
though their contrasts differ because of illumination ef-
fects).

Other principles used by early visual processing to
solve the problem of the underdetermination of per-
ception by the retinal image are those of continuity
(the shapes of natural objects tend to vary smoothly
and usually do not have abrupt discontinuities), prox-
imity (since matter is cohesive, adjacent regions usually
belong together and remain so even when the object
moves), and similarity (since the same kind of surface
absorbs and reflects light in the same way the different
subregions of an object are likely to look similar).

The formation of the 2 1
2D sketch is similarly under-

determined, in that there is a great deal of ambiguity
in matching features between the two images form in
the retinas of the two eyes, since there is usually more
than one possible match. Stereopsis requires a unique
matching, which means that the matching processing
must be constrained. The formation of the 2 1

2D sketch,
therefore, relies upon a different set of operational con-
straints that guide stereopsis. “A given point on a phys-
ical surface has a unique position in space at some
time” [26.69] and matter is cohesive and surfaces are
generally smooth. These operational constraints give
rise to the general constraints of compatibility (a pair of
image elements are matched together if they are phys-
ically similar, since they originate from the same point
of the surface of an object), of uniqueness (an item
from one image matches with only one item from the
other image), and of continuity (disparities must vary
smoothly). Another constraint posited by all models of
stereopsis is the epipolar constraint (the viewing geom-
etry is known). Mayhew and Frisby’s [26.75] account
of stereopsis posits some additional constraints, most
notably, the principle of figural continuity, according to
which figural relationships are used to eliminate most of
alternative candidate matches between the two images.
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27. Diagrammatic Reasoning

William Bechtel

Diagrams figure prominently in human reasoning,
especially in science. Cognitive science research has
provided important insights into the inferences
afforded by diagrams and revealed differences in
the reasoning made possible by physically instan-
tiated diagrams and merely imagined ones. In
scientific practice, diagrams figure prominently
both in the way scientists reason about data and
in how they conceptualize explanatory mecha-
nisms.

To identify patterns in data, scientists of-
ten graph it. While some graph formats, such
as line graphs, are used widely, scientists often
develop specialized formats designed to reveal
specific types of patterns and not infrequently
employ multiple formats to present the same
data, a practice illustrated with graph formats de-
veloped in circadian biology. Cognitive scientists
have revealed the spatial reasoning and iterative
search processes scientists deploy in understand-
ing graphs.

In developing explanations, scientists com-
monly diagram mechanisms they take to be
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responsible for a phenomenon, a practice again
illustrated with diagrams of circadian mecha-
nisms. Cognitive science research has revealed
how reasoners mentally animate such diagrams
to understand how a mechanism generates
a phenomenon.

Human reasoning is often presented as a mental ac-
tivity in which we apply inference rules to mentally
represented sentences. In the nineteenth century, Boole
presented the rules for natural deduction in logic as
formalizing the rules of thought. Even as cognitive
scientists moved beyond rules of logical inference as
characterizing the operations of the mind, they tended
to retain the idea that cognitive operations apply to
representations that are encoded in the mind (e.g., in
neural activity). But in fact humans often reason by
constructing, manipulating, and responding to external
representations, and this applies as well to deductive as
to abductive and inductive reasoning. Moreover, these
representations are not limited to those of language
but include diagrams. While reliance on diagrams ex-
tends far beyond science, it is particularly important
in science. Scientific papers and talks are replete with
diagrams and these are often the primary focus as scien-

tists read papers and engage in further reasoning about
them. Zacks et al. [27.1] determined that the number of
graphs in scientific journals doubled between 1984 and
1994. One would expect that trend has continued. Al-
though many journals now limit the number of figures
that can appear in the published paper, they have in-
creasing allowed authors to post supplemental material,
which often includes many additional diagrams.

Scientists clearly use diagrams to communicate
their results with others. But there is also evidence
that they make extensive use of these diagrams in their
own thinking – in developing an understanding of the
phenomenon to be explained and in advancing an ex-
plantion of it. Diagrams also figure prominently in
the processes through which scientists analyze data.
Since far less attention has been paid, both in phi-
losophy of science and in the cognitive sciences, to
how diagrams figure in reasoning activities, my objec-



Part
F
|27.1

606 Part F Model-Based Reasoning in Cognitive Science

tive in this chapter is to characterize what is known
about how people, including scientists, reason with di-
agrams.

An important feature of diagrams is that they are
processed by the visual system, which in primates is
a very highly developed system for extracting and re-
lating information received by the eyes (approximately
one-third of the cerebral cortex is employed in visual
processing). I begin in Sect. 27.1 by focusing on the dis-
tinctive potential of diagrams to support reasoning by
enabling people to employ visual processing to detect
specific patterns and organize together relevant pieces
of information and examine the question of whether
images constructed in one’s imagination work equally
well. In this chapter, I employ the terms diagram in its
inclusive sense in which it involves marks arranged in

a two or more dimensional layout where the marks are
intended to stand for entities or activities or informa-
tion extracted from them and the geometrical relations
between the marks are intended to convey relations be-
tween the things represented. In Sects. 27.2 and 27.3, I
will discuss separately two types of diagrams that I des-
ignate data graphs and mechanism diagrams. In each
case I introduce the discussion with examples from one
field of biological research, that on circadian rhythms –
the endogenously generate oscillations with a period
of approximately 24 h that are entrainable to the light-
dark cycle of our planet and that regulate a wide range
of physiological activities. I then draw upon cognitive
science research relevant to understanding how people
reason with each type of diagram and relate this to the
diagrams used in the science.

27.1 Cognitive Affordances of Diagrams and Visual Images

Two different traditions have dominated cognitive
science research on vision. One, associated with
Marr [27.2], has emphasized how, from the activation
of individual neurons in the retina, people can build up
a representation of what is seen. The other, advanced by
Gibson [27.3], drew attention to the rich information,
often highly structured, available to the visual system.
The latter is especially relevant to addressing diagrams,
since they involve structured perceptual objects in the
environment. A key theoretical claim Gibson advanced
was that different objects of perception afford different
activities for different organisms – the back of a chair
affords landing for an insect but draping a garment for
humans. One can extend the account of affordance to
external representations, and so focus, as Zhang [27.4]
does, on how different representations activate different
cognitive operations [27.4, pp. 185–186]:

“Different representations activate different opera-
tions, not vice versa. It follows that operations are
representation-specific. External representations ac-
tivate perceptual operations, such as searching for
objects that have a common shape and inspecting
whether three objects lie on a straight line. In ad-
dition, external representations may have invariant
information that can be directly perceived [. . . ] such
as whether several objects are spatially symmetrical
to each other and whether one group has the same
number of objects as another group. Internal rep-
resentations activate cognitive operations, such as
adding several numbers to get the sum.”

To investigate how diagrams afford different reason-
ing than other representations, Zhang compared a game
formally equivalent to tic-tac-toe in which players pick

numbers from the pool 1 through 9 with the objective of
being the first to pick three numbers totaling 15. Rep-
resenting the numbers on a tic-tac-toe board (Fig. 27.1)
shows that the two games are formally equivalent –all
sequences of three numbers totaling 15 can be mapped
onto a winning solution to tic-tac-toe and vice versa.
Despite being formally equivalent, the tic-tac-toe board
representation engages different cognitive operations
than the number game represented as picking num-
bers from a pool. On the tic-tac-toe board, players can
identify winning combinations by detecting lines but in
the number variant they must perform arithmetic over
many sets of numbers. In Zhang’s experiments, humans
played against a computer, which always made the first
play and was programmed never to lose. If participants
chose the best moves, however, they could always gain
a tie. Participants required much longer to figure out
a strategy to tie the computer when playing the num-
ber version than traditional tic-tac-toe, indicating that
they deployed different operations in the two games.
(See [27.5], for experiments showing similar results
with variants of the Tower of Hanoi problem that placed

4 33 8

9 5 1

2 7 6

Fig. 27.1 The game of picking three numbers that add to
15 is mapped onto a tic-tac-toe board, establishing their
formal equivalence
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Fig. 27.2 Larkin and Simon’s pulley
problem presented in sentential form
on the left and in a diagram on the
right (after [27.6])

different demands on internal processes.) Zhang further
claims that by limiting winning strategies to lines, tradi-
tional tic-tac-toe reduces the cognitive demands, freeing
up cognitive resources for other activities.

In a provocative pioneering study addressing the
question why a diagram is (sometimes) worth 10 000
words? Larkin and Simon [27.6] also focused on how
diagrammatic representations support different cogni-
tive operations than sentential representations. Like
Zhang, they focused on representations that were equiv-
alent in the information they provided but turned out
not to be computationally equivalent in the sense that
inferences that could be “drawn easily and quickly
from the information given explicitly in the one” could
not be drawn easily and quickly from the other. (Kul-
vicki [27.7] speaks in terms of information being ex-
tractable where there is a feature of a representation that
is responsible for it representing a given content and
nothing more specific than that. This helpfully focuses
on the issue of how the representation is structured, but
does not draw out the equally important point that ex-
tracting information depends on the cognitive processes
that the cognizer employs.)

One of the problems Larkin and Simon investigate
is the pulley problem shown in Fig. 27.2, where the task
is to find the ratio of weights at which the system is in
equilibrium. They developed a set of rules to solve the
problem. The advantage of the pulley diagram on their
analysis is that it locates information needed to apply
particular rules at nearby locations in the diagram so
that by directing attention to a location a person can
secure the needed information. In the sentential rep-
resentation the information needed for applying rules
was dispersed so that the reasoner would need to con-
duct multiple searches. In a second example, involving
a geometry proof, Larkin and Simon show how a dia-
gram reduces both the search and recognition demands,
where recognition utilizes the resources of the visual
system to retrieve information. The authors also of-

fer three examples of diagrams used in economics and
physics, graphs and vector diagrams, that employ not
actual space but dimensions mapped to space and ar-
gue that they too provide the benefits in search and
recognition.

Together, these two studies make clear that dia-
grams differ from other representations in terms of the
cognitive operations they elicit in problem-solving sit-
uations. Most generally, diagrams as visual structures
elicit pattern detection capacities whereas sentential
representations require linguistic processing. Larkin
and Simon note that a common response to a complex
sentential description is to draw a diagram. An inter-
esting question is whether comparable results can be
obtained by mentally imagining diagrams. Pioneering
studies by Shepard [27.8, 9] and Kosslyn et al. [27.10]
demonstrated that people can rotate or move their at-
tention across a mentally encoded image. But quite
surprisingly Chambers and Reisberg [27.11] found
that this capacity is severely limited. They presented
Jastrow’s duck-rabbit (Fig. 27.3) to participants suffi-
ciently briefly that they could only form one interpre-
tation of the figure. They then asked the participants
if they could find another interpretation while imaging
the figure. None were able to do so even when offered
guidance. Yet, when they were allowed to draw a fig-
ure based on their mental image, all participants readily
discovered the alternative interpretation.

These findings inspired numerous other investi-
gations into the human ability to work with mental
images whose results present a complex pattern. Reed
and Johnsen [27.12] reached a similar conclusion as
Chambers and Reisberg when they asked participants
to employ imagery to determine whether a figure was
contained in a figure they had previously studied. Yet
when Finke et al. [27.13] asked participants to construct
in imagery complex images from components, they
performed well. Studies by Finke and Slayton [27.14]
showed that many participants were able to generate



Part
F
|27.2

608 Part F Model-Based Reasoning in Cognitive Science

a) b) c)

Fig. 27.3 (a) The version of the duck-rabbit figure used
as a stimulus in Chambers and Reisberg’s experiments is
shown on the left. The other two versions were drawn
by participants based on their own image interpreted as
a rabbit (b) and as a duck (c). From these they were read-
ily able to discover the other interpretation, something
they could not do from their mental image alone. With
permission from the American Psychological Association,
(after [27.11])

creative images from simple shapes in imagery (the
drawings the participants produced were independently
assessed for creativity). Anderson and Helstrup [27.15,
16] set out to explore whether drawing enhanced perfor-
mance on such tasks and their conclusions were largely
negative – participants produced more images, but the
probability of generating ones judged creative was not
increased: “These results were contrary to the initial be-
lief, shared by most experimenters and subjects alike,
that the use of pencil and paper to construct patterns
should facilitate performance.”

Verstijnen et al. [27.17] explored whether the fail-
ure of drawing to improve performance might be due

to insufficient training in drawing. Using a task simi-
lar to that of Reed and Johnson, they compared those
without formal training in drawing with design stu-
dents who had 2 years of courses in drawing, and found
those with training in drawing performed much better.
In another study in which participants were required to
create new objects from simple components, Verstijnen
et al. [27.18] found that drawing significantly helped
trained drawers create compound objects that involved
restructuring the components (e.g., changing propor-
tions within the component). One conclusion suggested
by these results is that reasoning with diagrams may be
a learned activity. Humans spend a great deal of time
learning to read and write, and even then further educa-
tion is often required to extract information from text
and construct and evaluate linguistic arguments. Yet,
perhaps because vision seems so natural, we assume
that diagrams are automatically interpretable and except
in curricula in fields like design, we provide no sys-
tematic education in constructing and reasoning with
diagrams. Accordingly, it perhaps should not be a sur-
prise that science educators have found that students
often ignore the diagrams in their textbooks [27.19].
One of the challenges in teaching students how to
reasoning with diagrams is identifying what cognitive
operations people must perform with different types of
diagrams. Cognitive scientists have begun to identify
some of these operations, and I will discuss some of
these in the context of data graphs and mechanism dia-
grams in the next two sections.

27.2 Reasoning with Data Graphs

27.2.1 Data Graphs in Circadian Biology

By far the majority of the diagrams that figure in scien-
tific papers are devoted to graphing data. Surprisingly,
given the recognition of the roles data play both in dis-
covering possible explanations and in evaluating them,
there is little discussion in philosophy of graphing prac-
tices and how they figure in discovery and justification.
Rather, the focus has been on data claims that can be
represented sententially. Although there are common
graphic formats that are highly familiar – for example,
line graphs and bar graphs – in fact a wide variety of
graphic formats are frequently used in science. In par-
ticular fields scientists have created their own formats,
but these formats often migrate between fields. Each
format elicits specific visual processing operations to
identify informative patterns. In addition to different
graphic formats, there are different tasks in which sci-
entists present data. I focus on two tasks – delineating

phenomena and presenting relations between variables
that are taken to be explanatory of the phenomenon.

In presenting phenomena as the target of scientific
explanations, Bogen andWoodward [27.20] distinguish
phenomena from data. They argue that phenomena, un-
like data, are repeatable regularities in the world. Data
provide evidence for the occurrence of phenomena. In
many cases, researchers delineate phenomena by iden-
tifying patterns in data they collect. In the case of
circadian rhythms, these are patterns of activity that
repeat every 24 h and are often detectable by visual in-
spection of diagrams.

One of the most basic diagramming techniques em-
ploys a Cartesian coordinate system on which one plots
values of relevant variables on the two axes. Using the
abscissa to represent time and the ordinate for the value
of a variable such as temperature, circadian researchers
can plot each data point and then connect them by
lines or a smoothed curve (Fig. 27.4a). Our visual sys-
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Fig. 27.4 (a) Line graph from [27.21] showing the circa-
dian oscillation in body temperature for one person across
48 h. (b) Example actogram showing times of running
wheel activity of a wild-type mouse, reprinted with per-
mission from Elsevier (after [27.22])

tem readily identifies the oscillatory pattern, which we
can then coordinate with the bar at the bottom indict-
ing periods of light and dark and the gray regions that
redundantly indicate periods of darkness. By visually
investigating the graph, one can detect that body tem-
perature rises during the day and drops during the night,
varying by about 2 ıF over the course of a day.

A line graph makes clear that the value of a vari-
able is oscillating and with what amplitude, but it does
not make obvious small changes in the period of ac-
tivity. For this reason, circadian researchers developed
actograms – a version of a raster plot on which time of
each day is represented along a horizontal line and each
occurrence of an activity (rotation of a runningwheel by
a mouse) is registered as a hash mark. Subsequent days
are shown on successive lines placed below the previ-
ous one. Some actograms, such as the one shown in
Fig. 27.4b, double plot the data so that each successive

24 h period is both plotted to the right of the previ-
ous 24-hour period and then again on the left on the
next line. Placing adjacent times next to each other even
when they wrap around a day break makes it easier to
track continuous activity patterns. An actogram renders
visually apparent how the phase of activity changes un-
der different conditions such as exposure to light. In this
actogram, the mouse was first exposed to a 12 W 12 light-
dark cycle, as indicated by the letters LD on the right
side, with the periods of light and dark indicated by the
light-dark bar at the top. From day 15 to day 47, as indi-
cated by the letters DD on the right side, the mouse was
subjected to continuous darkness. On day 37, the row
indicated by the arrow, the animal received a 6 h pulse
of light at hour 16. It was returned to LD conditions
on day 48, but returned to DD on day 67. The activity
records shown on the actogram exhibit a clear pattern.
During both LD periods the activity of the mouse was
entrained to the pattern of light and dark so that the
mouse was primarily active during the early night, with
a late bout of activity late in the night (mice are noctur-
nal animals). On the other hand, during the DD periods
the mouse began its activity somewhat earlier each day,
a phenomenon known as free running. The light pulse
reset the onset time for activity on the following day,
after which the mouse continued to free run but from
this new starting point. When switched back to LD the
mouse exhibited a major alternation in activity the next
day, but it took a couple more days to fully re-entrain to
the LD pattern.

Data graphs are used not just to characterize phe-
nomena but also to identify factors that may play a role
in explaining phenomena. Figures in biological papers
often contain many panels, invoking different repre-
sentational formats, as part of the attempt to make
visible relationship between variables that are taken
to be potentially explanatory. For example, Fig. 27.5,
from [27.23], employs photographs, line graphs, heat
maps, and radial (Rayleigh) plots. To situate their
research, in the 1970s the suprachiasmatic nucleus
(SCN), a small structure in the hypothalamus, was im-
plicated through a variety of techniques as the locus
of circadian rhythms in mammals. Welsh et al. [27.24]
had demonstrated that while individual SCN neurons
maintain rhythmicity when dispersed in culture, they
oscillate with varying periods and quickly become
desynchronized. Maywood et al.’s research targeted va-
soactive intestinal polypeptide (VIP), which is released
by some SCN neurons, as the agent that maintains syn-
chrony in the whole SCN or in slices from the SCN.
Accordingly, they compared SCN slices from mice in
which one (identified as VIP2rC=�) or both copies
(VIP2r�=�) of the gene that codes for the VIP recep-
tor are deleted. To render the rhythmicity of individual
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Fig. 27.5 By using mul-
tiple graphical formats
((a,e,f) photographs of slices
from the SCN, (b,g) line
graphs, (c,h) raster plots
(heat maps) and (d,i) radial
(Rayleigh) plots) Maywood
et al. make apparent in
panels (a–d) that, when
a receptor for VIP is present,
oscillations of individual neu-
rons are synchronized but that
this is lost without VIP, pan-
els (e–i) (after [27.23]), with
permission from Elsevier

cells visible, the researchers inserted a gene coding for
luciferase under control of the promoter for a known
clock gene, Per1, so as to produce luminescence when-
ever PER is synthesized. The photographs in panels A
are selections among the raw data. They make clear
that VIP luminescence in the slice is synchronized, oc-
curring at hour 48 and 72. Panel E reveals the lack
of synchrony without the VPN receptor and panel F
demonstrates that individual neurons are still oscillat-
ing without VIP but that the three neurons indicted by
green, blue, and red arrows exhibit luminescence at dif-
ferent phases.

Although the photographs are sufficient to show that
VIP is potentially explanatory of synchronous activity
in the SCN, the researchers desired to characterize the
relationship in more detail. They began by quantifying
the bioluminescence recorded at the locus of the cell in
photographs at different times. In panels B and G they
displayed the results for five individual cells in each of

each type in line graphs. This makes it clear that while
there is variation in amplitude, with VIP the five cells
are in phase with each other while without VIP they
are not. Even with five cells, though, it becomes diffi-
cult to decipher the pattern in a line graph. The raster
plots in panels C and H enable comparison of 25 cells,
one on each line, with red indicating periods when bi-
oluminescence exceeds a threshold and green periods
when it is below the threshold (such displays using hot
and cold colors are often called heat maps). The raster
plot enables one to compare the periodicity of individ-
ual cells more clearly, but with a loss of information
about the amplitude of the oscillation at different times.
The Rayleigh plots shown in panels D and I sacrifice
even more information, focusing only on peak activ-
ity, but show that the peak phases are highly clustered
with VIP and widely distributed without. The blue ar-
row shows the aggregate phase vector and indicates not
only that it is oriented differently without VIP but also is
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Fig. 27.6a–c A bar graph (a) and two line graphs (b,c), each showing the same data, but which viewers typically interpret
differently (after [27.29])

extremely short, indicative of little correlation between
individual neurons.

27.2.2 Cognitive Science Research Relevant
to Reasoning with Graphs

Having introduced examples of graphs used in one field
of biology, I turn now to cognitive science research
that has attempted to identify aspects of the cogni-
tive operations that figure in reasoning with graphs.
Pinker [27.25] provided the foundation for much sub-
sequent research on how people comprehend graphs.
He differentiated the cognitive activities of creating
a visual description of a graph and applying an appro-
priate graph schema to it. He treats the construction
of a visual description as initially a bottom-up activity
driven by the visual stimulus to which gestalt princi-
ples such as proximity and good continuation, among
other procedures, are invoked. As explored by Zacks
and Tversky [27.26], these principles differentially af-
fect perception of bar graphs and line graphs [27.26,
p. 1073]:

“Bars are like containers or fences, which enclose
one set of entities and separate them from others.
Lines are like paths or outstretched hands, which
connect separate entities.”

The result, which has been documented in many
studies, is that people are faster and more accurate
at reading individual data points from bar graphs
than line graphs but detect trends more easily in line
graphs [27.27, 28]. For example, the bar graph in
Fig. 27.6a makes it easy to read off test scores at differ-
ent noise levels and room temperatures, and to compare
test scores at the two temperatures. The line graph in
Fig. 27.6b encodes the same data but the lines con-
necting the values at the two noise levels make that
comparison more apparent. Moreover, the line graph

suggests that there are intermediate values between the
two explicitly plotted. The effect is sufficiently strong
that Zacks and Tversky found that when line graphs
are used with categorical variables, viewers often treat
them as interval variables and make assertions such as
“The more male a person is, the taller he/she is” [27.26,
p. 1076].

The choice of what to present on the axes also
affects the information people extract. Shah and Car-
penter [27.30] found that participants produce very
different interpretations of the two graphs on the right
of Fig. 27.6, one representing noise and the other room
temperature on the abscissa. Thus, viewers of the graph
in the center are more likely to notice the trend with in-
creasing noise levels whereas those viewing the graph
on the right notice the trend with increasing tempera-
ture. Further, when lines in graphs have reverse slopes,
as in the rightmost graph, participants take longer to
process the graph. Moreover, this difference makes the
third variable, noise level, more salient since it identifies
the difference responsible for the contrasting slopes.

The research reported so far focused on visual fea-
tures of graphs, but one of the seminal findings about
the organization of the mammalian visual processing
system is that it is differentiated into two processing
streams, one extracting information about the shape and
identity of objects and one extracting information about
location and potential for action [27.31, 32]. Hegarty
and Kozhevnikov [27.33] proposed that the distinction
between different processing pathways could help ex-
plain apparently contradictory results other researchers
had reached about whether skill in visual imagery facil-
itates solving mathematics problems. They separately
evaluated sixth-grade boys in Dublin, Ireland, in terms
of pictorial imagery (“constructing vivid and detailed
images”) and schematic imagery (“representing the spa-
tial relationships between objects and imagining spatial
transformations”). They found that good pictorial im-
agery was actually associated with poorer performance
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Fig. 27.7a,b Graph (a) and super-
imposed eye-tracking results (b)
(after [27.36]), with permission
from the American Psychological
Association

in solving mathematical problems. The following was
a typical problem: At each of the two ends of a straight
path, a man planted a tree and then every 5 meters
along the path he planted another tree. The length of
the path is 15 meters. How many trees were planted?

In contrast, good spatial imagery was associated
with better performance. In subsequent work, Hegarty
and her collaborators focused on kinetic problems in-
volving graphs of motion and demonstrated a sim-
ilar effect of pictorial versus spatial visualization.
Kozhevnikov et al. [27.34] presented graphs such as
that on the left in Fig. 27.7 to participants who, on
a variety of psychometric tests, scored high or low
on spatial ability. Those who scored low interpreted
this graph pictorially as, for example, a car moving
on a level surface, then going down a hill, and then
moving again along a level surface. None of these par-
ticipants could provide the correct interpretation of the
graph as showing an object initially at rest, then mov-
ing at a constant velocity, and finally again at rest.
On the other hand, all participants who scored high
on spatial ability provided the correct interpretation.
Subsequently, Kozhevnikov et al. [27.35] examined the
differences between professionals in the arts and the
sciences with respect to these graphs. They found that,
except for participants who provided an irrelevant in-
terpretation by focusing on nonpictorial features of
the graph, artists tended to provide a literal picto-
rial interpretation of the path of movement whereas
all scientists offered a correct schematic interpreta-
tion (example responses are shown on the right of
Fig. 27.8).

So far I have focused on viewing a graph and
extracting information from it. But an important fea-
ture of graphs in science such as those I presented in
the earlier section is that they afford multiple engage-
ments in which a user visually scans different parts of
the graph seeking answers to different questions, some
posed by information just encountered. Carpenter and
Shah [27.36] drew attention to this by observing that
graph comprehension is an extended activity often re-
quiring half a minute, two orders of magnitude longer

than the time required to recognize simple patterns,
including words and objects. In addition to detecting
a pattern of data points along, for example, a posi-
tively sloping line, the graph interpreter must relate
these points to the labels on the axes and what these rep-
resent and this is what requires processing time. Using
eye tracking which participants study graphs, Carpen-
ter and Shah revealed that viewers initially carve the
graph into visual chunks and then cycle through fo-
cusing on different components – the pattern of the
lines, the labels on the axes, the legend, and the title
of the graph (Fig. 27.7). Similarly drawing attention to
the prolonged engagement individuals often have with
graphs, Trickett and Trafton [27.37] employed verbal
protocols as well as eye tracking to study what people
do when making inferences that go beyond what is ex-
plicitly represented in a given graph. They found that
participants often employ spatial manipulations such as
mentally transforming an object or extending it; they
are not just passively viewing it.

Cognitive scientists have limited their focus to rel-
atively simple graph forms such as line graphs and
have not investigated the larger range of format we saw
deployed in circadian research. Many of the results,
however, are applicable to these other graph formats.
Gestalt principles such as good continuation affect the
patterns people see in actograms and raster plots (heat
maps). In the actogram in Fig. 27.4, one recognizes
the phase locking of activity to the light-dark cycle
and daily phase advance when light cues are removed
by implicitly (and sometimes explicitly) drawing a line
through the starting point for each day’s activity. Spa-
tial processing is clearly important not only with the
photographs in Fig. 27.5 but also with the heat map
and Rayleigh plot. A skilled user of these graphs must
recognize that space in the photographs corresponds to
space on the slice from the brain but that space in the
heat map corresponds not to physical space but an ab-
stract space in which different cells are aligned. Finally,
these diagrams are not designed to convey information
in one look but rather are objects that afford shifting
one’s attention many times to focus on different in-
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Fig. 27.8 (a) A line graph showing
an object initially at rest, then
moving for a period at a constant
velocity, then returning to rest that
Kozhevnikov et al. [27.35] used to
compare interpretations by artists and
scientists. (b) A typical response from
an artist, (c) response from a scientist

formation. With the Rayleigh plot, for example, one
typically attends separately to the dispersal of blue ar-
rowheads reflecting peaks of individual cells and to the
vector indicating the population average. If eye tracking
were performed, the pattern would likely resemble that
displayed in Fig. 27.7. With panels showing the same
information in multiple formats, as in Fig. 27.5, view-
ers are also likely to shift their focus between panels
to see, for example, how the times in the line graph
correspond to those in the photograph or those in the
heat map. One limitation of the cognitive science stud-
ies is that the tasks participants were asked to perform
were usually quite limited (e.g., interpret the graph)

whereas scientists often use interact with graphs over
multiple engagements, constructing new queries on the
basis of previous ones (e.g., probing an actogram to see
if the behavior really does look rhythmic or not or ex-
ploring the variability between cells revealed in a heat
map). This is particularly evident when a researcher
pours over a graph after producing it to determine what
it means or when, in a journal club discussion, other
researchers raise questions about specific features of
a graph. Ultimately we need to better understand how
scientists pose and address such queries over time if we
are to understand the different roles graphs play in sci-
entific reasoning.

27.3 Reasoning with Mechanism Diagrams

27.3.1 Mechanism Diagrams
in Circadian Biology

Recognizing that individual activities, even if they do
play a causal role in generating a phenomenon, typi-
cally do not work in isolation but only in the context of
a mechanism in which they interact with other compo-
nents, biologists often set as their goal to characterize
the mechanism. (For discussion of the appeals to mech-
anism to explain biological phenomena, see [27.39–
41].) The researchers’ conception of the mechanism
is sometimes presented in a final figure in a journal
article but mechanism diagrams are even more com-
mon in review papers. Figure 27.9 is a representative
sample of a mechanism diagram for the intracellular os-
cillator in mammalian SCN neurons. The diagram uses
glyphs –“simple figures like points, lines, blobs, and ar-
rows, which derive their meaning from geometric or

gestalt properties in context” [27.42] to represent the
parts and operations of the mechanism. Tversky em-
phasizes the abstractness of glyphs over more iconic
representations, arguing that the abstractness promotes
generalization. One can abstract even more by allow-
ing only one type of glyph (e.g., a circle) for an
entity and one for an operation (an arrow), generat-
ing the sort of representations found in graph theory
and used to capture general consequences of the or-
ganization of mechanisms. See Bechtel [27.43]. The
parts shown in Fig. 27.9 include DNA strands, indi-
cated by two wavy lines, on which promoter regions
are indicated by lightly shaded rectangles, genes by
darkly colored rectangles, and protein products, by col-
ored ovals. Lines with arrow heads represent operations
such as expression of a gene or transport of proteins to
locations where they figure in other reactions, includ-
ing activating gene transcription. Lines with squared
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Fig. 27.9 Takahashi et al. mechanism diagram of the mammalian circadian clock involves genes and proteins within
individual cells. Reprinted with permission from Macmillan Publishers Ltd (after [27.38])

ends indicate inhibitory activity. When phosphates at-
tach to molecules (as preparation for nuclear transport
or degradation), they are shown as white circles con-
taining a P.

The diagram is clearly laid out spatially, but only
some features of the diagram convey information about
spatial structures in the cell. The differentiation of the
nucleus and cytoplasm is intended to correspond to
these regions in the cell and lines crossing the boundary
between the nucleus and cytoplasm represent transport
between the two parts of the cell. Beyond that, however,
the distribution of shapes and arrows conveys no spa-
tial information but only functional differentiation. The
most important operations shown in this diagram are
the synthesis of REV-ERBA and its subsequent trans-
port into the nucleus to inhibit transcription of BMAL1
(shown as a loop out from and back into the nucleus
in the upper left) and the synthesis of PER and CRY,
the formation of a dimer, and the transport of the dimer
into the nucleus to inhibit the ability of BMAL1 and

CLOCK to activate transcription of BMAL1, PER, and
CRY (shown as a loop out from and back into the
nucleus in the center-left of the figure). (The other op-
erations shown are those involved in signaling from
outside the cell that regulates the overall process, in the
degradation of PER and CRY, and in the expression of
clock-controlled genes (CCGs) that constitute the out-
put of the clock.

For someone acquainted with the types of parts
shown and the operations in which they engage, a di-
agram such as this provides a means of showing
schematically how the various parts perform operations
that affect other parts. One is not intended to take in
the whole diagram at once, but to follow the opera-
tions from one part to another. To understand how the
mechanism gives rise to oscillatory activity, one can
mentally simulate the operations of the mechanism by
starting in the middle with the Per and Cry genes.
As they are expressed, more PER and CRY proteins
are generated. After the proteins form a dimer and are
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transported into the nucleus, they inhibit the activity of
the BMAL1WCLOCK dimer and thereby stop their own
expression. This reduction in express ion results in re-
duction in their concentration and reduced inhibitory
activity, which allow expression to resume. This capac-
ity for mental animation is, however, limited, and to
determine what the activity will be, especially when the
other components are included, researchers often turn
to computational models, generating what Abrahamsen
and I [27.44] refer to as dynamic mechanistic explana-
tions. Even here, though, diagrams provide a reference
point in the construction of equations describing opera-
tion of the various parts [27.45].

Looking carefully at the lower right side of the fig-
ure, one will see two ovals with question marks in them.
This indicates that the researchers suspected that some-
thing unknown binds with CRY before and potentially
mediates its binding with FBXL3, which then results in
its degradation. Here it is the identity of an entity that is
in doubt, but sometimes question marks are employed
to indicate uncertainty about the identity of an opera-
tion. In this case the diagram is from a review paper
and the question mark reflects uncertainty in the dis-
cipline. On occasions when question marks appear in
mechanism diagrams presented at the beginning of a re-
searcher paper they signal that the goal of the paper is to
answer a question regarding the identity of a component
or its operation.

27.3.2 Cognitive Science Research
Relevant to Reasoning
with Mechanism Diagrams

Although cognitive scientists have not explicitly fo-
cused on mechanism diagrams that figure in biology
(but see Stieff et al. [27.46], which explores strategies
used to transform diagrams of molecular structure used
in organic chemistry), research on simple mechanical
systems such as pulley systems (already the focus of
Larkin and Simon’s research discussed above) has high-
lighted one of the important cognitive activities people
use with mechanism diagrams – mentally animating the
operation of a mechanismwhen trying to figure out how
it will behave. Drawing on theorists in the mental mod-
els tradition (see papers in [27.47] that explore how
people answer problems by constructing and running
a mental model), Hegarty [27.48] investigated experi-
mentally “to what extent the mental processes involved
in reasoning about a mechanical system are isomorphic
to the physical processes in the operation of the sys-
tem.” She measured reaction times and eye movements
as participants answered questions about how various
parts of a pulley system such as shown in Fig. 27.10
would behave if the rope is pulled. From the fact that

both error rates and reaction times increased with the
number of operations within the mechanism the partici-
pant had to animate in order to answer the question, she
inferred that people don’t simulate the whole machine
operating at once but rather animate individual parts in
sequence. She provided further evidence for this claim
by tracking the movements of the participants’ eyes
as they solved problems. In a follow-up experiment,
Hegarty compared performance when participants were
asked to infer the motion of a component from that of
another component earlier in the causal chain or from
that of a component later in the chain. Participants made
more errors and required more time when they had to
reason backward from events later in the chain, and still
showed a preference to move their eyes forward along
the causal chain.

Schwartz and Black [27.49] provided further in-
sights into how people simulate mechanisms by attend-
ing to the gestures people make. In one task, shown
in Fig. 27.11a, participants were asked to determine in
which direction the rightmost gear would turn given
the clockwise turn of the leftmost gear. They found
that their participants would use their hands to indi-
cate the direction of movement of each successive gear.
(In these studies the participants never saw the dia-
grams but were provided with verbal descriptions of
the configuration.) In this case, an alternative strategy is
available: apply a simple global rule such as the parity
rule: if there are odd number of gears, the first and last
will turn in the same direction or the more local rule if
two gears are touching, they will turn in opposite direc-
tions. Schwartz and Black found that as people acquired
the rule, their gestures declined. But when people lack
such rules or find their application uncertain, as in the
gear problem in Fig. 27.11b, they again gesture. This
use of gesture indicates that whatever imagery people

Fig. 27.10 Pulley problem (after [27.48]) used to study
how people employ mental animation in problem solving.
With permission from the American Psychological Asso-
ciation
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Five gears are arranged in a horizontal
line. If you try turn the gear on the
left clockwise, what will the gear on the
far right do?

Five gears are arranged in a circle so
that each gear is touching two other gears.
If you try to turn the gear on the top clock-
wise, what will the gear just to its right do?

Fig. 27.11a,b Gear problem
used by Schwartz and
Black [27.49] to study when
participants gesture while
solving problems

employ to solve the task, it is coordinated with action.
Accordingly, the researchers propose a theory of simu-
lated doing in which [27.50]:

“the representation of physical causality is fun-
damental. This is because doing requires taking
advantage of causal forces and constraints to ma-
nipulate the world. Our assumption is that people
need to have representations of how their embod-
ied ideas will cause physical changes if they are to
achieve their goals.”

Animating a diagram, either mentally or with ges-
ture, plays a crucial role in the cognitive activity of
understanding how a proposed mechanism could pro-
duce the phenomenon one is trying to explain. But
diagrams present not only a finished explanation of the
phenomenon, they often figure in the process of discov-
ering mechanisms. Here what matters is the ability to
create and alter the glyphs and their arrangement. Tver-
sky [27.42] suggests a helpful way to understand this
activity – view diagrams as the “permanent traces of
gestures” in which “fleeting positions become places
and fleeting actions become marks and forms” [27.42,
p. 500]. There is a rich literature showing how ges-

ture figures not only in communication but also in
the development of one’s own understanding [27.51].
Tversky focuses on the activity of drawing maps, high-
lighting such features of the activity as selecting what
features to include and idealizing angles to right an-
gles. These findings can be extended to mechanism
diagrams, which constitute a map of the functional
space of the mechanism, situating its parts and opera-
tions. While Tversky speaks of diagrams as permanent
traces and there is a kind of permanence (or at least en-
durance) to diagrams produced on paper or in computer
files, they are also subject to revision – one can add
glyphs for additional parts or alter arrows to represent
different ideas of how the operations of one part af-
fect others. In the design literature this is often referred
to as sketching. Sketching mechanism diagrams can be
motivated by evidence, but they can also be pursued in
a purely exploratory manner, enabling reasoning about
what would happen if a new connection were made or
an existing one redirected. Sketching possible mecha-
nisms is a common activity of scientists, and by further
investigating the cognitive activities involved in this ac-
tivity one can develop richer analyses of this important
type of scientific reasoning.

27.4 Conclusions and Future Tasks

This chapter has addressed the use of diagrams by sci-
entists in characterizing phenomena to be explained,
identifying variables that figure in explaining those
phenomena, and advancing proposals for mechanisms,
drawing examples from circadian rhythm research.
Over the last 30 years cognitive scientists have at-
tempted to characterize cognitive activities people em-
ploy when perceiving and using diagrams in problem-
solving tasks, such as making multiple scans of graphs
and animating mechanical diagrams. For the most part,
cognitive scientists have employed diagrams and tasks

in their studies that are simpler than those that figure
in actual scientific research. But these cognitive science
studies nonetheless provide insights into the cognitive
processes that figure in scientists’ use of diagrams. To
date the roles diagrams play in science have not figured
in a major way in philosophical accounts of scientific
reasoning but given the important roles diagrams play
in science, there is great potential to advance our under-
standing of scientific reasoning by investigating further
the cognitive processes involved as scientists create and
use diagrams in the course of their research.
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28. Embodied Mental Imagery in Cognitive Robots

Alessandro Di Nuovo, Davide Marocco, Santo Di Nuovo, Angelo Cangelosi

This chapter is focused on discussing the concept
of mental imagery as a fundamental cognitive
capability to enhance the performance of cogni-
tive robots. Indeed, the emphasis will be on the
embodied imagery mechanisms applied to build
artificial cognitive models of motor imagery and
mental simulation to control complex behaviors of
humanoid platforms, which represent the artificial
body.

With the aim of providing a panorama of the
research activity on the topic, first we give an
introduction on the neuroscientific and psycho-
logical background of mental imagery in order to
help the reader to contextualize the multidisci-
plinary environment in which we operate. Then,
we review the work done in the field of artificial
cognitive systems and robotics to mimic the pro-
cess behind the human ability of creating mental
images of events and experiences, and to use this
process as a cognitive mechanism to improve the
behavior of complex robots. Finally, we report the
detail of three recent empirical studies in which
mental imagery approaches were modelled trough
artificial neural networks (ANNs) to enable a cog-
nitive robot with some human-like capabilities.
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These empirical studies exemplify how the pro-
prioceptive information can be used by mental
imagery models to enhance the performance of
the robot, giving evidence of the embodied cog-
nition theories in the context of artificial cognitive
systems.

The work presented in this chapter takes inspiration
from the human capability to build representations of
the physical world in its mind. In particular, we studied
the motor imagery, which is considered a multimodal
simulation that activates the same, or very similar,
sensory and motor modalities that are activated when
human beings interact with the environment in real
time. This is strictly related to the embodied cognition
hypothesis,which affirms that all aspects of human cog-
nition are shaped by aspects of the body.

Similarly, when artificial intelligence was moving
his first steps, Alan Turing argued that in order to think
and speak a machine may need a human-like body and
that the development of robot cognitive skills might be
just as simple as teaching a child [28.1]. This is the mo-

tivation behind a strongly humanoid design of some of
the recent and most advanced robotic platforms, for ex-
ample, iCub [28.2], NAO [28.3], and Advanced Step in
Innovative MObility (ASIMO) [28.4]. These platforms
are equipped with sophisticated motors and sensors,
which replicate animal or human sensorimotor input–
output streams. The sensors and actuators arrangement
determine a highly redundant morphological structure
of humanoid robots, which are traditionally difficult to
control and, thus, require complex models implement-
ing more sophisticated and efficient mechanisms that
resemble the human cognition [28.5].

In this multidisciplinary context, improving the skill
of a robot in terms of motor control and navigation
capabilities, especially in the case of a complex robot
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with many degrees of freedom, is a timely and impor-
tant issue in current robotics research. Among the many
bio-inspired mechanisms and models already tested in
the field of robot control and navigation, the use of men-
tal imagery principles is of interest in modeling mental

imagery as a complex, goal directed and flexible motor
planning strategy and to go further in the development
of artificial cognitive systems capable to better interact
with the environment and refine their cognitive motor
skill in an open-ended process.

28.1 Mental Imagery Research Background

Mental imagery, as the process behind the human abil-
ity of creating mental images of events and experiences,
has long been the subject of research and debate in
philosophy, psychology, cognitive science, and more
recently, neuroscience [28.6]. Some of the main ef-
fects of mental practice on physical performance have
been well established in experiments with humans as
in the fields of sports science, work psychology, and
motor rehabilitation. Neuropsychological research has
long highlighted the complexity of brain activation in
the activity of imagination. Studies have demonstrated
the localization partly similar and partly different be-
tween imagery, perception, and visual memory [28.7,
8], while, in [28.9], it was demonstrated by a clini-
cal case as visuospatial perception and imagery can be
functionally separated in activating brain. In [28.10],
authors proposed a revision of the constructs relevant
to cognitive styles, placing them into a complex frame-
work of heuristics regarding multiple levels of infor-
mation processing, from the attentional and perceptual
to metacognitive ones. These heuristics are grouped ac-
cording to the type of regulatory function that they take
from the automatic coding of data to the conscious use
of cognitive resources. In this view, also at the cerebral
area activation level, the distinction between elabora-
tion of object properties (like shape or color) and spatial
relations is better representative of a different style in
the use of mental images than the ancient dichotomy
verbal–visual [28.11].

But only quite recently a growing amount of ev-
idence from empirical studies begun to demonstrate
the relationship between bodily experiences and men-
tal processes that actively involve body representations.
This is also due to the fact that in the past, philosoph-
ical and scientific investigations of the topic primarily
focused upon visual mental imagery. Contemporary im-
agery research has now broadly extended its scope to in-
clude every experience that resembles the experience of
perceiving from any sensorial modality. From this per-
spective, understanding the role of the body in cognitive
processes is extremely important and psychological and
neuroscience studies are extremely important in this re-
gard.Wilson [28.12] identified six claims in the current
view of embodied cognition:

1. Cognition is situated
2. Cognition is time-pressured
3. We off-load cognitive work onto the environment
4. The environment is part of the cognitive system
5. Cognition is for action
6. Offline cognition is bodily based.

Among those six claims, the last claim is particu-
larly important. According to this claim, sensorimotor
functions that evolved for action and perception are
used during offline cognition that occurs when the per-
ceiver represents social objects, situations, or events
in times and places other than the ordinary ones. This
principle is reinforced by the concept of embodied
cognition [28.13, 14], which affirms that the nature of
intelligence is largely determined by the form of the
body. Indeed, the body and every physical experience
made through the body, shape the form of intelligence
that can be observed in any autonomous systems. This
means that even if the mind does not directly interact
with the environment, it is able to apply mechanisms
of sensory processing and motor control by using some
innate abilities such as memory (implicit, short, and
long term), problem solving, and mental imagery. These
capabilities have been well studied in psychology and
neuroscience, but the debate is still open on the issue
of mental imagery, where mental imagery is defined as
a sensation activated without sensorial stimulation.

Many evidences from empirical sciences have
demonstrated the relationship between bodily experi-
ences and mental processes that involve body represen-
tation. Neuropsychological research has demonstrated
that the same brain areas are activated during seeing
or recalling by images [28.15] and that areas control-
ling perception are needed also for maintaining mental
images active in working memory. Therefore, mental
imagery may be considered as a kind of biological sim-
ulation. In [28.16], author observed that the primary
motor cortex M1 is activated during the production of
motor images as well as during the production of active
movement. Similarly, experimental studies show that
neural mechanisms underlying real-time visual percep-
tion and mental visualization are the same when a task
is mentally recalled [28.17]. Nevertheless, the neural
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mechanisms involved in the active elaboration of men-
tal images might be different from those involved in
passive elaborations [28.18]. These studies demonstrate
the tight relationship between mental imagery and mo-
tor activities (i. e., how the image in mind can influence
movements and motor skills).

Recent research, both in experimental as well as
practical contexts, suggests that imagined and exe-
cuted movement planning relies on internal models for
action [28.19]. These representations are frequently as-
sociated with the notion of internal (forward) models
and are hypothesized to be an integral part of action
planning [28.20, 21]. Furthermore, in [28.22], authors
suggest that motor imagery may be a necessary prereq-
uisite for motor planning. In [28.23], Jeannerod studied
the role of motor imagery in action planning and pro-
posed the so-called equivalence hypothesis – suggest-
ing that motor simulation and motor control processes
are functionally equivalent [28.24, 25]. These studies,
together with many others (e.g., [28.26]), demonstrate
how the images that we have in mind might influence
movement execution and the acquisition and refinement
of motor skills. For this reason, understanding the rela-
tionship that exists between mental imagery and motor
activities has become a relevant topic in domains in
which improving motor skills is crucial for obtaining
better performance, such as in sport and rehabilita-
tion. Therefore, it is also possible to exploit mental
imagery for improving a human’s motor performance
and this is achieved thanks to special mental training
techniques.

Mental training is widely used among professional
athletes, and many researchers began to study its benefi-
cial effects for the rehabilitation of patients, in particu-
lar after cerebral lesions. In [28.24], for example, the
authors analyzed motor imagery during mental train-
ing procedures in patients and athletes. Their findings
support the notion that mental training procedures can
be applied as a therapeutic tool in rehabilitation and in
applications for empowering standard training method-
ologies. Others studies have shown that motor skills can
be improved through mental imagery techniques. Jean-
nerod andDecety [28.18] discuss how training based on
mental simulation can influence motor performance in
terms of muscular strength and reduction of variability.
In [28.27], authors show that imaginary fifth finger ab-
ductions led to an increased level of muscular strength.
The authors note that the observed increment in muscle
strength is not due to a gain in muscle mass. Rather,

it is based on higher level changes in cortical maps,
presumably resulting in a more efficient recruitment
of motor units. These findings are in line with other
studies, specifically focused on motor imagery, which
shows the enhancement of mobility range [28.28] or
increased accuracy [28.29] after mental training. Inter-
estingly, it should be noted that such effects operate
both ways: mental imagery can influence motor perfor-
mance and the extent of physical practice can change
the areas activated by mental imagery [28.30]. As a re-
sult of these studies, new opportunities for the use of
mental training have opened up in collateral fields, such
as medical and orthopaedic–traumatologic rehabilita-
tion. For instance, mental practice has been used to
rehabilitate motor deficits in a variety of neurological
disorders [28.31]. Mental training can be successfully
applied in helping a person to regain lost movement
patterns after joint operations or joint replacements
and in neurological rehabilitation. Mental practice has
also been used in combination with actual practice to
rehabilitate motor deficits in a patient with subacute
stroke [28.32], and several studies have also shown im-
provement in strength, function, and use of both upper
and lower extremities in chronic stroke patients [28.33,
34].

In sport, beneficial effects of mental training for the
performance enhancement of athletes are well estab-
lished and several works are focused on this topic with
tests, analysis, and in new training principles [28.35–
38]. In [28.39], for example, a cognitive-behavioral
training program was implemented to improve the
free-throw performance of college basketball players,
finding improvements of over 50%. Furthermore, the
trial in [28.40], where mental imagery is used to en-
hance the training phase of hockey athletes to score
a goal, showed that imaginary practice allowed ath-
letes to achieve better performance. Despite the fact
that there is ample evidence that mental imagery, and
in particular motor imagery, contributes to enhancing
motor performance, the topic still attracts new research,
such as [28.41] that investigated the effect of mental
practice to improve game plans or strategies of play in
open skills in a trial with 10 female pickers. Results
of the trial support the assumption that motor imagery
may lead to improved motor performance in open skills
when compared to the no-practice condition. Another
recent paper [28.42] demonstrated that sports experts
showed more focused activation patterns in prefrontal
areas while performing imagery tasks than novices.
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28.2 Models and Approaches Based on Mental Imagery
in Cognitive Systems and Robotics

The introduction of humanoid robots had a great impact
on the fast growing field of cognitive robotics, which
represents the intersection of artificial cognitive model-
ing and robotic engineering. Cognitive robotics aims to
provide new understanding on how human beings de-
velop their higher cognitive functions. Thanks to the
many potential applications, researchers in cognitive
robotics are still facing several challenges in develop-
ing complex behaviors [28.43].

As exemplified in the following literature review,
a key role is played by mental imagery and its mecha-
nisms in order to enhance motor control in autonomous
robots, and to develop autonomous systems that are
capable of exploiting the characteristics of mental im-
agery training to better interact with the environment
and refine their motor skills in an open-ended pro-
cess [28.44]. Indeed, among the many hypotheses and
models already tested in the field of cognitive systems
and robotics, the use of mental imagery as a cogni-
tive tool capable of enhancing robot behaviors is both
innovative and well-grounded in experimental data at
different levels.

A model-based learning approach for mobile robot
navigation was presented in [28.45], where it is dis-
cussed how a behavior-based robot can construct a sym-
bolic process that accounts for its deliberative thinking
processes using internal models of the environment.
The approach is based on a forward modeling scheme
using recurrent neural learning, and results show that
the robot is capable of learning grammatical structure
hidden in the geometry of the workspace from the local
sensory inputs through its navigational experiences.

An example of the essential role mental imagery
can play in human–robot interaction was recognized by
Roy et al. [28.46]. She presented a robot, called Ripley,
which is able to translate spoken language into actions
for object manipulation guided by visual and haptic per-
ception. The robot maintained a dynamicmental model,
a three-dimensional model of its immediate physical
environment that it used to mediate perception, ma-
nipulation planning, and language. The contents of
the robot’s mental model could be updated based on
linguistic, visual, or haptic input. The mental model
endowed Ripley with object permanence, remembering
the position of objects when they were out of its sensory
field.

Experiments on internal simulation of perception
using ANN robot controllers are presented by Ziemke
et al. [28.47]. The paper focuses on a series of experi-
ments in which feedforward neural networks (FFNNs)

were evolved to control collision-free corridor follow-
ing behavior in a simulated Khepera robot and predict
the sensory input of next time step as accurately as pos-
sible. The trained robot is actually able to move blindly
in a simple environment for hundreds of time steps, suc-
cessfully handling several multistep turns.

In [28.48], authors present a neurorobotics exper-
iment in which developmental learning processes of
the goal-directed actions of a robot were examined.
The robot controller was implemented with a multi-
ple timescales recurrent neural network (RNN) model,
which is characterized by the coexistence of slow
and fast dynamics in generating anticipatory behaviors.
Through the iterative tutoring of the robot for multiple
goal-directed actions, interesting developmental pro-
cesses emerged. Behavior primitives in the earlier fast
context network part were self-organizing, while they
appeared to be sequenced in the later, slow context part.
Also observed was that motor images were generated in
the early stage of development.

The study presented in [28.49] show how simulated
robots evolved for the ability to display a context-
dependent periodic behavior can spontaneously develop
an internal model and rely on it to fulfil their task when
sensory stimulation is temporarily unavailable. Results
suggest that internal models might have arisen for be-
havioral reasons and successively exapted for other
cognitive functions. Moreover, the obtained results sug-
gest that self-generated internal states need not match in
detail the corresponding sensory states and might rather
encode more abstract and motor-oriented information.

Fascinatingly, in [28.50], authors explore the idea
of dreams as a form of mental imagery and the possi-
ble role they might play in mental simulations and in
the emergence and refinement of the ability to gener-
ate predictions on the possible outcomes of actions. In
brief, what the authors propose is that robots might first
need to possess some of the characteristics related to
the ability to dream (particularly those found in infants
and children) before they can acquire a robust ability
to use mental imagery. This ability to dream, according
to them, would assist robots in the generation of pre-
dictions of future sensory states and of situations in the
world.

Internal simulations can help artificial agents to
solve the stereo-matching problem, operating on the
sensorimotor domain, with retinal images that mimic
the cone distribution on the human retina [28.51].
This is accomplished by applying internal sensorimotor
simulation and (subconscious) mental imagery to the
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process of stereo matching. Such predictive matching
is competitive to classical approaches from computer
vision, and it has moreover the considerable advantage
that it is fully adaptive and can cope with highly dis-
torted images.

A computational model of mental simulation that
includes biological aspects of brain circuits that appear
to be involved in goal-directed navigation processes is
presented in [28.52]. The model supports the view of
the brain as a powerful anticipatory system, capable
of generating and exploiting mental simulation for pre-
dicting and assessing future sensory motor events. The
authors show how mental simulations can be used to
evaluate future events in a navigation context, in or-
der to support mechanisms of decision-making. The
proposed mechanism is based on the assumption that
choices about actions are made by simulating move-
ments and their sensory effects using the same brain
areas that are active during overt actions execution.

An interpretation of mental imagery based on
the context of homeostatic adaptation is presented
in [28.53], where the internal dynamics of a highly
complex self-organized system is loosely coupled with
a sensory-motor dynamic guided by the environment.
This original view is supported by the analysis of a neu-
ral network model that controls a simulated agent facing
sensor shifts. The agent is able to perceive a light in the
environment through some light sensors placed around
its body and its task is that of approaching the light.
When the sensors are swapped, the agent perceives the
light in the opposite direction of its real position and the
control systems has to autonomously detect the shift-
ing sensor and act accordingly. The authors speculate
that mental imagery could be a viable way for creating
self-organized internal dynamics that is loosely cou-
pled with sensory motor dynamics. The loose coupling
allows the creation of endogenous input stimulations,
similar to real ones that could allow the internal sys-
tem to sustain its internal dynamics and, eventually,
reshape such dynamics while modifying endogenous
input stimulations.

Lallee and Dominey [28.54] suggest the idea that
mental imagery can be seen as a way for an au-
tonomous system of generating internal representation
and exploiting the convergence of different multimodal
contingencies. That is, given a set of sensory-motor
contingencies specific to many different modalities,
learned by an autonomous agent in interaction with
the environment, mental imagery constitutes the bridge
toward even more complex multimodal convergence.
The model proposed by the authors is based on the

hierarchical organization of the cortex and it is based
on a set of interconnected artificial neural networks
that control the humanoid robot iCub in tasks that in-
volve coordination between vision, hand-arm control,
and language. The chapter also highlights interesting re-
lations between the model and neurophysiological and
neuropsychological findings that the model can account
for.

An extension of the neurocomputational model
TRoPICAL (two route, prefrontal instruction, compe-
tition of affordances, language simulation) is proposed
by [28.55] to implement an embodied cognition ap-
proach to mental rotation processes, a classic task in
mental imagery research. The extended model develops
new features that allow it to implement mental sim-
ulation, sensory prediction, as well as enhancing the
model’s capacity to encode somatosensorial informa-
tion. The model, applied to a simulated humanoid robot
(iCub) in a series of mental rotation tests, shows the
ability to solve the mental rotation tasks in line with
results coming from psychology research. The authors
also claim the emergence of links between overt move-
ments with mental rotations, suggesting that affordance
and embodied processes play an important role in men-
tal rotation capacities.

Starting from the fact that some evidence in exper-
imental psychology has suggested that imagery abil-
ity is crucial for the correct understanding of social
intention, an interesting study to investigate intention-
from-movement understanding is presented in [28.56].
Authors’ aim is to show the importance of includ-
ing the more cognitive aspects of social context for
further development of the optimal theories of motor
control, with positive effects on robot companions that
afford true interaction with human users. In the paper,
the authors present a simple but thoroughly executed
experiment, first to confirm that the nature of the mo-
tor intention leads to early modulations of movement
kinematics. Second, they tested whether humans use
imagery to read an agent’s intention when observing the
very first element of a complex action sequence.

A neural network model to produce an anticipatory
behavior by means of a multimodal off-line Hebbian
association is proposed in [28.57]. The model emu-
lates a process of mental imagery, in which visual and
tactile stimuli are associated during a long-term pre-
dictive simulation chain motivated by covert actions.
Such model was studied by means of two experiments
with a physical Pioneer 3-DX robot that developed
a mechanism to produce visually conditioned obstacle
avoidance behavior.
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28.3 Experiments

In this section, we present three experimental studies
that exemplify the capabilities and the performance im-
provements achievable by an imagery-enabled robot.
Results of experimental tests with the simulator of the
iCub humanoid robot platform are presented as evi-
dence of the opportunities given by the use of artificial
mental imagery in cognitive artificial systems.

The first study, [28.58], details a model of a con-
troller, based on a dual network architecture, which
allows the humanoid robot iCub to improve au-
tonomously its sensorimotor skills. This is achieved
by endowing the controller of a secondary neural sys-
tem that by exploiting the sensorimotor skills already
acquired by the robot, is able to generate additional
imaginary examples that can be used by the controller
itself to improve the performance through a simulated
mental training.

The second study, [28.59], builds on the previous
study showing that the robot could imagine or mentally
recall and accurately execute movements learned in pre-
vious training phases, strictly on the basis of the verbal
commands. Further tests show that data obtained with
imagination could be used to simulate mental training
processes, such as those that have been employed with
human subjects in sports training, in order to enhance
precision in the performance of new tasks through the
association of different verbal commands.

The third study, [28.60], explored how the rela-
tionship between spatial mental imagery practice in
a training phase could increase accuracy in sports re-
lated performance. The focus is on the capability to
estimate, after a period of training with proprioceptive
and visual stimuli, the position into a soccer field when
the robot acquires the goal.

28.3.1 The Humanoid Robotic Platform:
The iCub

The cognitive robotic platform used for the experiments
presented here is the simulation of the iCub humanoid
robot controlled by artificial neural networks. The iCub

a) b)

Fig. 28.1a,b The iCub humanoid robot platform: (a) The realistic
simulator; (b) The real platform

(Fig. 28.1) is an open-source humanoid robot platform
designed to facilitate cognitive developmental robotics
research as detailed in [28.2]. At the current state the
iCub platform is a child-like humanoid robot 1:05m
tall, with 53 degrees of freedom (DoF) distributed in
the head, arms, hands, and legs. The implementation
used for the experiments presented here is a simulation
of the iCub humanoid robot (Fig. 28.1). The simula-
tor, which was developed with the aim to accurately
reproduce the physics and the dynamics of the physical
iCub [28.61], allows the creation of realistic physical
scenarios in which the robot can interact with a vir-
tual environment. Physical constraints and interactions
that occur between the environment and the robot are
simulated using a software library that provides an
accurate simulation of rigid body dynamics and colli-
sions.

28.3.2 First Experimental Study:
Motor Imagery
for Performance Improvement

The first experimental study explored the application of
mental simulation to robot controllers, with the aim to
mimic the mental training techniques to improve the
motor performance of the robot. To this end, a model
of a controller based on neural networks was designed
to allow the iCub to autonomously improve its sensori-
motor skills.

The experimental task is to throw a small cube of
side size 2 cm and weight 40 g as far as possible accord-
ing to an externally given velocity for the movement.
The task phases are shown in Fig. 28.2 and it is the real-
ization of a ballistic action, involving the simultaneous
movement of the right arm and of the torso, with the
aim to throw a small object as far as possible accord-
ing to an externally given velocity for the movement.
Ballistic movements can be defined as rapid movements
initiated by muscular contraction and continued by mo-
mentum [28.62]. These movements are typical in sport
actions, such as throwing and jumping (e.g., a soccer
kick, a tennis serve, or a boxing punch). In this exper-
iment, we focus on two main features that characterize
a ballistic movement: (1) it is executed by the brain with
a predefined order, which is fully programmed before
the actual movement realization and (2) it is executed
as a whole and will not be subject to interference or
modification until its completion. This definition of bal-
listic movement implies that proprioceptive feedback is
not needed to control the movement and that its devel-
opment is only based on starting conditions [28.63]. It
should be noted here that since ballistic movements are
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a) b)

Preparation Acceleration Release

c)

Fig. 28.2a–c Three phases of the movement: (a) Prepara-
tion: The object is grabbed and shoulder and wrist joints
are positioned at 90ı; (b) Acceleration: The shoulder joint
accelerates until a given angular velocity is reached, while
the wrist rotates down; (c) Release: the object is released
and thrown away

by definition not affected by external interferences, the
training can be performed without considering the sur-
rounding environment, as well as vision and auditory
information.

To build the input–output training and testing sets,
all values were normalized in the range Œ0; 1�.

To control the robot, we designed a dual neural
network architecture, which can operate to improve
autonomously the robot motor skills with techniques
inspired by the ones that are employed with human sub-
jects in sports training. This is achieved through two
interconnected neural networks to control the robot:
a FFNN that directly controls the robot’s joints and
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Fig. 28.3a,b Design of the cognitive architecture of the first experimental study: (a) The dual network architecture
(FFNN C RNN). (b) Detail of RNN: Brown connections (recurrences and predicted output for the FFNN) are active
only in imagery mode, meanwhile light grey links (external input–output from real world) are deactivated

an RNN that is able to generate additional imaginary
training data by exploiting the sensorimotor skills ac-
quired by the robot. The new data, in turn, can be used
to generate additional imaginary examples that can be
used by the controller itself to improve the performance
through an additional learning process. We show that
data obtained with artificial imagination could be used
to simulate mental training to learn new tasks and en-
hance their performance.

The artificial neural network architecture that mod-
els the mental training process is detailed in Fig. 28.3a.
It is a three-layer dual recurrent neural network
(DRNN) with two recurrent sets of connections, one
from the hidden layer and one from the output layer,
which feed directly to the hidden layer through a set
of context units added to the input layer. At each it-
eration (epoch), the context units hold a copy of the
previous values of the hidden and outputs units. This
creates an internal memory of the network, which al-
lows it to exhibit dynamic temporal behavior [28.64]. It
should be noted that in preliminary experiments, this
architecture proved to show better performances and
improved stability with respect to classical architec-
tures, for example, Jordan [28.65] or Elman [28.66].
The DRNN comprises 5 output neurons, 20 neurons in
the hidden layer, and 31 neurons in the input layer (6 of
them encode the proprioceptive inputs from the robot
joints and 25 are the context units). Neuron activations
are computed according to (28.1) and (28.2). The six
proprioceptive inputs encode, respectively, the shoulder
pitch angular velocity (constant during the movement),
positions of shoulder pitch and hand wrist pitch (at
time t), elapsed time, expected duration time (at time
t), and the grab/release command (0 if the object is
grabbed, 1 otherwise). The five outputs encode the pre-
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dictions of shoulder and wrist positions at the next time
step, the estimation of the elapsed time, the estimation
of the movement duration, and the grab/release state.
The DRNN retrieves information from joint encoders to
predict the movement duration during the acceleration
phase. The activation time step of the DRNN is 30ms.
The object is released when at time t1 the predicted time
to release, tp, is lower than the next step time t2.

A functional representation of the neural system
that controls the robot is given in Fig. 28.3a: a three-
layer FFNN, which implements the actual motor con-
troller, and of RNN. The RNN models the motor im-
agery and it is represented in detail in Fig. 28.3b. The
choice of the FFNN architecture as a controller was
made according to the nature of the problem, which
does not need proprioceptive feedback during move-
ment execution. Therefore, the FFNN sets the duration
of the entire movement according to the given speed in
input and the robot’s arm is activated according to the
duration indicated by the FFNN. On the other hand, the
RNNwas chosen because of its capability to predict and
extract new information from previous experiences, so
as to produce new imaginary training data, which are
used to integrate the training set of the FFNN.

The FFNN comprises one neuron in the input layer,
which is fed with the desired angular velocity of the
shoulder by the experimenter, four neurons in the hid-
den layer, and one neuron in the output layer. The output
unit encodes the duration of the movement given the
velocity in input. To train the FFNN, we used a classic
backpropagation algorithm as the learning process. The
learning phase lasted 1�106 epochs with a learning rate
(˛) of 0:2, without momentum (i. e., �D 0). The net-
work parameters were initialized with randomly chosen
values in the range Œ�0:1; 0:1�. The FFNN was trained
by providing a desired angular velocity of the shoulder
joint as input and the movement duration as output. Af-
ter the movement duration is set by the FFNN, the arm
is activated according to the desired velocity and for the
duration indicated by the FFNN output.

Activations of hidden and output units yi are calcu-
lated at a discrete time, by passing the net input ui to the
logistic function, as it is described in (28.1) and (28.2)

ui D
X

i

�
yiwij � ki

�
; (28.1)

yi D 1

1� e�ui
: (28.2)

As learning process, we used the classic backprop-
agation algorithm, the goal of which is to find optimal
values of synaptic weights that minimize the error E,
defined as the error between the teaching sequences and

the output sequences produced by the network. The er-
ror function E is calculated as follows

ED 1

2

pX

iD1

kyi � tik2 ; (28.3)

where p is the number of outputs, ti is the desired ac-
tivation value of the output unit i, and yi is the actual
activation of the same unit produced by the neural net-
work, calculated using (28.2) and (28.3). During the
training phase, synaptic weights at learning step nC 1
are updated using the error calculated at the previous
learning step n, which in turn depend on the error E. Ac-
tivations of hidden and output units yi are calculated by
passing the net input ui to the function, as it is described
in (28.2) and (28.3). The backpropagation algorithm up-
dates link weights and neuron biases, with a learning
rate (˛) of 0:2 and a momentum factor (�) of 0:6, ac-
cording to the following equation

�wij.nC 1/D �ıiyjC˛�wij.n/ ; (28.4)

where yj is the activation of unit j, ˛ is the learning rate,
and � is the momentum.

To calculate the error at first step of the backpropa-
gation algorithm, initial values of back links are initial-
ized to one. The network parameters are initialized with
randomly chosen values in the range Œ�0:1; 0:1�.

The experimental study is divided into two phases:
in the first phase the FFNN is trained to predict the
duration of the movement for a given angular veloc-
ity in input. Meanwhile, using the same movements the
RNN was trained by a simple heuristic to predict its
own subsequent sensorimotor state. To this end, joint
angle information over time was sampled in order to
build 20 input–output sequences corresponding to dif-
ferent directions of the movement. In addition, in order
to model the autonomous throw of an object, the prim-
itive action to grab/release was also considered in the
motor information fed to the network. In the second
phase, the RNN operates in offline mode and, thus, its
prediction is made according only to the internal model
built during the training phase. Normalized joint posi-
tion of shoulder pitch, torso yaw, and hand wrist pitch
are the proprioceptive information for input and output
neurons. Another neuron implements the grab/release
command, respectively, with values 1 and 0.

In this study, we intended to test the impact of men-
tal training in action performance in a different speed
range that was not experienced before. Because of this,
we split both the learning and testing dataset into two
subsets according to the duration of the movement:
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� Fast range subset comprises examples that last less
than 0:3 s� Slow range subset comprises all the others (i. e.,
those that last more than 0:3 s).

A reference benchmark controller (RBC) was used
to build training and testing datasets for the learning
phase. The training dataset comprises data collected
during the execution of the RBC with angular veloc-
ity of shoulder pitch ranging from �150 to �850 ı=s
and using a step of �25 ı=s. Thus, the learning dataset
comprises 22 input–output series. Similarly, the testing
dataset was built in the range from �160 to �840 ı=s
and using a step of �40 ı=s, and it comprises 18 input–
output series. The learning and testing dataset for the
FFNN comprises one pair of data: the angular veloc-
ity of the shoulder as input and the execution time, that
is, duration, as desired output. The learning and test-
ing datasets for the RNN comprises sequences of 25
elements collected using a time-step of 0:03 s. All data
in both learning and testing datasets are normalized in
the range Œ0; 1�. Results are shown for the testing set
only.

To test the mental training, we compared results on
three different case studies:

1. Full range: For benchmarking purposes, it is the
performance obtained by the FFNN when it is
trained using the full range of examples (slow C
fast)

2. Slow range only training: The performance ob-
tained by the FFNN only when it is trained using
only the slow-range subset. This case stressed the
generalization capability of the controller when it
is tested with the fast range subset

3. Slow range plus mental training: In this case the two
architectures operate together as a single hierarchi-
cal architecture, in which first both nets are trained

Table 28.1 Full-range training: comparison of average results of feedforward and recurrent artificial neural nets

Test
range
type

Feedforward net Recurrent net
Duration Release point Duration Release point

s Error% Degree Error% s Error% Degree Error%
Slow 0:472 1:75 � 30:718 � 6:46 0:482 3:60 � 33:345 � 11:96
Fast 0:202 0:87 � 31:976 � 6:34 0:194 5:67 � 28:088 � 22:18
Full 0:307 1:21 � 31:486 � 6:39 0:306 4:86 � 30:132 � 18:21

Table 28.2 FFNN: Comparison of average performance improvement with artificial mental training

Test
range
type

Slow range only training Slow range plus mental training
Duration Release point Duration Release point

s Error% Degree Error% s Error% Degree Error%
Slow 0:474 1:38 � 30:603 � 7:88 0:471 1:74 � 30:774 � 8:18
Fast 0:247 26:92 � 64:950 � 111:72 0:188 7:12 � 20:901 � 35:89
Full 0:335 16:99 � 51:593 � 71:34 0:298 5:03 � 24:741 � 25:11

Benchmark
Full range training
Slow range only training
Slow range plus mental training
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Fig. 28.4 Comparison of the distance reached by the object after
throwing with the FFNN as controller and different training ap-
proaches. Negative values represent the objects falling backward

with the slow range subset, then the RNN runs in
mental imagery mode to build a new dataset of fast
examples for the FFNN that is incrementally trained
this way.

As expected, the FFNN is the best controller for the
task if the full range is given as training, thus, it is the
ideal controller for the task (Table 28.1). But, not sur-
prisingly, in Table 28.2 it is shown that the FFNN it
is not able to generalize with the fast range when it is
trained with the slow range only.

These results show that generalization capability of
the RNN helps to feed the FFNN with new data to cover
the fast range, simulating mental training. In fact, the
FFNN, trained only with the slow subset, is not able to
foresee the trend of duration in the fast range; this im-
plies that fast movements last longer than needed and,
because the inclination angle is over 90ı, the object falls
backward (Fig. 28.4).
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The FFNN failure in predicting temporal dynamics
is explainable by the simplistic information used to train
the FFNN, which seems to be not enough to reliably
predict the duration time in a faster range, never ex-
perienced before. On the contrary, the greater amount
of information that comes from the proprioception and
the fact that the RNN has to integrate over time those
information in order to perform the movement, makes
the RNN able to create a sort of internal model of the
robot’s body behavior. This allows the RNN to better
generalize and, therefore guide the FFNN in enhancing
its performance.

This interesting aspect of the RNN can be partially
unveiled by analyzing the internal dynamic of the neural
network, which can be done by reducing the complexity
of the hidden neuron activations trough a principal com-
ponent analysis. Figure 28.5a, for example, presents the
values of the first principal component at the last time-
step, that is, after the neural network has finished the
throwing movement, for all the test cases, both slow
and fast showing that the internal representations are

Full range
Plus mental training
Slow only

Slow
Fast
Medium

2 4 6 8 10 12 14 16 18

a) Component value

Test case

3

2.5

2

1.5

1

0.5
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b) Component value

Timestep
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2

1

0

–1

–2

–3

Fig. 28.5 (a) Hidden units’ activation analysis. Lines rep-
resent final values of the first principal component for all
test cases; (b) hidden units’ activation analysis. Lines rep-
resent the values of first principal component for a slow
velocity, a medium velocity and a fast velocity

very similar, also in the case in which the RNN is
trained with the slow range only. Interestingly, the se-
ries shown in Fig. 28.8 are highly correlated with the
duration time, which is never explicitly given to the
neural network. The correlation is 97:50 for the full-
range training, 99:41 for slow only and 99:37 for slow
plus mental training. This result demonstrates that the
RNN is able to extrapolate the duration time from the
input sequences and to generalize when operating with
new sequences never experienced before.

Similarly, Fig. 28.5b shows the first principal com-
ponent of the RNN in relation to different angular
velocities: slow being the slowest test velocity, medium
the fastest within the slow range, and fast the fastest
possible velocity tested in the experiment. As can be
seen, the RNN is able to uncover the similarities in the
temporal dynamics that link slow and fast cases. Hence,
it is finally able to better approximate the correct trajec-
tory of joint positions also in a situation not experienced
before.

28.3.3 Second Experimental Study:
Mental Training Evoked by Language

In this experimental study, we dealt with motor imagery
and how verbal instruction may evoke the ability to
imagine movements, already seen before or new ones
obtained by combination of past experiences. These
imagined movements either replicate the expected new
movement required by verbal commands or correspond
in accuracy to those learned and executed during train-
ing phases. Motor imagery is defined as a dynamic state
during which representations of a given motor act are
internally rehearsed in working memory without any
overt motor output [28.67].

This study extends the first experimental study pre-
sented above, by focusing on the integration of auditory
stimuli in the form of verbal instructions, to the motor
stimuli already experienced by the robot in past sim-
ulations. Simple verbal instructions are added to the
training phase of the robot, in order to explore the im-
pact that linguistic stimuli could have in its processes of
mental imagery practice and subsequent motor execu-
tion and performance. In particular, we tested the ability
of our model to use imagery to execute new orders,
obtained combining two single instructions. This study
has been inspired by embodied language approaches,
which are based on evidence that language comprehen-
sion is grounded in the same neural systems that are
used to perceive, plan, and take action in the external
world.

Figure 28.6 presents pictures of the action with the
iCub simulator, which was commanded to execute the
four throw tasks according to the verbal command is-
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sued. The basic task is the same presented in Fig. 28.2;
in this case the torso is also moving to obey to the verbal
commands left and right.

The neural system that controls the robot is a three-
layer RNN with the architecture proposed by El-
man [28.66]. The Elman RNN adds in the input layer
a set of context units, directly connected with the mid-
dle (hidden) layer with a weight of one (i. e., directly
copied). At each time step, the input is propagated in
a standard feedforward fashion, and then a learning rule
is applied. The fixed back connections result in the con-
text units always maintaining a copy of the previous
values of the hidden units (since they propagate over the
connections before the learning rule is applied). This
creates an internal state of the network, which allows it
to exhibit dynamic temporal behavior. To model mental
imagery the outputs related with the motor activities are
redirected to corresponding inputs.

Similarly to the previous experimental study, after
the learning phase in which real data collected during
simulator execution was used to train the RNN and for
comparison with imagined data, we tested the ability
of the RNN architecture to model mental imagery. As
before, this was achieved by adding other back con-
nections from motor outputs to motor inputs; at the
same time connections from/to joint encoders and mo-
tor controllers are deactivated. This setup is presented
in Fig. 28.7, where red connections are the ones active
only when the imagery mode is on, while green con-
nections are deactivated, including the motor controller.
Specific neurons, one for each verbal instruction, were
included in the input layer of the RNN in order for it to
take into account these commands, while the sensori-
motor information is directed to the rest of the neurons
in the input layer. The RNN architecture implemented,
as presented in Fig. 28.7, has 4 output units, 20 units
in the hidden layer, and 27 units in the input layer, 7 of

Vel

1

1 2Vel Arm Hand

Motor information Language processor

Grab F B R L 3 N

2 3 N. . .

. . .

Arm Hand Grab Output
layer

Hidden
layer

Context
units

Motor controller and actuators

Fig. 28.7 Recurrent neural network
architecture used in the second ex-
perimental study. Brown connections
are active only in imagery mode,
meanwhile light grey connections are
deactivated

Front Back Left Right

Fig. 28.6 Examples of the iCub simulator in action: pictures of the
execution of throw tasks

them encode the proprioceptive inputs from the robot’s
joints and 20 are the context units, that is, are back links
of hidden units, they only copy the value from output
of upper unit to the input of lower unit. The learning
algorithm and parameters are the same as the second
experiment.

As proprioceptive motor information, we take into
account just the following three joints, shoulder pitch,
torso yaw, and hand wrist pitch. In addition, in order
to model the throw of an object, the primitive action
to grab/release was also considered in the motor infor-
mation fed to the network. Visual information was not
computed and speech input processing was based on
standard speech recognition systems.

Using the iCub simulator, we performed two exper-
iments:

� The first experiment aimed to evaluate the ability
of the RNN to model artificial mental imagery. It
was divided into two phases: in the first phase the
network was trained to predict its own subsequent
sensorimotor state. The task was to throw in dif-
ferent directions (forward, left, right, back) a small
object that was placed in the right hand of the robot,
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which is able to grab and release it. To this end the
RNN was trained using the proprioceptive informa-
tion collected from the robot. The proprioceptive
information consisted of sensorimotor data (i. e.,
joint positions) and of verbal commands given to the
robot according to directions. In the second phase,
we tested the ability of the RNN to model mental
imagery providing only the auditory stimulus (i. e.,
the verbal commands) and requiring the network to
obtain sensorimotor information from its own out-
puts.� The goal of the second experiment was to test the
ability of the RNN to imagine how to accomplish
a new task. In this case we had three phases: in the
first phase (real training), the RNN was trained to
throw front and just to move left and right (with no
throw). In the second phase (imagined action), the
RNN was asked to imagine its own subsequent sen-
sorimotor state when the throw command is issued
together with a side command (left or right). In the
final phase (mental training), the input/output series
obtained are used for an additional mental training
of the RNN. After the first and third phase, experi-
mental tests with the iCub simulator were made to
measure the performance of the RNN to control the
robot.

In this experiment, we tested the ability of the RNN
to recreate its own subsequent sensorimotor state in
absence of external stimuli. In Fig. 28.8, we present
a comparison of training and imagined trajectories of
learned movements according to the verbal command
issued:

1. Shows results with the FRONT command
2. With the BACK command
3. With the RIGHT command
4. For the LEFT command.

Imagined trajectories are accurate with respect to
the ones used to train the robot only in Fig. 28.8b, we
notice a slight difference between imagined and training
positions of the arm. This difference can be attributed
to the fact that the BACK command is the only one that
does not require the arm to stop early in throwing the
object. In other words, the difference is related to the
timing of the movement rather than to the accuracy. Re-
sults show that the RNN is able to recall the correct
trajectories of the movement according to the verbal
command issued. The trajectories are the sequence of
joint positions adopted in the movements.

The second test was conducted to evaluate the abil-
ity of the RNN to build its own subsequent sensorimotor
states when it is asked to accomplish new tasks not ex-
perienced before. In this case, the RNN was trained

only to throw front and to move right and left (without
throwing). To allow the RNN to generalize, training ex-
amples were created using an algorithm that randomly
chose joint positions not involved in the movement, that
is, when throwing, the torso joint had a fixed position
that was randomly chosen. The same was true for arm
joints when moving right and left.

Test cases, presented in Fig. 28.9, were composed
using two commands (e.g., throw together with right
or left). In our experiments, we tested two different ap-
proaches in the language processing. In this test two
commands were computed at the same time, so that
input neurons associated with throw and right (or left)
were fully activated at the same time with value 1.

Results of the mental training experiment are pre-
sented in Fig. 28.10, which show the error of torso and
arm joint position with respect to the ideal ones. The
before mental training column presents the results of
tests made without additional training, the after mental
training column shows results after the simulated men-
tal training, the imagined action only column refers to
totally imagined data (i. e., when the RNN predicts its
own subsequent input). Comparing results before and
after mental training an improvement in precision of
dual command execution could be noticed, this should
be accounted to the additional training that helps the
RNN to operate in a condition not experienced before.

It should be noticed also that the throw right task has
worse performance compared to that of throw left with
iCub simulations, but the same result is not achieved
in imagined only action mode. This could be mainly
explained by the influence of real proprioceptive infor-
mation coming from robot joints that modifies the ideal
behavior expected by the RNN, as evidenced by the
comparison between imagined only and the real tests.
In fact, we noticed that when a right command is is-
sued the robot torso is initially moved on the left for few
time-steps and then it turns right. Since the total time of
the movement is due to the arm movement to throw, the
initial error for the torso could not be recovered.

28.3.4 Third Experimental Study:
Spatial Imagery

For this experiment the environment is a square portion
of a soccer field, whose length and width are both 15m.
At one end is placed a goal 1:94m wide, as can be seen
in Fig. 28.11b, which is represented all in blue to con-
trast with the background and to be easily recognized.
The robot can be positioned anywhere in this square
and, as starting position, the ball is placed in front of
his left foot (Fig. 28.11a).

The neural system that controls the robot is a fully
connected RNN with 16 hidden units, 37 input units,
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Fig. 28.8 First test: A comparison of training and imagined trajectories of learned movements

Throw
left
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Fig. 28.9 Pictures present the execution of the two com-
posed tasks: throw left and throw right. As test cases for
autonomous learning with iCub simulator, the actions to
throw left or right are now obtained by learning and then
combining the basic actions of throw and move left or right

and 6 output units. The main difference between a stan-
dard feedforward neural network and the RNN is that
in the latter case, the training set consists in a series of
input–output sequences. The RNN architecture allows
the robot to learn dynamical sequences of actions as
they develop in time. The goal of the learning process
is to find optimal values of synaptic weights that mini-
mize the error, defined as the error between the teaching

Right
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Arm Torso Arm Torso Arm Torso
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After Imagined action Before

80
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Fig. 28.10 Second test: Autonomous learning of new com-
bined commands, error of torso and arm joint positions
with respect to ideal ones

sequences and the output sequences produced by the
network. Figure 28.12 presents the neural system. In-
put variables are as follows:

� The angle of, respectively, the neck (left–right
movement), the torso (left–right movement), and
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a) b)

Fig. 28.11a,b iCub robot simulator: kicking the ball (a),
the goal (b)

the body rotation joint (a joint attached to the body
that allows the robot to rotate on its vertical axis).� Visual information is provided through a vector of
32 bits, which encodes a simplified visual image ob-
tained by the eyes and allows the robot to locate the
goal in its visual field.� Polar coordinates of the robot with respect to the
goal (represented by the radius and the polar angle).

The six outputs are, respectively, the polar coordi-
nates of the robot with respect to the goal, the desired
angle of the neck, the torso and the body rotation joint,
and an additional binary output that makes the robot
kick the ball when its value is 1. In the learning phase,
this output was set to 1 only when the motion ends
and the robot must kick the ball to the goal. All input
and output variables are normalized in Œ0; 1�. Angle (� )
ranges from �90ı to 90ı, while radius (r) could vary
from 0 to 15m. As angle and radius values are normal-
ized in Œ0; 1�, the 0ı (i. e., when the goal is in front of
the robot) equals to 0:5.

For training the neural network, we used the back-
propagation through time algorithm (BPTT), which
is typically used to train neural networks with recur-
rent nodes for time-related tasks. This algorithm allows
a neural network to learn the dynamical sequences of
input–output patterns as they develop in time. Since
we are interested in the dynamic and time-dependent
processes of the robot–object interaction, an algorithm
that allows to take into account dynamic events is
more suitable than the standard backpropagation algo-
rithm [28.68]. For a detailed description of the BPTT
algorithm, see also [28.69]. The main difference be-
tween a standard backpropagation algorithm and the
BPTT is that in the latter case the training set consists in
a series of input–output sequences, rather than in a sin-
gle input–output pattern. The BPTT allows the robot to
learn sequences of actions. The goal of the learning pro-
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Fig. 28.12 Neural network architecture for spatial position
estimation. Dotted lines (recurrences from output to input)
are active only when the network operates in imagery mode

cess is to find optimal values of synaptic weights that
minimize the error E, defined as the error between the
teaching sequences and the output sequences produced
by the network. The error function E is calculated as
follows

ED
X
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X

t

X

i

��
y�

its � yits
�
.yits � .1� yits//

�2
;

(28.5)

where y�

its is the desired activation value of the output
unit i at time t for the sequence s and yits is the ac-
tual activation of the same unit produced by the neural
network, calculated using (28.1) and (28.2). During the
training phase, synaptic weights at learning step nC 1
are updated using the error ıi calculated at the previous
learning step n, which in turn depend on the error E,
according to (28.4).

To build the training set, we used the iCub simu-
lator primitives to position the robot in eight different
locations of the field. For each position the robot ro-
tated to acquire the goal by means of a simple search
algorithm. During the movement, motor and visual in-
formation were sampled in input–output sequences of
20 time steps. The command to kick the ball is is-
sued after the acquisition of the target (the middle of
the goal). The kicking movement was preprogrammed.
Then, the neural network was trained to predict the next
sensory state (excluding the visual input) by means of
a backpropagation through time algorithm for 50 000
epochs, after which the mean squared error (MSE) er-
ror in estimating the six output variables was 0:0056.

In a preliminary study the robot was first controlled
by the same algorithm used for collecting the train se-
ries (controlled condition), the neural network was not
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controlling the robot, but used only to estimate the po-
sition coordinates. In a second trial the robot was fully
moved by means of the neural network (autonomous
condition), which directly controlled the joints (i. e.,
network outputs were sent to neck, torso, and the body
rotation actuators) as well as the kick command (moves
the leg down). The result of this preliminary study
shows that the autonomous condition performs better
(i. e., 5% average error less) than the controlled one in
terms of position estimation. For this reason, for the
main experiment we employed the autonomous condi-
tion only, which is also more in line with the theoretical
background presented so far.

The aim of the experimentwas to test the generaliza-
tion performance of the neural network and to evaluate
the use of visual and proprioceptive information for the
estimation of the robot position with respect to the goal.
As testing phase, the robot was positioned in the same
positions used for training (learning set) to verify the
quality of the learning and, then, in eight new positions
(testing set), that it did not experienced before, to eval-
uate the generalization capability of the model.

The structure of the experiment is divided into two
phases: in the first phase the network is trained to
predict its own subsequent sensorimotor state. In the
second phase the network is tested on the robot, in in-
teraction with the environment.

Table 28.3 shows the percentage error between
imagined positions and real position. The error is evalu-
ated as the percentage with respect to the real positions
using the polar coordinates. All values of the imagined
positions in Table 28.3 were obtained with autonomous
control. Analyzing errors in testing position, we can see
that the error is very high for position 8, this is be-
cause the robot fails to acquire the target after it makes
a wrong move at the beginning and the goal goes out
of sight. It should be said that the robot has not been
trained to find the goal when it is not at least in part in

Table 28.3 Real versuss imagined positions for learning and testing sets (normalized polar coordinates) and error per-
centages

N
Learning Testing

Actual Imagined Actual Imagined
Angle Radius Angle Radius Error% Angle Radius Angle Radius Error%

1 0:50 0:400 0:50 0:415 2:07 0:58 0:275 0:57 0:242 11:95
2 0:34 0:457 0:76 0:905 122:59 0:44 0:34 0:43 0:301 11:57
3 0:64 0:477 0:64 0:560 11:18 0:61 0:496 0:61 0:476 4:32
4 0:58 0:550 0:56 0:545 4:04 0:39 0:57 0:39 0:447 21:56
5 0:42 0:550 0:41 0:543 3:38 0:54 0:511 0:53 0:476 7:35
6 0:62 0:706 0:66 0:724 10:48 0:5 0:653 0:51 0:652 2:74
7 0:37 0:743 0:76 0:905 130:32 0:65 0:757 0:58 0:78 20:24
8 0:50 0:733 0:50 0:648 11:47 0:36 0:806 0:77 0:904 125:53

Average 36:94 Average 25:66
Excluding positions 2 & 7 7:1 Excluding position 8 11:39

its visual field. The same happened when the robot was
in position 2 and 7 of the learning set. The robot misses
the 50% of the scores, but it is worth to mention that
errors were mostly made when the goal was very dis-
tant (i. e., more than 8m) and even a little error in the
position leads the ball out of the goal.

Figures 28.13 and 28.14 graphically summarize the
results showing the environment with the 8 real and
imagined positions of the train set and the test set, re-
spectively. As the figures show, overall the robot is able
to estimate its position in the environment to a good ex-
tent.

Table 28.4 report the distance, evaluated using
Cartesian coordinates, between the real positions and
the first and last estimated positions in the imagined
series. This evaluation gives further evidence that the
failures on some positions are due to the fact the robot
is not trained to find the target when it is out of sight. In-
deed, the first imagined position is quite good, but after
the wrong movement the robot is no longer able to see
the goal and the visual input becomes all zeros, thus, it
has no way to recover.

Figures 28.15 and 28.16 reports the entire imag-
ined path, along with markers for first and last imagined
positions and the actual position. The imagined path
is the fictitious path that is composed of all posi-
tions imagined according to the movements made. The
imagined paths for positions with very high error are
not depicted to avoid confusion. It can be noted that
the accuracy of imagined positions gradually improves
while the robot performs the movement to aim the
center of the goal and shoot. The average improve-
ment is 0:43m for learning set and 0:56m for testing
set. According to this result, the use of propriocep-
tive motor information, coming from the autonomous
body movements, influences the robot imagination, and
it often helps to better estimate its position in the
field.
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Table 28.4 Distance (in meters) of imagined positions with respect to actual ones, with improvement from first to last
estimate

N
First estimate static vision only Last estimate vision and motor information Improvement with body movement
Learning Testing Learning Testing Learning Testing

1 0:48 0:78 0:23 0:49 0:25 0:29
2 1:18 2:46 13:66 0:59 �12:48 1:87
3 1:28 0:59 1:24 0:32 0:04 0:27
4 0:28 2:46 0:45 1:84 �0:17 0:62
5 0:64 0:86 0:14 0:56 0:5 0:3
6 2:39 0:95 1:16 0:27 1:23 0:68
7 1:84 2:22 14:52 2:3 �12:68 �0:08
8 1:98 2:73 1:27 14:99 0:71 �12:26
Avg 1:26 1:63 4:09 2:67 0:43a 0:56a

a Average without positions: 2 and 7 (learning)/8 (testing), see text for details
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Fig. 28.13 The eight real and imagined positions in the
field for the learning set
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Fig. 28.14 The eight real and imagined positions in the
field for the training set
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Fig. 28.15 Learning set: Imagined paths, with first and last
position estimates, compared to real locations in the field
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Fig. 28.16 Testing set: Imagined paths, with first and last
position estimates, compared to real locations in the field
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28.4 Conclusion
Despite the wide range of potential applications, the
fast-growing field of cognitive robotics still poses sev-
eral interesting challenges, both in terms of mechanics
and autonomous control. Indeed, in the new humanoid
platforms, sensor and actuator arrangements determine
a highly redundant system, which is traditionally dif-
ficult to control, and hard-coded solutions often do not
allow further improvement and flexibility of controllers.
Letting those robots free to learn from their own expe-
rience is very often regarded as the unique real solution
that will allow the creation of flexible and autonomous
controllers for humanoid robots in the future.

In this chapter, we presented the work done so far
to explain the concept of motor imagery and mental
simulation as a fundamental capability for cognitive
models, based on artificial neural networks, which al-
low the humanoid robot iCub to autonomously improve
its sensorimotor skills via simulated mental imagery
mechanisms.

Three experimental studies with the iCub platform
simulator were presented to show that the application of
imagery inspired mechanisms can significantly improve
the cognitive behaviors of the robot, even in ranges not
experienced before. The results presented, in conclu-
sion, allow imagining the creation of novel algorithms
and cognitive systems that implement even better and
with more efficacy the concept of artificial mental train-
ing. Such a concept appears very useful in robotics, for
at least two reasons: it helps to speed up the learning
process in terms of time resources by reducing the num-
ber of real examples and real movements performed by
the robot. Besides the time issue, the reduction of real
examples is also beneficial in terms of costs, because

it similarly reduces the probability of failures and dam-
ages to the robot while keeping the robot improving its
performance through mental simulations. In the future,
we speculate that imagery techniques might be applied
in robotics not only for performance improvement, but
also for the creation of safety algorithms capable to pre-
dict dangerous joints’ positions and to stop the robot’s
movements before that critical situation actually occurs.

From a technological point of view, this chapter
aims to support the better understanding of mental im-
agery as a potential breakthrough for cognitive robot
engineering principles. Such principles can be applied
to go further in the development of artificial cognitive
systems capable to better interact with the environment
and refine their cognitive motor skill in an open-ended
process. These robots will be able to reason, behave,
and interact in a human-like fashion, thanks to the
integration of the capabilities to mentally represent
the physical and social world, resemble experiences,
and simulate actions. The imagery-enabled cognitive
robotic agents will be able to handle and manipulate
objects and tools autonomously, to cooperate and com-
municate with other robots and humans, and to adapt
their abilities to changing internal, environmental, and
social conditions.
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29. Dynamical Models of Cognition

Mary Ann Metzger

Models of cognition address properties of the mind
by formulating cognitive processes such as mem-
ory, perception, inference, and comprehension of
language. Dynamical models of cognition ascribe
importance to time and complexity, both of which
bring context to behavior. Temporal processes
bring into the moment the possibility of memory,
feedback, the effects of nonlinear recursion, and
the generation of expectation. Complexity brings
the possibility of stable patterns of coordination
emerging from interaction of subprocesses.

In some models, time and complexity have
provided a bridge between thought and action,
a basis by which to characterize thought and
action as inextricably combined. These models
hold that action is a component of perception, or
that thought and action are inseparable, or that
thought and action act in concert, two sides of the
same coin serving to reduce the uncertainty about
the nature of events.

This chapter provides a review of several
models of cognition in terms of their dynamical
features, including models not generally included
in the dynamical tradition, such as ART and ACT-
R. It focuses on the manner in which each model
treats time and complexity, thought, and action.
It provides a glimpse into the methods of model
development and analysis associatedwith the var-
ious approaches to modeling cognitive processes.
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29.1 Dynamics

The properties of the mind are formulated and quan-
tified by models of cognition. Examples of these will
be summarized here from the dynamic point of view,
which will bring in some of their points of contact
with fields other than psychology, from philosophy to
engineering. Models will be described in ways which
highlight the manner in which they address dynamical
features of mental activity.

The dynamic point of view involves two proper-
ties of cognitive models, one methodological the other
substantive. The methodological aspect centers on mat-
ters of time and complexity, the question being in what
way does the model incorporate concepts and methods
which address temporal change as formulated in nonlin-
ear dynamic systems theory and the science of complex
systems. The substantive aspect involves the manner in
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which the models address the relationship between the
mental and the physical, cognition and action.

29.1.1 Time and Complexity

Philosophical properties of dynamical models have
been considered in comparison to models which have
been called computational. The former models are dis-
tinguished by elements of timing and complexity, as
might characterize the production and comprehension
of speech. The latter by stability, for which timing is
arbitrary, as in associations among mental symbols, or
application of rules of logic. Another way to express
the difference is that for dynamical models of complex
processes, several subprocesses act simultaneously and
interactively, while for computational models, the sub-
parts of a modeled process act as independent modules,
each of which communicates with other modules by
taking input prepared by a previously active module,
processing it, and making the result available to the next
module.

Similar distinctions have appeared in philosophi-
cal debates using related terminology as in emergent
versus reductionist, dynamical versus generative, and
connectionist versus artificial intelligence. Advocates
for dynamical models have argued for dynamical mod-
els being superior in the sense of being more complete,
perhaps more general, than their computational coun-
terparts, as in the following quote, which refers to the
computational approach as Hobbesian [29.1]:

“[. . . ] Every cognitive process unfolds in contin-
uous time, and the fine temporal detail calls out
for scientific accounting. Moreover, many cognitive
structures are essentially temporal: like utterances,
they exist only as change in time. Often, getting the
timing right is critical to the success of cognitive
performance; this is especially so when in direct in-
teraction with surrounding events.

Hobbesian computational models have made
a bet that cognitive phenomena can be described in
a way that abstracts away from the full richness of
real time, replacing it with discrete orderings over
formal states.”

The emphasis on continuous time is a stringent
requirement for research strategies in psychology. In-
corporating time as an essential component of data is
something easily done, but in many areas of psychol-
ogy this means not continuous time, but time-sampling,
in which the process in question is measured at in-
tervals, resulting not in a continuous signal, but in
discrete time, a time series of observations. Much of
the terminology characteristic of research related to
dynamical models arises from the requirement of de-

scribing and drawing conclusions from dynamical time
series.

With dynamical time-series data, the researcher can
apply graphical techniques to succinctly lay out the
time-course or trajectory of the process, the appearance
of both stable patterns, called attractors, and the paths,
transients, to and from attractors. The graphical tech-
niques have mathematical counterparts and additional
mathematical techniques are available to quantify and
summarize features of the time series. In this way the
dynamics of the process, its rule of evolution, may be
quantified, classified, and understood.

Accepting time and time series as fundamental re-
quirement of data emphasizes a focus not only on
cognitive entities, symbols and rules of manipulation,
but also on cognitive performances, perceiving, re-
membering, conversing. From this point of view, the
scientific objective should be one of describing the time
series of processes and correlates of cognitive behav-
ior and discovering the rule of evolution by which the
cognitive performance unfolds over time [29.2].

In an example from the production and comprehen-
sion of speech, dynamical defines the basic unit of data
to be a continuous linguistic signal, while generative
defines it as discrete phonetic segments. A summary
of the implication of the two approaches, continuous-
dynamical versus segmented generative is given in the
following quotation [29.3]:

“[. . . ] a fundamental mistake of the generative
paradigm is its assumption that phonetic segments
are formal symbol tokens. This assumption permit-
ted the general assumption that language is a dis-
crete formal system. This bias forced generative
phonology to postulate a phonetic space that is
closed and contains only stable symbolic objects.
We show that theories of phonetics satisfying these
constraints have little to no support from phonetic
evidence and thus that the formal-language assump-
tion is surely incorrect.”

There is an implication that dynamical models of
cognition enjoy superior status, its associated laws be-
ing deeper and more generally applicable to behavior.
That assertion has been philosophically evaluated by
examining dynamical models considered examples of
greater and lesser laws. Greater laws are defined to be
more widely applicable than lesser. Lesser laws might
be descriptive accounts of particular mental dynam-
ics, or they might rely on concepts for which temporal
factors are negligible. Dynamical models of cognition
were shown to exemplify both greater and lesser laws,
leading to the conclusion that time and complexity
alone are not sufficient to distinguish greater versus
lesser laws [29.4].
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29.1.2 Cognition
and Action

The dynamical versus computational distinction has
been characterized as competing answers to the mind-
body problem. In this view, dynamical theories address
mind-body as a single phenomenon with cognition and
action being two faces of the same process. In contrast,
computational models have the dualist view that mind
and body are different entities; the mind manipulates in-
formation to formulate goals and plans for the body to
execute. The following is an elaboration of the dynam-
ical view [29.5]:

“All that we know we have constructed within
ourselves from the unintelligible fragments of en-
ergy impacting our senses as we move our bod-
ies through the world. This process of intention
is transitive in the outward thrust of the body in
search of desired future states; it is intransitive
in the dynamic construction of predictions of the
states in the sensory cortices by which we recog-
nize success or failure in achievement. The process
is phenomenologically experienced in the action-
perception cycle. Enactment is through the serial
creation of neurodynamic activity patterns in brains,
by which the self of mind-brain-body comes to
know the world first by shaping the self to an ap-
proximation of the sought-for input, and then by

assimilating those shapes into cognition and mean-
ing.”

In discussions of dynamical versus computational
models of cognition, illustrations have been examples of
action, for which timing of interacting subsystems is an
essential feature versus cognition, for which timing en-
ters as a secondary or negligible feature. The contrast
between dynamical and computational might be illus-
trated as the contrast between a musical performance
and the music sheet, or between a conversation and
a transcript, in each case the former being action, the lat-
ter cognition. Hence, there are two conflicting points of
view on the relationship between action and cognition,
they are either sequentially cooperating subsystems, or
they are integrated, communicating subsystems.

This chapter examines several theories of cognition
focusing where possible on ways in which they charac-
terize cognition and action and on ways in which they
incorporate timing and complexity. The topic is divided
into three major categories. The first concerns meth-
ods in data-oriented models, which make few general
claims, but rather summarize a phenomenon or a special
purpose model. The second concerns general models of
cognition for which cognition and action are treated as
distinct and separate processes, that is, knowledge can
be developed and transformed without reference to ac-
tion. The third concerns models for which cognition and
action are intrinsically linked.

29.2 Data-Oriented Models

Data analytic methods for detecting and illustrating spe-
cific dynamical properties of a process set the stage
for development of more general theories. The methods
are generally derived from complexity science and non-
linear dynamic systems theory. Complexity science is
the study of processes comprised of interacting subpro-
cesses. Nonlinear dynamic systems theory is comprised
of mathematical methods, usually based on differential
or difference equations, used for inference about fea-
tures of the trajectory of nonlinear recursive processes.
A nonlinear recursive process is one for which exponen-
tial powers of previous events in the process (feedback)
systematically determine subsequent events. In practi-
cal application, the distinction between the twomethods
of analysis is not always useful, since they character-
ize and quantify phenomena of the dynamical processes
in compatible ways. Data-oriented studies aim to iden-
tify and quantify dynamical phenomena which appear
during the unfolding of an objective or theoretical pro-
cess. Their goal is to set data into a context which

highlights dynamical properties, thus establishing re-
quirements for theory.

Dynamical properties of a process are revealed in
a sequence of measurements on its important variables,
a time series which can be used to describe and draw
inferences about the trajectory of the process. Of the
numerous graphical and mathematical approaches to
understanding the dynamics of a process, this chapter
will consider just a few central concepts related to con-
structing features and drawing conclusions from time
series and dynamical models. More details, definitions,
methods, and objectives can be found in [29.6–8].

29.2.1 Methods

Part of the appeal of dynamical models is they allow the
modeling of complex-appearing processes, with simple,
deterministic rules of evolution which generate peri-
ods of patterned behavior interwoven with transitional
periods of random-seeming variation. Other dynamical
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models generate simple patterns from complex systems.
Three of the many methods associated with dynamical
modeling will be of interest here, quantifying attractors,
concepts of potential, and scale invariance.

Quantifying Attractors
Attractors are persistent patterns which arise in a dy-
namical process. As an example, a whirlpool is an
attractor in a flowing stream. When and how attrac-
tors are exhibited by a dynamical process often depends
on the value of a quantity analogous to energy of the
process. That quantity is represented by the control pa-
rameter. One of the ways to formalize a dynamical
system is to identify the attractors, then specify manner
in which the control parameter governs the trajectory of
the process into and out of attractors. In the example of
the flowing stream, the control parameter could be the
rate of flow, when the stream flows faster or slower old
whirlpools might disappear and new ones come into be-
ing. The idea is to incorporate the control parameter and
nonlinear feedback into the rule of evolution.

Attractors are the most perceptible aspect of a dy-
namical process primarily due to their duration. Other
aspects of the process are fleeting and ephemeral, but
attractors can last long enough to be noticed and named.
Take, for example, the process underlying the reversals
of an optical illusion in which the attractors are the two
possible perceptions of a staircase, rising or descend-
ing. Most of the time the perception is of one or the
other, each of which is easy to describe. The time of
transition between attractors is rapid and the transient
ephemeral. During the transient, the staircase is nei-
ther rising nor descending, and is not easily described
or named. Transient and attractor intuitively may seem
two different processes, yet the dynamics of process in
the visual system are presumed to be the same whether
the perception is of the staircase rising, falling, or tran-
sient. It is that constant process which is captured in
its rule of evolution. The assumption of dynamical sys-
tems analysis is that all phenomena arise from a rule
of evolution which remains unchanged as the system
evolves through attractors and transients. As the pro-
cess continues through time, it visits the attractors,
whose persistence constitutes the phenomenological
experience of the process. While in an attractor, the
system generates and maintains a pattern of increased
predictability, equated with lower surprise, sometimes
equated with emergent phenomena.

Potential
Dynamical processes may be drawn into attractors and
may stay in or escape from an attractor based on en-
ergetic properties. Systematic energetic properties are
measured by a potential function V the basic parameter

of which is the control parameter. Thus, the dynamics,
motion, and phenomenology of the system is governed
by the control parameter, via the potential function at
any point in time. There is a component of optimiza-
tion, that is, of the system having a quality of always
moving toward a lower potential.

A method for quantifying the relation between the
control parameter and the attractors of a dynamical pro-
cess starts with a formula for potential V associated
with each point in the space possibly lying on a tra-
jectory of the system, that is, in a space defined by the
axes which correspond to the system variables and the
control parameter. The rule is that systems always move
in a direction to reduce V. The attractors will therefore
be located at points for which the potential is at a local
or global minimum which might be conceived, respec-
tively, as a shallow or deep valley. When the system
reaches a point for which V is a minimum, it tends to
remain there in an attractor to be moved out of that at-
tractor only by random or systematic fluctuation both of
which might be increased by additional energy, hence
the persistence of attractors. Some energy is required to
keep the process in operation and drive it to its deepest
attractor, but too much energy can make the system less
predictable by causing it to jump in and out of attrac-
tors.

It is the essence of attractors that they persist over
time and so they are perceived as patterns or entities.
Local attractors last for a time comparatively shorter
than global attractors. Thus, global attractors have the
effect of staving off the effects of time. That is, the sys-
tem remains patterned and therefore more predictable
over an extended period. Comparing to transients, tran-
sients happen in time whereas attractors happen over
time.

Scale Invariance
Nonlinear dynamic systems analysis can often reveal
that a process or object has the same form whether it
is viewed overall or microscopically. When such a rela-
tionship occurs, it is described by the equivalent terms
of fractal, self-similar, or scale invariant. Examples of
scale invariance occur widely in nature, often being vi-
sual examples of trees or landscapes, but the concept
of scale invariance also applies to the mathematics of
the underlying processes, so a model without a visual
counterpart may be described as scale invariant.

29.2.2 Example: Motor Coordination

Applied to bilateral motor coordination, a data-oriented
method of complexity science, coupled oscillators, was
applied specifically to bilateral coordination of hand
motion [29.9]. The analysis of the purely the motor
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phenomenon has served as inspiration for applying the
same method of analysis to cognitive phenomena. In
the hand-motion study, a participant with hands on ta-
ble is instructed to start moving both index fingers in
a given pattern at a given rate, then on cue, speed up
or slow down. The model relies on a fundamental vari-
able �, the observed phase difference between the two
fingers. When in phase (toward and away from each
other), � D 0. When out of phase (both point the same
direction), � D 
 . With the application of complexity
theory and the theory of coupled oscillators, it was pos-
sible to derive specific predictions of amplitudes and
frequencies critical for the system. That is, the theory
predicted accurately for individuals at what frequency
in-phase or out-of-phase patterns would appear, and ad-
ditionally what changes in amplitude of finger motion
occurred as the process moved between out-of-phase
and in-phase. The fundamental equation used to quan-
tify the locations and depths of the attractors of the
system was derived and given as

V D�a cos� � b cos 2� ; (29.1)

where potential V is a function of the phase dif-
ference �, and constants a and b. The trajectory of
coordination of hand motion occurs predominantly in
a direction which minimizes V, with small fluctuations.
The function V has two distinct minima, a shallow, local
minimum, and a deep global minimum. The values of �
at which these minima occur can be found by taking the
derivative of V with respect to �, setting it equal to zero
and solving for �. These are the values of � associated
with two attractors of the process. When in opera-
tion, the system generates only two attractors, a strong
one at � D 0, associated with a global minimum of V;
a weak one at � D 
 associated with a local minimum.
Transition between phases is governed by the control
parameter, the speed of oscillation, and shows unidirec-
tional hysteresis. That is, it is more likely to fall into
the global attractor than to escape it. While the process
is in an attractor, it appears patterned, either in phase
or out of phase. When the trajectory takes the system
between attractors, it is in a transient and appears unco-
ordinated. For any participant, the precise frequencies
at which the two attractors occur and the ease of mov-
ing between attractors is captured by the relationship of
jbj to jaj, a quantity which can independently be deter-
mined for each participant. The description so derived
has been shown to be consistent with details of coordi-
nation of bilateral hand movement.

Although the application obviously concerns only
coordinated motor systems, the method of coupled os-
cillators has come into play, at least metaphorically in
theories of infant cognitive development. The develop-

mental applications rely on the emergence of patterns of
phase coordination which arise naturally out of proper-
ties of motor structures. A pattern, however, gives the
impression of independent existence. Some theories of
cognitive development claim some of the phenomena
of the infant’s cognitive development, ideas about the
permanence of objects, for example, may simply be
emergent properties wholly a product of interaction of
motor systems.

29.2.3 Example: Decision Under Risk

A second example of a data-oriented approach offers
an integration of several theories and results in the field
of decision under risk [29.10]. To summarize, using
a modification of terminology: Established results begin
with the concept of the subjective value .y/ of a gam-
ble, a quantity which can be determined from a person’s
choices among gambles. Within a wide range, for a ra-
tional person, subjective value of a gamble is equal to
the objective expected value .x/, negative for losses,
positive for gains. It might be called Rational Value
Theory (RVT). But much research has shown people
often act as if y has been modified by additional sub-
jective evaluations of winning and losing and other
features of the gambling experience, yielding a mea-
sure of utility. When y equals utility for each value
of x, it can be said choice of gambles is governed by
Expected Utility Theory (EUT). In a third theory, ac-
knowledging that losses and gains are often relative,
y of the gamble can be profoundly affected, even re-
versed, by the context in which the gamble is presented
(framing). When y can be reversed from a preference
to an aversion by, for example, changing the framing
from a context of gain to a context of loss, it is an
example of Prospect Theory (PT). Each theory yields
a characteristic pattern in the graph of y against x.
The patterns RVT, EUT, and PT can all be observed
within an individual. Deviations from RVT have been
associated with emotional involvement, where least
emotional involvement described by RVT, moderate by
EUT, and high by PT, critical facts for dynamical sys-
tems analysis.

Dynamical systems analysis of the choices among
gambles begins with the assumption that the three
graphs of y against x constitute the observed attrac-
tors of the process of choice among gambles. For RVT,
the graph would be a 45ı line, yD x through origin.
For EUT the graph is ogive shaped with varying de-
grees of steepness, often asymmetric. For PT, over the
mid-range of x, the graph is S-shaped, also somewhat
asymmetric. Taking just the upper and lower arms of
the S, y is then a two-valued function of x, represent-
ing reversal of preferences due to framing. The goal
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is to embed the three attractors on a surface in three
dimensions by introducing a third axis, the control pa-
rameter a.

The control parameter a is defined as an indicator
of amount of emotional involvement. It is included as
a third dimension, placing the three y by x graphs on
a surface in three-dimensional space and in a specific
relation to each other. Graphs for RVT, EUT, and PT are
arranged, respectively, from linear to S-shape, at aD 0,
aD moderate�value, and aD high�value. As is char-
acteristic in nonlinear dynamic systems analysis, the
control parameter is hypothesized to govern movement
between the attractors; the least emotional involvement
associated with linear RVT, moderate involvement with
ogival EUT, and high involvement with discontinu-
ities of PT. When the three curves are arranged along
the third dimension, a, their graphs suggest the cross-
sections of the folded surface of a cusp catastrophe, for
which a standard quantification exists.

For processes the trajectories of which lie on a cusp-
catastrophe surface, (29.2) applies. It gives the formula
for finding the potential .V/ associated with any triple
of points .y; x; a/. To obtain the formula for the surface,
it is only necessary to find the values of .y; x; a/ which
make V a minimum. This is a straightforward process
of taking the partial derivative of V with respect to y,
setting the derivative equal to zero and solving the result
to express y as a function of x and a. The graph of the
resulting function will be the cusp catastrophe surface
upon which the graphs of the three theories can be fit

V D y4C ay2C xy : (29.2)

The value of this analysis by cusp catastrophe is not
only that it represents several types of betting choice on
a single surface, describing all three with a single for-
mula but also that it lays out a dynamics which might

take place within an agent. This suggests time-series
studies of a single agent with varying levels of emo-
tional involvement over might profitably address dy-
namical movement among attractors. Such an approach
might reveal individual differences, intermediate attrac-
tors, a bifurcation point at which the curve becomes
2-valued, and possibly hysteresis in the 2-valued range,
thus posing challenges for continued development of
theories of decision under risk.

29.2.4 Summary

The examples illustrate two of the many dynami-
cal approaches of data-oriented research. In the first,
the approach quantifies coordination of limb move-
ment, applying the model of coupled oscillators, well-
understood in complexity science. The model enabled
predictions about both phenomenological and quanti-
tative details of coordination of hand movement, that
is, about the nature of attractors and transients. This
adds to theory by clearly delineating an approach to
characterize the nature of emergent phenomena. The
second approach is to begin with known attractors, as
in the three styles of risk-taking characterizing subjec-
tive value as a function of objective value, then propose
to place the functions in a space, arranged along a di-
mension of a control parameter. The approach envisions
a single surface on which the three attractors lie. The
resulting relationships add to theory by delineating the
forms of other possible attractors of the process and
processes which might go on within an individual. The
first theoretical analysis concerns only action. In the
second, study concerns only cognition. In both types of
approaches, the goal is to end up with an understand-
ing of the attractors the nature of the transients, and the
control parameter, using methods of complexity science
and nonlinear dynamic systems theory.

29.3 Cognition and Action Distinct

The philosophical contrast between dynamical and
computational theories of cognition rests to some de-
gree on their respective theoretical link between cog-
nition and action. For computation, the link is proposed
to be a minimal relation between modules.Mental mod-
ules manipulate information and issue goals for a motor
module to carry out. The claim that modular theories
are not dynamical deserves examination. Consider three
models, each apparently exclusively concerned with
mental processes only very loosely linked to perfor-
mance. The first model is of limited applicability and
serves mostly to illustrate possible but unrealized links

between cognition and action. The remaining two are
models that might quite reasonably be described as very
large and comprehensive. Both have impressive records
of empirical application and test.

29.3.1 Recognition Memory Model

A theory with apparently only cognitive aspects appears
in a model of recognition memory [29.11] proposed to
be dynamical. The model is closely tied to a particu-
lar experimental paradigm. For a typical experiment on
visual recognition memory, an agent might view either
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a familiar picture or a novel one and be instructed to
respond familiar or new. The model characterizes the
process as a sequence of re-perceptions of the picture
or re-looks at it, each look providing more information
to update positive and negative accumulators for fa-
miliarity. When the positive and negative accumulators
for familiarity reach sufficiently small rates of change,
a judgment is generated and a response is initiated. Al-
though the model is not presented in this way, the rates
of change of the accumulators are analogs of a poten-
tial function to be minimized by re-looks. When the
potential function has reached a minimum, the cogni-
tive system has reached an attractor, namely a persistent
judgment of familiar or unfamiliar. Temporal features
of accumulating and looking are hypothesized to affect
response time.

In the matter of the relation between cognition and
action, some parts of the model are undefined. The
process of re-looking, for example, is not explicitly
defined. It is not clear whether re-looking is a motor
function or mental re-perception without motor involve-
ment. It is not clear whether looking is at the service of
the accumulators. It is possible an accumulating mod-
ule might send out a goal to a looking module, and the
looking module then produce some sensations for the
accumulatingmodule to work on. Alternatively, it could
be that looking and accumulating proceed in mental flux
until the process reaches an attractor and initiates a re-
sponse. The first would be more like a computational
model, the second, dynamical.

There are additional questions about the relation of
cognitive to motor. The ocular system is not the only
motor function in the experimental setup. The agent
must also record his judgment with a word or a press
of a button. After the process has reached an attrac-
tor, presumably a command would be issued to a motor
module for this purpose. So this model has the possibil-
ity of both an integrated motor process for looking and
a separate motor module for executing the response. It
illustrates concepts that come into play when analyzing
modularmodels in terms of dynamic and computational
features.

29.3.2 Adaptive Control of Thought –
Rational

Adaptive Control of Thought – Rational (ACT-R) is
a theory of cognition designed to incorporate what is
known as brain function into an architecture which op-
erates to solve problems using symbols and rules of
deductive and inferential logic. Because its operations
are based on symbols and rules, it can be classified as
a computational model of cognition. It has focused on

higher level cognition and problem solving rather than
perception or action [29.12].

In any application, ACT-R produces a simulation
of the operation of a system consisting of modules of
a multifaceted brain, a perceptual motor system, a goal
system, a declarative memory, and a procedural system.
Each module produces information in a form useful
to one or more other modules. This has some dynam-
ical aspects since there is an empirically determined
characteristic timing of the operations applied to sep-
arate modules. Although it deals with symbols and
rules, timing for operations of a module is not nec-
essarily arbitrary nor altogether ignored. This model
has complexity of the mental system without the addi-
tional complexity of the motor system to which it issues
goals [29.12]:

“[. . . ] the critical cycle in ACT-R is one in which the
buffers hold representations determined by the ex-
ternal world and internal modules, patterns in these
buffers are recognized, a production fires, and the
buffers are then updated for another cycle. The as-
sumption in ACT-R is that this cycle takes about
50ms to complete this estimate of 50ms as the
minimum cycle time for cognition has emerged in
a number of cognitive architectures [. . . ]. Thus,
a production rule in ACT-R corresponds to a spec-
ification of a cycle from the cortex, to the basal
ganglia, and back again. The conditions of the pro-
duction rule specify a pattern of activity in the
buffers that the rule will match, and the action spec-
ifies changes to be made to buffers. The architecture
assumes a mixture of parallel and serial process-
ing.”

The feature of parallel processing does not imply
unlimited capacity since there are two limited-capacity
features built into the system. The first is the limitation
on buffer contents. A buffer can hold only a single item
from memory or perception. The second is a limitation
on production rules, only a single one can be selected
on each cycle.

ACT-R has been used along with brain imaging to
identify certain brain structures with which aspects of
cognition can be associated. Brain activity was imaged
for participants while they learned a new artificial al-
gebraic system, manipulated its equations, and keyed
in answers, in an experiment which lasted over several
days. Imaging yielded a measure of activity, the blood
oxygenation level-dependent (BOLD) function in brain
structures over the time course of the experiment and
related the measure to theoretical account of steps in
problem solution with the following results [29.12]:
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“1. The motor area tracks onset of keying. Other-
wise, the form of the BOLD function is not sensitive
to cognitive complexity or practice.
2. The parietal area tracks transformations in the
imagined equation. The form of the BOLD function
is sensitive to cognitive complexity but not practice.
3. The prefrontal area tracks retrieval of algebraic
facts. The form of the BOLD function is sensitive to
cognitive complexity and decreases with practice.
4. The caudate tracks learning of new procedural
skill. The BOLD function is not sensitive to cog-
nitive complexity and disappears with practice.”

These four results illustrate the role of timing and
complexity in ACT-R theory. Although the theory can
be categorized as computational, it is clear from this ex-
ample that the theory addresses the dynamics of brain
processes which accompany learning procedural skills
of varying difficulty. Although time comes in as an in-
dex of practice, measured in days, the focus is on the
end-effect of practice, to identify which brain mod-
ules and transmitter substances might be involved in
developing an understanding of the algebra and skill
at executing a sequence of steps to solve an algebraic
problem. The objective is to match brain function and
modules with their theoretical counterparts. That is, the
modules and information flow represented in the ar-
chitecture of the theory are matched with activities in
specific brain modules, allowing the function of the
brain modules to be inferred and described in terms of
the theory. So, too, with complexity, which is here not
taken to refer to the complexity of complexity science,
but rather to the difficulty of the artificial algebra and
the problems given for solution, and is also a variable to
be related to the function of brain modules. Thus, ACT-
R has timing and complexity, but does not address the
process using methods of complexity science or nonlin-
ear dynamic systems theory.

29.3.3 Artificial Neural Networks Methods

Artificial neural networks (ANNs) are a large num-
ber of theories addressing many phenomena including
phenomena of cognition. ANN theories share the fun-
damental component of the artificial neuron (N) an
element with some similarity to physical neurons. Ns
are usually lined up in layers. Artificial neurons in the
lowest layer receive stimulation from an external source
(input). The remaining layers receive weighted stimu-
lation from other neurons usually from the next lower
layer. The weights reflect variations in the strength of
the connection to one N from another. The firing pattern
of the highest layer (output) is readable in meaning-
ful terms by some other system. Intermediate layers are

generally referred to as hidden, and their firing patterns,
determined by the weights, are not necessarily easily in-
terpreted.

Each N accumulates the weighted stimulation and
transforms it according to a nonlinear function usu-
ally acting as a threshold. When the transformed value
reaches the threshold, the N fires, usually stimulating at
least one N in the next higher level of its next higher
neighboring artificial neurons. The word usually ap-
pears often in the description of ANNs because the
structure and operation of an ANN is subject to the
ingenuity of its designer. The amount of stimulation
received by one N from the firing of another is gov-
erned by their connection weight which is taken to be
a measure analogous to synaptic strength. From these
few properties and their numerous variations, structures
can be developed which when in operation simulate
thought processes associated with many brain activities
thought to underlie learning, concept formation, and ra-
tional thought.

For an example of the operation, input might be
of a new pattern, expressed in ones and zeros. The
weighted and reweighted elements of the pattern are
passed through one or more layers of artificial neurons,
of each which applies a nonlinear transformation.When
it reaches the output layer, the output might be ones and
zeros representing a category into which the ANN has
determined the new pattern falls.

Whatever the network and task, connection weights
which optimize performance must be found. This is
usually accomplished by minimizing a cost function
during a training procedure in which the ANN learns
the optimal connection weights to perform well on
a particular task. Considering only supervised pattern
learning, any given input pattern can be associated with
a desired output, a correct classification for example.
With the goal of minimizing the error over all patterns,
the weights over the entire network can systematically
be adjusted in a direction which reduces the cost func-
tion, which will over several trials incrementally bring
the cost function to a local or global minimum. Min-
imizing error is similar to minimizing potential V of
(29.1) and (29.2). A typical cost function is the least-
squares minimization given as

V D
X

i

.oi� di/
2 ; (29.3)

where V is the cost, i indicates the ith output N, o is
the output value, and d is the desired value. Minimizing
the cost function is a process of reducing errors in clas-
sification by adjusting connection weights throughout
the network, usually through a technique called back-
propagation. Unlike the earlier examples, the local and
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global minima for V are not usually completely known
and the process of minimizing V can settle at either
type of minima, arriving at a local or global attractor
for the set of weights. It is a process of parameter esti-
mation which has some analogy to the characterization
of the learning process. Normally the process of pa-
rameter fitting is not part of the cognitive model, but in
the case of ANNs, as the parameters are being changed
trial by trial the process of parameter estimation mimics
the learning process, that is, changes synaptic weights.
Such changes in synaptic weights are thought to char-
acterize learning and adaptation in biological systems.

One of the strengths of ANN models is that they
can often easily incorporate substructures with known
properties. ANNs are well suited to do real tasks such
as those based on identification of a limited number of
patterns. For example two ANNs, each of which is itself
a theory of adaptation are the ANN model for Hebbian
learning and the Hopfield Network for learning to clas-
sify patterns without supervision. These are examples
of the power of neural network modules which can be
used in sections of an ANN model of cognitive and be-
havioral functions.

Hebbian Learning
In Hebbian learning when a neuron N fires, all of its
connections with other Ns in the layer below are af-
fected, in particular, any N whose firing stimulated it.
Each of these connections is increased in effective-
ness, that is, will transmit a greater effect in the future.
Hebbian learning is a dynamical model of neural mod-
ification during learning. In a Hebbian, ANN parts of
the system during their normal operation create a use-
ful learned configuration. It is a dynamical model of
adaptive brain changes, which instantiates the Hebbian
theory of neural correlates of learning.

Hopfield Network
An ANN can simulate other cognitive functions, for ex-
ample, the Hopfield network can infer good patterns
from samples without any supervision, that is, with-
out feedback on correctness of its performance while
learning to classify patterns during training. The Hop-
field Network can also remove noise from imperfect
patterns, and is known as a technique for self-addressed
memory.

29.3.4 Adaptive Resonance Theory

Adaptive Resonance Theory (ART) is a global theory
of cognition using related models of brain and neuronal
properties to assemble ANNs to simulate cognitive and
other brain functions. Adaptive resonance is analo-
gous to energy produced by a pattern match based on

processes of stored patterns (top-down) and of input
management (bottom-up). When a match is achieved
the system sends the information to the next module,
by ANN routes, for further processing. ART has by
these means addressed and simulated the theoretical
processes that underlie numerous results from the lit-
erature of experimental psychology and neuroscience.

The fundamental unit of ART incorporates the dy-
namics of adaptive resonance and forms the common
basis for many related models. Models have been for-
mulated with different objectives but all with ART in the
acronym, indicating that adaptive resonance is a fun-
damental feature of every model so derived. Adaptive
resonance is the fundamental theoretical process of cog-
nition.

Adaptive resonance entails a temporal process that
unfolds during the creation of a meaningful percep-
tion from an input. The input may be a pattern to be
identified or categorized, or it may be part of a tem-
poral sequence such as speech to be comprehended.
Having received input, ART initiates a comparison pro-
cess is with the objective of maximizing a resonance
function. In the comparison process, the bottom-up in-
put signal interacts with top-down previously learned
patterns, prototypes, and expectations. The interaction
consists of repeated cycles of directing attention to
combinations of bottom-up features deemed signifi-
cant by a matching process and suppressing bottom-up
features deemed irrelevant. In repeated cycles, the res-
onance function is optimized and the information can
be passed on to the artificial neurons in the next module
for further processing.

ART is currently silent when it comes to generat-
ing overt responses, although some indication has been
given of a proposed approach to the problem. For ART,
the perceptual system derives resonance from achiev-
ing a match. For the motor response, the system issues
a goal and leaves it at that. The suggestion has been
put forward that the motor response might be shaped
by a complementary process, a sort of mirror image of
resonance. In the proposed process, the complementary
energy analog of resonance would be generated not by
a match, but by a mismatch between actual and desired
action, the mismatch indicating the desired goal has not
yet been reached. Motor functions are addressed and
characterized thus [29.13]:

“The START model proposes how adaptively timed
inhibition of the hippocampal orienting system [. . . ]
and adaptively timed disinhibition of cerebellar
nuclear cells [. . . ] may be coordinated to enable
motivated attention to be maintained on a goal
while adaptively timed responses are released to
obtain a valued goal. [. . . ] Biological learning in-
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cludes both perceptual/cognitive and spatial/motor
processes. Accumulating experimental and theoret-
ical evidence show that perceptual/cognitive and
spatial/motor processes both need predictive mech-
anisms to control learning. Thus there is an inti-
mate connection between learning and predictive
dynamics in the brain. However, neural models
of these processes have proposed, and many ex-
periments have supported, the hypothesis that per-
ceptual/cognitive and spatial/motor processes use
different types of predictive mechanisms to regulate
the learning that they carry out. [. . . ] The need for
different predictive mechanisms is clarified by ac-
cumulating theoretical and empirical evidence that
brain specialization is governed by computationally
complementary cortical processing streams that em-
body different predictive and learning mechanism.”

29.3.5 Summary

Both ACT-R and ART characterize dynamics of men-
tal processes theoretically observable through brain
imaging. Both models characterize cognition and per-
formance as separate processes. Cognition may be

required for a performance, but cognition and perfor-
mance are two different processes. Behavior is taken as
a window onmental processes, that is, at the completion
of the cognitive process, a goal may be issued to a mo-
tor system. Behavior, then, indicates what goal was set.
Separating cognition and action is, however, not a nec-
essary feature of these types of models, an integration
of the two is an explicit goal for both ACT-R and ART.

With regard to complexity, both ACT-R and ART
have interrelated communicating subsystems, modules
which act in cooperation, rather than in concert, that
is, usually sequentially, not simultaneously. As such,
they do not invite the techniques of complexity science.
The fact that ACT-R specifically addresses symbols and
rules of their manipulation does not prohibit applica-
tion of nonlinear dynamic systems analysis, as there has
been developed a method of symbolic dynamics [29.14].

Not time, but timing is an essential feature of both
models. That is, what is known from brain imaging
about the active areas of the brain and about the times
required for particular brain activities is incorporated
into both models. These are reflected in temporal re-
strictions on sequencing and when passing information
is permissible between modules.

29.4 Cognition and Action Intrinsically Linked

29.4.1 Methods

In discussions of theories for which cognition and ac-
tion are intrinsically linked, it will be useful to reserve
the word model to refer to properties of the agent. The
word is commonly used in two senses, each an example
of some kind of entity for prediction of events, evalua-
tion of evidence, and revision of beliefs. The first type
is the scientific model using various techniques to gen-
erate predictions, guide the formulation of experiments,
and prescribe routines for evaluating results. These are
the models to which the title of this chapter refers. For
clarity and brevity in the presentation of models which
intrinsically link cognition and action such scientific
models will be referred as theories. The second usage
of the word includes models which instantiate a set of
beliefs held by the agent about the state of the exter-
nal world based on patterns of sensations. They include
beliefs in models of processes in the external world,
such as the belief that a convivial friend will enjoy the
party. They also include beliefs held by the agent about
his actions and the consequences thereof in the external
world, such as the belief that opening the cupboard will
reveal a tasty snack. Beliefs held by the agent will be
called models in the remainder of this chapter. Thus,

theories may contain hypotheses about the existence
and properties of models. This is especially so for theo-
ries which assert cognition and action to be intrinsically
linked. Such theories are usually associated with meth-
ods by which to characterize the processes by which
the agent’s beliefs are created and altered. Two such
methods will be described next, Bayesian multiprocess
models and particle filters.

Bayesian Multiprocess Models
According to the theory of multiprocess models of
cognition and behavior [29.15], the agent generates
expectations for what will happen next from each of
numerous mental models pertaining to the experience.
These expectations take the form of a prediction for the
next event and assignment of a probability from each
model to each possible outcome of the event or, equiva-
lently, to each possible error of prediction. The models
themselves may be of any sort, that is, they may contain
features of complexity, nonlinearity, and feedback, or
they may be simple stochastic models. The word mul-
tiprocess indicates that each of several models may be
characterized as a belief about the dynamics of some
event. The relative amount of belief in each model is
expressed as its probability. The models are required to
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be mutually exclusive and jointly exhaustive as far as
beliefs are concerned.

The important aspect of mental models is they
make a specific probabilistic prediction for the very
near future, that is, they attach a probability to every
event which might possibly happen next. After an event
occurs, each model is re-evaluated according to the sup-
port each receives from the evidence of the event. For
example, consider an agent who has two models for
a coin, that it is either fair or biased. The fair coin
model, z50, is expressed as P.H/D 0:5 and P.T/D 0:5.
The biased coin model, z80, P.H/D 0:8 and P.T/D
0:2. Suppose before the coin is tossed he believes 60-
40 that the coin is fair, that is, his prior amount of
belief in each model is expressed in the probabilities
P.z50/D 0:6 and P.z80/D 0:4. The two models and his
relative degree of belief in each form the context for
his interpretation of the subsequent event, which will
be the outcome of a toss of the coin. For each model the
agent generates a prediction and a probability for any
other outcome, for z50 he might predict heads H and
note a 0:5 probability of error, namely T . For z80 he will
predict H, but with a 0:2 probability of error. The coin
is tossed and comes up H. The question is how does
this outcome affect his degree of belief in each model
to yield revised or posterior probabilities? The answer
is given by Bayes rule, in the odds form, applied to each
model separately in (29.4)

P.z50 j xH/
P.z80 j xH/ D

P.xH j z50/
P.xH j z80/

P.z50/

P.z80/
; (29.4)

where xH is the event of havingH occur after predicting
H, that is, having predicted H accurately. Although pre-
diction from each model is accurate, that is, prediction
error is zero for each, the probability of a zero error is
different for each model. Evaluating (29.4) along with
the condition that the models are jointly exhaustive,
yields the effect of the event on the belief in each of
the two models, posterior beliefs of P.z50 j xH/D 0:48
and P.z80 j xH/D 0:52. Given the same prediction H,
if the outcome of the coin toss had been T , the result
would have been different with P.xT j z50/D 0:5 and
P.xT j z80/D 0:2. Then the result would have been the
posterior beliefs of P.z50 j xT/D 0:79 and P.z80 j xT/D
0:21.

In the theory of multiprocess models of cognition,
the models invoked by the agent arise from both inter-
nal sources and experience. The set of models together
with their degrees of belief form the context by which
the agent understands events. In any situation, the pre-
diction error is used to revise the degree of belief in
each model. The effect of repeated application of Bayes
rule is to alter beliefs to reduce errors of prediction.

In the dynamics of multiprocess models, the prediction
error serves the same purpose V does for complex sys-
tems, that is, the system of beliefs forming the context
of the experience, evolves in such a way always to re-
duce errors of prediction by systematically bringing the
successive priors closer to their respective posteriors. In
this way, ongoing experience produces and refines the
context of the experience.

Particle Filters
Particle filters provide a method for applying Bayes rule
in an environment of constant flux where the agent has
both beliefs about his actions as they affect his environ-
ment and beliefs derived from evidence about the state
of the environment. By incorporating beliefs about the
effects of action, new models may be introduced to the
set, providing a flux of models to accommodate the flux
of the environment.

Particle filters give a best-guess approximate solu-
tion to the problem of finding prior beliefs about other-
wise unknown states of an agent moving in a changing
world. The method uses such prior beliefs, a motion
model, input to a map model, and current stimulation
to generate updated beliefs about current state [29.16].
Its application can be illustrated with a simple example
of an agent moving in the dark around the furniture in
a familiar room.

The particles in question are simple hypotheses,
such as a statement about location. One particle might
claim You are here at A. another You are here at B.
and so forth. Having started into the room from the
threshold and taken three steps, he consults his mo-
tion model and believes he has arrived at one of three
points, A, B, C with respective probabilities 0:2, 0:3,
0:5. To further delineate his location, he reaches out
and finds that he touches a table, providing evidence
x. He then consults his mental model of a map of the
familiar room and determines the probability of touch-
ing the table from A, B, C, is respectively, 0:7, 0:5,
0:2. These yield posterior probabilities for A, B, C,
given x, of 0:36, 0:38, 0:26. At this point, the filter
reweights each particle according to the degree to which
touching the table was a surprise for it. The weight
for each particle is calculated as the ratio of its poste-
rior according to the map to its prior according to the
motion model. The particles are then re-sampled with
replacement according to the weights to yield a new
probability density function (pdf) for final belief of
location. The posteriors for A, B, C, respectively are
0:50, 0:36, 0:14. He can use these posteriors as pri-
ors in the motion model, for his next steps, then once
again reach out, then consult his map about the result.
At this time it is quite likely a new particle D might
come into the picture, justifying the re-weighting and
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re-sampling of the posteriors for his next input to the
motion model.

The particle filter is a method for continuously boot-
strapping probabilities which cannot simply be dragged
from one situation to another because the question and
the environment are continually changing. The question
is not simply Where am I?, but rather Now that I have
taken three steps from one of three places I was at with
varying probabilities, where am I? It gives weight to the
previous beliefs from models, but sheds themwhen new
circumstances and other models come into play.

Although it is not stated explicitly in terms of pre-
diction errors, by the procedure just described, particles
with smaller prediction error become more likely to
be sampled to estimate the pdf, while particles with
greater errors tend to drop out. This keeps neighbor-
ing particles more influential and distant particles less.
The dynamical feature of this model is that cognition
changes always in a way to reduce a potential function,
in this case, the quantity minimized is surprise, the dis-
crepancy between the prior and posterior beliefs.

29.4.2 Embodied Cognition

Theories of embodied cognition hold that phenomena
of cognition are all, or in large part, emergent from
coordination of components of a complex motor sys-
tem. The psychology of infant development has been
a source of examples of the theory, taking advantage of
the fact that infants change over time in correlated cog-
nitive and motor abilities. The theory overview is that
over a period of growth, motor subsystems settle into
new patterns of coordination in a manner analogous to
coupled oscillators, a feature of increasing motor size,
strength, and complexity. The patterns give the appear-
ance of new cognitive abilities but the theory holds in
certain cases the cognitive property exists only in new
patterns of the motor coordination. Thus eye move-
ments and limb movements may become coordinated
in a pattern which gives the appearance of a new level
of belief about properties of objects, but that emergent
property is not independent of motor coordination. The
embodiment theory of cognitive development relies on
concepts from both complexity science and nonlinear
dynamic systems theory [29.17], Chap. 30.

An illustration of the dynamical approach to cogni-
tive development concerns a prototypical phenomenon
known as the A-not-B error. To demonstrate the de-
velopmental difference in A-not-B the infant is shown
a toy, which is then hidden at location A within easy
reach. The infant reaches to uncover and retrieve the
toy at A. This is repeated several times, then the toy
is shown being hidden at location B also within easy
reach. After a short delay, the infant is allowed to reach

for the toy. If the infant is 10months old he will reach
for A not B, apparently making an error of cognition
in the sense that the infant appears to believe that the
toy hidden at B nevertheless will still appear at A. At
12months, the infant will correctly reach to B, ap-
pearing to have reached a new concept that toys put
someplace will not move from there on their own. This
consistently reproducible error had previously been in-
terpreted as a sign that between 10 and 12months, the
infant develops an understanding of object permanence,
that is, develops a belief that the object will not mag-
ically jump from B to A. The dynamical model takes
issue with this interpretation proposing the same intel-
lectual factors enter into the two types of responses and
the same process but the process is complex, made up
of two motor subprocesses with different timing at dif-
ferent ages.

The first process is a motor memory of reaching for
A, made strong by the initial repetitions. The second is
memory for the looking where the toy was recently hid,
B. For a younger infant, the memory of looking at B is
hypothesized to decay faster and by the end of the de-
lay the memory of reaching for A comes to dominate.
For older, a different time course of decay for the two
memories leaves the memory of looking dominant at
the end of the delay. This dynamical interpretation has
been successful in several tests using variations of con-
ditions intended to differently affect the time-courses
of decay of the two memories. In this way, the relation
between the time-courses of decay for two memories,
each of the result of its respective motor process, gives
rise to an apparent cognitive advance, object perma-
nence. The cognitive advance is thereby an emergent
property of the system, created from more elementary
subsystems. Instead of the motor function obeying the
cognitive command, the cognition arises as an epiphe-
nomenon of motor coordination.

Outside of developmental psychology, the theory
of embodied cognition has been applied to mental im-
agery. The theory of embodied mental imagery holds
that even when there is no overt behavior repre-
senting the cognition, it nevertheless is body based.
Abstractions such as mental imagery, working mem-
ory, episodic memory, implicit memory, reasoning, and
problem solving which operate in the absence of overt
behavior may be called off-line cognition. The pro-
cess from which off-line cognition derives, is linked
to decoupling of mental processes from overt behavior,
a process by which mental processes which formerly
accompanied overt behavior have decoupled from the
behavioral aspect and go forward on their own [29.18].

As a matter of principle, the off-line theory of
embodied cognition holds that decoupled, abstract cog-
nitive activities are remnants of bodily activities. By this
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reasoning, mental processes which originally only ac-
companied veridical perception and action, have been
adapted to operate off-line, without requiring input or
output, but nevertheless retain features characteristic of
perception and action [29.18]:

“Off-line aspects of embodied cognition, in con-
trast, include any cognitive activities in which sen-
sory and motor resources are brought to bear on
mental tasks whose referents are distant in time and
space or are altogether imaginary. These include
symbolic off-loading, where external resources are
used to assist in the mental representation and ma-
nipulation of things that are not present, as well
as purely internal uses of sensori-motor represen-
tations, in the form of mental simulations. In these
cases, rather than the mind operating to serve the
body, we find the body (or its control systems) serv-
ing the mind.”

Almost in contrast to the off-line view is a theory
of embodiment which holds that the mind extends into
the physical world. For example, this theory asserts that
mental activity includes actions such as using paper and
pencil to solve an arithmetic problem or write a sen-
tence. The rules of manipulation of symbols, and the
symbols themselves are extensions of the mind into
the physical world. In this way, the theory asserts the
mind increases its capacity for memory and rule appli-
cation [29.18].

29.4.3 Motor Theory

Motor theories of perception link action to cognition.
Understanding or perceiving an observed action by oth-
ers is accomplished by the covert production of that
action. The early example of such a theory is the mo-
tor theory of speech perception. The motor theory holds
that speech is perceived through the listener’s covert
production of the same speech [29.19]:

“As for speech perception, there is now evidence
that perceiving speech involves neural activity of
the motor system. Two recent studies involving the
use of transcranial magnetic stimulation of the mo-
tor cortex have demonstrated activation of speech-
related muscles during the perception of speech.”

Concepts in the motor theory of speech perception
have been extended to a more general theory, applying
to any observed action by others. The general motor
theory of perception has received much support from
studies of neuronal activation and brain imaging which
shows perceiving actions involve the same neuronal,
brain, and motor system as producing the action. Com-
plexity in production, complexity in perception, and

complexity in coupling the two are central features of
motor theories of perception.

29.4.4 Simulation Theory

Simulation theory [29.20] holds, in the large, that men-
tal life, particularly imagination, consists of processes
by which the brain synthesizes sensations and per-
ceptions which do not arise from the external world
and actions which do not affect the external world. To
achieve this, the brain activates the same pathways used
in veridical sensation, perception, and action, but inter-
rupts their contact with the external world. In this way,
a replica, or simulation of external events and processes
can be experienced without requiring the presence of
their veridical counterparts. Simulation can be either of
a stable perception, or of a dynamic unfolding of a pro-
cess of simulated perception, action, and anticipation of
the consequences of action.

Simulation theory requires that the brain contain
structures which can accommodate perception, action,
and anticipation in the absence of external input, as
contrasted with veridical perception and action. The re-
sulting motor stimulation is stopped short of execution,
resulting in simulated behavior [29.20]:

“Saying that behaviour can be simulated here means
nothing more than that the signal flow from the
prefrontal cortex via the premotor areas may occur
even if it is interrupted before it activates the pri-
mary motor cortex and results in overt behaviour.
A simulated action is thus essentially a suppressed
or unfinished action.”

Simulation theory explains imagination and antici-
pation, both arising from sensations in the absence of
external input. It is characterized as a variety of percep-
tion involving the same parts of the brain which occur
with veridical perception. In addition to being stimu-
lated by input from the external world and transmitting
the stimulation to higher parts of the brain, the parts of
the brain that produce sensation can also be stimulated
by a retrograde flow from higher parts to sensation.
Such sensations may be distinguished from veridical
sensations by the fact that they occur in an episode dur-
ing which overt action is being suppressed.

Anticipation is characterized as the imagined con-
sequences of suppressed action. From experience, the
agent learns to anticipate consequences of action and
can fold this information into the simulated expe-
rience. Anticipation thus consists of models of the
effects of actions. It returns the effects of the imag-
ined actions as imagined sensations. In accordance
with simulation theory, after some amount of veridi-
cal experience, perception, action, and consequence, all
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may occur without concurrent contact with the external
world.

29.4.5 Free Energy Theory

Free Energy Theory connects beliefs with actions as
two sides of the same coin. The theory is presented with
rigor, definitions, and distinctions in [29.21]. The theory
addresses cognition and action with a notational system
which accommodates interfaces between the external
world and the sensations it produces for both cognition
and action.

On the cognition side, it distinguishes between brain
states and causes. Brain states are analogous to the
models of Bayesian multiprocess models, while causes
are part of the external world. The recognition den-
sity is a probabilistic representation of what caused
a particular sensation [29.21, p. 128]. It is the aim of
minimization of free energy to have the brain states
match the causes, thereby reducing occasions of sur-
prise. On the action side, the theory offers a particular
kind of model, labeled m, which links an action to its
consequences, changes in the external world.

It is the aim of action to alter sensations to more
closely match beliefs associated with brain states,
which it can accomplish most effectively by turning up
evidence confirming the most likely model. Thus cog-
nition and action are each part of comprehending the
sensations which arise from experience, the former by
identifying its causes, the latter by seeking confirmation
of the most likely causes by manipulating the environ-
ment. Both cognition and action are governed by the
same principle, the minimization of free energy.

The purpose of the following illustration is to ex-
plain how causes and models can be connected to free
energy. Certain conditionals have been dropped in the
interest of clarity and brevity. Thus, in (29.5)–(29.7) the
symbol z should be understood as a belief about the ex-
ternal causes of sensation given the brain state. There
can be many zs, each with some initial degree of belief,
expressed as Q.z/. The quantity x is used here to rep-
resent external states or events given the sensations, the
causes, and the model of action. These representations
of z and x are similar but not identical to the models
of Bayesian multiprocess theory and simulation theory.
In particular, free energy theory explicitly expresses x
as the result of a filtering process, not the unobservable
external process itself .'/, but an estimate of it, instan-
tiated in neural activity, in a time series of vectors of
sensations.

In the simplified example, assume the agent ob-
serves an event, x, for which he has prior probabilities,
Q.z/, for each z, yielding an approximation Q to the
optimum posterior probability P.z j x/. The goal is to

come to a conclusion in which the discrepancy between
Q and P is minimal. This can be accomplished be min-
imizing a measure of the discrepancy, the Kullback–
Liebler (KL) divergence D.Q k P/, expressed in (29.5)

D.Q k P/D
X

z

Q.z/ ln
Q.z/

P.z j x/ ; (29.5)

which expands to

D.Q k P/D
X

z

Q.z/ ln
Q.z/

P.z; x/
C ln.p.x// : (29.6)

On the right-hand side of (29.6) the second term is the
negative of the information content of the event x. The
first term is referred to as free energy. Rearranging the
terms of (29.6) shows free energy F is equal to the
KL divergence plus the information in x represented in
(29.7) which suggests free energy may be minimized
by changing the discrepancy between Q and P or by
changing the event x

FD D.Q k P/� ln.p.x// : (29.7)

When the conditionals are included, Free Energy
Theory expresses the F of (29.7) as F.s; �/, where s
stands for sensory states and � stands for brain states
or, equivalently, neural processes representing links be-
tween s and its causes '. In addition, the set of models,
m, link actions to changes in s by their effect of alter-
ing the external world. There are two ways to minimize
F, both central to free energy theory, the first by chang-
ing brain states �, the second by changing sensations s
through action on the environment. The role of chang-
ing brain states is one of coming to some degree of
belief in new ideas of causal relationships between the
external world and the accompanying sensations. In the
case of action, free energy can be reduced most ef-
fectively by a particular sort of action, namely action
which changes the environment to uncover evidence
(event y) favoring the most likely cause of s for a given
brain state. The modelsm determine which action awill
likely uncover event y which has the minimizing effect,
F.z; y/ < F.z; x/. Free Energy Theory predicts the or-
ganism will act in a way to uncover evidence consistent
with the most likely cause, because doing so most ef-
fectively minimizes F.

A model in m might be of any variety, for example,
a simulation or a simple probability. The only require-
ment is it link actions to their predicted consequences.
In this way, the action is conceived, not as carrying out
orders to obtain certain goals, but rather as being a fea-
ture of the way the brain interacts with the physical
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world to increase predictive accuracy and, equivalently,
lessen surprise.

As an example of the role of action, suppose an
actor cannot read a word written in poor handwriting.
Assume the uncertainty is high because, considering
only the word in isolation, there are several equally
likely possibilities. The actor can take action to reduce
the prediction error by altering the input, namely read-
ing what he can of the words in the surrounding context.
The context can alter the respective probabilities of
the possibilities for the problem word. That is, action
changes the sensory input. When reading the context,
the action is quite directed, via the action model m. The
actor is not flipping pages or scanning the room, he
is acting in a way to confirm his most likely hypothe-
sis, that this word is part of a meaningful sentence. His
strongest hypothesis guides his action. Alternatively, he
could instead, or in addition, have tried an approach not
involving changing the environment. For example, he
could have made guesses about handwriting quirks of
the writer. This would introduce new mental models for
the letters, thereby changing perception via changing
brain state �. Either of these approaches can be called
an effort to reduce free energy.

Free Energy Theory characterizes mental activity as
a complex process, guided by optimization. In addition,
free energy theory has been asserted to apply to mental
activity both large and small scale. The examples apply
it to mental dynamics on the scale of human activity
and perception, such as finding one’s way in the dark.
In extension, the same concepts and formulas apply it to
brain activity on a neuronal scale, as revealed by brain
imaging and single-neuron techniques. The methods of
nonlinear dynamic systems analysis provide a formal-
ization of such scale invariance.

29.4.6 Evolution of Cognitive Search

The evolutionary theory of cognitive search proposes
that processes of attention and memory include search
strategies analogous to behavioral strategies used in
the search of physical space for objects of value. On
an evolutionary scale, cognitive search has arisen di-

rectly from physical search [29.22] from behavioral to
cognitive, physical to mental. According to the theory,
analogous processes occur in cognitive and physical
search. For example, both have strategies of remaining
in one area (patch) until its resources have been fully
exploited or otherwise depleted, only then exploring for
a new patch to be exploited. Both also are associated
with the same areas of brain activities and transmitter
substances. Thus, the evolutionary theory of cognitive
search asserts important aspects of the relation between
cognition and behavior have been developed over a long
time scale. The relation between cognition and action
is not one of the behavior creating the illusion of cog-
nitive entities, but rather brain functions which govern
behavioral search acting as a paradigm for brain activity
governing cognitive search.

29.4.7 Summary

Where cognition and action are intrinsically linked, the-
ories range from denying the existence a category of
cognition separate from the complex coordination of
behavioral subsystems, to a complex system of cogni-
tion and action combined, to a brain system created by
analogy to a complex behavioral system. Complexity
is a feature of theories that link cognition and action,
almost by definition, since there are applications of
complexity science to motor processes even when they
are not linked to cognition. The time associated with
coordination of subsystems and unfolding of processes,
also enters requiring concepts of nonlinear dynamic
systems theory.

For free energy theory, the goal does not direct the
search, but the search policy inevitably uncovers things
of value. For the theory of evolution of cognitive search,
behavior and cognition are connected, but in a different
way. Cognitive search, in particular, is seen as internal-
ized replica of behavioral search. There is no single
way in which all theories of linkage claim cognitive
and behavioral functions are linked, but there is great
agreement among them that the linkage is there. The
dynamical features of these models follow directly from
that link.

29.5 Conclusion

Unequivocally, theories which combine mental and mo-
tor into a unified process are dynamical theories of
cognition. Elements of the integrated process are clearly
quantified by measures of complexity, real-time coordi-
nation, and time series data, which invites application of
methods of complexity science and nonlinear dynamic
systems theory, the methodology of dynamical models.

From the sampling of cognitive models presented here,
incorporating action appears to be a sufficient, but not
a necessary condition for a cognitive model to be called
dynamical.

Application of a dynamical model to a data set
does not necessarily require a comprehensive theory.
This is evident in the examples of data-based studies.
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Breadth of theory is not a necessary starting point.What
is required is instead a commitment to the ideas can
be generated by a coherent application of dynamical
methodology.

One of the central features of dynamical methodol-
ogy is optimization of an expression of potential. The
system proceeds in a way that minimizes some expres-
sion of potential, such as formulated by (29.1), (29.2),
(29.3), or (29.7). Such optimization can reveal how it is
that the system settles into an attractor and how it moves
from one attractor to another. Minimizing potential
gives direction and predictability to complex processes.
Identification and formalization of a potential V of a dy-
namical system paves the way for understanding its
stable states and transients.

Dynamical models may emphasize the role of op-
timization both as a method of determining important
quantities in the theory and as a fundamental prin-
ciple of cognitive processes. This is evident in Free
Energy Theory, in which optimization is the organiz-
ing principle of thought and behavior. According to free
energy theory, the optimizing process occurs in a scale-
invariant way at every level from brain structures to
cognition–action complex. At every level, optimization
in the form of minimization of free energy brings the
organism to a state of decreased surprise.

Optimization of a potential function does not have
the same overarching role in theories for which cog-
nition and action appear as separate systems. In ART,
maximizing adaptive resonance is an optimizing prin-
ciple at one stage of processing, designed to direct
top-down and bottom-up procedures to identify the in-
put pattern or create a new pattern in a way that is
useful for further processing. Adaptive resonance and
the changes that take place during training of an ART
network are examples of dynamic aspects of the ART.
These features are usually embedded in a network of
modules to which the methodology associated with
complexity is not explicitly applied.

Both theories, ART and ACT-R, address the inter-
action of the symbols, patterns, and rules of cognition
and the relationships of these to brain function. Ma-
jor objectives of ART and ACT-R are to explain how
symbols and rules are manipulated and combined in
the operations of pattern recognition, classification, and
inference, both deductive and inductive. These opera-
tions are of central interest to both ART and ACT-R,
especially along with their correlation with brain areas

and functions as revealed primarily through brain imag-
ing. When ART or ACT-R is analyzed in contrast to
dynamical theories, it is symbols and their rules of ma-
nipulation that underlie the contrast.

Symbols and rules of their manipulation are the
durable, stable products of mental activity. According
to dynamical models of cognition, an alphabet, for ex-
ample, is the product of dynamical forces of cognition
and behavior. One theory of embodiment claims that
symbols are physical extensions of mind. They exist as
long as general usage and culture keeps them far from
equilibrium, the increased entropy of which would turn
them to dust. Thus, symbols and rules have the features
of attractors in a dynamical system. This is emphasized
by the data-analytic method of symbolic dynamics.
From this point of view, computational models address
relationships among attractors, while dynamical models
address the process that brings attractors into existence
and govern the transients among them.

Philosophical questions arise from the dynamical
point of view concerning the status of the contents and
products of mind. What is the philosophical status of an
internal model such as those of simulation theory or free
energy theory? How are they the same as or different
from scientific theories? If brains have brain-state mod-
els, and action models, do they not also have symbols?
How is a model or a brain state different from a sym-
bol? What is the status of the durable external products
of mental activity; alphabets, numerals, rules of induc-
tive and deductive logic, art and engineering, novels and
history books? Are these extensions of mind?

The benefits of a dynamical point of view to mod-
eling cognition, in addition to its intuitive appeal, are
the wealth of finely developed methods, some of which
have been described here. Complexity science intro-
duces new methods which make it possible to address
questions which have previously been inaccessible for
formalizing and quantifying mental processes. Non-
linear dynamic systems theory introduces systematic
methods for characterizing the phenomena of nonlin-
ear recursive processes using new concepts, such as
formulation of trajectories and their features, including
attractors and measures of predictability or dimension
of the process. To preserve and further develop bene-
fits such as these, the associated methodologies would
be a valuable addition to the curriculum of psychol-
ogy for the study of the mechanics and properties of
mind.
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30. Complex versus Complicated Models of Cognition

Ruud J.R. Den Hartigh, Ralf F.A. Cox, Paul L.C. Van Geert

As humans, we continuously adapt our behavior
to changes in our environment, and our cognitive
abilities continuously develop over time. A ma-
jor question for scientists has been to discover the
(cognitive) mechanism that underlies the control of
human behavior in real time, as well as cognitive
development in the long term. This chapter will
discuss two kinds of general approaches, which we
shall refer to as the reductionist approach and the
complex dynamic systems (CDS) approach. Roughly
speaking, the reductionist approach assumes that
separate cognitive components, such as brain areas
or processing mechanisms, are primarily respon-
sible for behavior and development, by processing
(and responding to) specific environmental cues.
The CDS approach assumes that cognition and
thereby the control of behavior and development
are distributed over the brain, body, and envi-
ronment, which continuously interact over time.
The aim of this chapter is to compare the two ap-
proaches in terms of their assumptions, research
strategies, and analyses. Furthermore, we will dis-
cuss the extent to which current research data in
the cognitive domain can be explained by the two
different approaches. Based on this review, we
conclude that the CDS approach, which assumes
a complex rather than a complicated model of
cognition, provides the most plausible approach
to cognition.
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At present, two classes of approaches are used to ex-
plain cognition. The first class proceeds from the idea
that human behavior is controlled by separate cogni-
tive (processing) components, which we refer to in this
chapter as the reductionist approach. The second class
assumes that cognition can be considered as a complex,
dynamic set of components, and that human behav-
ior is an emergent consequence. We shall refer to the
latter as the complex dynamic systems (CDS). The
first part of this chapter starts with an overview of
the two approaches and the explicit and implicit as-

sumptions they make (Sect. 30.1). In Sect. 30.2, we
discuss the research strategies and analyses applied
by researchers proceeding from a reductionist or CDS
approach. Then, in Sect. 30.3 we demonstrate the ex-
tent to which complicated (related to the reductionist
approach) and complex models (related to the CDS
approach) fit with research data on real-time cogni-
tive performance and long-term cognitive development.
Finally, in the concluding section, we discuss which
kind of model seems to explain human cognition best
(Sect. 30.4).



Part
F
|30.1

658 Part F Model-Based Reasoning in Cognitive Science

30.1 Current Views on Cognition

On 30 September, 2014, President Obama announced
that the White House would make new investments in
the BRAIN initiative. President Obama explained that:

“As humans we can identify galaxies light years
away, we can study particles smaller than an atom,
but we still haven’t unlocked the mystery of the
three pounds of matter that sits between our ears.”

Not only researchers, philosophers, but also world
leaders and their scientific advisors are fascinated by
the question why humans behave the way they do, and
more specifically what controls human behavior. Hu-
man adults appear to have the most evolved prefrontal
cortex, neocortex, and temporal lobes of all creatures.
Explicitly mentioned or implicitly assumed, for many
scholars the mind – or its physical instantiation, the
brain – is a key to explain human’s superior cognitive
and behavioral capacities. It is generally believed that
our abilities for language, abstract reasoning, problem
solving, learning and memory, interacting with other
people, and using tools ultimately reside in our brain.
The prevailing notion today, and throughout a large
part of the modern history of psychology, is that fairly
localized structures (or modules) in the brain play spe-
cialized and identifiable roles in how we perceive, how
we act, what and how we (can) learn, and even in our
emotions and personality [30.1]. Cognition, as amal-
gam of many such distinct cognitive functions and
subfunctions, is a mechanistic apparatus consisting of
specialized modules linked together in a linear causal
chain. This premise has directed the research attention
to localizing thesemodules or components and the func-
tions they perform. We shall refer to this approach, in
which cognition and the explanation of human behav-
ior is reduced to localized functions, as the reductionist
approach.

Obviously, the environment also contributes to how
we behave and learn. In the reductionist view, the role of
the environment is rather dissociated, that is, it provides
input to cognitive processes. More specifically, envi-
ronmental cues are cognitively processed, after which
the best subsequent action can be computed, and the
situational input can be cognitively stored in order to
respond optimally the next time a comparable situation
is encountered [30.2–4].

In the past decades, several researchers have criti-
cized the above-mentioned point of view, in particular
that human cognition can be compared with a very
complicated computational machine [30.1, 5–7]. The
computational requirements to perform the most opti-
mal actions would be too high to be feasible in the

context of a natural, changing environment in which hu-
mans are acting [30.8]. Rather, behavior would emerge
from interactions among various nonspecific interact-
ing processes across the brain, body, and environment
(see [30.9–14] for empirical demonstrations), which we
shall refer to in this chapter as the CDS approach. Ac-
cording to this approach, cognition is thus distributed
across (changing) processes of brain, body, and en-
vironment, which are intertwined [30.15] (see also
related discussions in cognitive sciences on component
dominant dynamics versus interaction dominant dy-
namics [30.16]; computationalism/cognitivism versus
embodiment [30.2]; and dissociation view versus dy-
namic view [30.17]).

Throughout this chapter, we will discuss the re-
ductionist and CDS approaches using illustrations of
various domains that the scientific study of cognition
pertains to, such as sports [30.17–20], language devel-
opment [30.21–23], and scientific development [30.24,
25]. We will start with an overview of assumptions that
the two classes of approaches proceed from.

30.1.1 Central Control
versus Self-Organization

One key assumption that the reductionist approach
proceeds from is that specific mechanisms are respon-
sible for the way humans behave and learn. In this
sense, some environmental stimulus is represented in
the mind, and based on algorithms performed by the
internal cognitive components the behavioral output is
produced [30.3, 26–29]. For instance, in a sports con-
text a football player perceives the positions of his team
mates and the opponents, and cognitively computes the
best next move [30.30]. Expert football players would
better master this skill given their extensive knowledge
base, or software, of previous encounters with different
kinds of situations. This approach implicitly takes the
computer as a metaphor in order to explain behavior,
and typically conceives of the mind, or brain, as a cen-
tral computing agent that encodes the environmental
inputs and controls subsequent behavior (see the review
of Van Gelder [30.7] for an extensive discussion of this
view). This entails that the brain, comprising the differ-
ent component processes, is considered as the central
controller of human behavior.

The idea that the brain controls our behavior, and
that the body and environment provide (only) input to
the brain, was first challenged by Gibson’s ecological
approach [30.31–33]. He proposed that action possi-
bilities are not cognitively computed, but are directly
guided by information from a structured environment
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to which an organism attunes its actions. In other
words, behavior is guided by the direct information
and action exchange between the organism and its en-
vironment. Gibson’s theory has laid the foundation for
what has come to be known as ecological psychology,
which shares its major assumptions with the CDS ap-
proach. In Gibson’s words: “Control lies not in the
brain, but in the animal-environment system” [30.33],
which suggests that Gibson conceived cognition as a set
of interacting components, distributed across the brain,
body, and environment [30.1, 15, 34–39]. Accordingly,
the CDS approach considers cognition as a dynamic
process characterized by the self-organization of in-
teracting component processes. For instance, the most
appropriate next action of a football player would
not be computed in terms of a sequence of computa-
tional steps, but rather take the form of an ongoing
loop of flexible attunement of the action, which oc-
curs more or less simultaneously with changes in the
task constraints [30.40, 41]. Hence, the control of hu-
man behavior is not centralized, but rather an emergent
process.

30.1.2 Static versus Dynamic Models

The reductionist assumption that a given behavior or
psychological state is generated by one or a few com-
ponents or determinants is usually associated with the
construction and application of static models, in which
the levels of some set of dependent variable(s) .yi/ are
directly and uniquely related to (or caused by) the levels
of some other set of independent variable(s) .xi/

yi D f .xi/ : (30.1)

In this functional description, any possible set of values
of xi generates a corresponding value for the dependent
variables yi. In other words, if we know the values of xi,
we can predict the values of yi. An implicit assumption
here is that the operating causal variables remain stable
for the duration of the behavior or psychological state
they would cause.

Take, as an illustration, the development of a child’s
lexicon. A typical static study would consist of assess-
ing the maternal talk to children of different ages, for
instance of 1, 2, and 3 years old. The size of the lexi-
con can then be predicted by explanatory variables such
as age, maternal talk, or a combination of these two
variables (Fig. 30.1). Note that, although age is in fact
a continuously changing temporal parameter, it is used
in a typically static way as a sequence of values (ages),
similar to the way maternal talk is treated as a series
of static values. In line with the reductionist view, the
implicit assumption here is that the child’s cognitive

Age

Maternal
talk

Lexicon
size

Fig. 30.1 A simple illustration of a reductionist explana-
tion of a child’s lexicon size

language-processing device is the underlying mecha-
nism through which maternal talk affects the lexicon
size [30.42, 43].

In Fig. 30.1, age and maternal talk are thus treated
as the independent variables. However, in order to in-
crease the explained variance in lexicon size, the model
can be made more complicated by assuming – and sta-
tistically showing – that age is also affecting maternal
talk (for all other conditions remaining equal, mothers
of older children tend to produce richer maternal talk
than mothers of younger children). It is even possible to
also draw an arrow between age and the arrow connect-
ing maternal talk and lexicon size, implying that age
moderates the effect of maternal talk on the lexicon size
(older children can profit more from the same maternal
talk than younger children). Another way of increasing
the complicatedness is by adding additional variables,
such as socioeconomic status (SES), the mother’s intel-
ligence quotient (IQ), time spent at the day care center
and so forth. Thus, generally speaking, the reductionist
approach proceeds from the idea that the explanatory
power should be increased by increasing the number
of specific factors (i. e., components) involved and the
links between them. As already mentioned, temporal
change, represented by age in the example, is treated
as a factor like any other factor in the model.

According to the CDS approach, however, the
causal principle of behavioral or psychological change
does not lie in the values of some variables or com-
ponents at a certain moment in time. As noted earlier,
cognition could be envisioned as a dynamic process,
which entails that time is an essential aspect to take into
account. More specifically, the change in the cognitive
system is a function of its preceding state

ytC1 D f .yt/ ; (30.2)

where ytC1 corresponds to the state of the system at
time tC 1, which is a function of state y at the previous
time point t. Hence, the CDS approach proposes models
of change that involve recursive relationships (yt leads
to ytC1, which leads to ytC2, and so forth) [30.44]. Re-
turning to the explanation of a child’s lexicon, a simple
explanation would be that learning new words at time t
depends (among possible other things) on the words the
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child already knows and on the words that are spoken
by the mother with whom the child communicates at
time t (Fig. 30.2). This also entails that the child’s lexi-
cal change is embedded in the environment, referring to
the real-time events taking place, such as the maternal
talk. Consequently, and in line with the concept of self-
organization (Sect. 30.1.1), the properties of the system
change over time as the underlying components interact
with each other. That is, as the child’s lexicon develops,
the mother will change the way she speaks to the child,
which feeds back to the development of the child’s lex-
icon, and so forth (Fig. 30.2; see also the work of Van
Dijk and colleagues [30.45]).

Maternal
talk

Maternal
talk

Maternal
talk

Child′s
lexicon

Fig. 30.2 A simple illustration of a dynamic explanation,
in which the child’s lexicon at a particular moment pro-
vides the basis for the lexicon at the next time point(s),
while this change is also shaped by the dynamic interac-
tions (literally and metaphorically) with the mother

30.2 Explaining Cognition

In the previous sections, the terms complicated and
complex have been mentioned a few times. In scientific
models, these terms refer to different explanatory con-
ceptions [30.46]. The reductionist approach generally
provides a complicatedmodel of cognition, whereas the
CDS approach proceeds from a model of complexity. In
the following subsections, we will explain and contrast
these different kinds of modeling, and how they natu-
rally fit with different kinds of research strategies and
analyses to capture cognition.

30.2.1 Research Strategies
and Complicated Models

In a complicated model of cognition, many components
are involved, which can be studied in isolation, and the
resulting psychological and performance states can be
understood when knowing the contributions of the in-
dividual components (Fig. 30.1). In case researchers
are interested in cognitive expertise of athletes in real
time, for example, they would design a study in which
cognitive measures can be obtained in a standard-
ized environment. As an illustration, Williams and col-
leagues [30.30] showed skilled and less skilled football
players sequences of attacking game plays in a research
lab. After a brief delay, participants watched another set
of sequences and indicated which sequences they al-
ready viewed before. Two variables were measured: re-
sponse time and response accuracy. The authors found
that skilled players responded quicker when they were
shown game plays that they viewed earlier. Williams
and colleagues proposed that these results indicate
that expert soccer players have more refined (stored)
knowledge structures of soccer game plays. Because
the skilled players can access these modules quickly,
they would be better able to respond rapidly [30.2].

It is assumed to be likely that this information pro-
cessing mechanism facilitates decision making on the
football field, which results in choosing the most appro-
priate (next) action (remember the computer metaphor
in Sect. 30.1.1).

In order to further untangle the full richness of cog-
nition, researchers keep increasing the complicatedness
of their models by basically adding more underlying
explanatory modules or variables and links between
them (see also the explanation of static models in
Sect. 30.1.2). For instance, referring back to the study
ofWilliams and colleagues [30.30], they also found that
skilled participants better recalled the relational infor-
mation between players (how they moved relative to
each other). To explain this finding, the authors added
the concept of (cognitive)motion integrators as a possi-
ble explanation for this result, which would be integral
to skilled pattern recognition [30.26].

30.2.2 Research Strategies
and Complex Models

According to the CDS paradigm, real-time cognitive
performance can be explained by a model of complex-
ity. Importantly, complexity is not reflected in the num-
ber of components that are involved in cognitive perfor-
mance (the number of separate cognitive modules that
process information, the number of environmental vari-
ables that influence people’s cognitive processing, etc.).
On the contrary, a complex cognitive system is typically
characterized by continuous dynamic interactions and
multicausality between various intrapersonal and envi-
ronmental components, fromwhich the (changing) state
of the cognitive system emerges (Fig. 30.2) [30.37, 47,
48]. Thus, in contrast to a complicated model of cog-
nition, a complex model proceeds from the idea that it
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is not possible nor feasible to reduce cognition to sep-
arate, fairly isolated components (recall the concept of
self-organization again in Sect. 30.1.1).

Referring back to the example of football, according
to the CDS approach the actions of a (attacking) player
are emergent from the underlying self-organization dy-
namics (changing positions of players, the ball, etc.)
[30.18, 40]. Of primary interest to researchers is there-
fore the unfolding of footballers’ actions in real-time.
A typical study would focus on the emergence of action
patterns that are continuously shaped by the way the
system components attune to each other, involving for
instance the attackers’ and defenders’ relative distance
to each other [30.49, 50] and to the goal [30.51], or
more generally the size of the field [30.52]. As an illus-
tration, Headrick and colleagues [30.51] revealed that
the distance between the defender and the ball stabilized
at higher values – indicating low risk-taking behavior
of the defender – when the defender–attacker duel oc-
curred close to the goal, than when it occurred relatively
far from the goal.

30.2.3 Analyses to Untangle Cognition
Based on Complicated Models

Given the different assumptions of the reductionist
and CDS approaches, not only the research strategy
(Sect. 30.2.2), but also the applied analyses are differ-
ent [30.53]. In the reductionist approach, the analysis is
focused on finding the linear associations at the level of
isolated variables. Researchers therefore typically ap-
ply the so-called control of variables strategy, which in
standard accounts of the scientific method is seen as the
quintessential way of explaining the nature of reality,
namely to disentangle the variables and control the vari-
ables separately to see what changes in those variables
actually do. The way one variable controls another vari-
able is assumed to be a property that can be isolated
from other properties and other variables. The reason-
ing is that the most general way in which a variable
can control another one is the way in which a variable
co-varies with another one over the entire population.
Hence, the study of the way a variable controls an-
other one is based on samples that are big enough to
be a good representative of that population. This also
points to the importance of the generalizability issue,
which is understood as the degree to which the state-
ment based on a sample is true of the population that
the sample is intended to represent (see also Hasselman
and colleagues [30.54] for a discussion of theorizing in
cognitive science).

In the example of the relationship between maternal
talk and a child’s lexicon (Sect. 30.1.2), a researcher
may analyze the effect of the quantity and sophisti-

cation of maternal lexical input on the child’s lexi-
con [30.43, 44, 55]. The outcome is framed in terms
of the variance in the child’s lexicon that can be ex-
plained by (co-varies with) the variance in the maternal
input variables. In other words, the researcher attempts
to find a linear relationship between the lexical input of
the mother and a child’s lexicon (the output variable).
The relationship between maternal input and a child’s
lexicon as it is found across a sample of mother–child
dyads, is implicitly assumed to govern the process
of language learning at the level of individual chil-
dren [30.56].

30.2.4 Analyses to Capture the Complexity
of Cognition

According to the CDS approach, the associations be-
tween variables as they are observed at the sample level,
cannot be used as valid approximations of the dynamic
relations that govern the process. More specifically, if
we assume that components change over time, influence
each other reciprocally, which gives rise to (changing)
patterns of behavior, analyzing associations between
variables in large samples cannot tell us how the process
actually works (cf. the ergodicity problem as described
byMolenaar and colleagues [30.57, 58]). According to
CDS theorists, if a researcher is interested in why and
how actual change occurs, the process of interest should
be studied over time [30.44, 53, 56, 59, 60]. Therefore,
researchers often apply time series analyses, and they
focus on particular signatures of the time series, as well
as on the underlying dynamic rules that may explain the
dynamics of the time series.

Van Geert and colleagues have conducted sev-
eral studies on language development from a CDS
perspective [30.21, 22, 61–63]. The authors consis-
tently found discontinuities in individual children’s
language development, which provided valuable infor-
mation about lexical change. For example, Bassano
and Van Geert [30.21] studied early language devel-
opment among French children, and they showed that
the discontinuities in the time series mark the transi-
tion from a one-word to a combinational mode, and
from single combinations to more abstract syntac-
tic modes of language. In CDS terms, the language
modes can be considered as attractors, that is, states
or patterns toward which the system tends to con-
verge [30.36, 48, 64–66]. Thus, the increase in vari-
ation signals the transition to another attractor, and
thereby to another milestone in children’s language de-
velopment (see also the work of Van Dijk and Van
Geert [30.62]).

Interestingly, whereas variation patterns carry
highly valuable information about the cognitive process
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according to the CDS approach, variation is typically
considered as random error according to the reduction-
ist approach. In classical repeated measures designs,
for instance, variation around the (linear) tendency over
time is considered as error variance. On the contrary,
periods of variation have been consistently found to
be markers of a transition stage to another attractor in
a variety of cognition-related (dynamical) research, not
only in studies on language development (see the exam-
ple above), but also on cognitive reasoning [30.67, 68],
perception [30.69], and motor control [30.70].

Finally, returning to the study of Bassano and Van
Geert [30.21], they proposed a mathematical model, de-
fined as a dynamic growth model in which the growth
of the language modes, and how they mutually in-
fluence each other, could be reliably modeled for the

individual children. This means that the authors were
not concerned with providing a model of the average
language development across the population of chil-
dren, which is typical for the reductionist approach,
and which would probably result in an unrealistic pic-
ture of what individual language development may look
like (many children do not develop according to the
statistically average child). Rather, Bassano and Van
Geert proposed a dynamic model that could also be
generalized to the individual. In other words, the au-
thors provided insights into the lawful mechanisms, or
CDS principles, underlying language development over
time (for a comparable example of model building in
mother–child linguistic interactions and the associated
developmental process in the child, see the recent work
of Van Dijk and colleagues [30.45]).

30.3 Is Cognition Best Explained by a Complicated or Complex Model?

Currently, the majority of researchers in behavioral
and social sciences apply the reductionist approach,
whereas a relatively small group of researchers ap-
plies the CDS approach. Ideally, researchers should
proceed from the kind of approach that fits best with
the research question and/or topic under study. For ex-
ample, if a researcher was interested in the effect of
maternal smoking during pregnancy on children’s later
academic achievements, a reductionist approach may
provide the best fit, because it is desirable that the vari-
ables of interest are studied in isolation to determine
the effect. Indeed, when this question addresses the
population level it can, for instance, be used in cam-
paigns and medical advice. In a typical study, Batstra
and colleagues [30.71] adjusted for confounders such as
socioeconomic status and pre- and perinatal complica-
tions, and across 1186 children they found that maternal
smoking during pregnancy was independently related to
the children’s arithmetic and spelling skills between the
ages of 5:5 and 11 years. Note that this study was not
focused on explaining cognition, but rather on one po-
tential risk factor, that is, the distribution of maternal
smoking across the population and its statistical asso-
ciation with a population-defined effect (distribution of
arithmetic and spelling skills).

However, as discussed earlier, the reductionist ap-
proach is also widely used to provide an understanding
of the (complicated) mechanism that drives cognitive
performance in real time, as well as cognitive devel-
opment across the life span. The extent to which the
reductionist approach on the one hand, or the CDS
approach on the other hand, is most applicable to cog-
nition that depends on whether it is a complicated or

complex model that is best able to explain cognition. In
the next section we will discuss some studies, the out-
comes of which render one of the two approaches more
or less convincing. We will first discuss studies focused
on cognitive performance in real time, after which we
will discuss cognitive development across the life span.

30.3.1 Explaining Real-Time Cognitive
Performance

In a recent study, Den Hartigh and colleagues [30.72]
were interested in the mechanism underlying the (cog-
nitive) control of a motor (rowing) task. The authors let
rowers perform a practice session on rowing ergome-
ters, consisting of 550 strokes at the rowers’ preferred
rhythm. A force sensor was attached to the handle of
the ergometer, which measured the exerted force of the
rowers at 100Hz. Subsequently, the authors analyzed
the time series of the durations from force-peak-to-
force peak (the force peak intervals). With the reduc-
tionist approach in mind, one would expect that each
new stroke is controlled by specific modules or compo-
nent processes (e.g., central pattern generators [30.73]).
This entails that each new stroke would be indepen-
dently controlled from the previous stroke, and that
the results should reveal interval series characterized
by some average interval value with random variation
around it (recall that variation is typically treated as ran-
dom noise in the reductionist approach).

On the other hand, a CDS is characterized by an
iterative process involving interactions between vari-
ous component processes at different levels (e.g., in
this case cell activity, muscle contractions, limb move-
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ments) and across multiple time scales (e.g., from a few
seconds to several minutes of performance [30.74]).
Such ongoing component interactions would cooper-
atively generate the rower’s performance, and are as-
sumed to generate time series characterized by a struc-
tured pattern of variation, called pink (or 1=f ) noise.
More specifically, the coordination among interacting
component processes across multiple time scales within
the system, and between the system and its (task) envi-
ronment, would result in small fluctuations on a short
time scale (a few rowing strokes) that are nested in
larger fluctuations across longer time scales (tens or
hundreds of strokes). The temporal structure of varia-
tion can be quantified in terms of the fractal dimension
(FD): A FD close to 1:5 corresponds to random (white)
noise, and a FD close to 1:2 corresponds to pink
noise [30.38].

Figure 30.3a provides a representative example
of a time series of one of the rowers. Based on
only visual inspection, one can observe that minor
fluctuations are embedded in waves of larger fluctu-
ations. In line with this (seemingly) structured pat-
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Fig. 30.3a,b A rower’s actual peak-interval series (a) and
shuffled interval series (b)

tern of variation, we found a FD of 1:22, which is
close to pink noise, and a comparable pattern was
found for the other rowers in the sample. These re-
sults strongly suggest that the performance of the
rowers emerged from complexity, that is the interac-
tion between many components on various scales, as
opposed to (just) the contribution of many compo-
nents. Figure 30.3b displays the performance data of
the same rower as the one in Figure 30.3a, but in
this case the force-peak interval data are randomized.
Hence, the average interval and the size of the varia-
tion (standard deviation) are exactly the same in the
two graphs, only the temporal order is different. In
line with the fact that this randomization made each
next rowing stroke independent of the previous one(s),
we found a FD close to 1:5, which reflects random
noise.

In line with the study of Den Hartigh and col-
leagues [30.72], the occurrence of pink noise in
cognitive performance seems a universal phenome-
non [30.39, 75]. Virtually any cognitive or motor per-
formance in which time series of healthy individuals are
analyzed reveal pink noise patterns, ranging from re-
action times in psychological experiments and reading
fluency, to stride intervals of human gait and rhyth-
mical aiming tasks [30.14, 16, 34, 38, 74, 76–80]. These
studies provide robust and converging evidence to the
claims of the CDS approach, which makes it likely that
real-time cognitive performance emerges from com-
plexity, and cannot be reduced to separate, rather inde-
pendently operating components that perform specific
functions to control human behavior [30.72].

30.3.2 Explaining Long-Term
Cognitive Development

In order to discover the model underlying cognitive
development on the long term (e.g., the life span), com-
puter simulations provide a useful tool [30.23, 81, 82].
Computer simulations can be used to (a) generate pre-
dictions in terms of which developmental patterns are
generated by which kinds of model principles, and
(b) compare the simulation results with actual data
collected in longitudinal studies on cognitive devel-
opment. As an illustration, take the development of
cognitive abilities in terms of scientific talent develop-
ment. According to the literature, in order to develop
one’s scientific abilities various factors play a role, in-
cluding genetic endowment, the individual’s interest
and commitment, as well as environmental variables
such as the support of the teacher, family support, and
so forth [30.83, 84]. As noted earlier, the reduction-
ist approach attempts to fit a complicated model to
explain how a state of cognitive development can be
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Ability

Fig. 30.4 Graphical representation
of a CDS model of scientific ability
development. Note that this is
a snapshot, and that the network
constantly develops through changes
in the levels of the nodes, among
others as a consequence of the
interactions with other nodes

predicted by particular determining factors, often in-
cluding the age of the child, in a linear fashion (see also
Sect. 30.1.2).

Interestingly, the literature on human development,
and more specifically cognitive development, hardly re-
veals linear patterns [30.81]. In the specific case of
scientific talent development, some defining properties
have been summarized by Simonton in one of his arti-
cles on talent [30.85]. An example of these properties
is that a similar form of (scientific) talent may emerge
at different ages. Another is that the level of talent
is not necessarily monotonically raising or stable. It
can change or even disappear during a person’s life
span.

We will briefly show how to apply computer mod-
eling to test whether a particular model would be able
to generate valid predictions of scientific talent de-
velopment, such as the properties mentioned above.
In line with the CDS approach, we will demonstrate
a model in which development is shaped by the on-
going interactions with other components, which also
undergo change. The key mathematical principles of
such a (relatively simple) dynamic systems model con-
sist of the scientific ability .L/ that changes over time
.t/ as a function of two kinds of resources. One re-
mains relatively stable across time .K/, for instance,
the individual’s genetic endowment. The second type
of resource .V/ may change on the same time scale
as the change of the scientific ability, and comprises
components such as commitment and teacher support.
These components may dynamically interact with the
scientific ability component and with each other. The
interaction between the components is governed by
a number of parameters, including the degree in which

an ability profits from the constant resources .r/, the
weight of the connection .s/ with other components (i,
j, etc.) and a general limiting factor .C/ that keeps the
growth within realistic maximum values
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For simplicity, we simulated a system consisting
of 10 components. Each simulation represents a par-
ticular individual trajectory, which is based on initial
parameter values that were randomly drawn from sym-
metric distributions. Furthermore, the average degree of
connectivity between the nodes is 25%, and the connec-
tions are randomly distributed over the nodes [30.86].
Figure 30.4 provides a graphical representation of a typ-
ical network of relationships specified by this kind of
model. The nodes correspond to different variables that
interact with the ability growth and with each other
(think of the individual’s commitment and family sup-
port). The sizes of the nodes reflect the magnitudes
of the variables. Furthermore, each directed arrow be-
tween two nodes represents a supportive (green) or
competitive effect (brown) of one variable on another.
The strength of the relationships between the variables
is reflected in the thickness of the edges.
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Fig. 30.5a,b Simulations of the scientific ability develop-
ment of two individuals (a,b). The black solid lines in
the graphs represent the abilities, the other lines reflect
the dynamic variables that have supportive, competitive,
or neutral relationships with the ability and with each
other

When simulating various individuals based on the
dynamic systems principles explained earlier, a first
observation is that the model reveals very different
patterns of scientific ability development. Figure 30.5
provides two representative simulation examples. The
black lines in the graphs correspond to the scientific
ability, whereas the other lines correspond to the other
variables. The figure shows that the ability develop-
ment of one individual develops in a step-wise fashion,
and reaches a plateau during the second half of the
life cycle (Fig. 30.5a). On the other hand, the ability
of the second individual (Fig. 30.5b) starts with a rela-
tively rapid increase, which levels off, and in the second
half of this individual’s life span the ability develop-
ment declines. Together, Fig. 30.5a and b correspond to
the typical properties of scientific talent development,
namely that it can take different forms, that it is not
a linear (monotonic) process, and that talent may dimin-
ish or disappear over time [30.85] (for more extensive
demonstrations of dynamic systems modeling of cog-
nitive development, see the work of Van Geert [30.23,
81, 82]).

A final observation in the literature is that excep-
tional abilities are rare [30.86–89]. Specific abilities,
such as the scientific ability required to write papers
for high-ranked journals, are in most cases only mea-
surable by referring to the typical performances or
products (i. e., the number of published articles in high-
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Fig. 30.6a,b Simulated productivity distribution accord-
ing to the complexity model. The raw (simulated) data are
displayed in graph (a), and the natural log–log represen-
tation, which approaches a straight line, is displayed in
graph (b)

ranked journals). The actual productivity of scientists is
extremely right skewed with very few researchers hav-
ing many high-impact publications and relatively many
with one high-impact publication. In fact, the distribu-
tion is so right skewed that the log–log representation
corresponds with a straight line [30.87, 90–92]. In com-
bination with various product models discussed in the
literature [30.87, 93], simulations of the CDS model
reveal an extremely skewed distribution that is in ac-
cordance with the distribution of scientific productivity
of scientists in various scientific domains (Fig. 30.6).
The typical reductionist model would try to explain the
product distributions on the basis of linear combina-
tions of underlying predictor variables. However, such
a model is unable to predict the typical and ubiquitous
heavy-skewed distribution of the products, in this case
the publications [30.86].

Taken together, based on data on real-time cognitive
performance and computer modeling of long-term cog-
nitive development, researchers can choose the model
that most likely underlies the empirically observed pat-
terns. We have presented some examples of data that
can be better explained by model predictions stemming
from the CDS approach (a complex model) than from
a reductionist approach (a complicated model).
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30.4 Conclusion
Every human behaves and develops in a different way,
and is embedded in a rich, constantly changing envi-
ronment. This has made it challenging for scientists to
explain cognitive development and the control of hu-
man behavior. In the past decades, human cognition
has, on the one hand, been approached as localized in
the brain and controlled by separate components, and,
on the other hand, as a dynamic process consisting
of nonlocalized interacting component processes. The
first approach – the reductionist approach – assumes
that research practice should be focused on finding the
explanation of cognition in the specific functions of
the components, whereas the second approach – the
complex dynamic systems approach – assumes that
we should focus on the underlying (complex) dynamic
principles to understand cognition. In our belief, re-
searchers often apply the approach that they and their
close colleagues are most familiar and comfortable
with. Often, this is the reductionist approach, which has
been widely applied in social and behavioral sciences
since the cognitive revolution in the 1950s, whereas
the CDS approach has relatively slowly gained ground
since the 1990s [30.7, 34, 46, 65, 81].

In this chapter, we started with an overview of
some key differences between the approaches without
taking a position in which of the two is the better
one (Sects. 30.1 and 30.2). Subsequently, we discussed
findings on real-time processes and long-term cogni-
tive development (Sect. 30.3). First, we showed that
cognitive performance measured in real-time reveals
a structured pattern of variation (pink noise), which
is difficult to reconcile with the reductionist view ac-
cording to which a pattern of random variation would
be expected. On the other side, it fits with the CDS

approach that cognitive performance emerges from on-
going component interactions, resulting in a time series
in which short-term adaptations are embedded in slower
but larger changes (Sect. 30.3.1).

Second, we demonstrated predictions that were fo-
cused on long-term cognitive development (i. e., scien-
tific ability development). The reductionist approach as-
sumes that cognitive development is shaped by the ad-
dition of relevant explanatory components or variables
(e.g., genetic endowment, commitment, and teacher
support), whereas the CDS approach proceeds from the
idea that cognitive development is shaped by the ongo-
ing dynamic interaction between the relevant variables.
We showed that some typical properties of cognitive de-
velopment, scientific talent development in particular,
are generated by a model that is based on CDS princi-
ples (Sect. 30.3.2).

The plausible predictions that followed from the
CDS approach suggest that cognition can best be ex-
plained by a complex model. Therefore, in light of
future model building, we hope that researchers who
apply the reductionist approach will keep an open mind
regarding the potential of the CDS approach to capture
the full richness of cognition and behavior. At the same
time, CDS theorists should continue exploring whether
a reductionist explanation may also fit with obtained
results on (time-serial) cognitive processes. By doing
so, researchers will be in a better position to provide
a model to unlock the mystery of the three pounds of
matter between our ears, and, importantly, how this is
situated in our bodies and the environment we interact
with. Given the current state of knowledge, we should
keep in mind that the answer to this mystery, and the
model we need, may not be complicated, but complex.
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31. From Neural Circuitry to Mechanistic
Model-Based Reasoning

Jonathan Waskan

Model-based reasoning in science is often car-
ried out in an attempt to understand the kinds
of mechanical interactions that might give rise
to particular occurrences. One hypothesis regard-
ing in-the-head reasoning about mechanisms is
that scientist rely upon mental models that are
like scale models in crucial respects. Behavioral
evidence points to the existence of these mental
models, but questions remain about the neural
plausibility of this hypothesis.

This chapter will provide an overview of the
psychological literature on mental models of
mechanisms with a specific focus on the question
of how representations that share the distinctive
features of scale models might be realized by neu-
ral machinations. It is shown how lessons gleaned
from the computational simulation of mechanisms
and from neurological research on mental maps
in rats can be applied to make sense of how
neurophysiological processes might realize mental
models.

The goal of this chapter is to provide read-
ers with a general introduction to the central
challenge facing those who would maintain
that in-the-head model-based reasoning about
mechanisms in science is achieved through the use
of scale-model-like mental representations.
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A central form of model-based reasoning in science,
particularly in the special sciences, is model-based rea-
soning about mechanisms. This form of reasoning can
be affected with the aid of external representational aids
(e.g., formalisms, diagrams, and computer simulations)
and through the in-the-head manipulation of represen-
tations. Philosophers of science have devoted most of
their attention to the former, but the latter is arguably
at the heart of most of what passes for explanatory un-
derstanding in science (Sect. 31.1). Psychologists have
long theorized that humans and other creatures (e.g.,
rats) reason about spatial, kinematic, and dynamic re-
lationships through the use of mental representations,
often termed mental models, that are structurally sim-

ilar to scale models, though clearly the brain does not
instantiate the very properties of a modeled system in
the way that scale models do (Sect. 31.2). A key chal-
lenge facing this view is thus to show that brains are
capable of realizing representations that are like scale
models in crucial respects. There have been several
failed attempts to show precisely this, but a look at
how computers are utilized to model mechanical inter-
actions offers a useful way of understanding how brains
might realize mental representations of the relevant sort
(Sect. 31.3). This approach meshes well with current re-
search on mental maps in rats. In addition, it has useful
ramifications for research in artificial intelligence (AI)
and logic (Sect. 31.4), and it offers a promising account
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of the generative knowledge that scientists bring to bear
when testing mechanistic theories while also shedding

light on the role that external representations of mecha-
nisms play in scientific reasoning (Sect. 31.5).

31.1 Mechanistic Reasoning in Science

A common reason that scientists engage in model-based
reasoning is to derive information that will enable them
to explain or predict the behavior of some target system.
Model-based explanations provide scientists with a way
of understanding how or why one or more explanandum
occurrences came about. A good model-based explana-
tion will typically provide the means for determining
what else one ought to expect if that explanation is
accurate – that is, it will enable one to formulate predic-
tions so that the explanation may (within widely known
limits) be tested. (One must bear in mind, however, that
models are often accurate only in certain respects and
to certain degrees [31.1].)

Model-based reasoning can, corresponding to the
diversity of representational structures that count as
models – including external scale models, biological
models, mathematical formalisms and computer sim-
ulations – take many forms in science. As for what
models represent, it is now widely accepted that mech-
anisms are one of the principal targets of model-based
reasoning. This is most obviously true in the nonba-
sic sciences (e.g., biology, medicine, cognitive science,
economics, and geology).

In philosophy of science, much of the focus on
mechanisms has thus far been on the role they play in
scientific explanation. The idea that all genuine scien-
tific explanation is mechanistic began to gain traction
in contemporary philosophy of science with the work
of Peter Railton, who claimed that [31.2]

“if the world is a machine – a vast arrangement of
nomic connections – then our theory ought to give
us some insight into the structure and workings of
the mechanism, above and beyond the capability of
predicting and controlling its outcomes [. . . ].”

Inspired by Railton, Wesley Salmon abandoned his
statistical-relevance model of explanation in favor of
the view that “the underlying causal mechanisms hold
the key to our understanding of the world” [31.3]. In
this view, an “explanation of an event involves exhibit-
ing that event as it is embedded in its causal network
and/or displaying its internal causal structure” [31.4].
Salmon was working in the shadow of Carl Hempel’s
covering law model of explanation, according to which
explanations involve inferences from statements de-
scribing laws and, in some cases, particular conditions.
Salmon tended, in contrast, to favor an ontic account,

according to which explanations are out in the world.
He thought that progress in understanding those ex-
planations requires exhibiting the relevant mechanisms.
However, even though he rejected representational and
inferential accounts of explanation, he naturally recog-
nized that reasoning about mechanisms, which requires
representations (models), plays a big part in the process
of exhibiting those mechanisms.

A more recent formulation of the mechanistic ac-
count of explanation is supplied by Machamer et al.,
who claim that “Mechanisms are entities and activi-
ties organized such that they are productive of regular
changes from start or set-up to finish or termination
conditions” [31.5]. A central goal of science, in their
view, is to formulate models, which take the form of de-
scriptions of mechanisms that render target occurrences
intelligible [31.5]:

“Mechanism descriptions show how possibly, how
plausibly, or how actually things work. Intelligibil-
ity arises [. . . ] from an elucidative relation between
the explanans (the set-up conditions and intermedi-
ate entities and activities) and the explanandum (the
termination condition or the phenomenon to be ex-
plained) [. . . ]”

As with exhibiting for Salmon, the process of elu-
cidating how set-up conditions lead to termination con-
ditions requires a significant contribution from model-
based reasoning.

Bechtel offers a related account of mechanisms. He
claims [31.6]:

“A mechanism is a structure performing a function
in virtue of its component parts. The orchestrated
functioning of the mechanism is responsible for one
or more phenomena.”

As compared with other mechanists, Bechtel is
much more explicit about the role that model-based rea-
soning plays in science and about the diverse forms
of representation that may be involved (e.g., descrip-
tions, diagrams, scale models and animal models). He
is, moreover, among the few to acknowledge the im-
portance of in-the-head model-based reasoning. He
suggests that its central form may involve a kind of
mental animation. As Bechtel and Wright put it, “One
strategy is to use imagination to put one’s representation
of the mechanism into motion so as to visualize how
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that phenomenon is generated” [31.7]. Bechtel claims
that the representations underlying this mental anima-
tion process may have a structure similar to that of the
diagrams scientist use in their thinking and to the an-
imated renderings of computer simulations scientists
construct to represent proposed mechanisms in action.
As for prediction, he notes [31.6]:

“what the scientist advances is a representation of
a mechanism [. . . ] She or he then evaluates the rep-
resentation by using it to reason about how such
a mechanism would be expected to behave under
a variety of circumstances and testing these expec-
tations against the behavior of the actual mecha-
nism.”

In other words, once the scientist possesses a model
of the mechanisms that may be responsible for an oc-
currence, which may take the form of a mental model,

he or she may then use it to formulate predictions in
order to test that model.

While external representational artifacts may some-
times be required in order to achieve explanatory un-
derstanding of how a mechanism could produce a given
phenomenon, plausibly those artifacts are not them-
selves sufficient for explanatory understanding. (For
evidence that there is a crucial psychological compo-
nent to explanatory understanding, see [31.8].) Instead,
representational artifacts may have the important func-
tion of facilitating understanding by enhancing the
scientist’s ability to mentally simulate the process by
which the proposed mechanism would produce the tar-
get phenomenon. (As shown in Sect. 31.4.2, external
representational aids may also enable forms of reason-
ing that would otherwise (e.g., due to the complexity
of the mechanism) be impossible.) Through manipu-
lation of those mental simulations, scientists may also
discover novel predictions of a given model.

31.2 The Psychology of Model-Based Reasoning

Given the potentially crucial role that mental models
play in the process of mechanistic explanation and pre-
diction, it may be that we cannot hope to attain a truly
adequate, deep understanding of science without first
understanding how the mental modeling process works.
An obvious way of going about making sense of the
role mental models play in science is to inquire into the
nature of those models themselves. A good question to
ask here is: What form must our mental models take if
they are to play the role that they do in science? One
increasingly popular answer has its origins in Craik’s
landmark monograph, The Nature of Explanation. Re-
garding everyday reasoning, Craik suggests [31.9]:

“If the organism carries a small-scale model of ex-
ternal reality and of its own possible actions within
its head, it is able to try out various alternatives,
conclude which is the best of them, react to future
situations before they arise [. . . ] and in every way
to react in a much fuller, safer, and more competent
manner to the emergencies which face it.”

In Craik’s view, scientific explanation is just an ex-
tension of this everyday reasoning process – that is, it
involves the construction of internal world models that
are akin to scale models. (Bechtel is explicit in crediting
Craik, when he maintains that the use of mental models
in scientific reasoning about mechanisms is to be under-
stood by analogy with the use of external images and
scale models [31.6]. Fellow mechanists Nancy Ners-

essian [31.10] and Paul Thagard [31.11] also credit
Craik.)

What may be considered the first attempt to put this
view to experimental scrutiny came in the prelude to
the cognitive revolution with Edward Tolman’s seminal
studies of spatial navigation in rats [31.12]. In his most
famous experiment, Tolman’s team placed rats in a sim-
ple alley maze, similar to the one depicted in Fig. 31.1a,
and rewarded the animals with food when they reached
the end. After learning to perform the task without hesi-
tation, the maze was replaced with a radial maze similar
to the one in Fig. 31.1b, where the alley that the rats had
previously learned to traverse was blocked. Upon dis-
covering this, the vast preponderance of rats then chose
the alley that led most directly to where the food source
had been in previous trials. On the basis of such exper-
iments, Tolman concluded that rats navigate with the

a) b)

Fig. 31.1a,b Alley maze (a) and radial maze (b) (after [31.12])
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aid of cognitive maps of the relative spatial locations of
objects in their environment.

Later, Shepard and Metzler would show that the
time it takes for people to determine if two three-
dimensional (3-D) structures have the same shape is
proportional to the relative degree of rotational dis-
placement of those structures [31.13]. One neat ex-
planation for this finding is that people engage in the
mental rotation of 3-D models of the two structures
until they are aligned in such a fashion as to enable eas-
ier comparison. In another landmark study of mental
imagery, Kosslyn showed that reaction times for scan-
ning across mental images of a map was proportional to
distance, but not to the number of intervening objects,
suggesting that spatial reasoning is better explained by
a process akin to scanning across a real map than to
a process of sentence-based reasoning (e.g., working
through a list structure) [31.14].

All of this research points to the existence of mental
models of two-dimensional (2-D) and 3-D spatial re-
lationships, but to support the full range of inferences
implicated in mechanistic model-based scientific rea-
soning, mental models would need to capture kinematic
and dynamic relations as well. There is some support
for the existence of these models as well. For instance,
Schwartz and Black observed similar, proportional re-
action times when subjects were asked to determine
whether or not a knob on one gear would, when that
gear is rotated, fit into a grove on a connecting gear
(Fig. 31.2a) [31.15]. Schwartz and Black found, more-
over, that subjects were able to “induce patterns of
behavior from the results depicted in their imagina-
tions” [31.16]. Subjects might, for instance, infer and
remember that the second in a series of gears will,
along with every other even-numbered gear, turn in the
opposite direction of the drive gear (Fig. 31.2b). Hav-
ing inferred this through simulation, the information
becomes stored as explicit knowledge, thereby elim-
inating the need to generate the knowledge anew for
each new application.

In addition, [31.17, 18] have shown that mental
modeling of dynamic relationships is often affected in
piecemeal fashion, a process that is much better suited
for tracing a sequence of interactions through a system
than for simulating collections of dynamic effects all at

a) b)

Fig. 31.2a,b Knob and groove on connecting gears (a), (af-
ter [31.15]). Gears in series (b), (after [31.16])

once. All of this research fits well with Norman’s early
assessment of mental models. He notes [31.19]:

“1. Mental models are incomplete.
2. People’s abilities to run their models are severely

limited.
3. Mental models are unstable: People forget the de-

tails of the system they are using [. . . ]
4. Mental models do not have firm boundaries: sim-

ilar devices and operations get confused with one
another.”

These limitations on the human ability to construct
and manipulate mental models surely have a great deal
to do with more general limitations on the capacity of
human working memory and with the high cognitive
load associated with creating, maintaining, and manip-
ulating mental models.

In everyday reasoning with mental models, the be-
haviors of the component structures in our models will
not typically be tied in any direct way to fundamental
physical laws (e.g., Newtonian, quantummechanical, or
relativistic). Rather, many of the kinematic and dynamic
principles governing object behavior in our mental
simulations will be rooted in early experiences of colli-
sions, impenetrability, balance and support, projectiles,
blocking, and so forth [31.20–22]. In addition, in every-
day reasoning, and even more so in scientific reasoning
about mechanisms, many of the behaviors of the com-
ponents of our models will not be the result of early
learning. Some of these will be one-off brute events –
such as a meteor striking the earth, a gene mutating,
or a latch coming undone – for which one does not
have or require (in order to formulate a satisfactory an-
swer to the question of why the explanandum occurred)
any deeper explanation. Such occurrences might be im-
posed upon a mental model in much the same way that
one would impose them – that is, through direct in-
tervention – on a scale model. In the same way, one
could also impose newly learned or hypothesized regu-
larities on a model. Some of these might be discovered
through simple induction (one might notice that one’s
car engine becomes louder in cold weather) or through
prior model-based reasoning (as in Schwartz’ study
with gears). However, when formulating mechanical
explanations, particularly in science, one sometimes
simply hypothesizes, as a way of making sense of
the available data, that a particular regularity obtains.
A good example of this is the way that the hypothe-
sis of periodic geomagnetic pole flipping was used to
make sense of the patterns of magnetization in rocks
found lateral to mid-ocean rifts [31.1]. Such ideas
accord well with recent work regarding mechanistic
explanation in the philosophy of science, where it is
generally recognized that our models of mechanisms
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typically bottom out at brute activities [31.5] or func-
tions [31.6].

The above empirical research sheds light on the
properties of the models we use to reason about mech-
anisms in everyday life and in science. There is, in
addition, a great deal of research that simply hypothe-
sizes that we do utilize such models to understand other
cognitive processes such as language comprehension,
concepts [31.23], or learning [31.24–30].

The hypothesis of mental models has also been
invoked by Johnson-Laird to explain deductive rea-
soning, though here the term mental model is used
somewhat differently than it is in the research cited
above [31.31]. (Below, I explain in greater depth, the
contrast between deductive reasoning more generally
and the mental models approach to mechanistic reason-
ing espoused here.) Like many proponents of mental
models, Johnson-Laird and Byrne do claim to be di-
rectly inspired by Craik, an inspiration that shows up
in their suggestion that mental models have “a structure
that is remote from verbal assertions, but close to the
structure of the world as humans conceive it” [31.32].
However, if we look more closely at the way in which
Johnson-Laird employs the mental models hypothesis
in accounting for reasoning processes (deductive, in-
ductive, and abductive), it begins to look as though
he has something very different in mind. For instance,
with regard to deductive reasoning – that is, reasoning

that mainly involves the semantic properties of top-
neutral logical operators such as if. . . then. . . , and, all,
and some – Johnson-Laird proposes that we reason in-
ternally through a process not unlike the formal method
of truth table analysis. For instance, on Johnson-Laird’s
view, the conditional, If the door is pushed, then the
bucket will fall, would be mentally represented as some-
thing like the following spatial array, which lists those
scenarios (models) that would be consistent with the
truth of the statement (: here signals negation)

door pushed bucket falls

:door pushed bucket falls

:door pushed :bucket falls
If presented with the additional premise, The bucket

did not fall, one could then eliminate all but the last of
these models, enabling a valid deduction to The door
was not pushed. The formal, topic-neutral nature of
this strategy means that it works in exactly the same
way regardless of what items (e.g., balloons, satellites,
or mice) we are reasoning about. To say nothing of
the viability of the approach, Johnson-Laird’s proposals
regarding deductive (as well as inductive and abduc-
tive) reasoning thus seem, except insofar as they appeal
to such structures as spatial arrays, at odds with his
avowed view that mental models have a structure closer
to the world than to our descriptions of it.

31.3 Mental Models in the Brain: Attempts at Psycho-Neural Reduction

While there has been considerable research on mental
models in recent years, what has been very slow to ma-
terialize is a demonstration that brains do or, what is
even more worrisome, that they could harbor mental
models that are like scale models in crucial respects.
One can see how this might raise concerns about the
mental models hypothesis. After all, if brains cannot
realize such models then the above explanatory ap-
peals to mental models come out looking misguided
from the outset. At the same time, there is a com-
peting hypothesis which faces no such difficulties. In
its most audacious form, it is the proposal that all
of cognition is affected through formal computational
operations – that is, operations that involve the applica-
tion of syntax-sensitive inference rules to syntactically
structured (sentential) representations.

Proponents of the computational theory of cog-
nition know that they have nothing to fear, at least
with regards to the matter of whether or not brains
are capable of realizing the relevant kinds of syntax-
crunching operations. McCulloch and Pitts showed,

decades ago, that collections of neuron-like process-
ing units can implement logic gates and, in principle,
a universal Turing machine [31.33]. Indeed, it was in no
small part because von Neumann recognized the func-
tional similarities between McCulloch–Pitts neurons
and electronic switches (e.g., transistors) that he was in-
spired to create the first fully programmable computers,
ENIAC and EDVAC. More recently, it has been shown
that recurrent neural networks are, memory limitations
notwithstanding, capable of implementing computers
that are Turing complete [31.34]. There is, then, no
longer any doubt that it is possible to bridge the divide
between neural machinations and syntax-crunching op-
erations.

In contrast, a satisfactory demonstration that neu-
ral machinations might realize mental models – that is,
nonsentential mental representations that are like scale
models in crucial respects – has proven far more elu-
sive. Indeed, difficulties arise the moment one tries to
specify what the crucial respects might be, as is evi-
denced by the fact that each past attempt at doing this
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has been argued, not without justification, to run afoul
of one or the other of the following two desiderata:

1. An adequate account of mental models must be
compatible with basic facts about the brain.

2. An adequate account of mental models must be
specific enough to distinguish mental models from
other kinds of representation (sentential representa-
tions).

Again, this is no small matter, for given that brains
are known to be capable of formal computational oper-
ations, if it cannot be shown that they are also capable
of realizing mental models, this will cast doubt on
all those psychological theories mentioned above that
advert to mental models. This is a concern made all
the more pressing by the fact that proponents of the
computational theory of cognition have no shortage of
alternative explanations for the behavioral data cited in
support of mental models. For instance, to the extent
that people report having model-like phenomenology,
this might be dismissed as a mere epiphenomenon of
the actual, underlying computational operations. Simi-
larly, to the extent that behavioral data, such as reaction
times, suggests reliance upon model-like mental repre-
sentations that undergo continuous transformations, this
might be chalked up to demand characteristics (subjects
may feel compelled to pretend that they are scanning
a map). Some of these specific objections could be
vulnerable in that they give rise to their own testable
predictions [31.35], but, as explained below, proponents
of the computational theory have an ace up their sleeve,
for computational accounts are flexible enough to han-
dle virtually any behavioral data. All of this is quite
general, so let us turn to some of the specific attempts
to spell out the distinctive features of mental models.

31.3.1 From Structural to Functional
Isomorphism

As we have seen, from the outset, the claim made on
behalf of putative mental models is that they are like
scale models in one or more crucial respects. Of course,
scale models are themselves like the actual systems they
represent in a very obvious respect: They instantiate the
very same properties as what they represent. It is thus no
surprise that the dominant theme in attempts to specify
what makes mental models models is the invocation of
one form or another of isomorphism between mental
models, scale models and the modeled world.

Mere Isomorphism
The most straightforward form of isomorphism in-
voked in this literature is what might be termed bare
isomorphism, or isomorphism simpliciter, which is

a purported relationship between mental models and
what they represent. Despite initial appearances, this
is the form of isomorphism that Craik seems to have
had in mind. He claims, for instance: “By a model
we thus mean any physical or chemical system which
has a similar relation-structure to that of the process
it imitates” [31.9]. Latter-day proponents of this pro-
posal include Cummins [31.36] and Hegarty, who, in
an attempt to summarize the dominant view of mental
models in psychology, notes [31.18]:

“a mental model (or situation model) is a represen-
tation that is isomorphic to the physical situation
that it represents and the inference processes sim-
ulate the physical processes being reasoned about.”

One serious concern about this approach is that it is
too liberal, which is to say that it leads one to classify
too wide a range of representations as models. Con-
sider, for instance, that one of Craik’s favored examples
of a representation with a similar relation structure
to what it represents is Kelvin’s Tide Predictor, a de-
vice that consists of an ingenious system of gears and
pulleys arranged so as to support truth-preserving infer-
ences regarding the tides (Fig. 31.3). Says Craik [31.9],

“My hypothesis then is that thought models, or
parallels, reality–that its essential feature is [. . . ]
symbolism, and that this symbolism is largely of the

Fig. 31.3 Kelvin’s first tide predicting device (photo by
William M. Connoley)
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same kind as that which is familiar to us in mechan-
ical devices which aid thought and calculation.”

This, of course, is no different from what propo-
nents of the computational theory of cognition currently
maintain. After all, any syntax-crunching system ca-
pable of supporting truth-preserving inferences with
respect to a given physical system will have to be
isomorphic with it – that is, there will have to be cor-
respondences between the parts and relations in the
system and the components of the representation – in
ways that get preserved over the course of computation.
To that extent, one might even say that the inference
process simulates, or even pictures [31.37], the process
being reasoned about. In short, then, the proposal that
mental models are merely isomorphic with what they
represent is thus far too vague to satisfy desideratum
(2.) above. Indeed, it is for this very reason that re-
searchers have tried to find a more restrictive notion of
isomorphism, one that can distinguishmodels from sen-
tential representations.

Physical Isomorphism
Perhaps the most restrictive such notion is that of struc-
tural [31.38] or physical [31.39] isomorphism, which
involves instantiating the very same properties, and ar-
rangements thereof, as the represented system. This
appears to be the kind of isomorphism that Thagard has
in mind when he claims [31.11] (also see [31.40]):

“Demonstrating that neural representation can con-
stitute mental models requires showing how they
can have the same relational structure as what they
represent, both statically and dynamically.”

Thagard cites Kosslyn’s research as indicative of
how this demand might be met, and in Kosslyn too, we
do find frequent appeals to structural isomorphisms. For
instance, noting the retinotopic organization of areas
of visual cortex that are implicated in mental imagery,
Kosslyn claims, “these areas represent depictively in the
most literal sense [. . . ]” [31.41].

Unfortunately, the postulation of physically isomor-
phic mental representations is highly suspect for several
reasons. To start with, the kind of retinotopy that one
finds in areas such as V1 is highly distorted relative to
the world due to the disproportionate amount of cortex
devoted to the central portion of the retina (the fovea).
A square in the visual field is thus not represented in
the cortex by sets of neurons that lie in straight, let alone
in parallel, lines. Moreover, visual representation seems
not to be carried out through the activity of any sin-
gle retinotopically organized neural ensemble. Rather,
vision involves the combined activity of a variety of
systems that are, to a considerable extent, anatomically

and functionally distinct [31.42–44]. Lastly, the kind of
retinotopy pointed out by Kosslyn is restricted to two
spatial dimensions, and a 2-D representational medium
cannot realize representations that are physically iso-
morphic with what they represent in three dimensions.
Nor, a fortiori, can such a medium realize representa-
tions that are physically isomorphic in both 3-D and
causal respects. Crudely put, there are no literal buckets,
balls, or doors in the brain. (Perhaps it is worth not-
ing, as well, how inessential structural isomorphism is
to information processing in neural networks, even in
the case of 2-D retinotopic maps. The relative physical
locations of neural cell bodies seems irrelevant when
compared to the patterns of connectivity between neu-
rons, the strengths and valences of connections, and
the schemes of temporal coding the neurons employ.
One would expect then that, so long as all of this is
preserved, cell bodies might be tangled up in arbitrary
ways without affecting processing.)

Functional Isomorphism
The main problem with the appeal to physical isomor-
phism, one that has long been appreciated, is that it
fails to satisfy desideratum (1.). As Shepard and Chip-
man note, “With about as much logic, one might as
well argue that the neurons that signal that the square
is green should themselves be green!” [31.38]. Recog-
nizing this, and recognizing the weakness of appeals to
mere isomorphism, Shepard and Chipman push for the
following moderate notion of isomorphism [31.38, ital-
ics added for emphasis]:

“isomorphism should be sought-not in the first-
order relation between (a) an individual object, and
(b) its corresponding internal representation-but in
the second-order relation between (a) the relations
among alternative external objects, and (b) the rela-
tions among their corresponding internal represen-
tations. Thus, although the internal representation
for a square need not itself be square, it should [. . . ]
at least have a closer functional relation to the inter-
nal representation for a rectangle than to that, say,
for a green flash or the taste of persimmon.”

The appeal to second-order isomorphism would,
they hoped, provide an alternative to physical isomor-
phism that is both consistent with basic brain facts
(desideratum (1.)) and distinct from sentential accounts
(desideratum (2.)).

Another moderate account of isomorphism was put
forward at the same time byHuttenlocher et al. [31.45].
They had a particular interest in how subjects make or-
dering inferences (viz., those involving the ordering of
three items along such dimensions as size, weight and
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height) like this one

Linus is taller than Prior.

Prior is taller than Mabel.

) Linus is taller than Mabel.

Huttenlocher et al. suggested that subjects might
use representations that “are isomorphic with the phys-
ically realized representations they use in solving anal-
ogous problems (graphs, maps, etc.) [. . . ]” [31.45]. The
essence of their proposal was that the mental repre-
sentations that subjects form in order to solve such
problems might function like spatial arrays rather than
like sentences. For instance, what seems distinctive
about external sentential representations of three-term
ordering syllogisms like the one above is that, because
each premise is represented in terms of a distinct ex-
pression, terms that denote particular individuals must
be repeated. On the other hand, when such inferences
are made with the aid of external spatial arrays, the
terms need not be repeated. For instance, one can make
inferences about the taller-than relation on the basis of
the left-of relation with the help of marks on a paper
like these

L P M

In fact, the introspective reports obtained by Hut-
tenlocher et al. did support the idea that subjects were
constructing the functional equivalents of spatial ar-
rays – for instance, subjects reported that symbols
representing individuals were not repeated – and on
this basis they claimed that subjects might be carrying
out three-term ordering inferences using mental repre-
sentations that function like actual spatial arrays and
unlike lists of sentences (see also [31.40]). This kind of
isomorphism is thus sometimes termed functional iso-
morphism [31.39].

Shepard and Chipman [31.38] and Huttenlocher
et al. [31.45] were clearly after a notion of isomorphism
that satisfies desideratum (1.). Unfortunately, the solu-
tions they offer appears, at least at first glance, to run
afoul of desideratum (2.) – that is, appeals to func-
tional isomorphism, of either the first or second-order
variety, seem not to distinguish between computational
representations and model-like representations.Hutten-
locher et al. were among the first to suspect this. They
note [31.45]:

“It is not obvious at present whether any theory
which postulates imagery as a mechanism for solv-
ing problems can or cannot, in general, be reformu-
lated in an abstract logical fashion that, nevertheless
makes the same behavioral predictions.”

Anderson is generally credited with confirming this
suspicion by pointing out the possible tradeoffs that can
be made between assumptions about representational
structure and those concerning the processes that op-
erate over the representations [31.46]. He showed that
the possible structure-process tradeoffs render compu-
tational accounts flexible enough to handle virtually any
behavioral finding. Most have since endorsed his thesis
that it is, at least after the fact, always possible to “gen-
erate a propositional (i. e., sentential) model to mimic
an imaginal model” [31.46]. Alternatively, as Palmer
puts it, if you create the right sentential model it will
be functionally isomorphic to what it represents in just
the sense that a nonsentential model is supposed to
be [31.39].

Imagery and Perception
One last way in which one might try to satisfy the above
desiderata, at least with regard to spatial models, is to
point out that visual mental imagery involves the uti-
lization of visual processing resources. Brooks [31.47]
and Segal and Fusella [31.48], for instance, discovered
that performance on visual imagery tasks is dimin-
ished when subjects must perform a concurrent visual
processing task but not when they perform an audi-
tory task – that is, they found that there is interference
between mental imagery and auditory perception but
not between mental imagery and visual perception (see
also [31.36]). However, if these findings are meant
to provide a model-based alternative to computational
theories, the attempt would appear to have the same fun-
damental flaw as the appeal to functional isomorphism.
As Block notes, because perceptual processing can, in
principle, also be explained in terms of computational
processes [31.49] (see also [31.46, 50]):

“the claim that the representations of imagery and
perception are of the same kind is irrelevant to the
controversy over pictorialist versus descriptionalist
interpretation of experiments like the image scan-
ning and rotation experiments [. . . ].”

That is, the claim that imagery utilizes visual pro-
cessing resources fails to satisfy desideratum (2.).

31.3.2 Distinctive Features of Scale Models

The overall realization problem facing putative mental
models, then, is just that it has proven exceedingly diffi-
cult to specify what sorts of representational structures
mental models are in a way that is consistent with basic
brain facts but that also distinguishes models from sen-
tential representations. In order to finally see our way
past these concerns, it will be helpful if we first take
stock of a handful of features that are widely taken, even



FromNeural Circuitry toMechanistic Model-BasedReasoning 31.3 Mental Models in the Brain: Attempts at Psycho-Neural Reduction 679

Part
F
|31.3

by proponents of the computational theory of mind,
to distinguish external images and scale models from
sentential representations. Three such features concern
the sorts of entities, properties, and processes that each
form of representation is naturally suited for represent-
ing:

1. Images and scale models are not naturally suited for
representing abstract entities, properties, and pro-
cesses (e.g., war criminal, ownership, or economic
inflation). They are much better suited for represent-
ing concrete entities, properties, and processes (e.g.,
a bucket, one object being over another, or compres-
sion).

2. Images and scale models are not naturally suited
for representing general categories (e.g., triangles or
automobiles). They are better suited for represent-
ing specific instances of categories (Note: Genera
differ from abstracta in that the former can be con-
crete (e.g., rocks) and the latter can be specific (e.g.,
the enlightenment)).

3. Images and scale models are not naturally suited
for singling out specific properties of specific ob-
jects [31.37, 50]. For instance, if would be difficult,
using a scale model, to represent just the fact that
Fred’s car is green, for any such model will simul-
taneously represent many other properties, such as
the number of doors and wheels, the body type, and
so on.

In contrast, sentential representations (those con-
structed using natural and artificial languages) have
little trouble representing abstracta (e.g., war criminal),
genera (triangle), and specific properties of specific ob-
jects (e.g., Fred’s car is green).

While images and scale models are relatively dis-
advantaged in the above respects, they are much better
suited for supporting inferences regarding the conse-
quences of alterations to specific, concrete systems. The
fact that syntax-crunching systems are quite limited in
this regard first came to light as a consequence of early
work in formal-logic-inspired, sentence-and-rule-based
AI. The general problem confronting syntax-crunching
approaches came to be known as the frame prob-
lem [31.51].

In its original formulation, the frame problem had
much to do with the challenge of endowing a sentence-
and-rule-based representational system with the ability
to anticipate what will not change following an alter-
ation to the world (e.g., tipping over a bottle changes
its orientation but not its color). Today, however, the
frame problem is regarded as something more gen-
eral – namely, the problem of endowing computational
systems (and other artifacts) with the kind of com-

monsense knowledge that the average human possesses
about what will change and what will stay the same fol-
lowing alterations to the objects in the world. As Hayes
puts it [31.52]:

“The frame problem arises in attempts to formalise
problem-solving processes involving interactions
with a complex world. It concerns the difficulty of
keeping track of the consequences of the perfor-
mance of an action in, or more generally of the
making of some alteration to, a representation of the
world.”

The frame problem can actually be broken down
into at least two component problems, the prediction
problem [31.53] and the qualification problem [31.54].

As it confronts computational devices, the predic-
tion problem can be summed up as follows: In order
to support inferences about the consequences of alter-
ations to even simple physical systems, a sentence-and-
rule system would have to contain innumerable rules
that explicitly specify how objects will behave relative
to one another following each of innumerable possible
alterations. For a simple illustration, consider what we
all know about the consequences of different ways of
altering the items in Fig. 31.4. We know, for example,
what would happen were we to use the bucket to throw
the ball through the open doorway, were we to place
the bucket over the ball and slide the bucket through
the doorway, were we to set the bucket containing the
ball atop the slightly ajar door and then shove the door
open, and so on indefinitely. To endow a sentence-and-
rule system with the ability to predict the consequences
of these various alterations, one would have to build
in, corresponding to each one, a separate data structure

Fig. 31.4 A toy world: A doorway, a bucket, and a ball (af-
ter [31.55])
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specifying the starting conditions, the alteration, and the
consequences of that alteration. If these take the form
of conditional statements, the system could then make
inferences utilizing domain-general (e.g., topic-neutral,
deductive) machinery. Alternatively, the information
could be encoded directly as domain-specific infer-
ence rules (e.g., production-system operators). Either
way, from an engineering standpoint, the problem that
quickly arises is that no matter howmany of these state-
ments or rules one builds into the knowledge base of the
system, there will generally be countless other bits of
commonsense knowledge that one has overlooked. No-
tice, moreover, that scaling the scenario up even slightly
(e.g., such that it now includes a board) has an exponen-
tial effect on the number of potential alterations and,
as such, on the number of new data structures that one
would have to incorporate into one’s model [31.53]. As
Hayes says [31.52]:

“One does not want to be obliged to give a law of
motion for every aspect of the new situation [. . . ]
especially as the number of frame axioms increases
rapidly with the complexity of the problem.”

Moreover, as explained in the manual for a past in-
carnation of the production system Soar [31.56]:

“when working on large (realistic) problems, the
number of operators (i. e., domain-specific rules)
that may be used in problem solving and the num-
ber of possible state descriptions will be very large
and probably infinite.”

As if the prediction problem were not problem
enough, it is actually compounded by the other facet of
the frame problem, the qualification problem [31.54].
This is because in order to capture what the average
human knows about the consequences of alterations to
a physical system, not only would innumerable distinct
conditionals or inference rules be required, but each
would have to be qualified in an indefinite number of
ways. Notice, for instance, that placing the bucket over
the ball and sliding it through the doorway will result in
the ball being transferred to the other side of the wall,
but only if it is not the case that there is a hole in the
floor into which the ball might fall, there is a hole in
the bucket through which it might escape, the ball is
fastened securely to the floor, and so on indefinitely.
To once again quote Hayes, “Almost any general belief
about the result of his own actions may be contradicted
by the robot’s observations [. . . ] there are no end to
the different things that can go wrong, and he cannot
be expected to hedge his conclusions round with thou-
sands of qualifications” [31.52]. Thus, to capture what
the average human knows, if only implicitly, about the
consequences of this one alteration, all of the relevant

qualifications would have to be added to the relevant
sentence or rule. Once again, in realistic situations, the
challenge of specifying all of the qualifications is mag-
nified exponentially.

The general failing of sentence-and-rule-based rep-
resentations that the frame problem brings to light is
that they only support predictions concerning the con-
sequences of alterations and the defeaters of those
consequences if those alterations, consequences, and
defeaters have been spelled out, antecedently and ex-
plicitly, as distinct data structures. Representations of
this sort – that is, representations that require distinct
structures to support predictions regarding the conse-
quences of each type of alteration to the represented
system – are sometimes termed extrinsic representa-
tions. (The intrinsic-extrinsic distinction discussed here
was introduced by Palmer [31.39] but modified by
Waskan [31.57, 58].)

It is worth a quick digression to note that, while
the terminology has changed, these general concerns
about the limitations of extrinsic representations an-
tedate work in contemporary AI by over three hun-
dred years. They show up, for instance, in Descartes’
best-explanation arguments for dualism in his Dis-
course on the Method. Descartes there despairs of there
ever being a mechanical explanation for, or an arti-
fact that can duplicate, the average human’s boundless
knowledge of the consequences of interventions on the
world [31.59]:

“If there were machines which bore a resemblance
to our bodies and imitated our actions [. . . ] we
should still have two very certain means of recog-
nizing that they were not real men [. . . ] (Firstly,
humans have the ability to converse.) Secondly,
even though some machines might do some things
as well as we do them [. . . ]they would inevitably
fail in others, which would reveal that they are
acting not from understanding, but only from the
disposition of their organs. For whereas reason is
a universal instrument, which can be used in all
kinds of situations, these organs need some partic-
ular action; hence it is for all practical purposes
impossible for a machine to have enough different
organs to make it act in all the contingencies of life
in the way in which our reason makes us act.”

Descartes thought that to match wits with even
a dull-witted human, any natural or artificial device
would need, per impossibile, to rely upon an infinite
number of specific sensory-motor routines – which
bear a striking resemblance to production-system oper-
ators – for each new situation the device might confront.
What Descartes could not imagine, because he thought
that all such knowledge had to be represented explic-
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itly, was the possibility of (to use Chomsky’s term)
a generative inference mechanism – that is, one that
embodies boundless knowledge of implications through
finite means.

What Descartes failed to notice was that there were
already artifacts (i. e., scale models) that exhibited the
requisite generativity. Indeed, in contemporary AI, the
benefits of an appeal to scale-model-like representa-
tions are now well known. Starting with the prediction
problem, one can use a reasonably faithful scale model
of the setup depicted in Fig. 31.4 in order to predict
what would happen were one to use the bucket to throw
the ball through the open doorway, were one to place
the bucket over the ball and slide the bucket through
the doorway, were one to set the bucket containing the
ball atop the slightly ajar door and then shove the door
open, and so on indefinitely. To use Haugeland’s terms,
the side effects of alterations to such representations
mirror the side effects of alterations to the represented
system automatically [31.60] – which is to say, without
requiring their explicit specification. (This only holds,
of course, to the extent that the model is a faithful re-
production. Unless the model is a perfect replica, which
includes being to scale, there will be some limits on
inferential fidelity, though this does not undermine the
claim that scale models are generative.) Notice also that
incremental additions to the represented system will
only have an incremental effect on what needs to be
built into the representation. The addition of a board to
the system above, for instance, can be handled by the
simple addition of a scale model of the board to the rep-
resentation.

Nor do scale models suffer from the qualification
problem. To see why, notice that much of what is true
of a modeled domain will be true of a scale model
of that domain. For instance, with regards to a scale
model of the setup in Fig. 31.4, it is true that the scale
model of the ball will fall out of the scale model of the
bucket when it is tipped over, but only if the ball is not
wedged into the bucket, there is no glue in the bucket,
and so on indefinitely. Just like our own predictions, the
predictions generated using scale models are implic-
itly qualified in an open-ended number of ways. With
scale models, all of the relevant information is implicit
in the models and so there is no need to represent it
all explicitly using innumerable distinct data structures.
Representations of this sort are termed intrinsic repre-
sentations. Summing up, scale models are immune to
the frame problem, for one can use them to determine,
on an as-needed basis, both the consequences of count-
less alterations to the modeled system and the countless
possible defeaters of those consequences – that is, one
simply manipulates the model in the relevant ways and
reads off the consequences.

31.3.3 Does Computational Realization
Entail Sentential Representation?

The above distinguishing features can help us to know
better whether we are dealing with model-like or
sentence-like representations and, ultimately, to appre-
ciate how one might bridge the gap from neurophys-
iology to mental models. As noted above, a similar
bridge was constructed from neurophysiology to com-
putational processes by showing that artifacts (e.g.,
collections of McCulloch–Pitts neurons or wires and
transistors) characterized by a complex circuitry not
unlike that of real brains can be configured so as to im-
plement, at a higher level of abstraction, processes that
exhibit the hallmarks of traditional syntax-crunching.
Because neurons have similar information-processing
capabilities as these artifacts, implementing a set of for-
mal operations on an electronic computer is already
very nearly an existence proof that brain-like systems
can realize the same set of operations.

Might this strategy offer a template for constructing
a similar bridge to high-level models? There is surely
no shortage of computer simulations of mechanical sys-
tems, and at least as they are depicted on a computer’s
display, these simulations look for all the world like im-
ages and scale models. Many would argue, however,
that this approach to bridging the neuron-model divide
is a nonstarter. The worry, in short, is that it fails to
satisfy desideratum (2.) above. To see why, it will be
helpful to look at the kinds of computational models of
mental imagery offered up by researchers such as Koss-
lyn [31.14] and Glasgow and Papadias [31.61].

Kosslyn’s model of mental imagery has several
components [31.14]. One is a long-term store that
contains sentential representations of the shape and ori-
entation of objects. These descriptive representations
are utilized for the construction of representations in
another component, the visual buffer, which encodes
the same information in terms of the filled and empty
cells of a computation matrix. The cells of the matrix
are indexed by x, y coordinates, and the descriptions
in long-term memory take the form of polar coordi-
nate specifications (i. e., specifications of the angle and
distance from a point of origin) of the locations of
filled cells. Control processes operate over the coordi-
nate specifications in order to perform such functions
as panning in and out, scanning across, and mental ro-
tation.

One distinctive feature of actual (e.g., paper-and-
ink) spatial matrix representations is that they embody
some of the very same properties and relationships
(spatial ones) as – which is just to say that they are
physically isomorphic with – the things they repre-
sent. But Kosslyn’s computational matrix representa-
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tions (CMRs) are clearly not physically isomorphic
with what they represent. After all, Kosslyn’s visual
buffer representations are not real matrix representa-
tions that utilize cells arranged in Euclidean space; they
are computational matrix representations. To be sure,
modelers may sometimes see literal pictures on the
output displays of their computers, but the representa-
tions of interest are located in the central processing
unit (CPU) (viz., in random-access memory (RAM))
of the computer running the model. Accordingly, the
control operations responsible for executing represen-
tational transformations like rotation do not make use
of inherent spatial constraints, but rather they operate
over the coordinate specifications that are stored in the
computer’s memory. Details aside, at a certain level of
description, there can be no doubt that the computer is
implementing a set of syntax-sensitive rules for manip-
ulating syntactically structured representations; this is
what computers do. As Block puts it, “Once we see
what the computer does, we realize that the represen-
tation of the line is descriptional” [31.49]. The received
view, then, a view that has gone nearly unchallenged, is
that if a representation of spatial, kinematic, or dynamic
properties is implemented using a high-level computer
program, then the resulting representations must be sen-
tential in character [31.49, 62, 63]. (That Fodor shares
this sentiment is suggested by his claim that “if [. . . ]
you propose to co-opt Turing’s account of the nature
of computation for use in a cognitive psychology of
thought, you will have to assume that thoughts them-
selves have syntactic structure” [31.64]).

It would thus seem that the strongest claim that
can possibly be supported with regard to CMRs is
that they function like images. Yet, as Anderson notes,
it is always possible, through clever structure-process
tradeoffs, to create a sentential system that mimics an
imagistic one [31.46]. Indeed, rather than supporting
the mental models framework, one might well take
computer simulations of mental modeling as concrete
evidence for Anderson’s claim. Likewise, there is a case
to be made that CMRs and their brethren are, unlike
scale models, extrinsic representations [31.62]. After
all, the computers that run them implement syntax-
sensitive rules that provide explicit specifications of the
consequences of alterations. This is no small matter.
From the standpoint of cognitive science, one of the
most important virtues of the hypothesis that we utilize
mental representations akin to scale models was that
scale models constitute intrinsic representations of in-
teracting worldly constraints and are thus immune to the
frame problem. One could, then, be forgiven for think-
ing that any attempt to build a bridge from neurons to
models by following the template set by computational
theories – that is, by noting that certain computational

artifacts instantiate the relevant kind of processing –
will be doomed to fail from the outset.

31.3.4 What About POPI?

Consider, however, that upon gazing directly at a vast
collection of electrical or electrochemical circuits, one
will see no evidence of the harboring or manipulation
of sentential representations. In Monadology, Leibniz
turned an analogous observation about perceptual ex-
perience into an objection to materialism [31.65]:

“It must be confessed, moreover, that perception,
and that which depends on it, are inexplicable by
mechanical causes, that is, by figures and motions.
And, supposing that there were a mechanism so
constructed as to think, feel and have perception, we
might enter it as into a mill. And this granted, we
should only find on visiting it, pieces which push
one against another, but never anything by which to
explain a perception.”

A similar objectionmight be leveled regarding com-
putational processes. Again, one sees no evidence of
this kind of processing when one looks at electronic or
electrochemical circuitry. Clearly something has gone
wrong.

What Leibniz overlooked – and this may be because
he lacked the conceptual tools made available by the in-
formation age – was a grasp of the principle of property
independence (POPI). The basic idea of POPI is that
properties characterizing a system when it is studied
at a relatively low level of abstraction are often absent
when it is studied at a higher level, and vice versa. It is
POPI that allows computer scientists to say that a sys-
tem which is characterized by electronic switches and
relays at level n may nevertheless be best described in
terms of the storing of bits of information in numeri-
cally addressable memory registers at level nC 1 and
in terms of the application of syntax-sensitive rules to
syntactically structured representations at level nC 2.
It is also the very thing that enables proponents of
computational theories of cognition to say that brains
and computational artifacts are, despite superficial ap-
pearances, capable of implementing the application of
syntax-sensitive rules to syntactically structured repre-
sentations.

However, when proponents of computational theo-
ries of cognition insist that computational implemen-
tation (e.g., of CMRs) entails sentential representation,
they are turning their backs on the very principle that
enabled them to bridge divide between low-level cir-
cuitry and high-level computational operations; they are
turning their back on POPI. Indeed, nothing about POPI
entails that all syntax-crunching systems must be char-
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acterized in terms of sentences and inference rules at
the highest level of abstraction. POPI thus opens up at
least logical space for systems that engage in syntax-
crunching operations at one level but that harbor and
manipulate nonsentential models at a higher level.

In point of fact, in this logical space reside ac-
tual systems, including finite element models (FEMs).
These were first developed in the physical (e.g., civil
and mechanical) engineering disciplines for testing de-
signs, but they have since become a staple tool in the
sciences for exploring the ramifications of theories,
generating novel predictions, and facilitating under-
standing. For our current purposes, what matters most
about FEMs is that they provide an existence proof
that computational processes can realize nonsentential
representations that are like scale models and unlike
sentential representations in all of the crucial respects
listed above.

To see why, notice first that there are (among oth-
ers) two important levels of abstraction at which a given
FEM may be understood. As with scale models, one
may understand FEMs at the relatively low level of
the principles that govern their implementing medium.
What one finds at this level are sentential specifications
of coordinates (e.g., for polygon vertices) along with
rules, akin to the fundamental laws of nature, which
constrain how those coordinates may change (e.g., due
to collisions and loads) (Fig. 31.5). (For a close analogy,
think the basic rules of Conway’s Game of Life.) When
a given model is run, at this low level one finds a mas-
sive number of iterative number crunching operations.
Not unlike Leibniz, enemies of the idea of computa-
tionally realized nonsentential models have seized upon
this low level with their suggestion that computational
systems harbor only sentential representations. At this
level, however, it is not even obvious that we are dealing
with representations (worldly objects and properties) at
all, any more than we are, for instance, when we fixate
upon the constraints governing the behaviors of individ-
ual Lego blocks.

Fig. 31.5 Polymesh representation of a blunt impact to
a semirigid sheet of material (after [31.57])

One only finds representations of objects when one
turns to the higher level of the models that are real-
ized, and multiply realizable, by the aforementioned
modeling media. And when we take a close look at the
properties of these high-level FEMs, we find that they
share several characteristics that have long been taken,
including by those who suggest that computational
implementation entails sentential representation, to dis-
tinguish sentential representations from scale models.

To start with, like scale models and unlike sentential
representations, FEMs are not (by themselves) natu-
rally suited to representing abstract entities, properties,
and processes (e.g., war criminal, ownership, economic
inflation). They are much better suited for represent-
ing concrete entities, properties, and processes (e.g.,
a bucket, one object being over another, and compres-
sion). Nor are FEMs naturally suited to representing
general categories (e.g., triangles or automobiles). They
are far better suited for representing specific instances
of those categories. Lastly, FEMs are not naturally
suited to singling out specific properties of specific ob-
jects. For instance, using an FEM, if would be difficult
to represent just the fact that Fred’s car is green, for any
such model will simultaneously represent many other
properties, such as the number of doors and wheels, the
body type, and so on. In short, just like scale models,
FEMs are always representations of specific, concrete
systems. By these reasonable standards, FEMs ought
to be considered computationally-realized nonsenten-
tial models that are the close kin of scale models.

The case for this claim looks even stronger once
we consider whether or not FEMs constitute intrinsic
representations. As we have seen, the received view is
that FEMs and their brethren (e.g., CMRs) are extrin-
sic representations, for the constraints governing how
the coordinates of primitive modeling elements may
change must be encoded antecedently and explicitly.
Indeed, at the level of coordinates and transformation
rules, one gets nothing for free. However, once a model-
ing medium has been used to construct a suitable FEM
of a collection of objects, the model can then be al-
tered in any of countless ways in order to determine
the possible consequences of the corresponding alter-
ations to the represented objects. One can, for instance,
use a high-fidelity FEM of the door, bucket, ball sys-
tem to infer, among other things, what would happen
were we to place the bucket over the ball and slide the
bucket through the doorway, what would happen were
the bucket used to throw the ball at the open doorway,
what would happen were the air pressure dramatically
decreased, and so on indefinitely [31.57]. The conse-
quences of these alterations need not be anticipated or
explicitly incorporated into the system. Indeed, as with
scale models, much of the point of constructing FEMs
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is to find out how a system will behave in light of
whichever alterations an engineer or scientist can dream
up.

It bears repeating that it is not at the level of the
primitive operations of an implementation base that we
find intrinsic representations, but at the level of the rep-
resentations realized by a given, primitively constrained
implementation base. Part of what justifies this claim is
the fact that certain constraints will be inviolable at the
level of the model, and thus a great deal of information
will be implicit in the model, because it has been imple-
mented using a particular kind of medium. As Pylyshyn
notes [31.63]:

“the greater number of formal properties built into
a notation in advance, the weaker the notational sys-
tem’s expressive power (though the system may be
more efficient for cases to which it is applicable).
This follows from the possibility that the system
may no longer be capable of expressing certain
states of affairs that violate assumptions built into
the notation. For example, if Euclidean assumptions
are built into a notation, the notation cannot be used
to describe non-Euclidean properties [. . . ]”

This, in fact, is very close to an apt characteriza-
tion of what is going on in the case of FEMs. Given
that a particular model has been realized through the
use of a primitively constrained medium, certain con-
straints will be inviolable at the representational level
and a great deal of information will be implicit [31.57].
As Mark Bickhard (in correspondence) summarizes the
point:

“Properties and regularities are only going to be in-
trinsic at one level of description if they are built-in
in the realizing level – or else they are ontologically
built-in as in the case of strictly spatial relationships
in physical scale models.”

While scale models are intrinsic for the latter rea-
son, FEMs are intrinsic for the former. This shows up
in the fact that FEMs exhibit a comparable degree of
generativity to scale models and a correlative immunity
to the frame problem. Like scale models, FEMs pro-
vide a finite embodiment of boundless tacit knowledge,
which can be made explicit at any time, of the conse-
quences of innumerable alterations to the systems they
represent.

So how does all of this square with Ander-
son’s [31.46] contention that it is always possible to
construct a sentential system to mimic an imagistic or
model-based system or Palmer’s [31.39] claim that if
you create the right sentential model it will be function-
ally isomorphic to what it represents in just the sense
that a nonsentential model is supposed to be? Ander-

son and Palmer are surely right that, post hoc, one can
always constrain a sentential representational system
so that it mimics the output of a model-based system,
but the post hoc character of the strategy is precisely
what gets sentential approaches into trouble vis-à-vis
the frame problem. Consider, for instance, that the tra-
ditional AI approach is to take any physical implication
of which humans express knowledge and, after the fact,
to build it into the knowledge base of one’s system
as a sentence or inference rule. (Despite its shortcom-
ings, this strategy is alive and well, as is evidenced by
Lenat’s massive ongoing Cyc project.) But to solve, or
rather to avoid, the frame problem, one must rely upon
representations that embody all of this boundless in-
formation as tacit knowledge – that is, the information
cannot be explicitly encoded at the outset, but it can
later be generated, and thereby become explicit knowl-
edge, on an as-needed basis. Put simply, to exhibit
anything approaching true functional isomorphismwith
scale models, what is needed are high-level, intrinsic,
nonsentential models.

To sum up, those who would contend that FEMs
(or even CMRs of 2-D spatial properties) are, qua
computational, necessarily extrinsic and sentential have
overlooked the fact that there are multiple levels of ab-
straction at which a given computational model can be
understood. At the relatively low level of the modeling
medium, there are unquestionably extrinsic representa-
tions of the principles governing the permissible trans-
formation of primitive modeling elements. At a higher
level, one finds models that share many distinguish-
ing features, including immunity to the frame problem,
with the scale models they were in large part invented
to replace. Thus, we find once again that FEMs are like
scale models and unlike paradigmatic sentential repre-
sentations.

31.3.5 Bridging the Divide

All of this bears directly on the longstanding con-
cern that there is no way to bridge the divide between
neural machinations and the nonsentential models hy-
pothesized by proponents of mental models. What the
foregoing makes clear is that computational processes
can realize nonsentential models that share with scale
models the main characteristics that distinguish nonsen-
tential models from sentential representations. Given
that the brain is capable, at least in principle, of real-
izing any such computational processes, then one must
also agree that brains can realize nonsentential models.
Thus, by appealing to the above distinguishing features
of scale models, we see that there is an account of
mental models that (i) distinguishes them (on multi-
ple grounds) from sentential representations and (ii) is
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compatible with basic facts about how brains operate.
All of this provides a much-needed foundation for all
of that psychological work cited above that adverts to
mental models.

One advantage of showing that low-level compu-
tations can realize higher-level mental models is that
it renders the mental models hypothesis robust enough
to withstand the discovery that the brain is a computa-
tional system at some level of description. Even if the
brain is not a computational system (i. e., in the syntax-
crunching sense), the manner in which computational
systems realize intrinsic, nonsentential models will nev-
ertheless remain quite instructive. It suggests a general
recipe for the creation of intrinsic models that can be
followed even without the computational intermediary:
Start by creating a representational medium such that
a large number of primitive elements a constrained to
obey a handful of simple behavioral principles. Next
construct models from this highly productive medium.
(Productive is here used in Fodor’s sense – that is,
to denote a medium capable of representing an open-
ended number of distinct states of affairs [31.66].) What
emerges are generative structures capable of support-
ing an open-ended number of mechanical inferences.
At the level of the medium, running such a model in-
volves the recursive application of the basic constraints
on the modeling-element behaviors. This will typically
be a massive, parallel, constraint-satisfaction process.
Given that this form of processing is the forte of neu-
ral networks, there should be little doubt that neural
machinations are up to the task. (At the same time, one
should not overestimate inherent immunity to the frame
problem of neural networks [31.58]. It is only by im-
plementing a primitively constrained modeling medium
that neural networks can be expected to realize intrinsic
representations of complex, interacting worldly con-
straints.)

31.3.6 Bottom-Up Approaches

Thus far, we have largely approached the question of
the neural realizability of mental models in the ab-
stract, and from the top down. This is partly because
there has been a relative dearth of work that moves in
the opposite direction, from the bottom up. One ex-
ception is Thagard’s [31.11] recent work on the topic,
which appeals to such biologically plausible simula-
tions of neural networks as those of Eliasmith and
Anderson [31.67]. Unfortunately, Thagard has yet to
offer evidence that the neural encoding strategies he
discusses exhibit any of the central features, discussed
here, that distinguish modeling from syntax-crunching.
Most notably, the neural representations he cites have
not yet been shown to exhibit a significant degree of

spatial, kinematic, or causal generativity. The proof of
the pudding here is in the eating.

To the extent that there have been significant
advances in the bottom-up endeavor, they mostly issue
from research – such as that of Nobel laureates John
O’Keefe, May-Britt Moser, and Edward Moser – on
the biological neural networks that underwrite spatial
reasoning abilities in rats. As you will recall, Tolman’s
pioneering work on maze navigation suggested that rats
have an onboard medium for the construction of gen-
erative spatial maps of their location relative to barriers
and important items such as food and drink. O’Keefe
and Nadel are famous for showing that the rat’s hip-
pocampus contains place cells which fire preferentially
when an animal reaches a particular location in its
environment, cells that fire in sequence as a rat moves
from one location to another [31.68]. Moser andMoser
subsequently showed that the rat’s uncanny spatial
navigation abilities also depend upon grid cells in the
nearby entorhinal cortex [31.69]. Individual grid cells
fire when an animal is in any of several, roughly evenly
spaced locations.When lines are drawn to connect these
points, they collectively form what (purely by coinci-
dence) looks a great deal like the kind of 2-D polymesh
shown in Fig. 31.5. While each grid cell is tuned
to a collection of locations, different grid cells have
sparser or denser coverage of the same region of space.
Collectively they provide effective coverage of the
entire region of space in which the animal finds itself.

Importantly, O’Keefe et al. note regarding place
cells that [31.70]

“there does not appear to be any obvious topograph-
ical relation between the field locations (i. e., the
places to which cells become temporarily tuned)
and the anatomical locations of the cells relative to
each other within the hippocampus.”

Nor do grid cells in the entorhinal cortex exploit
any obvious structural isomorphisms between their re-
spective anatomical locations and the spatial layout of
the environment. However, acting in concert, the two
types of cells enable effective navigation, as if the
organism had an internal map that preserves relative lo-
cations (place cells) and distances (grid cells). In other
words, the two systems encode maps that are func-
tionally isomorphic with real maps of the environment.
Moreover, they provide a productive modelingmedium,
one which, not unlike a collection of Lego blocks,
can be used and reused, through a process called re-
mapping, to encode information about an open-ended
number of new environments [31.71]. The maps con-
structed in this medium are generative with regards to
2-D spatial properties in the aforementioned sense, as is
shown by their role in enabling rats to find efficient new
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ways to a destination when familiar routes are blocked.
More recent research suggests that the rat’s place cells
are also somewhat sensitive to vertical displacement
from a reference plane, perhaps enabling 3-D mapping
capabilities [31.72]. Nor are the lessons learned here
applicable only to rats, for a large body of research
suggests that the same anatomical systems may be im-
plicated in human spatial navigation [31.73].

Our deepest understanding of how real neural net-
works create spatial mental models thus suggests that
brains implement a reusable modeling medium and, by
exploiting the kinds functional, rather than physical,
isomorphisms that make neural realizability feasible,
nothing is lost in the way of generativity. It also bears
mentioning that this modeling medium is well suited
for producing models of the organism’s location rela-

tive to its specific, concrete environment. As such, it
may (taken in isolation) be ill suited for representing
abstracta or genera. As for the singling out of specific
properties of specific objects, it may be that models
that are realized by neurophysiological processes have
a natural advantage over scale models in that popula-
tions representing specific properties may cry out for
attention (by oscillating at the appropriate frequency).
There is, moreover, no reason why these lessons could
not scale up, so to speak, to account for the human
ability to run off-line models of spatial, kinematic, and
dynamic relationships. Of course, in humans, the neo-
cortex is likely to play a much more prominent role.
As of yet, however, there is little understanding of the
precise manner in which the neocortex does, or might,
realize mental models.

31.4 Realization Story Applied

Though we clearly have a long way to go, the above
hypothesis about what mental models are such that neu-
ral systems might realize them looks to have important
ramifications for work in several fields, ranging fromAI
to the philosophy of science.

31.4.1 AI and Psychology: Towards
an Intuitive Physics Engine

One obvious ramification of the above is what it sug-
gests about how one might go about endowing compu-
tational artifacts with the kind of boundless common-
sense knowledge of the consequences of alterations to
the world that humans seem to possess. FEMs prove
that there is a determinate computational solution to the
prediction and qualification problems. FEMs are gener-
ative in that they can be manipulated in any of countless
ways in order to make inferences about how alterations
to the environment might play out and, by the same to-
ken, about the ways in which those consequences might
be defeated. It would thus behoove AI researchers to in-
corporate media for the construction of intrinsic models
within the core inference machinery of their devices. In-
deed, there has been some movement in this direction
in recent years. For instance, though past manuals for
the Soar production-system architecture evidence a cer-
tain degree of exasperation when it comes to the frame
problem, more recent manuals indicate that Soar’s de-
signers have begun to offload mechanical reasoning to
nonsentential models. Laird notes, for instance [31.74]:

“With the addition of visual imagery, we have
demonstrated that it is possible to solve spatial rea-

soning problems orders of magnitude faster than
without it, and using significantly less procedural
knowledge. Visual imagery also enables processing
that is not possible with only symbolic reasoning,
such as determining which letters in the alphabet
are symmetric along the vertical axis (A, H, I, M,
O, T, U, V, W, X, Y).”

While Soar’s imagery module still only supports
simple spatial reasoning, it is clearly a step in the direc-
tion of richer, intrinsic models of 3-D kinematics and
dynamics.

There has also been some movement in the direc-
tion of using computationally realized intrinsic models
as a way of making sense of behavioral findings regard-
ing how humans engage in commonsense reasoning
about the world. For instance, after paying homage to
Craik, MIT researchers Battaglia et al. describe their
innovative approach to commonsense reasoning as fol-
lows [31.75]:

“We posit that human judgments are driven by an
intuitive physics engine (IPE), akin to the computer
physics engines used for quantitative but approxi-
mate simulation of rigid body dynamics and col-
lisions, soft body and fluid dynamics in computer
graphics, and interactive video games.”

They simulate the IPE with FEMs of full-blown 3-D
kinematic and dynamic relationships. They note that
a similar IPE in humans might allow us to read off from
our simulations the answers to questions of What will
happen? regarding innumerable novel scenarios. Their
pioneering work also breaks new ground in that it be-
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gins to account for probabilistic reasoning by building
a bit of uncertainty into models and treating multiple
runs of a model as a statistical sample.

All of this work is very much in the spirit of
Schwartz’ claim that “inferences can emerge through
imagined actions even though people may not know
the answer explicitly” [31.76, italics mine]. It also fits
with the following suggestion of Moulton and Koss-
lyn [31.35, italics mine]:

“the primary function of mental imagery is to al-
low us to generate specific predictions based upon
past experience. Imagery allows us to answer what
if questions by making explicit and accessible the
likely consequences of being in a specific situation
or performing a specific action.”

31.4.2 Exduction

Another important lesson to be learned from compu-
tationally realized intrinsic models is that they support
a form of mechanistic reasoning that has found its way
into few, if any, standard reasoning taxonomies. As
Glasgow and Papadias claim [31.61]:

“The spatial structure of images has properties not
possessed by deductive sentential representations
[. . . ] spatial image representations [. . . ] support
nondeductive inference using built-in constraints on
the processes that construct and access them.”

Of course, there is more to be said about the process
of model-based mechanistic reasoning than that it is not
deductive. In fact, the process shares with (valid) deduc-
tive reasoning the property of being monotonic. What
makes deduction a monotonic (indefeasible) reason-
ing process is that the conclusion of a valid argument
cannot be overturned simply by adding premises; it
can only be overturned by rejecting one or more of
the premises from which the conclusion was deduced.
Other forms of reasoning (inductive generalization,
analogical reasoning, abduction) are defeasible in that
one can overturn their conclusions simply by adding
relevant premises. For instance, if I hear a meowing
noise emanating from my daughter’s closet door, I may

infer that the cat is trapped inside. But if I then see
the cat walking through the kitchen and am told that
my daughter was given a new electronic cat toy, my
conclusion would be undermined while at the same
time leaving the original premise (that there is meow-
ing coming from the closet) intact.

One diagnosis for why deduction is monotonic is
that, in a certain sense, the premises of a valid deduction
already contain the information stated in the conclu-
sion, so adding information takes nothing away from
the support that those premises lend to the conclusion.
That means that insofar as the original premises are
true, the conclusion must be as well, and insofar as the
conclusion is false, there must be something wrongwith
the premises used to derive it. But deduction is formal,
in that topic-neutral logical particles are what bear the
entirety of the inferential load – that is, the specific con-
tents (consistently) connected and quantified over drop
out as irrelevant.

The use of scale models and FEMs makes evident
that there is another form of monotonic reasoning in
addition to deduction. As explained above, information
derived regarding the consequences of interventions
on a modeled system are to a significant extent al-
ready contained (i. e., they are implicit) in the models
themselves. The only way to overturn a model-based
inference is to call into question some aspect or other
of the model from which it was derived. By the same
token, if the conclusion is incorrect, there must be
something wrong with the model. But unlike deduction,
model-based reasoning is not affected by abstracting
away from specific contents and allowing logical par-
ticles to bear the inferential load. Instead, it is the
specific, concrete contents of the models that do all
of the work. As yet, this form of monotonic reasoning
lacks a name. Let us thus call it exduction (ex-out and
duce-lead). Like deduction, exduction may be imple-
mented externally through the use of representational
artifacts, but the hypothesis being explored here is just
that we also sometimes engage in internal exductive
reasoning through the use of mental models. If this hy-
pothesis is correct, then exduction must be added to our
standard taxonomy of internal reasoning processes and
placed alongside deduction under the broader heading
of monotonic reasoning.

31.5 Mechanistic Explanation Revisited

It was noted in the beginning that mental models may
well play a crucial role in the process of mechanistic
explanation and prediction. If that is so, then we can
only hope to attain a deep understanding of science if

we first account for how the mental modeling process
works. Now that we have a clearer conception of the
distinctive features of mental models and of the way
in which they might be realized by neurophysiological
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processes, we can begin to see what the payoff might be
in terms of our understanding of model-based reasoning
about mechanisms in science.

31.5.1 The Prediction and Ceteris Paribus
Problems

To give some of the flavor of where this might lead,
consider that one benefit of the foregoing realization
story regarding mental models for the philosophy of
science is that it offers a solution to two longstanding
problems: the surplus-meaning problem and the ceteris
paribus problem (a.k.a., the problem of provisos). Both
problems arose as a consequence of attempts to apply
the methods of formal, mostly deductive methods in an
attempt to provide a logical reconstruction of scientific
reasoning.

The surplus-meaning problem has to do with the
fact that explanatory hypotheses have, and are known
to have, countless implications beyond the happenings
they explain. To keep things simple, consider the non-
scientific case of what a mechanic knows about the
operation of an automobile engine. Imagine, in partic-
ular, that someone has brought an automobile into the
mechanic’s shop complaining that the engine has suf-
fered a drop-off in power. Listening to the engine, the
mechanic might decide that the engine has blown a ring.
Setting aside the question of creativity, one might pro-
vide the following formal, deductive reconstruction of
his explanatory model

If one of the cylinders has lost a ring,

then the engine will have lost power.

One of the cylinders has lost a ring.

) The engine has lost power.

Consider, however, that the mechanic knows not
only that the faulty ring will result in a loss of power
(the explananandum occurrence); he also knows many
other implications of this explanatory hypothesis, such
as that oil will leak into the combustion chamber, the
exhaust will look smoky, the end of the tailpipe will be-
come oily, and the sparkplugs will turn dark. He also
knows what interventions will and will not alleviate
the problem – for instance, he knows that replacing
the rings will restore power but replacing the air filter
will not, and so on indefinitely. Any suitable deduc-
tive reconstruction of the mechanic’s mental model of
the source of the problem must thus account not just
for the fact that it implies the explanandum; it must ac-
count for its countless further implications. The general
problem with deductive reconstructions of explana-
tions – a problem that will surely beset any attempt

to reconstruct mechanistic explanations using extrin-
sic representations – is that they fail to capture the full
complexity of what anyone who possesses that expla-
nation must know, if only implicitly. The problem is
that there is too much surplus-meaning to express it all
explicitly [31.77], and these added implications are es-
sential to how we assess the adequacy of explanations,
whether in everyday life or in science. As Greenwood
explains [31.78]:

“Where this surplus meaning comes from [. . . ] is
a matter of some dispute, but that genuine theories
poses [sic.] such surplus meaning is not–for this is
precisely what accounts for their explanatory power
and creative predictive potential.”

Notice also that the mechanic’s model of why the
car lost power not only contains information about the
various other things he should expect to find if that
model is correct; it also contains information about the
countless ways in which each of these expectations
might, consistent with the truth of the explanation, be
defeated. The mechanic knows, for instance, that re-
placing the rings will restore power, but only if it is not
the case that one of the spark plug wires was damaged
in the process, the air filter has become clogged with
dust from a nearby construction project, and so on in-
definitely.

Whether we are dealing with commonsense or sci-
entific reasoning about mechanisms, the problem with
attempts at formalizing our knowledge of the ways in
which a given implication is qualified is that what we
know far outstrips what can be expressed explicitly in
the form of, say, a conditional generalization. In philos-
ophy of science, the qualifications that would have to be
added are termed ceteris paribus clauses and provisos.
As Fodor claims, the general problem is that “as soon as
you try to make these generalizations explicit, you see
that they have to be hedged about with ceteris paribus
clauses” [31.79]. And as Giere claims, “the number of
provisos implicit in any law is indefinitely large” [31.80,
italics mine]. Deductive models, and others that rely
upon extrinsic representations, are thus unable to cap-
ture the full breadth of what we know when we possess
a mechanistic explanation for an occurrence. And all of
this dark information plays a crucial role in the testing
and retention of mechanistic hypotheses [31.81]. Ac-
counting for it must thus be viewed as a central goal for
the philosophy of science.

If we abandon deductive (or other extrinsic)
schemes for making sense of scientific reasoning about
mechanisms and instead adopt an exductive (and in-
trinsic) model-based account of reasoning, the surplus-
meaning and ceteris paribus problems dissolve, and the
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source of the dark information comes into focus. After
all, these two problems are just variants on the pre-
diction and qualifications problems of AI. This is not
surprising given that both sets of problems were discov-
ered through early attempts to deductively reconstruct
everyday and scientific reasoning about mechanisms.
Naturally, the same solution applies in both cases: Es-
chew the appeal to extrinsic representations and formal
inferences in favor of an appeal to intrinsic models and
exductive inferences. The promising idea that emerges
is that scientists may be utilizing intrinsic mental mod-
els to understand the mechanisms that are (or might
be) responsible for particular phenomena. Such models
would endow the scientist with boundless tacit knowl-
edge of the further implications of a given mechanistic
hypothesis and of the countless ways in which those im-
plications are qualified.

31.5.2 Beyond Mental Models

We must not forget, however, that our mental mod-
els are limited by working memory capacity and by
the heavy cognitive load associated with mental model-
ing. Even so, scientists are somehow able to formulate
and comprehend some remarkably complex mechani-
cal explanations. Seen in this light, it is no surprise
that, in their reasoning about mechanisms, humans rely
heavily upon external representational artifacts such
as diagrams. These can act as aids to memory, both
short- and long-term, enabling us to off-load some of
the cognitive burden to the world and thereby compen-
sating for our otherwise limited ability to keep track
of the simultaneous influences of many mechanical
components (see [31.82]). Indeed, when aided by ex-
ternal diagrams, Hegarty et al. found that high- and
low-imagery subjects performed about equally well
on a task that required model-based reasoning about
mechanisms [31.18]. The compensatory influence of
external representations is strong indeed (see also Bech-
tel, Chap. 27).

Of course we do not just utilize static pictures to
make sense of natural phenomena; we also sometimes
use scale models [31.83]. On the present view, the rea-
son so many have come to view these models as an
apt metaphor for in-the-head reasoning may be that
scale models recapitulate, albeit in a way that over-
comes many of our cognitive frailties, the structure of
our internal models of mechanisms. However, with the
advent of sophisticated computer models, we now have
an even better tool for investigating the implications
of mechanical hypotheses. As we have seen, certain
computer models (e.g., FEMs) are like scale models in
that they constitute intrinsic nonsentential representa-
tions of actual or hypothetical mechanisms. However,

these models have the added virtue that one can eas-
ily freeze the action, zoom in or out, slow things down,
and even watch things play out in reverse. These mod-
els thus constitute what Churchland and Sejnowski term
a “fortunate preparation” [31.84]. Such models provide
an even more apt analogy for understanding our own
native mental models, for both sorts of models are re-
alized at a low level by complicated circuitry, and both
tend to bottom-out well above the level of nature’s fun-
damental laws. (One way of describing the interplay
between external models (in their various forms) and
internal mental models would be to say that the latter
are part and parcel of scientific cognition, whereas the
former are representational artifacts created to aid cog-
nition. An alternative, somewhat speculative, proposal
is that our external models are no less part of the fab-
ric of scientific cognition than are our internal mental
models [31.85]).

As noted in Sect. 31.2, over and above the quan-
titative limits imposed by working memory capacity,
scale models and FEMs are, and our own mental
models may well be, limited in certain qualitative re-
spects, such as their ability to represent abstracta. But
surely thoughts about abstracta play a big role in sci-
entific reasoning. One way of accounting for this is
to say that our deficiencies with regards to model-
ing abstracta are the precise problem that analogy and
metaphor were created to solve. This would make sense
of why the language we use to represent abstracta (e.g.,
economic inflation) is so shot through with analogies
and metaphors rooted in concrete domains [31.86–
88].

Battery

Resistor

Fig. 31.6 Various configurations of circuitry, batteries, and
resistors
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Gentner and Gentner’s study of human reason-
ing about electricity lends some credence to this
view [31.89]. Gentner and Gentner found that in con-
versation, nonexpert subjects commonly likened the
flow of electricity to water moving through pipes or
crowds moving through corridors. Each analogy hap-
pens to yield its own unique set of inaccurate predic-
tions about how electrical current moves through partic-
ular configurations of electrical components (Fig. 31.6).

Gentner and Gentner found that subjects’ errors in rea-
soning about these components tracked the analogies
they invoked when discussing electricity. This suggests
that these analogies run deeper than the surface fea-
tures of language and penetrate right into subjects’
mental models of the flow of electricity. Analogies and
metaphors are perhaps not the whole story of how we
think about abstracta, but they may well be an impor-
tant part of it.

31.6 Conclusion
It was noted in the beginning that mental models might
play a crucial role in the process of mechanistic ex-
planation and prediction in science. As such, we can
only attain a deep understanding of science itself if we
first understand that nature of this mental, model-based,
reasoning process. We then saw that experimental psy-
chologists have long maintained that mental models are
distinct from sentential representations in much the way
that scale models are. Insofar as this hypothesis is vi-
able, we can expect that experimental psychology will
provide crucial insight into both the nature and limits
of our onboard mental models. At the same time, it is
important to recognize that the many appeals to distinc-
tively model-like mental representations in psychology
will be considered suspect so long as we lack a reason-
able way of spelling out what sorts of representational
structures mental models are supposed to be in a way
that (i) shows these models to be distinct from sentential
representations while (ii) allowing for their realization
by neurophysiological processes. We can see the way
forward, however, if we first pay attention to some

of the distinctive features of scale models that distin-
guish them from sentential representations. If we then
turn to the computational realm, we see that these very
features (including immunity to the notorious frame
problem) are exhibited by certain computational mod-
els of mechanisms such as FEMs. An appeal to the
principle that sustains the computational theory of cog-
nition (POPI) enables us to understand how this could
be so and how high-level, nonsentential, intrinsic mod-
els of mechanisms could in principle be realized by
neurophysiological processes. The broader viability of
this realization story for mental models is suggested by
recent work in both AI and experimental psychology
and by the elegant solution it offers to the surplus-
meaning and ceteris paribus problems in the philosophy
of science. Going forward, the idea that our scientific
reasoning about mechanisms might, to a large extent,
involve the manipulation of representations that are like
scale models in crucial respects can be regarded as at
least one, sturdy pillar of a promising hypothesis re-
garding the nature of model-based reasoning in science.
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Since the 1950s computational progress has been con-
tributing to increasing the relevance of the discourse
about models, making it not only relevant to scientists
and philosophers, but also to computer scientists, pro-
grammers, and logicians. Emphasis has been put both
on the application of computational tools to a range of
disciplines and on the computational issues themselves.
Computing is playing an increasing role in several sci-
entific endeavors, in modeling and simulating different
entities, and in practically enhancing the performance
of various scientific activities. At the same time, compu-
tational tools are becomingmore and more complex and
present several open issues that require consideration
from technical, methodological, and epistemological
points of view.

This part of the Handbook of Model-Based Science
discusses the modeling and computational issues aris-
ing in this context, with the aim of giving back an
articulated, although necessarily incomplete, picture of
the field. It is composed of six different chapters that al-
ternate with general perspectives and specific fields of
application.

This part opens with Chap. 32 on Computational
Aspects of Model-Based Reasoning byGordana Dodig-
Crnkovic andAntonio Cicchetti offering an introductory
overview on the use of computational models and tools
for the study of cognition and model-based reason-
ing. From simple agents, like bacteria, to the complex
human cognitive systems, computation is meant as
physical, natural, embodied, and distributed, and it is
discussed in relation to the view of symbol manipula-
tion of classical computationalism.

Chapter 33 byPeter Sozou,Peter Lane,Mark Addis,
and Fernand Gobet discusses computational scientific
discovery as a particularly interesting and successful
field of application of computer-supportedmodel-based
science. The chapter reviews the application of compu-
tational methods in the formulation of scientific ideas
and acknowledges the importance of this field not only
for historical reasons, with the first systems having
played a disruptive role in the philosophical debate on
scientific discovery, but also for testifying its increasing
importance in many areas of science.

Chapter 34, Computer Simulations and Compu-
tational Models in Science by Cyrill Imbert presents
a very rich examination of computational science and
computer simulations by giving reason to the constant
attempts of extending human computational capacities.
The chapter covers a wide variety of topics and themes

with the awareness that epistemological analyses of
simulations are, to a large degree, contextual and that
these analyses require developing insights about the
evolving relation between human capacities and com-
putational science.

Simulation is also the topic of Chap. 35, Simula-
tion of Complex Systems by Paul Davidsson, Franziska
Klügl, and Harko Verhagen, which opens with a dis-
cussion on what characterizes complex systems, such
as huge ecosystems and traffic systems. Different ap-
proaches to model complex systems are presented, but
particular attention is devoted to agent-based simu-
lations, to their intuitiveness and flexibility, to some
solutions proposed in the last years, and to the still
open problems that are discussed in a critical perspec-
tive.

Chapter 36, by Francesco Amigoni and Viola
Schiaffonati,Models and Experiments in Robotics, sur-
veys the practices being employed in experimentally
assessing the special class of computational models em-
bedded in robots. This assessment is particularly chal-
lenging due to the difficulty of satisfactorily estimating
the interactions between robots and their environments.
Moreover, by considering also related topics such as
simulations, benchmarks, standards, and competitions,
this chapter shows how the recent debate on the imple-
mentation of the experimental method in this field is
still very open.

Chapter 37, Biorobotics by Edoardo Datteri, pro-
vides an overview of the biorobotic strategy for testing
mechanistic explanations of animal behavior starting
from a reflection on the various roles played by robotic
simulations in scientific research. Besides the history
and state of the art of biorobotics, the chapter also
addresses some key epistemological and methodolog-
ical issues mainly concerning the relationships between
biorobots and the theoretical models under investiga-
tion.

It is not by chance that this part of the volume
ends with this chapter on biorobotics: if one of the
main common traits of the other chapters has been
the foundational role of the philosophical tools in dis-
cussing computational models in model-based science,
this last chapter also shows how computational models
and tools can offer new insights to traditional philo-
sophical problems, and thus represents an ideal and
critical conclusion offering further reflections on the ar-
ticulation between computation and philosophy.
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32. Computational Aspects of Model-Based Reasoning

Gordana Dodig-Crnkovic, Antonio Cicchetti

Computational models and tools provide increas-
ingly solid foundations for the study of cognition
and model-based reasoning, with knowledge
generation in different types of cognizing agents,
from the simplest ones like bacteria to the complex
human distributed cognition. After the introduc-
tion of the computational turn, we proceed to
models of computation and the relationship be-
tween information and computation. A distinction
is made between mathematical and computa-
tional (executable) models, which are central for
biology and cognition. Computation as it appears
in cognitive systems is physical, natural, embod-
ied, and distributed computation, and we explain
how it relates to the symbol manipulation view of
classical computationalism. As present day models
of distributed, asynchronous, heterogeneous, and
concurrent networks are becoming increasingly
well suited for modeling of cognitive systems with
their dynamic properties, they can be used to study
mechanisms of abduction and scientific discovery.
We conclude the chapter with the presentation
of software modeling with computationally au-
tomated reasoning and the discussion of model
transformations and separation between seman-
tics and ontology.
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32.1 Computational Turn Seen from Different Perspectives

Computation is central for our entire contemporary
civilization – research and sciences, communications,
government, manufacturing, control, transports, finan-
cial sector, education, entertainment, arts, humanities,
technology in general, and especially engineering. It
also affects in profound ways our outlook of the world
and determines what can be conceptualized and how.
In the following, we will describe current understand-
ing of the processes and structures of the computational
turn from different perspectives.

From the point of view of conceptual, cognitive
aspects, Brian Cantwell Smith recognizes the computa-
tional turn as present constantly increasing importance
of computation (cited in [32.1, p. 3]):

“Everyone knows that computational and informa-
tion technology has spread like wildfire through-
out academic and intellectual life. But the spread
of computational ideas has been just as impres-
sive.
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Biologists not only model life forms on comput-
ers; they treat the gene, and even whole organisms,
as information systems. Philosophy, artificial intel-
ligence, and cognitive science don’t just construct
computational models of mind; they take cognition
to be computation, at the deepest levels.

Physicists don’t just talk about the informa-
tion carried by a subatomic particle; they propose
to unify the foundations of quantum mechanics
with notions of information. Similarly for linguists,
artists, anthropologists, critics, etc.”

With the emphasis on philosophical facets of the
computational turn, Charles Ess and Ruth Hagengru-
ber depict the same process of steady increase in the
role of computation as follows [32.2]:

“In theWest, philosophical attention to computation
and computational devices is at least as old as Leib-
niz. But since the early 1940s, electronic computers
have evolved from a few machines filling several
rooms to widely diffused – indeed, ubiquitous – de-
vices, ranging from networked desktops, laptops,
smartphones and the internet of things. Along the
way, initial philosophical attention – in particular, to
the ethical and social implications of these devices
(Norbert Wiener, 1950) – became sufficiently broad
and influential as to justify the phrase the computa-
tional turn by the 1980s.

In part, the computational turn referred to the
multiple ways in which the increasing availability
and usability of computers allowed philosophers to
explore a range of traditional philosophical inter-
ests – e.g., in logic, artificial intelligence, philo-
sophical mathematics, ethics, political philosophy,
epistemology, ontology, to name a few – in new
ways, often shedding significant new light on tradi-
tional issues and arguments. Simultaneously, com-
puter scientists, mathematicians, and others whose
work focused on computation and computational
devices often found their work to evoke (if not
force) reflection and debate precisely on the philo-
sophical assumptions and potential implications of
their research.”

Looking from the perspective of arts, humanities,
and social sciences David M. Berry [32.3] observes:

“The importance of understanding computational
approaches is increasingly reflected across a num-
ber of disciplines, including the arts, humanities
and social sciences, which use technologies to shift
the critical ground of their concepts and theories –
something that can be termed a computational turn.

This is shown in the increasing interest in the
digital humanities (Schreibman et al., 2008) and

computational social science (Lazer et al., 2009),
as evidenced, for example, by the growth in jour-
nals, conferences, books and research funding. In
the digital humanities ‘critical inquiry involves the
application of algorithmically facilitated search, re-
trieval, and critical process that [. . . ] originat[es] in
humanities-basedwork’; therefore ‘exemplary tasks
traditionally associated with humanities computing
hold the digital representation of archival materials
on a par with analysis or critical inquiry, as well
as theories of analysis or critical inquiry originating
in the study of those materials’ (Schreibman et al.,
2008: xxv). In social sciences, Lazer et al. argue that
‘computational social science is emerging that lever-
ages the capacity to collect and analyze data with an
unprecedented breadth and depth and scale’ (2009).

Latour speculates that there is a trend in these
informational cascades, which is certainly reflected
in the ongoing digitalisation of arts, humanities and
social science projects that tends towards ‘the direc-
tion of the greater merging of figures, numbers and
letters, merging greatly facilitated by their homoge-
nous treatment as binary units in and by computers
(Latour, 1986: 16).”

Finally, from the perspective of computing itself as
a field, Peter J. Denning ascertains [32.4, p. 1-1; p. 1-4]:

“Computing is integral to science – not just as
a tool for analyzing data but also as an agent of
thought and discovery. It has not always been this
way. Computing is a relatively young discipline. It
started as an academic field of study in the 1930s
with a cluster of remarkable papers by Kurt Gödel,
Alonzo Church, Emil Post, and Alan Turing. The
papers laid the mathematical foundations that would
answer the question, what is computation? and dis-
cussed schemes for its implementation. These men
saw the importance of automatic computation and
sought its precise mathematical foundation.”

“All this suggests that computing has developed
a paradigm all its own (Denning and Freeman,
2009). Computing is no longer just about algo-
rithms, data structures, numerical methods, pro-
gramming languages, operating systems, networks,
databases, graphics, artificial intelligence, and soft-
ware engineering, as it was prior to 1990. It now
also includes exciting new subjects including In-
ternet, web science, mobile computing, cyberspace
protection, user-interface design, and information
visualization. The resulting commercial applica-
tions have spawned new research challenges in
social networking, endlessly evolving computation,
music, video, digital photography, vision, massive
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multiplayer online games, user-generated content,
and much more. [. . . ] The central focus of the
computing paradigm can be summarized as infor-
mation processes–natural or constructed processes
that transform information. They can be discrete or
continuous.”

Denning reminds that in the beginning of the field
“Computation was taken to be the mechanical steps fol-
lowed to evaluate mathematical functions. Computers
were people who did computations.” while, today com-
puting plays a much more diverse role: “Computing is
not only a tool for science but also a new method of
thought and discovery in science.” [32.4, p. 1-3]

Computing is the fourth great domain of science,
together with traditional domains of physical-, life-, and
social sciences [32.5].

In more detail, here is how Computer Science is rel-
evant for other sciences in view of Samson Abramsky
and Bob Coecke [32.6]:

“Computer Science has something more to offer to
the other sciences than the computer. In particu-
lar, in the mathematical and logical understanding
of fundamental transdisciplinary scientific concepts
such as interaction, concurrency and causality, syn-
chrony and asynchrony, compositional modeling
and reasoning, open versus closed systems, qual-

itative versus quantitative reasoning, operational
methodologies, continuous versus discrete, hybrid
systems and more. Computer Science is far ahead
of many other sciences, due in part to the challenges
arising from the amazing rapidity of the technol-
ogy change and development it is constantly being
confronted with. One could claim that computer sci-
entists (maybe without realizing it) constitute an
avant-garde for the sciences in terms of providing
fresh paradigms and methods.”

All the above observations made by researchers
with different perspectives on computing provide ev-
idence supporting the commonly observed emergence
of computational turn in its different manifestations –
from technological to cultural, artistic, cognitive, con-
ceptual, and modeling aspects. As Edsger Dijkstra
famously said, “Computing is no more about com-
puters than astronomy is about telescopes” (as quoted
in [32.7]) – that is to say that computers (as we know
them and develop them) are only the tools for comput-
ing. Understanding of computing requires understand-
ing of computational processes and their mechanisms.

Generative computational methods, according to
StephenWolfram, enable the development of a new kind
of science [32.8], and a new way of thinking that Jean-
nette M. Wing termed computational thinking [32.9].

32.2 Models of Computation

Interestingly, in spite of the broadly shared perception
of the current computational turn [32.10], it is still an
open question what exactly is computing.

English word computing [32.4] in German, French,
and Italian languages translates into the respective
terms informatik, informatique, and informatica (that
would correspond to informatics in English). However,
there is a slight difference in the emphasis. While the
English term computing has an empirical character, the
analogous German, French, and Italian term informat-
ics has an abstract nature [32.11]. The question of
nomenclature, informatics versus computing, can also
be seen in the light of the dichotomy information ver-
sus computation or structure versus process [32.1].

Information as the central idea of informatics/
computing is both scientifically and sociologically in-
dicative. Scientifically, it suggests a view of informatics
as a generalization of information theory that is con-
cerned not only with the transmission/communication
of information but also with its transformation and
interpretation. Sociologically, similar to the industrial
revolution, which was concerned with the utilizing
of matter/energy, we have the information revolution,

which is concerned with the utilizing of information/
computation [32.11].

Information is a field of intense theory building,
with diverse perspectives and levels of description, with
various goals addressed. In the work of Mark Burgin,
the focus of theory of information is on its fundamen-
tality, diversity, and unification with specific chapters
dedicated to general, statistical, semantic, algorithmic,
dynamics, and pragmatic information theory [32.12].
The Handbook of Philosophy of Information [32.13]
addresses major technical approaches, transformation
and use of information in the sciences and humanities.
Information logic and dynamics is a separate topic ad-
dressed in the work of Johan van Benthem and Patrick
Allo [32.14–17]. No wonder that no single definition
can embrace the complexity of the knowledge about in-
formation.

Equivalent situation can be found in the studies of
computation and the subject of computing [32.4, 5, 18,
19]. Among variety of definitions of computing, the fol-
lowing example is indicative of instrumental approach
as one describes the processes performed by computing
machinery: Computing is [32.20]
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“[t]he process of utilizing computer technology to
complete a task. Computing may involve computer
hardware and/or software, but must involve some
form of a computer system.”

It is general enough, as a description of computation
process but leaves open the question of what actually is
computer. It implicitly seems to assume computer to be
a technological device. However in recent years a new
field of computing is being developed labeled as Nat-
ural Computing [32.21] or Computing Nature [32.22,
23], where processes in nature are understood as being
some kind of (intrinsic, physical) computation.

32.2.1 Turing Model of Computation
and Its Scope

The first classical model of computation that also served
as a definition of computation is the Turing machine
model, which takes computation to be computation of
mathematical function. Logical Computing Machine
(Turing’s own expression for Turing machines) was an
attempt to give a mathematically precise definition of
an algorithm that is a mechanical procedure (followed
by a human using pencil and paper, and given unlimited
resources). The Church–Turing thesis says that a func-
tion on the natural numbers is computable [32.24, 25] if
and only if it is describable by a Turing machine model.

Besides the Turing machine model, several other
models of computation were defined such as lambda
calculus, cellular automata, register machines, and sub-
stitution systems, which have been shown to be equiv-
alent to using general recursive functions. The Church–
Turing thesis has long served as a definition for compu-
tation. There has never been a proof, but the evidence
for its validity comes from the evident practical equiva-
lence of mentioned computational models.

Georg Kampis claims that the Church–Turing the-
sis applies only to simple systems [32.26]. According
to Kampis, complex systems such as found in biol-
ogy must be modeled as self-referential, self-organizing
structures called component systems whose behavior
goes far beyond the simple Turing machine model as
a more general model of computation [32.26, p. 223]:

“a component system is a computer which, when
executing its operations (software) builds a new
hardware [. . . ] [W]e have a computer that re-wires
itself in a hardware-software interplay: the hard-
ware defines the software and the software defines
new hardware. Then the circle starts again.”

I would add an obvious remark. The Turing machine
is supposed to be given from the outset – its logic, its
(unlimited) physical resources, and the meanings as-
cribed to its actions. The Turing Machine essentially

presupposes a human as a part of a system – the human
is the one who poses the questions, provides resources,
sets up the rules and interprets the answers.

However, today the dramatically increased interac-
tivity and connectivity of computational devices have
changed our understanding of the nature of comput-
ing [32.27]. Computing models have been successively
extended from the initial abstract symbol manipulating
models of stand-alone, discrete sequential machines, to
the models of physical computing in the natural world,
which are in general concurrent, asynchronous pro-
cesses. For the first time it is possible to model living
systems, their informational structures, and dynamics
on both symbolic and subsymbolic information process-
ing levels [32.28]. Currently the computationmodels are
being developed to describe embedded, interactive, and
networked computing systems [32.29] with an ambition
to encompass present-day distributed computational ar-
chitectures with their concurrent time behavior.

Ever since the time of Turing, the definition of com-
putation is the subject of a debate. The special issue of
the journal Minds and Machines (1994, 4, 4) was de-
voted to the question What is Computation? The most
general is the view of computation as information pro-
cessing, found in number of mathematical accounts
of computing; see [32.30] for exposition. Understand-
ing of computation as information processing is also
widespread in biology, neuroscience, cognitive science,
and number of other fields. An illuminating case is pre-
sented by David Baltimore in How biology became an
information science [32.31]. Barry Cooper and Jan van
Leeuwen Turing centenary volume [32.32] illustrates
the current state of the art regarding Turing model and
its scope.

In general, for a process to qualify as computation,
a mechanism that ensures definability of its behavior
must exist, such as algorithm, network topology, physi-
cal process, or similar [32.11].

The characterization of computing can be made
in several dimensions with orthogonal types: digital/
analog, symbolic/subsymbolic, interactive/batch, and
sequential/parallel. Nowadays digital computers are
used to simulate all sorts of natural processes, includ-
ing those that in physics are understood as continuous.
However, it is important to distinguish between the
mechanism and model of computation [32.33].

32.2.2 Computation as Information
Processing

Luciano Floridi [32.34] presents the list of the five
most interesting areas of research for the field of in-
formation (and computation) philosophy, containing 18
fundamental questions. Information dynamics is of spe-
cial interest, as information processing (computation).
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Information and computation are two complemen-
tary ideas in a similar way to continuum and a discrete
set. In its turn continuum – discrete set dichotomy may
be seen in a variety of disguises such as time – space;
wave – particle; geometry – arithmetic; interaction – al-
gorithm; computation – information. Two elements in
each pair presuppose each other, and are inseparably
related to each other so that Dodig-Crnkovic introduces
the concept of info-computation which emphasizes this
dual character of information and computation as its
dynamics [32.1, 35, 36]. The field of Philosophy of In-
formation is so closely interconnected with the Philoso-
phy of Computation that it would be appropriate to call
it Philosophy of Information and Computation, having
in mind the dual character of information-computation.
Burgin puts it in the following way [32.30]:

“It is necessary to remark that there is an ongo-
ing synthesis of computation and communication
into a unified process of information processing.
Practical and theoretical advances are aimed at this
synthesis and also use it as a tool for further devel-
opment. Thus, we use the word computation in the
sense of information processing as a whole. Better
theoretical understanding of computers, networks,
and other information processing systems will al-
low us to develop such systems to a higher level.”

The traditional mathematical theory of computation
is the theory of algorithms. Ideal, theoretical comput-
ers are mathematical objects and they are equivalent
to algorithms, or abstract automata (Turing machines),
or effective procedures, or recursive functions, or for-
mal languages. New envisaged future computers are
information-processing devices. That is what makes
the difference. Syntactic mechanical symbol manipu-
lation is replaced by information (both syntactic and
semantic) processing. Compared to new computing
paradigms, Turing machines form the proper subset of
the set of information-processing devices, in much the
same way as Newton’s theory of gravitation is a special
case of Einstein’s theory, or the Euclidean geometry is
a limit case of non-Euclidean geometries.

According to [32.30] there are three distinct com-
ponents of information-processing systems: hardware
(physical devices), software (programs that regulate its
functioning), and infoware that represents information
processed by the system. Infoware is a shell built around
the software–hardware core, which was the traditional
domain of automata and algorithm theory. Communi-
cation of information and knowledge takes place on the
level of infoware.

Peter J. Denning comments on the relationship be-
tween computation and information with respect to the

classical Turing idea that computation is equivalent to
algorithm execution [32.4]:

“First, some information processes are natural. Sec-
ond, we do not know whether all natural infor-
mation processes are produced by algorithms. The
second statement challenges the traditional view
that algorithms (and programming) are at the heart
of computing. Information processes may be more
fundamental than algorithms.”

Floridi’s philosophy of information, developed
as [32.37]

“a new philosophical discipline, concerned with a)
the critical investigation of the conceptual nature
and basic principles of information, including its
dynamics (especially computation and flow), uti-
lization and sciences and b) the elaboration and
application of information-theoretic and computa-
tional methodologies to philosophical problems.”

can be seen as parallel to the philosophy of computa-
tion as developed by Cantwell Smith in his Origins of
Objects [32.18].

To better represent information processing in bi-
ological systems, computational modeling is applied
with computation taken to be distributed, massively
concurrent, heterogeneous, and asynchronous. Dodig-
Crnkovic proposes to adopt Hewitt et al.’s actor model
of computation [32.38, 39]. In this model, computa-
tion is the process of message passing between actors
(agents) in an interacting network. Hewitt provides the
following description [32.40, p. 161]:

“In the Actor Model, computation is conceived as
distributed in space, where computational devices
communicate asynchronously and the entire com-
putation is not in any well-defined state. (An Actor
can have information about other Actors that it has
received in a message about what it was like when
the message was sent.) Turing’s Model is a special
case of the Actor Model.”

Hewitt’s computational systems consist of compu-
tational agents – informational structures capable of
acting on their own behalf. Unlike logical model of Tur-
ing machine, Hewitt’s model of computation is inspired
by physics [32.23].

When defining computation as information process-
ing in a network of agents, those networks can consist of
molecules or cells like bacteria or neurons, thus consti-
tuting networks of networks on the hierarchy of scales of
informational structures with computational dynamics.

As we base the model of computation on the con-
cept of information, it is in place to analyze the rela-
tionships between the two in more detail.
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32.3 Computation Versus Information

In this section, we detail the concept of computation
as information processing to later on make explicit its
connections to cognition in the following sections.

Sometimes the current lack of the consensus about
the definition of information is termed scandal of in-
formation. At the same time, we can talk even about
the corresponding scandal of computation, that is, the
current lack of consensus about the concept of compu-
tation. Denning describes historical development of the
concept of computation [32.4] as it appears in different
contexts and various communities of practice.

However, this situation is not as unique as it may
seem. There is no simple commonly accepted definition
of life, and yet biologists study it and make constant
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progress in understanding its different aspects, forms,
and processes. Actually no such unique definition of
many among central concepts of sciences exists, and yet
this situation is not experienced as a scandal. A fresh ex-
ample is dark energy, which together with dark matter
constitutes 95:1% of the content of the universe. We do
not know what they actually are.

Instead of understanding a concept as equivalent to
a (linear) string of symbols that constitute its definition,
we can rather represent it as a network of relationships
such as is kind of, is a member of, is a part of, is a sub-
stance of, is similar to, pertains to, causes, etc., which
connect the concept with other concepts that are con-
nected with still further concepts.



Computational Aspects of Model-Based Reasoning 32.3 Computation Versus Information 701
Part

G
|32.3

This constitutes family resemblance (Familienähn-
lichkeit) of Ludwig Wittgenstein [32.42, §66] where

“There is no reason to look, as we have done tradi-
tionally – and dogmatically – for one, essential core
in which the meaning of a word is located and which
is, therefore, common to all uses of that word. We
should, instead, travel with the word’s uses through
‘a complicated network of similarities overlapping
and criss-crossing (PI §66)’”

Wittgenstein explains in [32.42, §67]:

“Why do we call something a number? Well, per-
haps because it has a direct relationship with several
things that have hitherto been called number; and
this can be said to give it an indirect relationship to
other things we call the same name. And we extend
our concept of number as in spinning a thread we
twist fibre on fibre. And the strength of the thread
does not reside in the fact that someone fibre runs
through its whole length, but in the overlapping of
many fibres.”

As a result, boundaries dissolve [32.42, §68]:

“What still counts as a game and what no longer
does? Can you give the boundary? No.”
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Figures 32.1 and 32.2 illustrate how visualizations
of the concepts information and computation may look
like and where Wittgenstein’s idea of family resem-
blance becomes apparent.

Given that information/computation are common
ideas spanning fields from physics, chemistry, biol-
ogy, and theories of mind, to ecologies and social
systems, the bridging over such a large range is
achieved by a network of inter-related concepts (fam-
ily of concepts) that enable us to traverse from field
to field, the main point being keeping a common
thread. That means that the concept is not a reduc-
tionist one, but networked rhizomatic idea in the sense
of [32.43].

World today is seen as governed and controlled
by natural laws that in-materio execute programs un-
like the mechanistic world governed by fixed and
unchangeable laws expressed by equations of New-
tonian physics. Wolfram is arguing that “informa-
tion processes underlie every natural process in the
universe” [32.8].

The important difference is that while equations
operate on data, programming languages can oper-
ate even on higher level data structures and even
on physical objects such as in case of cyber-physical
systems.
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32.4 The Difference Between Mathematical and Computational
(Executable) Models

The belief in mathematical/geometrical essence of the
world can be traced back to Plato and the Pythagore-
ans, which later on reappears with Galileo, in his
1632 Dialogue Concerning the Two Chief World Sys-
tems, where he argues that the book of nature is
written in language of mathematics. Plato’s ideal of
eternal, unchangeable forms can be found in mathe-
matics to this day. Even though mathematical formulas
can be used to compute time-dependent processes,
equations themselves are symbolic structures, persis-
tent and immovable. Time dependency comes from
human performing computation, actively using static
structures of mathematical algorithms to trace time be-
haviors of real-world systems. Platonic ideal forms,
however remote from the physical realizations and
questions of finite material resources, were long con-
sidered to represent the true nature of the world, while
changes were supposed to be something ephemeral,
uninteresting, and too earthly for a mathematician or
a scientist to bother about. Up to quite recently this
detachment from the real-time aspects of the world
was commonly taken for granted and justified. The
change happened with computingmachinery getting in-
tegrated with dynamically changing physical objects,
such as in embedded systems technologies or pro-
cess control, where real-time computation processes
must match real-time behaviors of the physical en-
vironment. This situation radicalized even more with
the mobile distributed information and communica-
tion technologies for which the system dynamics is the
most prominent characteristics. Rapidly, eternal forms
are becoming something remote and less noted. Ev-
erything is in the process of change, communication,
timely response, and resource optimization, as this new
world of embodied and embedded computation is phys-
ical in nature and thus substrate-dependent. The whole
field of cyber-physical systems is emerging, at differ-
ent levels of scale, from nano to macroscopic. In this
decisive step from idealized abstract forms toward con-
crete material processes, computation has come close
to the messy and complex world of concurrent and
context-dependent processes in living beings [32.27].
One important shift is also in the role of an ob-
server [32.4]:

“Computational expressions are not constrained to
be outside the systems they represent. The pos-
sibility of self-reference makes for very powerful
computational schemes based on recursive designs
and executions and also for very powerful limita-
tions on computing, such as the noncomputability

of halting problems. Self-reference is common in
natural information processes; the cell, for example,
contains its own blueprint.”

One important aspect of modeling is the direction of
their generation – bottom up or top down. Mathemati-
cal models are typically top-down while computational
models are frequently bottom-up or generative, de-
scribed by Wolfram as a new kind of science [32.8].
Fields modeling living organisms like synthetic biol-
ogy present challenge of bridging the gap between the
two, enabling the circular motion from bottom up to top
down and back.

Barry S. Cooper addresses this difference between
mathematical and computational approaches [32.44] in
his article detecting the mathematician’s bias and the
current return to embodied (physical, natural) computa-
tion.

Unlike pure mathematics, computing can provide
modeling tools for biomolecular systems such the ab-
straction of molecule as computational agent in which
a system of interacting molecules is modeled as a sys-
tem of interacting computational agents [32.45]. Petri
nets, State charts, and the Pi-calculus, developed for
systems of interacting computations, can be success-
fully used for modeling of biomolecular systems, such
as signaling, regulatory, and metabolic pathways and
even multicellular processes. Processes, the basic inter-
acting computational entities of these languages, have
an internal state and interaction capabilities. Process
behavior is governed by reaction rules specifying the
response to an input message based on its content
and the state of the process. The response can include
state change, a change in interaction capabilities, and/or
sending messages. Complex entities are described hier-
archically [32.45].

Computer science distinguishes between two lev-
els of description of a system: specification (what the
system does) and implementation (how the system is
built). Biological function of a biomolecular system
emerges thus from the semantic equivalence between
the low-level and high-level computational descrip-
tions [32.45].

The difference between mathematical and com-
putational models can be summarized as distinction
between denotational and operational semantics models
given by Fisher andHenzinger in the following [32.46]:

Denotational (mathematical) models present set
of equations showing relationships between different
quantities and their time changes. They are approxi-
mated numerically.
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Operational semantics models are based on algo-
rithms, which execution (computation) simulates the
behavior of the system in time.

The two semantics have different roles – while ex-

ecutable algorithms connect directly to the physical
process and can be used in interactions with them, de-
notational semantics is descriptive and can be used to
reason about systems.

32.5 Computation in the Wild

32.5.1 Physical Computation – Computing
Nature as Info-Computation

Some processes in nature that show high regularity and
symmetry have fascinated people for millennia – in-
tricate forms of crystals, shells, flowers, patterns on
water or sand, etc. Those have been studied exten-
sively in the literature [32.8, 47–50] as they by their
regularities invite algorithmic models. Wolfram, for ex-
ample, emphasizes the importance of simple generative
computational models that in number of iterative steps
produce intricate forms that resemble ones found in na-
ture, such as in shells or plants. Forms and processes
found in nature in recent years inspired the develop-
ment of a field of natural computing. In the Handbook
of Natural Computing [32.21], the following types of
natural computation are presented: amorphous comput-
ing; molecular computation; RNA-guided DNA assem-
bly; synthetic biology; evolutionary computation; DNA
nanomachines; artificial immune systems; evolution-
ary computation; computational swarm intelligence;
quantum computing; genetic programming; membrane
computing; and neural networks.

According to [32.51]:

“Natural computing is the field of research that
investigates models and computational techniques
inspired by nature and, dually, attempts to under-
stand the world around us in terms of information
processing. [. . . ] There is information processing in
nature, and the natural sciences are already adapting
by incorporating tools and concepts from computer
science at a rapid pace. Conversely, a closer look
at nature from the point of view of information
processing can and will change what we mean by
computation.”

James Crutchfield et al. [32.52] make a distinction
between designed computation (that is what computer
machinery performs) from intrinsic computation (that
is all processes in nature that are inherently compu-
tational and that are used in computing machinery to
compute on the basic hardware level). In that way, they
are able to argue that information processing in dy-
namical systems as well is computational in nature –

a claim that earlier was strongly denied. Nature thus
presents an implementation substrate for computation.
Similar claim is presented in [32.53] that argues that
all dynamics of information present some computation,
on different levels of description. Nir Fresco [32.54]
provides an argument that the explanatory frameworks
of computationalism, connectionism, and dynamicism,
contrary to frequent claims, are not mutually exclu-
sive but rather mutually complementary approaches,
suggesting the way for their integration under the as-
sumption of physical computation.

One way to characterize physical computation is
via morphology – defining computational processes as
the dynamic of morphological structure. Turing made
pioneering contributions in the field of morphogene-
sis [32.55] even though he did not think of a process
itself as computation. Later on models of robotics sys-
tems are made using morphology of a robot body to
perform computation in materio in that way providing
solutions to passive walking robots or artificial mus-
cles [32.56].

Helmut Hauser,Rudolf M. Füchslin and Rolf Pfeifer
in their Opinions and Outlooks on Morphological Com-
putation point out [32.57]:

“Morphological Computation is based on the ob-
servation that biological systems seem to carry out
relevant computationswith their morphology (phys-
ical body) in order to successfully interact with
their environments. This can be observed in a whole
range of systems and at many different scales. It has
been studied in animals – e.g., while running, the
functionality of coping with impact and slight un-
evenness in the ground is delivered by the shape of
the legs and the damped elasticity of the muscle-
tendon system – and plants, but it has also been
observed at the cellular and even at the molecular
level – as seen, for example, in spontaneous self-
assembly.”

As can be observed in nature, living systems from
the simplest unicellular to the most complex multi-
cellular organisms are heterogeneous, distributed, mas-
sively concurrent, and largely asynchronous (in spite
of certain common regularities like circadian rhythm
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with oscillation of about 24 hours, which is found
in animals, plants, fungi, and bacteria). This kind of
systems are hardest to cope with in conventional com-
puting [32.58]. The approach to modeling such sys-
tems suggested by Luca Cardelli is as “collectives of
interacting stochastic automata, with each automaton
representing a molecule that undergoes state transi-
tions” [32.59]. Aviv Regev and Ehud Shapiro suggest
that we should use lessons learned from modeling se-
quence and structure in biomolecular systems, which
already have good computational models [32.45]:

“Sequence and structure research use computers
and computerized databases to share, compare, crit-
icize and correct scientific knowledge, to reach
a consensus quickly and effectively. Why can’t
the study of biomolecular systems make a similar
computational leap? Both sequence and structure
research have adopted good abstractions: DNA-as-
string (a mathematical string is a finite sequence
of symbols) and protein-as-three-dimensional-
labeled-graph, respectively. Biomolecular systems
research has yet to find a similarly successful one.”

32.5.2 New Computationalism.
Nonsymbolic versus Symbolic
Computation

Greg Chaitin argued in [32.60], in the tradition from
Leibniz to � number, epistemology can be seen as
information theory. Reality for an agent is defined by in-
formation and its processes [32.61] where information
processes for a cognizing agent proceed from deepest
levels of cell-cognition, self-organized and with emer-
gent properties from subsymbolic signal processing up
to symbolic level of human (natural and formal) lan-
guages.

As presented in [32.23, pp. 1–22], it is often argued
that computationalism is the opposite of connectionism
and that connectionist networks and dynamic systems
are not computational. This would imply that human
mind, as network of processes resulting from the ac-
tivity of human brain, cannot be adequately modeled
computationally. However, if we define computation in
a sense of natural computation, instead of symbol ma-
nipulation as in the Turing machine, it is obvious that
processes in the physical substrate of the human brain
are natural computation and consequently models of
connectionist networks and dynamical systems do cor-
respond to computational processes.

One of the central and long-standing controversies
when it comes to understanding of computation in bio-
logical (cognitive) systems is the relationship between
symbolic and subsymbolic computation, where symbol

manipulation is the way of classical Turing computa-
tion, while subsymbolic processes such as going on
in dynamic systems are frequently not even consid-
ered as computing. Andy Clark argues convincingly
for the necessity of both kinds of processes, subsym-
bolic and symbolic for human-level cognition [32.62].
Information is relative to a cognizing agent and what
is information, symbolic, subsymbolic, continuous, or
discrete is a question of level of description or agency.
From the everyday experience of a human agent, water
and air are continua. However, on the molecular level
(thus from the perspective of molecular agency) water
and air consist of discrete objects – molecules. Atomic
nucleus is seen as a continuum in Bohr’s liquid drop
model, while on the level of constituent nucleons, it is
a discrete system. On the level of nucleons, we can see
continuum but on the deeper level of their constituent
quarks as agents, there is a discrete behavior. In gen-
eral, what an agent registers as continuous or discrete
depends on both the system one examines and the type
of agent – its structures and ways of interaction. In the
dynamic systems models, [32.63]:

“[T]he general idea is that cognition should be
characterized as a continual coupling among brain,
body, and environment that unfolds in real time, as
opposed to the discrete time steps of digital com-
putation. The emphasis of the dynamical approach
is on how the brain/body/environment system as
a whole changes in real time, and dynamics is
proposed as the best framework for capturing that
change. This is said to contrast with computation’s
focus on internal structure i. e., its concern with the
static organization of information processing and
representational structure in a cognitive system.”

Computational modeling of cognitive processes re-
quires computing tools that contain not only Turing
Machine model but also physical computation on the
level of biological substrate. That is also the claim made
by Matthias Scheutz in the Epilogue of the book Com-
putationalism: New Directions [32.64, p. 176] where he
notices that:

“Today it seems clear, for example, that classical
notions of computation alone cannot serve as foun-
dations for a viable theory of the mind, especially
in light of the real-world, real-time, embedded, em-
bodied, situated, and interactive nature of minds,
although they may well be adequate for a lim-
ited subset of mental processes (e.g., processes
that participate in solving mathematical problems).
Reservations about the classical conception of com-
putation, however, do not automatically transfer and
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apply to real-world computing systems. This fact
is often ignored by opponents of computationalism,
who construe the underlying notion of computation
as that of Turing-machine computation.”

Classical computationalism was the view that
the classical theory of computation (Turing-machine
model, universal, and disembodied) might be enough to
explain cognitive phenomena. New computationalism
(natural computationalism) emphasizes that embodi-
ment is essential and thus physical computation, hence
natural computationalism. The view of Scheutz is sup-
ported by Gerard O’Brien [32.65] who is arguing that

“cognitive processes, are not governed by excep-
tionless, representation-level rules; they are instead
the work of defeasible cognitive tendencies sub-
served by the non-linear dynamics of the brains
neural networks.”

Dynamical characterization of the brain is consis-
tent with the analog interpretation of connectionism.
But dynamical systems theory is typically not consid-
ered to be a computational framework. O’Brien and
Opie [32.66] thus search for an answer to the question
how connectionist networks compute, and come with
the following characterization:

“Connectionismwas first considered as the opposed
to the classical computational theory of mind. Yet,
it is still considered by many that a satisfactory ac-
count of how connectionist networks compute is
lacking. In recent years networks were much in fo-
cus and agent models as well so the number of those
who cannot imagine computational networks has
rapidly decreased.”

As in classical computationalism only symbolic
computation was taken into account, it is important to
understand the connection between symbolic and sub-
symbolic information processing [32.67, p. 119]:

“Symbolic simulation is thus a two-stage affair: first
the mapping of inference structure of the theory
onto hardware states which defines symbolic com-
putation; second, the mapping of inference structure
of the theory onto hardware states which (under
appropriate conditions) qualifies the processing as

a symbolic simulation. Analog simulation, in con-
trast, is defined by a single mapping from causal re-
lations among elements of the simulation to causal
relations among elements of the simulated phe-
nomenon.”

Both symbolic and subsymbolic (analog) simula-
tions depend on causal/analog/physical and symbolic
type of computation on some level but in the case of
symbolic computation it is the symbolic level where
information processing is observed. Similarly, even
though in the analog model symbolic representation ex-
ists at some high level of abstraction, it is the physical
agency of the substrate and its causal structure that de-
fine computation (simulation).

Gianfranco Basti [32.68] suggests how to

“integrate in one only formalism the physical (nat-
ural) realm, with the logical-mathematical (com-
putation), studying their relationships. That is, the
passage from the realm of the causal necessity (nat-
ural) of the physical processes, to the realm of
the logical necessity (computational), and eventu-
ally representing them either in a sub-symbolic, or
in a symbolic form. This foundational task can be
performed, by the discipline of theoretical formal
ontology.”

Walter Jackson Freeman offers an accurate
characterization of the relationship between phys-
ical/subsymbolic and logical/symbolic level in the
following passage [32.69]:

“The symbols are outside the brain. Inside the
brains, the construction is effected by spatiotem-
poral patterns of neural activity that are opera-
tors, not symbols. The operations include forma-
tion of sequences of neural activity patterns that
we observe by their electrical signs. [. . . ] Neural
operators implement non-symbolic communication
of internal states by all mammals, including hu-
mans, through intentional actions. [. . . ] I propose
that symbol-making operators evolved from neural
mechanisms of intentional action by modification of
non-symbolic operators.”

Subsequently, brain uses internal subsymbolic com-
puting to manipulate relevant external objects/symbols.
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32.6 Cognition: Knowledge Generation by Computation of New
Information

In the framework of Humberto Maturana and Fran-
cisco Varela, cognition is capacity of all living beings,
no matter how small or simple [32.70]. It is charac-
teristics of organisms that increase in complexity from
the simplest ones such as bacteria, to the most com-
plex forms of cognition found in humans. Maturana
and Varela’s view is gaining substantial support through
the study of cognitive capacities of bacteria [32.71–79]
and others. Social cognition has been studied in bacte-
rial colonies, swarms, and films. Lorenzo Magnani and
Emanuele Bardone summarize current findings in the
following [32.80]:

“[A]ll organisms, including bacteria, are able to per-
form elementary cognitive functions because they
sense the environment and process internal informa-
tion for ‘thriving on latent information embedded in
the complexity of their environment’ (Ben Jacob,
Shapira, and Tauber, 2006) p. 496.”

In light of the contemporary research results, the
earlier completely dominating, and to this day still
widespread view of cognition as an exclusively hu-
man capacity occurs as a gross simplification. The
more we learn about the ways living organisms cope
with their environments, the more we understand that
even the simplest organisms exhibit cognitive behav-
iors, that is, adaptive information processing increasing
their probability of survival. According to James Alan
Shapiro [32.78]:

“bacteria utilize sophisticated mechanisms for inter-
cellular communication and even have the ability to
commandeer the basic cell biology of higher plants
and animals to meet their own needs.”

As an example of the level at which the subtleties
of bacterial cognitive behavior is known, we refer to
Stephan Schauder and Bonni L. Bassler who reveal the
specifics of bacterial communication and quorum sens-
ing both within and between species of bacteria [32.75]:

“Bacteria communicate with one another using
chemical signaling molecules as words. Specifi-
cally, they release, detect, and respond to the ac-
cumulation of these molecules, which are called
autoinducers. Detection of autoinducers allows bac-
teria to distinguish between low and high cell pop-
ulation density, and to control gene expression in
response to changes in cell number. This process,
termed quorum sensing, allows a population of bac-
teria to coordinately control the gene expression of
the entire community.”

Insights into the cognitive processes of bacteria
have very far-reaching consequences for our under-
standing of life and cognition [32.78]:

“[T]he recognition of sophisticated information
processing capacities in prokaryotic cells represents
another step away from the anthropocentric view of
the universe that dominated pre-scientific thinking.
Not only are we no longer at the physical center of
the universe; our status as the only sentient beings
on the planet is dissolving as we learn more about
how smart even the smallest living cells can be.”

Regarding information processing (computation)
in bacteria, [32.73] emphasizes that bacterial infor-
mation processing differs from the Turing machine
model of computation. Unlike the Turing machine,
in a bacterial colony, in response to an input (sig-
nals or molecules from the environment), hardware
(physical system, bacteria) changes through informa-
tion processing resulting in a new configuration/form
plus possibly some output in signals/molecules. Bacte-
ria typically exchange molecules as information, and it
might also be exchange of genetic material. This type
of computation is example of Kampis’ component sys-
tems [32.26] and presents physical computation [32.54,
81–83]. Yet another take on physical processes behind
living agency and its evolution is elaborated by Ter-
rence Deacon [32.84]. Even though Deacon himself is
not a computationalist, models he develops can be un-
derstood as mechanistic and interpreted as computation.
For [32.85], bacterial cognition is a case of interactive
biological (hyper)computation, that is, computation be-
yond Turing machine model.

According to [32.86] dynamical systems [32.87],
analog neural networks [32.88] and oracle Turing ma-
chines [32.89] have in common that they introduce
elements that are not Turing computable, that is, they
introduce hyper-computation. Bournez and Cosnard
compare capabilities of discrete versus dynamical sys-
tems and conclude that “many dynamical systems have
intrinsically super-Turing capabilities.” Models of hy-
percomputation or super-Turing computation models of
biological systems are studied in [32.90].

Advancing computational models of cognition and
bridging the gap between bacterial and human cog-
nition calls for studies of cognition in other living
organisms. Even though human cognition is usually su-
perior to animal and plant cognition, it is not always the
case. For example, many animals have superior senses
like vision, hearing, far better motoric skills, and some
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of them like chimpanzees can beat humans in certain
memory tasks [32.91]

“Young chimpanzees have an extraordinary work-
ing memory capability for numerical recollection –
better even than that of human adults tested in the
same apparatus following the same procedure.”

Understanding cognition in other organisms has
extraordinary value in understanding mechanisms of
cognition and their evolution. For example study of
cognition in fish can help us find ecological factors that
affect the evolution of particular cognitive abilities. One
can study the relationship between size of specific brain
areas and cognitive abilities and the stages in the de-
velopment of decision abilities [32.92]. Animal studies
can be used for tracing evolution of cognitive capacities,
and quantitatively testing possible correlations between
certain cognitive abilities and life history, morphology,
or socioecological variables, measure if phylogenetic
similarity corresponds to the cognitive skills through-
out species, etc. [32.93]. However, traditional and even
to this day predominant view is that only humans pos-
sess cognition. As a consequence, cognitive science
developed vast majority of its models and theories ex-
clusively about human cognition.

32.6.1 Distributed Cognition
and Model-Based Reasoning

Even though animals (including birds) use tools for
different purposes, human intelligence is defined as
“faculty to create artificial objects, in particular tools to
make tools” [32.94]. In the embodied interaction with
the environment humans are “engaged in a process of
cognitive niche construction” as they delegate certain
cognitive functions to the environment [32.80]:

“In this sense, we argue that a cognitive niche
emerges from a network of continuous interplays
between individuals and the environment, in which
people alter and modify the environment by mimet-
ically externalizing fleeting thoughts, private ideas,
etc., into external supports. [. . . ] Artifactual cogni-
tive objects and devices extend, modify, or substi-
tute natural affordances actively providing humans
and many animals with new opportunities for ac-
tion.”

Underlying computational cognitive mechanisms
enable the process of model construction. If we take
knowledge to include not only the propositional knowl-
edge (knowledge that) but also nonpropositional knowl-
edge (knowledge how), we can say that bacteria know
how to find food and avoid dangers in the environment.

According to [32.95]:

“Knowledge generation can be naturalized by
adopting computational model of cognition and
evolutionary approach. In this framework knowl-
edge is seen as a result of the structuring of input
data (data ! information ! knowledge) by an
interactive computational process going on in the
agent during the adaptive interplay with the en-
vironment, which clearly presents developmental
advantage by increasing agent’s ability to cope with
the situation dynamics.”

Scientific knowledge is obviously human knowl-
edge and it includes both propositional (typically
theoretical) and nonpropositional (typically practical)
knowledge. Ronald N. Giere suggests that models in
science are best understood “as being components of
distributed cognitive systems,” where the process of sci-
entific cognition “is distributed between a person and an
external representation” [32.96].

The idea of distributed cognition can be traced back
toDavid Rumelhart and James McClelland [32.97], and
it has been developed during the years in a number of
prominent works such as [32.98, 99, 99–102].

The related idea termed extended mind has
been proposed by Andy Clark and David Chalmers
in [32.103] meaning that humans use tools and other
suitable objects in the environment to perform cogni-
tive tasks. Enactivism is a connected movement in the
philosophy of mind whose proponents argue that we
should understand mental abilities as essentially related
to the extended body and to action [32.104].

In the study of the capabilities of networks of simple
processors, Rumelhart and McClelland [32.97] found
that they are good at recognizing patterns in the input.
The generalization to human brain is that it recognizes
patterns through the activation of changes in the states
of neurons induced by sensory inputs. Rumelhart and
McClelland suggest that “humans do the kind of cog-
nitive processing required for these linear activities by
creating and manipulating external representations.”

In a distributed cognitive system information pro-
cessing happens through parallel distributed processing
(PDP). In this view “the regular or law-like behavior
of a complex system is the consequence of interac-
tions among constituent elements” [32.105]. The main
ideas of PDP models – such as that cognitive func-
tions arise from neural mechanisms, representations are
distributed, cognitive development is driven by learn-
ing, cognitive structure is quasi-regular, behavior is
sensitive to multiple ordered constraints, processing is
ordered and continuous – are now standard assumptions
in many research domains.
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As a consequence of distributed cognition language
is seen as a means of socially distributed cognition that
supports human communication [32.106]:

“There is no language of thought. Rather, thinking
in language is a manifestation of a pattern matching
brain trained on external linguistic structures (see
also [32.107]).”

This distributed view of language implies that “cog-
nition is not only embodied, but also embedded in a so-
ciety and in a historically developed culture” [32.101].

Even here, as in the case of language games we see
social aspect of cognitive artifacts. In the same way
as a concept is a node in a network of related con-
cepts, connected with several types of relationships,
distributed cognition in general is a network that in prin-
ciple can extend indefinitely. What we consider to be
relevant depends on the agent and the context.

The computational model of cognition is closely re-
lated to the idea of agency. An agent in this context
is defined as an entity capable of acting on its own
behalf. Agent models are especially suitable for model-
ing of distributed cognitive systems and they are used
for study of adaptive behavior and learning. Among
new trends in modeling there are generative agent-
based models, where complexity of a system results
from the time development of the interactive behavior
of simple constitutive parts (such as swarm). Espe-
cially successful are new network models of complex
systems [32.108] where the focus is on the properties
of various network structures in an emerging network
science. Commenting on the current development of
computing, [32.109] declare:

“Multiplicities, flux, materialities, heterogeneities,
and co-construction are features that are becoming
increasingly evident within new configurations of
computing.”

Those features are particularly suitable in modeling
of living (cognitive) systems.

32.6.2 Computational Aspects
of Model-Based Reasoning
in Science

Nancy Nersessian [32.110] searches for “the cogni-
tive basis of model-based reasoning in science,” espe-
cially for model-based creative reasoning that results
in “representational change across the sciences,” thus
investigating the central issue of creativity in science
asking “how are genuinely novel scientific representa-
tions created, given that their construction must begin
with existing representations?”

Nersessian addresses methodological issues in sci-
entific cognition, and the nature of model-based rea-
soning in science in order to give an account of their
cognitive basis and the role they play in representational
change. She introduced the term model-based reason-
ing to denote the construction and manipulation of
representations, both sentential, and those related to ex-
ternal mediators [32.111, 112]. Model-based reasoning
is applied to among others thought experiments, visual
representations, and in analogical reasoning [32.113,
114].

As Giere [32.115] emphasizes, models are not only
tools but they also play a central role in the con-
struction of knowledge. “Models are important, not
as expressions of belief, but as vehicles for exploring
the implications of ideas (McClelland 2010)” [32.105].
One of the ways of acquiring knowledge besides de-
duction and induction is abduction that leads to knowl-
edge discovery. Along with sentential and model-based
theoretical abduction, [32.116] identifies manipulative
abduction as thinking and learning through doing. Ma-
nipulative abduction is thus situated in the domain of
extended cognition and presents an extra-theoretical
behavior developed through manipulation of artifacts,
such as written notes, diagrams, experimental set-ups,
visual and other simulations, etc. One of the illustrative
examples of extended cognition is diagrammatic rea-
soning [32.117, 118], [32.119]:

“What is interesting about diagrammatic reasoning
is the interaction between the diagram and a hu-
man with a fundamentally pattern-matching brain.
Rather than locating all the cognition in the human
brain, one locates it in the system consisting of a hu-
man together with a diagram. It is this system that
performs the cognitive task, for example, proving
the Pythagorean theorem.”

Giere provides further examples of reasoning with
pictorial representations and reasoning with physical
and abstract models [32.96, p. 237]

“The idea of distributed cognition is typically asso-
ciated with the thesis that cognition is embodied. In
more standard terms, one cannot abstract the cogni-
tion away from its physical implementation.”

This agrees with Fresco’s conclusions from
his book Physical Computation and Cognitive Sci-
ence [32.54].

Based on the idea that “a complex system, as the
cognitive one, and its transformations, can be described
in terms of a configurational structure.” [32.120],
morphodynamical abduction is then the abduction ex-
pressed through the geometrical framework of configu-
rational structure. Magnani in [32.121] explains that
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“different mental states are defined by their ge-
ometrical relationships within a larger dynamical
environment. This suggests that the system, in any
given instant, possesses a general morphology we
can study by observing how it changes and devel-
ops.”

This suggests the possibility of representing aspects
of abductive reasoning in the framework of dynamical
systems, as processes of natural computation.

In [32.121] the authors argue that:

“Creative and selective abduction can be viewed as
a kind of process related to the transformations of
the attractors responsible of the cognitive system
behavior. In the context of naturalized phenomenol-
ogy we have described anticipation and abduction

in the light of catastrophic rearrangement of attrac-
tors.”

This insight about the character of major qualitative
shifts in understanding can be extended to aspects of
scientific discovery as Thagard addressed for concep-
tual change and scientific revolutions [32.122].

In the context of model-based reasoning it is in-
structive to take software as an example of executable
computational models that enables transformations
from system requirements to design and implementa-
tion. Software is used as a cognitive tool of extended
cognition, which facilitates cognitive information pro-
cessing by automation of reasoning, performing cog-
nitive tasks of computation, search, control, etc., that
already has resulted in radically new conceptualizations
such as cyber-physical systems and Internet of things.

32.7 Model-Based Reasoning and Computational Automation
of Reasoning

Models have been historically used in scientific and
engineering disciplines to handle large-scale, complex
research and development enterprises. Modeling as an
inherent human skill is tightly coupled with the use of
natural language for communication [32.123]:

“Though we share the same earth with millions of
kinds of living creatures, we also live in a world that
no other species has access to. We inhabit a world
full of abstractions, impossibilities, and paradoxes.
We alone brood about what didn’t happen, and
spend a large part of each day musing about the way
things could have been if events had transpired dif-
ferently.”

Models are typically exploited to design solutions
as a preliminary step of the realization of an engineer-
ing project: the underlying aim is to anticipate relevant
properties, design pitfalls, and other pertinent informa-
tion that would be extremely expensive if discovered
at advanced stages of a project. In modern times, none
would build a bridge or a house without a model, at least
to know in advance their expected mechanical proper-
ties and costs and time for completion, just to mention
a few relevant parameters. The fact that most of the
techniques exploit pictorial representations has to be
directly interconnected to what is said so far, that is,
modeling is an intrinsic human activity and our brain is
exceptionally skilled in matching images with concepts,
as argued in [32.117, 118].

Nowadays at the heart of scientific and engineer-
ing projects is software that is largely responsible for
its function. The growing adoption of computational

devices and tools controlled by software in all as-
pects of human’s everyday life and its exploitation in
mission-critical tasks inevitably contributed to the enor-
mous magnification of nowadays software complexity.
If the adoption of more and more advanced program-
ming languages and techniques (first, second, third, and
even fourth generation) can be conceived as progres-
sive steps toward more abstract methods to develop
software, they still meet the obstacles of code-centric
approaches [32.124]:

“Conventional programming involves the manual
translation of domain concepts living in the pro-
grammer’s head into a source program written in
a concrete, general-purpose programming language
such as CCC or Java. This translation inevitably
causes important design information to be lost
due to the semantic gap between the domain con-
cepts and the language mechanisms available in the
programming language. [. . . ] Today, most designs
are expressed in a concrete programming language
meaning that the larger share of the design informa-
tion is lost.”

In this respect, one of the main drawbacks of code
is a limited understandability of the produced artifacts
(even by the authors themselves), which seriously hin-
ders the maintainability of the system. By considering
that a complex software systems can be made up of
millions of lines of code, have a life span of decades,
and often merge in the solution expertise from diverse
domains, it is clear that without proper modeling, the
system will quickly run out of control, if it would be re-
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alizable at all. Therefore, even though programming can
be seen as a form of modeling of a system and its behav-
ior, here we will refer to models as higher abstraction
level representations, very often pictorial, of a software
system [32.125]:

“Modeling, in the broadest sense, is the cost-
effective use of something in place of something
else for some cognitive purpose. It allows us to use
something that is simpler, safer or cheaper than re-
ality instead of reality for some purpose. A model
represents reality for the given purpose; the model
is an abstraction of reality in the sense that it cannot
represent all aspects of reality. This allows us to deal
with the world in a simplified manner, avoiding the
complexity, danger and irreversibility of reality.”

From the 1980s, modeling techniques in software
engineering have become more and more widespread.
Their initial exploitation was confined to sole doc-
umentation/communication purposes, while from the
late 1990s they have been progressively adopted to
provide some form of automation. Interestingly, com-
puting is perhaps the only domain (except for logic)
that has meta-products, that is, it realizes products
that are developed by means of the same methods
used to realize the design/modeling tools (unlike, e.g.,
civil engineering where physics and computer graph-
ics are exploited to model the final physical product,
houses and bridges). It is not surprising that model-
ing techniques can be conceived as a derived product
of description logics (DL), that is, a family of formal
languages used for knowledge representation more ex-
pressive than propositional logic. However, as [32.126]
argues, “these diagrammatic modeling languages pro-
vide no extensional, mathematical semantics, nor any
automated reasoning facilities.”

The reasons of an evolution toward automated
mechanisms are often connected with consistency prob-
lems: if a software system is documented through
models and then implemented by hand, none can guar-
antee that what was coded is compliant with what was
designed. Even more important, in future maintenance
activities it will be very difficult to keep the consis-
tency between models and code. These issues find their
reasons in the gap between domain-specific description
of the problem and programming language encoding
of a solution, as interpreted by the programmer and
narrowed down by the constructs available in the lan-
guage (see the notion of agency explained later on). As
a consequence, a paradoxical situation will appear in
which modeling artifacts have been introduced as an
additional effort that, however, leaves the initial prob-
lem unsolved – aiding in the maintenance of complex
systems.

Modeling languages like the UML (unified mod-
elling language), (object management group (OMG)
[32.127]) are formal enough to be used for automated
reasoning. They exploit pictorial, or better, diagram-
matic representations of a system to document its
structure and functions. They are typical examples of
previously mentioned diagrammatic reasoning where
diagrams are objects supporting distributed cognition.
With UML being formal here we mean that models con-
forming, for example, to the UML have to adhere to
a well-defined set of rules and constraints to produce
models. Being more precise, a model has to adhere to
a set of constraints defined by means of a metamodel,
that is, a modeling language definition.

The most common way of defining a modeling lan-
guage is to specify concepts and relationships between
them. In general, language elements are interconnected
through associations with multiplicities restricting pos-
sible source(s) and target(s) of a certain relation. More-
over, elements can contain other elements, and elements
can specialize other elements. If a model adheres to all
the production rules defined in the metamodel, it is said
to conform to the metamodel. The metamodel itself has
to adhere to precise rules to specify a language (like
those we informally listed so far), which are typically
referred to as the meta-metamodel. The abstraction hi-
erarchy is limited at this point by prescribing that the
meta-metamodel is defined by itself.

In order to improve the usability and readability of
models, very often language concepts are not directly
shown to users. On the contrary, they are in general
amalgamated into information units and rendered in
a more compact/intuitive way. Such utility elements,
typically called syntactic sugar in programming lan-
guages terminology, introduce the distinction between
abstract and concrete syntax of models. The former
defines the structure of the model in terms of the meta-
model it conforms to, while the latter represents how
the model is rendered to the user. In this respect, the
metamodel defines conformance rules in terms of the
abstract syntax, while a certain abstract syntax can give
place to multiple concrete syntaxes.

Modeling languages can be divided into two main
categories: general purpose (GPL) and domain-specific
(DSL). The former category refers to languages that
have not been defined with a particular application do-
main in mind, and hence exploit general concepts to rep-
resent a certain real-life phenomena in abstract terms.
The latter category instead is typically built bottom-up
and exploits the vocabulary specific of a certain applica-
tive field.When linking those categories to model-based
reasoning, it is intuitively easier to grasp the message
carried by a model when produced by a DSL, since
it exploits concepts specific of a certain domain, very



Computational Aspects of Model-Based Reasoning 32.7 Model-Based Reasoningand Computational Automation of Reasoning 711
Part

G
|32.7

often with the help of an adequate (pictorial) concrete
syntax. On the contrary, GPLs’ models are less intu-
itive since they re-encode certain phenomena through
genericmodeling concepts and their concrete syntax has
to exploit very general modeling elements. However, the
specificity of DSLs is also their Achilles’ heel: when-
ever concepts need to be added and/or refined vast re-
visions can be required, in general to change users’ ren-
dering of elements, attached semantics, and so forth. For
example, for a tiny language supporting the graphical
definition of mathematical expressions, if we consider
elementary school usage we could define the language
taking into account only natural numbers. As soon as
we want to extend the language to support real numbers
everything needs to be revised: notably, negative or ra-
tional numbers not only need a different representation,
but also enable additional operations.

The concepts exploited to define a language implic-
itly establish ontology of an idealized user using models
for a certain purpose. In this respect, the specification
of concepts, their relationships, and their graphical ren-
dering through a concrete syntax are all conceived with
this goal in mind. In the case of GPLs, ontology is in-
directly derived as mapping between generic concepts
and corresponding domain-specific items. Notably, the
mathematical language mentioned above could be rep-
resented as a package containing four classes, each one
identifying an arithmetical operation, and hence called
Addition, Subtraction,Multiplication, and Division, re-
spectively. In turn, each class would contain attributes,
called, for example, operand_1, operand_2, and re-
sult. Moreover, each class would contain a method
do_calculation performing the appropriate operation
on the operands and returning the result. It is worth
noticing that in this case the GPL offers concepts like
package, class, and so forth, by which it is encoding re-
ality. On the contrary, a DSL could define a Calculator
including the four operations, each of which requiring
two input parameters and returning an output. If either
exploiting a GPL or using a DSL, it is supposed that the
user has a clear idea of the correspondence between the
sign C and the addition operation, and so forth. Even
more important, the user should make correct use of
operands putting them in the correct order, especially
when performing subtractions or divisions.

When talking about model-based reasoning we usu-
ally refer to semantics, that is, the meaning that is
associated with concepts and relationships constituting
a model [32.128]:

“a language consists of a syntactic notation (syn-
tax), which is a possibly infinite set of legal ele-
ments, together with the meaning of those elements,
which is expressed by relating the syntax to a se-

mantic domain. Thus, any language definition must
consist of the syntax semantic domain and semantic
mapping from the syntactic elements to the seman-
tic domain.”

Semantics is distinguished in two main categories,
namely structural and behavioral semantics. The former
is based on themetamodel definition itself, while the lat-
ter focuses on the execution of models conforming to
a given metamodel. Therefore, for instance if we con-
sider again the mathematical expression language, we
could define the subtraction operator as taking two nat-
ural numbers and producing one natural number. At this
point we can also impose that the first input shall be
greater than the second. Despite that we did not spec-
ify what a user would do with a model conforming to
such a metamodel, it is quite intuitive that we are defin-
ing semantics by the metamodel, since we are narrow-
ing down inputs and output to natural numbers (and we
are also constraining the maximum number of inputs
to two). Moreover, from an ontological perspective the
terms subtraction, operand, and result should be self-
explicative about the concepts provided by the language.

Behavioral semantics adds the dynamics of model
elements to the structural part, or the definition of the
process related to the ontology defined with the lan-
guage. Such description could be done in informal
ways, even by means of natural language (this is for
instance done for the specification of large portions
of the UML). Therefore again taking into account the
math example, the semantics of subtraction concept
would be defined as The subtraction operation sub-
tracts the value of operand_2 from operand_1. The
main issues with informal approaches are their prone-
ness to ambiguous interpretations and the impossibility
to exploit them for automation purposes (e.g., interpre-
tation, analysis, execution). A second possibility to give
semantics to metamodel concepts is by means of a be-
havioral sublanguage embedded in the language itself.
In some cases the structural part can be decorated with
behavioral descriptions (e.g., scripts in a specific pro-
gramming language); in other cases some portions of
the language can be devoted to model behavior (for
instance, the UML specification includes behavioral di-
agrams like state machines. Moreover, there exist UML
extensions enabling behavioral description through so-
called action languages). The model-driven research
area introduced model transformations as another pos-
sible alternative, described in the following [32.129]:

“the definition of the semantics of a language can be
accomplished through the definition of a mapping
between the language itself and another language
with well-defined semantics such as Abstract State



Part
G
|32.8

712 Part G Modelling and Computational Issues

Machines, Petri Nets, or rewriting logic. These se-
mantic mappings between semantic domains are
very useful not only to provide precise semantics
to DSLs, but also to be able to simulate, analyze
or reason about them using the logical and seman-
tic framework available in the target domain. The
advantage of using a model-driven approach is that
these mappings can be defined in terms of model
transformations.”

Here model transformations are automatic mecha-
nisms mapping models toward other models as well as
streams of characters. In this respect, a transformation
performs a semantic anchoring between the structural
concepts defined in the metamodel and the correspond-
ing elements generated as target of the transformation
execution. From an ontological perspective, the trans-
formation in this case conveys the definition of the
process.

32.8 Model Transformations and Semantics: Separation Between
Semantics and Ontology

Historically, the semantics of a model has been given
through corresponding constructs in a programming
language, and in some cases modeling languages have
been even conceived bottom-up as abstraction of a pro-
gramming approach. The underlying reason is that for
software experts it was easier and less ambiguous to
interpret a model by means of the corresponding algo-
rithm implementing what is designed. Moreover, soft-
ware was mainly used for pure computational purposes
that did not act directly on the real world. Therefore,
semantics in software engineering had an indirect rela-
tionship to the real world since it was revealed in terms
of data structures and computation actions.

More recently, embedded software systems are be-
coming ubiquitous and have been gradually replacing
hardware functions, thus requiring a variety of model-
ing approaches. Nowadays, physical behavior is often
mixed with software models since embedded systems
directly interact with the world – often referred to as
cyber-physical systems. In turn, semantics also evolved
from pure computation to combination of computation
and interactions with the physical world. For example,
a model of a power window in a car contains both a state
machine to show how buttons are related with the posi-
tion of the window, and a physical model of the force
the motor applies to move the window. If the force ex-
ceeds a certain value the motor has to be stopped and
buttons deactivated, since an object could be obstruct-
ing window movements.

Another relevant aspect of semantics is that a model
could have more than one interpretation depending on
the user’s (both human and machine) point of view. In
other words, a model may carry multifaceted informa-
tion that could be equivalently used to both perform
analysis and to generate code. Notably, in the power
window example, models serve both to generate the
code for commanding the motor through buttons, and
to verify that the window will never harm passengers in
its movements.

Model transformations are the means to manipulate
models, both to generate other models and to derive
textual documents (including code). They are related
to model-based reasoning because the correspondences
established through transformations draw interconnec-
tions among concepts pertaining to different domains.
Therefore, they can be exploited to map the concepts
expressed in a source model toward a corresponding
target for which the semantics is well known (e.g., code
generation gives a precise operational semantics to the
source model). This notably allows performing more
or less automated considerations about the quality at-
tributes of a certain system and to refine its specification
if needed.

Despite the existence of model transformations,
modeling gives inherently place to ambiguities and
problems of interpretation. In the most trivial case, the
agent writing the transformation is not the modeler,
opening already at that point space for erroneous in-
terpretations. One of the relevant ambiguity problems
is related to multi-view based modeling: given the com-
plexity of nowadays systems, they are often modeled by
means of different points-of-view that describe the sys-
tem from corresponding domain-specific perspectives.
In general these different views are not completely or-
thogonal, rather they overlap and combine for certain
aspects. Such overlaps introduce interpretation prob-
lems due to the fact that the same concept may have
different semantics depending of the point-of-view it is
used in. Even more, the combination of concepts com-
ing from different views could constitute a higher order
concept that is not representable in any one of the single
views separately.

Further important issue is related to the manage-
ment of evolution, which is one of the peculiarities of
software systems in general. When dealing with mod-
els and their evolution, some problems come into play
due to the level of abstraction. First of all, it is difficult
to compare two versions of the same model at differ-
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ent points in time and recognize precisely the kind of
evolution they have been subject to. Notably, it is very
difficult to distinguish between the deletion of an ele-
ment and subsequent addition of a new one versus the
simple modification of the same element from the older
toward a newer version. Even if this could appear as
a minor aspect, it has relevant consequences. In fact,
in the former case whatever was derived from the re-
moved element should be deleted as well, whereas in
the latter situation interconnected elements should be
tracked and updated accordingly. In turn, the propaga-
tion of updates poses interpretation problems as well.
By recalling the simple evolution example related to
the subtraction operation (from natural to real numbers)
mentioned before it is not difficult to foresee what kind
of problems developers will incur when trying to re-
flect the impact of change on different related elements.
Notably, if a concept in the language was renamed, the
question is should its concrete syntax also be revised?
How? And what about transformation mappings writ-
ten on the base of the previous version of the modified
concept?

What can be seen as a promising trend to alleviate
the issues described above is the introduction of a sepa-
ration between what have been called as structural and
ontological aspects of a certain language. The structural
aspects refer to generic syntactic rules that are invariant
with respect to the information carried by the language.
On the contrary, the ontological aspects are domain spe-
cific and are strictly related to a particular application
context [32.130]. In general, structural aspects are sim-
pler to manage, since there is no domain semantics
involved. On the contrary, ontological aspects embed
the semantics of a certain domain, and therefore typi-
cally require user guidance. If we take an example of
natural language, structural aspects are grammar rules
for sentence construction, while the ontological part is
the argument discussed in the text. In this respect, a bet-
ter denomination would be informative and cognitive
aspects of a language, respectively. In such a way, it
would not only be clearer that the latter aspects include
semantics details, but it would also make it possible to
introduce the notion of agency and agent, to locate pos-
sible multiple interpretations due to agency (something
that gets mixed in the term ontology).

A separation between semantics and ontology, by
introduction of the model of agent-centered ontology,
is due to the fact that ontology (all that exists) de-
pends on to whom it exists (see the later discussion).
For example for humans, invisible microscopic layers
of physical reality did not exist before the invention of
microscopes; birds collide with windows because they
do not see glass – for them it does not exist before the
collision. For themmuch of human civilization does not

exist otherwise than as physical objects. The simpler an
agent in the world is, the simpler is its ontology, that
is, all that exists and can exist for that agent. Living
agents self-organize at increasing number of layers of
agency [32.131]. The core is the basic physical struc-
ture of elementary particles and forces from which new
layers of organization emerge – from physics to chem-
istry, biology, and cognitive layer. Humans, on the top
of hierarchy, have the highest known number of lev-
els of organization. Starting with the model of layered
agency, from the basic physical primitives to cognitive
functions we can define semantics for an agent. For an
agent it is characteristic that it is capable of acting in
the world.

The most fundamental is physical agency where
agents act completely automatically by simply obey-
ing physical laws. Chemical agency is a level above
and it builds on basic physical agency of elemen-
tary physical constituents, taken in bigger chunks of
molecules that interact with each other. Biological
agency emerges from chemical ones when chemi-
cal structures and cycles are established, which en-
able stable self-sustaining and self-reproducing for-
mations [32.84] like first viruses (in between crystal
and living organism) and bacteria as simplest cellular
organisms. Symbol-manipulation-based agency arises
first with organisms possessing nervous system, which
helps them to model and predict their environment.
Social-level distributed cognition emerges in networks
of agents, from simplest living organisms to humans
and anticipated intelligent machinery that is currently
being developed. On the highest level of organiza-
tion, there are languages shared by a community of
users, used for coordinating actions and control of
environment. Here even programming languages be-
long.

Software is based on programming languages,
which constitute logical framework and syntactic rules.
With respect to agency and agents in modeling for
SE, some consideration is in place. From the earlier
sections of this chapter, it is clear that our cognitive
mechanisms are shaped by our embodied pattern recog-
nition capability, which in turn has been trained through
individual life and experiences as well as based on evo-
lutionary developments of the species. In this respect,
model users are agents – the ones who design the lan-
guage to specify models, the ones that abstract a certain
real-life phenomena through the model, and the ones
who map the information carried by a model back to
a corresponding real-life domain. Agency depends on
the background experience of a user that influences the
interpretation of concepts represented through models.
Notably, domain experts may have a deeper knowledge
of certain aspects of the system that would introduce
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ambiguities in (or erroneous interpretation of) the mod-
els exploited to design systems in their domain (earlier
mentioned in the example of the arithmetic modeling
language).

As an illustration take the picture shown in
Fig. 32.3. If we consider its content as an abstraction
of reality, typical human agent would give the interpre-
tation of it as two road signs, both indicating an airport
in half a mile. However, there would be some agents
also noticing that the shape of the plane resembles an ar-
row. This added detail couldn’t be ignored, since it gives
place for further interpretations of the figure. Did the
designer intend to convey that to reach the airport the
driver should follow the direction pointed by the plane?
In other words, is the orientation of the airplane making
a difference in driving direction? If the agent designing
such a picture did not know anything about the usage
scenarios of those signs, of course all those further in-
terpretations would be the erroneous product of agency.
In this respect, designing a language has intrinsic pit-
falls due to the fact that the agents creating a modeling
language most probably will not be the ones using it
to model a certain system. In turn, the agents model-
ing the system will most probably differ from the ones
exploiting those models for other activities (testing, im-
plementation, documentation, etc.). As a consequence,
models will be inherently ambiguous unless a precise
semantics is given. This is one of the main reasons
why model-based approaches can miss their potentials
if code generation (or other forms of precise semantics)
is not provided. To avoid that, automatic derivation of
code from model establishes a well-defined semantics
free from misinterpretation, and once the mapping be-
tween models and code is proved as correct, it would
guarantee the consistency between design and imple-
mentation.

By considering the distinction between informative
and cognitive aspects of a language it would be possi-
ble to alleviate the inherent problems due to ambiguities
carried by models. By approaching the problem in
a model-based way, it would be necessary to introduce
a new language able to express agency, or analogously
to define a precise agent-based ontology clarifying the
level of expertise of a certain agent. In this respect how-
ever, the current approach of model-based techniques
goes in the direction opposite to a natural process of
abstraction. In fact, in the latter, simple components
are interconnected to build up higher order cognitive

Sky Harbor

Sky Harbor

1/2   MILE
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Fig. 32.3 Two similar road signs with possible ambiguous
interpretations

concepts, while in the former a language is first de-
fined and subsequently the user tries to represent certain
reality through the concepts offered by the language.
Therefore, a more natural approach would be to let the
user model reality in the desired way and incrementally
build the underlying language based on the concepts ex-
ploited in the modeling activity.

Moreover, partial model transformations could be
defined for better specifying some of the cognitive as-
pects included in a model. Google search engine can
be mentioned as an example of current proposal. The
engine has been enhanced through the years and cur-
rently, thanks to user tracking (which is a machine
learning process) it has the capability of anticipating
search queries of a given user (agent). It is often enough
to type the first three/four characters of a word to get as
suggestion the exact sentence one was thinking about.
Moreover, with the same accuracy the search engine is
able to suggest a potentially more relevant query based
on the one written by the user. In the same way, a mod-
eling language should be able to create a customized
profile for each user, by learning from the users’ mod-
eling operations, a corresponding adequate ontology. In
this way, the tool could anticipate some of the users’
needs and aid them in correct modeling choices. In
other words, the tool would be able to close the gap
between ontology of the idealized user of a modeling
language and the agent-based one.
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33. Computational Scientific Discovery

Peter D. Sozou, Peter C.R. Lane, Mark Addis, Fernand Gobet

Computational scientific discovery is becoming in-
creasingly important in many areas of science.
This chapter reviews the application of compu-
tational methods in the formulation of scientific
ideas, that is, in the characterization of phenom-
ena and the generation of scientific explanations,
in the form of hypotheses, theories, and models.
After a discussion of the evolutionary and anthro-
pological roots of scientific discovery, the nature
of scientific discovery is considered, and an out-
line is given of the forms that scientific discovery
can take: direct observational discovery, finding
empirical rules, and discovery of theories. A dis-
cussion of the psychology of scientific discovery
includes an assessment of the role of induction.
Computational discovery methods in mathematics
are then described. This is followed by a sur-
vey of methods and associated applications in
computational scientific discovery, covering mas-
sive systematic search within a defined space;
rule-based reasoning systems; classification, ma-
chine vision, and related techniques; data mining;
finding networks; evolutionary computation; and
automation of scientific experiments. We conclude
with a discussion of the future of computational
scientific discovery, with consideration of the ex-
tent to which scientific discovery will continue to
require human input.
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Science is concerned with characterizing and explain-
ing observations and phenomena. For most of history, it
has been an exclusively human activity. However, the
development of computers has had a substantial im-
pact on science. The assessment and testing of scientific
models has seen the application of computational meth-
ods, often with spectacular success. Among these major
successes have been the development of numerical and
simulation methods to compute the predictions of sci-
entific models [33.1, 2].

A more ambitious endeavour is the use of computa-
tional methods to represent, in some sense, the formu-

lation of scientific ideas – the characterization of phe-
nomena and the generation of scientific explanations,
in the form of hypotheses, theories, and models. This is
the focus of this review. What computational methods
have been developed so far, and how have they been ap-
plied?What scope is there for further developments and
applications?

We begin by discussing the evolutionary biologi-
cal and anthropological roots of scientific discovery,
and the establishment of scientific discovery as a hu-
man endeavor. We then set out important features of
the nature of the scientific discovery process, and the
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different forms of discovery. This provides a basis for
considering the psychology of scientific discovery. This
is followed by a discussion of computational discovery
methods in mathematics, which, because of the close
links between mathematics and the theoretical sciences,
provides a useful prelude to computational discovery

in science. We then survey methods and applications
in computational scientific discovery. We finally draw
conclusions, with particular attention paid to what type
of problems in scientific discovery computational meth-
ods are best suited to, and the future of computational
scientific discovery.

33.1 The Roots of Human Scientific Discovery

Humans are capable of learning, that is, acquiring and
processing information, so as to influence their future
actions. This includes an ability to make inferences
from limited observations. Scientific discovery, it has
been claimed, uses similar inferential principles [33.3].
Why did natural selection favor the capacity for learn-
ing in animals? A major factor is likely to have been
environmental variability [33.4]. There may have been
something of a self-sustaining evolutionary process at
work, with arms races between the learning capabilities
of predators and prey, and competition for resources be-
tween members of the same species favoring the best
learners. Animals with highly developed brains, par-
ticularly primates and corvids, exhibit the ability to
innovate and to make tools to overcome new chal-
lenges [33.5–7]. Humans, however, stand out from
other animals in the extent of their development of
tools.

The precise evolutionary basis of human language
is uncertain [33.8], but language facilitated the trans-
mission and synthesis of useful information. Pre-
agricultural communities are believed to have had
a great deal of useful knowledge, largely gathered
through trial and error. They demonstrated represen-
tational skills with the creation of art objects such as
cave art (dating from approximately 40 000 years ago in
Europe and Indonesia). Plant domestication is thought
to have first occurred in the fertile crescent of West-
ern Asia; the Sumerians of Mesopotamia are strong
contenders for being the first to invent writing, some-
what before 3000 BC [33.9]. These developments led
to highly ordered and stratified societies, with special-
ization of labor, significant technologies, and empirical
knowledge of many important processes. The form of
enquiry recognized today as general scientific expla-
nation came later; the first search for the causes and
principles of the natural world is attributed to Thales
of Miletus around the beginning of the 6th century
BC [33.10]. This notion was further developed by Aris-
totle, explaining what is less well known by means
of what is better known and more fundamental, and

the requirement for explanations to be consistent with
observations [33.11]. Aristotle’s approach is a direct
forerunner of the model of scientific discovery that
is broadly accepted today, in which scientists propose
new hypotheses and then devise experimental tests for
them [33.12].

Ernest Rutherford remarked that “All science is ei-
ther physics or stamp collecting” [33.13]. Although this
could be said to be simplistic, it captures the essential
truth that a great deal of science involves what may be
termed direct observational discovery: Observing and
characterizing phenomena, without the need for deep
theoretical explanations. Thales of Miletus is credited
with the discovery that when amber is rubbed with fur,
it then attracts light objects – what is known today as
static electricity [33.14]. The development of optical
microscopy in the sixteenth and seventeenth centuries
led to the discovery of bacteria, biological cells, and
spermatozoa. These were clearly scientific discoveries
of vital importance, but they were not in themselves
deep theories. Some research in astronomy also has
this character, such as the discovery in 1930 of Pluto
by Clyde Tombaugh from examination of photographic
plates. A deep theoretical understanding of gravitation
was important for this discovery – anomalies in the mo-
tion of Uranus, not fully explained by the gravitational
effects of Neptune, suggested the existence of a hitherto
undiscovered planetary body – but the discovery itself
was a direct observational discovery: It did not consti-
tute the discovery of an observational law or of a theory.

These discoveries typify situations in which sci-
entific discovery follows directly from technological
advances. Thus, the development of x-ray crystallog-
raphy [33.15] enabled the structure of proteins [33.16]
and of deoxyribonucleic acid (DNA) [33.17] to be
established. More recently, modern studies in molec-
ular biology have led to a vast amount of data be-
coming available. This makes it worthwhile to con-
sider data-driven scientific investigation [33.18], which
is frequently computational and can complement the
hypothesis-driven approach.
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Scientific discovery involves a range of activities and
methods. One general form, as described above, is
direct observational discovery: simply finding and char-
acterizing a phenomenon, such as the aforementioned
discovery of what became known as static electric-
ity [33.14]. Langley [33.19] describes the formation of
taxonomies as the first stage of the discovery process.
However, we do not consider direct observational dis-
covery to be limited to the formation of taxonomies,
as it may include discoveries that fit within existing
taxonomies, such as the discovery of Pluto described
above. Additionally, the formation of taxonomies is not
always the first stage of scientific discovery; for exam-
ple, the classification of organisms according to how
recently they last shared a common ancestor depends
on the prior theory that the organisms in question are
descended from a common ancestor. In short, there
are cases where direct observational discovery does
not involve the formation of taxonomies, and cases
where the formation of taxonomies is a late stage in
the discovery process. We therefore consider direct
observational discovery to be a basic form of sci-
entific discovery. It generally occurs at the birth of
a scientific field, but often continues as the field ma-
tures.

A different form of discovery, which generally
comes after a field has matured sufficiently to have
accepted terms for describing observations and quan-
titative measures of these observables, is concerned
with finding empirical rules. Such a rule is a use-
ful description of some aspect of the world to which
a number of observations conform. Prominent exam-
ples are Kepler’s laws of planetary motion, Weber’s
law (also known as the Weber–Fechner law) in psy-
chology, which states that the just noticeable difference
between two stimuli is proportional to the size of the
stimuli, and the constancy of the speed of light in any
reference frame, established by the Michelson–Morley
experiment of 1887. This form of discovery can, if de-
sired, be divided into those that involve qualitative rules
on the one hand and quantitative on the other; an ad-
ditional distinction concerns whether or not the rules
involve unobserved entities [33.19].

Another category of discovery is theories. A theory
is an underlying explanation, accounting for a set of ob-
servations by means of a causal process. For example,
Newton’s theory of gravitation explains Kepler’s ob-
servations by means of a deeper, causal principle. The
theory of evolution by natural selection, conceived by
Darwin and Wallace, explains a wide range of observa-
tions regarding organisms’ adaptations, and forms the
basis of the modern science of behavioral ecology.

It should be recognized, however, that the distinc-
tion between different categories of scientific discovery
is not absolute [33.3, 20]. Newton’s theory of gravita-
tion is a case in point: While we believe it is appropriate
to call it a theory, one can also describe it as an em-
pirical rule, albeit a deeper one with more explanatory
power than Kepler’s laws. A putative chemical structure
can be regarded as a theory, and therefore the discovery
of a chemical structure (such as the discovery by Wat-
son and Crick of the double helix structure of DNA)
can be regarded as discovery of a scientific theory, but
it is not clear that there is a clear division between this
discovery and direct observational discovery; in con-
trast, the discovery of the theory of evolution by natural
selection is very different from a direct observational
discovery.

Philosophers of science have been concerned
mostly with the discovery of scientific explanations,
that is, of empirical rules and theories. The essential
characteristic of a scientific explanation is that it be
logically coherent [33.21]. But how are scientific ex-
planations (in the form of empirical rules or theories)
generated in the first place? And how should a choice
be made between competing empirical rules or theo-
ries?

Assessing potential explanations is problematic be-
cause there is no agreed objective method to assess a po-
tential explanation against an alternative (nor against
the possibility that no explanation so-far advanced is
a good explanation of the phenomenon in question).
There are some generally agreed principles that make
a potential explanation more likely to be accepted.
These are that it is better if it fits the data more closely,
better if it is more parsimonious, and better if it is more
plausible. However, while metrics can sometimes be
calculated for how well a theory fits the data, and for its
parsimony, the question of plausibility is ultimately one
for human judgment. There is also the problem of how
much weight to put on all these factors. Humans appear
to have developed pragmatic, context-specific methods
of making acceptable inferences [33.3]: The psychol-
ogy of scientific discovery is discussed in more detail
in Sect. 33.3.

The process of finding an explanation for a speci-
fied phenomenon of interest has the characteristics of
an inverse problem. These problems have the follow-
ing form. There is some state of the world S which,
in conjunction with certain physical laws, gives rise to
a data set D. Given S, it is in principle straightforward
to calculate D. This is known as the forward problem.
The inverse problem is to calculate S from D. There
may be no solution S that generates D exactly, or there



Part
G
|33.3

722 Part G Modelling and Computational Issues

may be several. An example of such a problem con-
cerns mirage data. A mirage is an optical distortion
caused by meteorological conditions, which result in
variation in the atmospheric refractive index [33.22].
The forward problem is to calculate what a mirage
should look like from the refractive index profile. The
inverse problem is to deduce the refractive index pro-
file (and from this the temperature profile) from mirage
data [33.23]. One approach involves a form of regular-
ization: finding a refractive index profile to minimize
a cost function [33.24]. This cost function includes an
error term, which depends on how far the mirage data
predicted by the proposed profile differs from the real
data; computation of this term involves solving the for-
ward problem for the proposed refractive index profile.
Another term penalizes the proposed refractive index
profile according to a measure of its implausibility.
Vision problems are inverse problems [33.25]. A com-
mon characteristic of inverse problems is that, as with
problems of scientific explanation, there is generally
no clear, objective measure of the best solution; rather,
ad hoc problem-specific measures are needed. As with
the example of the inversion of mirage data [33.24],
a feature of almost every computational approach to
inverse problems is that a candidate solution is tested
by solving the forward problem and calculating the
data that would be predicted under this candidate so-
lution.

Most inverse problems do not involve scientific
discovery – for example, inverting mirages to find
a temperature profile would not be considered scien-
tific discovery – but the similarities between scientific
discovery and inverse problems are clear, and indeed
scientific discovery can be regarded as an inverse prob-
lem. It can be cast as follows: Given a suitable theoret-
ical or empirical account of the relevant aspect of the
world, specified in sufficient detail, it is possible to cal-
culate what observations should follow from it: that is
the forward problem. The inverse problem is to go from
the observations to the empirical rule or the theory. It is
therefore pertinent to consider the computational meth-
ods used in inverse problems. Computational optimiza-
tion methods are widely used [33.24, 26]. Evolutionary
computational methods have been applied [33.27–29]:
These are particularly suited to problems in which there
are several local optima, where standard optimization
methods often get stuck at a local optimum. We will
discuss evolutionary computational methods for scien-
tific discovery in more detail in Sect. 33.5.

It must be remembered, however, that not all sci-
entific discovery involves finding an explanation for
a specified problem. Rich data sets allow data-driven
research in which new entities are directly discovered,
and new empirical rules suggested by data analy-
sis [33.18]; we will describe in Sect. 33.5 how com-
putational methods play a large part in these processes.

33.3 The Psychology of Human Scientific Discovery

At this point, it is pertinent to ask what is under-
stood about how humans make scientific discoveries.
This allows consideration of whether or not the hu-
man computational discovery process can be effectively
simulated computationally. If it can, a further question
arises: Does computational simulation or replication of
the methods used in human scientific discovery give rise
to effective practical tools for scientific discovery?

Gillies [33.30] describes two contrasting ap-
proaches to understanding scientific discovery. Francis
Bacon [33.31] postulated a central role for induction in
scientific discovery: Put simply, he regarded discovery
as dependent, in a large part, on the simple application
of logical rules to observations, with the development
of theory strictly following the collection of data. In
contrast, Karl Popper argued that observations are gen-
erally selective, and made within a theoretical context;
he suggested that science proceeds through a process of
conjecture and falsification [33.32]. On the question of
where such conjectures come from, Popper [33.33] sug-
gested that “there is no such thing as a logical method
for having new ideas” [33.33, p. 37]. This line of think-

ing would seem to conflict with the modern notion that
the human brain is effectively a computational device,
though from a practical point of view it would also ef-
fectively apply if the human brain is computational, but
too complex for understanding or meaningful simula-
tion of brain activities that generate new ideas to be
possible.

Where the aim is to explain a specified phe-
nomenon, in the form of finding a suitable empirical
rule or theory which is plausible and fits the data, the
task can be described as a search process [33.20, 34,
35]. Campbell [33.34] and Simonton [33.35] consider
a largely random search process, followed by a rigor-
ous selection process. Langley et al. [33.20] put more
emphasis on the concept of heuristic search, that is,
using a search method which is intended to give a rel-
atively high chance of finding a good solution quickly,
compared to a purely random search of the same search
space. In a study of how subjects learn to use an elec-
tronic device, Klahr and Dunbar [33.36] propose the
concept of scientific discovery by dual search [33.34],
involving a search in both hypothesis space and experi-
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ment space. Klahr and Dunbar report that subjects vary
in their approach to discovery: The principal approach
of one group, the theorists, was to formulate hypothe-
ses and then test them experimentally, while a second
group, the experimenters, conducted many experiments
without explicit hypotheses. This would seem to pro-
vide evidence that humans can use both Popperian and
Baconian approaches to discovery. In the assessment
of hypotheses, however, humans are prone to confir-
mation bias, that is, putting disproportionate weight on
studies that would tend to confirm a favored hypothe-
sis [33.37].

Qin and Simon [33.38] show how human subjects
can discover a scientific law (Kepler’s third law of
planetary motion) by a process of exploring possi-
ble, though simple, algebraic relationships between two
variables, and using the results of early explorations
to make better-informed guesses of the relationship.
This approach mimics the workings of the BACON
computational scientific discovery method for finding
scientific laws [33.39]. However, the participants in the
experiment of Qin and Simon [33.38] were primed to
expect that some sort of simple relationship between
the variables existed. Kepler did not know for certain
that such a relationship existed, so the extent to which
the experiment of Qin and Simon represents the sit-

uation faced by Kepler is questionable. Nevertheless,
Qin and Simon’s results do provide some support for
the role of rule-based reasoning in scientific discovery.
Kulkarni and Simon [33.40] developed the KEKADA
computational system for explaining general scientific
processes; it is able to replicate the discovery of Hans
Krebs’s hypothesis for the urea–ornithine cycle [33.41],
using rule-based methods, again providing some sup-
port for the idea that inductive methods are important
in human scientific discovery. See Sect. 33.5 for more
details about the BACON and KEKADA computational
discovery systems.

Notwithstanding the Baconian view of discovery,
it is generally held that at least some forms of hu-
man scientific discovery involve something which can
be termed creativity. Boden [33.42] suggests that there
are three forms of creativity. The first is combinational
creativity: the new (unexpected) combination of fa-
miliar ideas. The second is exploratory creativity: the
exploration of accepted, structured spaces. The third is
transformational creativity, which involves ideas out-
side the rules of an accepted space. A capacity that
contributes to creativity, and is particularly important
in scientific discovery, is the use of analogy [33.3]; this
has been the subject of cognitive modeling, with an em-
phasis on the role of memory [33.43].

33.4 Computational Discovery in Mathematics

Mathematics is not a scientific discipline, as it does
not ostensibly deal directly with objects from the real
world. However, as a formal language, mathematics is
used to represent and discuss concepts in many scien-
tific disciplines. This is most apparent in physics, where
theories such as general relativity and the standard
model for particle physics rely extensively on math-
ematical techniques for theoretical understanding and
model construction (for an early discussion of this link,
seeWigner [33.44]).

Many of the techniques found here are precursors
of similar ideas used for computational discovery in
other sciences, in particular the idea of using heuristic
(rule-based) techniques to search a space of candi-
date solutions. Our selection of systems is intended to
be indicative of the general techniques. For more de-
tails and coverage of additional systems in this area,
see Colton [33.45], Colton et al. [33.46], and Lar-
son [33.47].

33.4.1 Logic Theorist

Logic Theorist (LT) [33.48] was a program developed
by Newell et al. to find proofs in elementary (proposi-

tional) logic. LT is programmed with some axioms and
inference rules found inWhitehead and Russell [33.49],
and develops proofs of several theorems found therein.
It relies on a method that will also be seen in some sys-
tems in the next section: A space of possible solutions –
in this case proofs – is explored using a class of meth-
ods known as heuristics. Heuristics can be defined as
rules of thumb that are likely (but not certain) to pro-
vide a correct solution to a problem. Using heuristics
has the advantage of cutting down the number of states
that are visited during search. This makes it possible
to carry out a highly selective search, sometimes called
a heuristic search.

When started, LT stores in its memory a list of ax-
ioms, a list of operations, and the logical expression to
be proved. It uses four rules of inference when search-
ing for a proof. These are: substitution, which allows
a variable to be replaced by a new variable or expres-
sion; replacement, where expressions, such as implies,
are replaced by equivalent expressions using other con-
nectives; detachment, which can split up compound
statements when one part has been proved; and syllo-
gism (chaining), which enables chains of inferences to
be followed.
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As in chess, where the legality of a move does
not imply its quality, LT uses several proof strategies
to make its search efficient. These strategies look for
situations where the above rules of inference may be
applied: For example, when wanting to show a implies
c and knowing that b implies c, then proving a implies
b would enable use of the syllogism inference.

Although intended as a program for proving log-
ical statements, Newell et al. [33.48] also make some
novel claims about the program’s ability to simulate the
behavior of human problem solvers, and were among
the first authors to argue for the use of computer pro-
grams to aid in understanding psychological processes.
See Gobet and Lane [33.50] for a discussion of LT’s
impact on psychology. Around the same time, a pro-
gram was developed [33.51] that did not lay any claims
to modeling human behavior, but used more intensive
computational strategies to prove all the theorems in
Chaps. 1–3 ofWhitehead and Russell [33.49].

33.4.2 AM and EURISKO

Automated Mathematician (AM) [33.52, 53] is a pro-
gram which uses heuristics to discover conjectures (and
hence potential theorems) in mathematics. Unlike LT,
it is unable to directly prove theorems. Instead, conjec-
tures are created by modifying existing theorems, and
tested empirically against specific examples. AMworks
within the set and number theory areas of mathematics,
in part because it is easy for the computer to generate
examples of, say, a conjecture about numbers. AM has
been criticized [33.54], but serves as a model of how
a mathematical discovery system can be designed.

AM begins with a basic set of concepts and can
create well-known conjectures in set theory (such as
subsets) and number theory (such as prime numbers, or
Goldbach’s conjecture). AM represents each concept in
a frame, holding information including: its algorithm,
examples, which other concepts it is related to by gen-
eralization or specialization, and other related concepts.
A concept is then selected out of the current pool, based
on a measure of interestingness, and adapted versions
of the concept are created. These adaptations may be
a specialization of the concept, a restriction of its do-
main, or similar. In addition, and crucially, a human
observer may indicate a concept for the system to work
on next.

As AM proved fairly successful in mathematics,
a related system, EURISKO, was built to attempt to
discover new search heuristics: EURISKO is a meta-
discovery system, which discovers new ways for dis-
covery to occur. As Lenat and Brown [33.55] explain,
one of the discoveries of EURISKO was that AM’s suc-
cess was largely down to how mathematical concepts
were represented. Replicating AM’s success in other
domains requires careful work on formulating the inter-
nal representation of the domain. In particular, changing
the syntactic form of an expression should be reflected
in meaningful changes to the semantics (to the mean-
ing).

33.4.3 GRAFFITI

GRAFFITI [33.56] is a system for developing conjec-
tures in an area of mathematics known as graph theory.
A graph is a set of nodes interconnected by edges, and
graph theory has important applications in many scien-
tific areas, including physics, chemistry and computer
science (see Sects. 33.5.1 and 33.5.5).

GRAFFITI, like AM, is used to generate conjec-
tures but is unable to construct proofs. The conjectures
are formed from a database of invariants of a graph,
such as the diameter (greatest number of edges between
any two nodes), rank (number of nodes minus the num-
ber of connected components), or chromatic number
(the number of colors required to color a graph so that
no two adjacent nodes are of the same color). Simple
sums of these invariants are then generated, and tested
against a database of known graphs.

As the conjectures can require considerable compu-
tational time to check, a pair of heuristics are used to try
to focus on interesting conjectures. The beagle heuris-
tic is used to check that the conjecture is not trivial, for
example, that an invariant is less than itself plus 1. The
dalmation heuristic is used to check that the conjecture
is different to ones already in GRAFFITI’s database.

If no counterexample can be found by the program,
the conjecture is passed to the user. Conjectures are then
published, and may be picked up and further analysed
by graph theorists. GRAFFITI is one of the few sys-
tems proven to make conjectures which mathematicians
find interesting, and has helped to advance the field.
A substantial number of the conjectures have resulted
in publications: a list may be found at [33.57].
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33.5 Methods and Applications in Computational Scientific Discovery

We now turn to implementations of computational sci-
entific discovery methods. Some of the methods are,
in their present implementation, specific to particular
domains, such as astronomy, chemistry, evolutionary
biology, and psychology. Others are more general. Ta-
ble 33.1 lists some principal examples of computa-

Table 33.1 Principal examples of scientific discovery systems

System Type of discovery Domain Main technique
DENDRAL [33.58] Chemical structures

(topological)
Chemistry/
biochemistry

Partly rule-based, partly brute force
exhaustive
consideration of possible structures

MECHEM [33.59] Chemical reaction pathways Chemistry Systematic search using
defined components to
a defined level of
complexity; rule based/reasoning
framework for controlling search

BACON [33.39] Scientific laws General Rule-based/reasoning
GLAUBER [33.60] Qualitative rules Primarily chemical

reactions, but potentially
general

Rule-based/reasoning

KEKADA [33.40] Scientific processes General Rule-based system that seeks to
explain phenomena by recursively
generating hypotheses; can also
propose experiments

GOLEM [33.61] Predicting three-dimensional
structure of proteins

Biochemistry Statistical classifier, using a machine
learning method to determine the
classification rules

Storrie-Lombardie
et al. [33.62]

Classifying galaxies Astronomy Classifier based on a neural network,
trained using backpropagation

Shamir [33.63] Classifying galaxies Astronomy Classifier based on weighted
proximity to a number of descriptors
determined from test data

Tiffin et al. [33.64] Candidate genes for disease
causation

Biomedical Data mining, combining gene
expression data and biomedical
literature

Warmr [33.65] Potentially carcinogenic chemicals Chemistry Data mining combined with
rule-based reasoning

GRAM [33.66] Co-expressed genes and regulatory
networks

Biomedical Network generation from pairwise
measures of expression,
then incremental node addition

PC
algorithm [33.67]

Causal relationships between
variables

General Network refinement by
successive deletion and
directional interpretation of edges

Guindon and
Gascuel [33.68]

Deducing phylogenies from DNA Evolutionary
biology

Hill-climbing to improve esti-
mated phylogenetic tree, based on
maximum-likelihood methods ap-
plied to DNA data

Frias-Martinez and
Gobet [33.69]

Process-based theories Psychology Evolutionary computation (genetic
programming)

Schmidt and
Lipson [33.70]

Scientific laws General Symbolic regression,
based on genetic programming

Robot
scientist [33.71]

Formulation and experimental
testing of simple hypotheses

Biochemistry Rule-based reasoning
and control of a robot

tional discovery methods. Below, we consider a number
of discovery techniques. This is not intended to be an
exhaustive list of all techniques and applications in
computational scientific discovery. The main aim is to
convey a sense of the range of methods and applica-
tions.
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33.5.1 Massive Systematic Search
Within a Defined Space

The first significant achievement in computational sci-
entific discovery was a system known as heuristic DEN-
DRAL. This began in 1965, with the purpose of auto-
matically finding structures in organic chemistry [33.58,
72]; an important motivation was to provide a test-bed
for the applicability of ideas in the emerging field of
artificial intelligence (AI). Heuristic DENDRAL relies
on the idea of making intensive use of specific knowl-
edge, together with harnessing computational power for
searching. It systematically evaluates all the topologi-
cally distinct arrangements of a set of atoms consistent
with the rules of chemistry. Later versions also consider
three-dimensional geometry, and use data beyond mass
spectrometry. Alongside heuristic DENDRAL is a sister
system called meta-DENDRAL, the purpose of which is
to learn the rules of mass spectroscopy from empirical
data. While heuristic DENDRAL carries out computa-
tional scientific discovery directly, meta-DENDRAL is
a method for developing a tool used in scientific dis-
covery. It is therefore heuristic DENDRAL which is of
more direct interest to the present study. The core of
heuristic DENDRAL is a plan-generate-test algorithm.
The planner devises hypotheses that reject or propose
certain classes of chemical graph. A key feature of the
planner is that it incorporates specialist knowledge to
constrain the set of potential solutions considered by the
generator. The generator was designed to exhaustively
and efficiently generate all the possible chemical struc-
tures, within specified constraints. The testing part of the
algorithm includes a prediction component. This takes
a proposed structure and generates a predicted mass
spectrum: This can be compared to the real data. This
testing of a possible solution by comparing the predicted
data it would generate to the real data involves a prin-
ciple discussed in the consideration of inverse problems
in Sect. 33.2: testing a proposed solution to an inverse
problem by solving the forward problem for this solu-
tion, and comparing the predicted outcome to the real
data.

It should be emphasized that heuristic DENDRAL
is not just a number cruncher: The use of specialized
knowledge to constrain the set of potential solutions
considered – justifying the term heuristic – was very
important to the success of this system. However, num-
ber crunching was also necessary: the capacity to use
computational power to systematically evaluate a set of
potential solutions which is too large a job to undertake
manually.

Another system that makes good use of systematic
search within a defined space is MECHEM [33.59].
This is concerned with finding chemical reaction path-

ways, that is, the steps involved in a chemical reaction.
An example is a possible pathway in the urea–ornithine
cycle, originally proposed by Krebs [33.41].

OrnithineCNH3CCO2! H2OCC6H13N3O3

NH3CC6H13N3O3! ArginineCH2O

ArginineCH2O! UreaCOrnithine

In this proposed pathway, the chemical species has been
conjectured: It was not observed, nor was it part of the
input data. The hypothesis-formation algorithm used in
MECHEM makes use of two complexity parameters,
specifying the number of steps and species to be con-
tained in a hypothesis. Then the hypothesis generator
finds the possible hypotheses within this constraint. If
they are all rejected, then at least one of the complexity
parameters is incremented. The MECHEM system also
has a higher level (rule-based) decision system, allow-
ing it to indicate that new experimental evidence should
be sought, or that the problem be suspended.

33.5.2 Rule-Based Reasoning Systems

The BACON research program [33.20, 38], as with
DENDRAL described above, originated in artificial in-
telligence research. BACON is a series of systems for
discovering empirical rules, in the form of laws, by un-
covering relationships within data sets. It makes use of
rule-based induction, looking initially for simple rela-
tionships between variables, such as an invariant ratio
or product. In what it achieves, BACON has a lot in
common with regression, and can be considered a form
of dimension reduction. Later versions of BACON go
beyond simple regression and dimension reduction by
generating properties representing intrinsic properties
of entities; an example is the refractive index, generated
in the discovery of Snell’s law of refraction.

The GLAUBER discovery system [33.20, 60] uses
a similar rule-based induction process to BACON, but
is concerned with qualitative empirical rules. For ex-
ample, it can discover the law that every acid combines
with every alkali to produce some salt.

The KEKADA system [33.40] is a tool with the pur-
pose of understanding scientific processes; it has been
applied to the urea–ornithine cycle, replicating the steps
undertaken by Krebs [33.41] to formulate his famous
hypothesis describing how the cycle operates. In seek-
ing to replicate how scientists act, it includes a problem
chooser module: This determines which discovery task
to attempt when there are several potential tasks on the
agenda, according to considerations such as how impor-
tant a task is, and how accurately it can be studied. It
allows for a puzzling experimental finding to be added
to the agenda for investigation. A hypothesis genera-
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tor creates hypotheses when faced with a new problem.
There are also rules to propose experiments whose find-
ings could change confidence in existing hypotheses.
The results of experiments feed into the system via hy-
pothesis modifiers and confidence modifiers.

While rule-based reasoning can be considered to be
the main discovery technique in the above systems, it
should be noted that rule-based reasoning is also an im-
portant component of several other scientific discovery
systems. Thus, for example, heuristic DENDRAL, de-
scribed above, has a rule-based system to control which
searches it carries out, while GOLEM, described below,
uses rule-based reasoning to learn classification rules.

33.5.3 Classification, Machine Vision,
and Related Techniques

Computerized processes for classification, alongside
techniques for object/instance recognition, including
machine vision methods, are becoming increasingly
important. It is therefore not surprising that such sys-
tems have found applications in computational scien-
tific discovery. The GOLEM system has been shown
to successfully produce hypotheses about protein struc-
ture [33.61]. It uses machine learning to determine
rules for predicting the structure. The basic algorithm
takes a random sample of pairs of example residues,
taken from all the proteins in the system, and computes
common properties. These properties are then made
into a rule. GOLEM therefore makes use of rule-based
techniques, within the envelope of what is in effect
a classification system.

In astronomy, data sets may include image data, and
computationalmethods can be applied to problems such
as the identification and classification of astronomical
objects. Storrie-Lombardie et al. [33.62] use a neural
network to classify galaxies into five types, based on
13 variables measured by machine, using a backprop-
agation algorithm to train the network. Shamir [33.63]
describes the automatic classification of galaxies using
a method which first converts each image to a number of
low-level descriptors, and then uses discriminant anal-
ysis to find the descriptors which are most informative.
A weighted distance between two feature vectors can
then be computed; the predicted class of a test image
is given by the class of the training image that has the
smallest weighted distance to it. A similar approach has
been applied to the classification of structures in biolog-
ical images [33.73].

33.5.4 Data Mining

Methods used for finding patterns from large amounts
of data, sometimes from disparate sources, have been

termed data mining [33.74, 75]. Scientific literature can
be a useful source of such data [33.76]. For exam-
ple, candidate genes for causation of disease can be
determined from computational discovery of impor-
tant statistical associations, using literature databases
together with protein function [33.77] or gene expres-
sion [33.64] data. Computational data-mining tech-
niques have also been used, in combination with rule-
based methods, to identify candidate carcinogenic com-
pounds, using a database of carcinogenetic tests of
compounds [33.65] (Fig. 33.1). A deep commonality
between machine learning (and classification) meth-
ods on the one hand and data mining techniques on
the other is that both involve finding statistical asso-
ciations in data. In machine learning, the emphasis
tends to be on the techniques for finding associations
within a given set of data, while data mining is often
more concerned with techniques for extracting useful
data from diverse or technically challenging sources.
Machine-learning and data-mining approaches can be
used together [33.78].

33.5.5 Finding Networks

Sometimes a set of entities interact together, in a way
that governs some process. This is termed a network.
An example is a gene network, that is, a set of genes
and proteins that interact to govern a biological pro-
cess [33.79]. Gene networks can be discovered through
a computational process that combines different sources
of evidence about interactions between genes and regu-
lator proteins [33.66].

Finding networks frequently involves the use of
optimization methods, to find a set of hypothesized
interactions that maximizes some objective function,
based on statistical measures of the strength of these
interactions. The objective function can include a com-
plexity penalty term, aimed at preventing overfitting
and ensuring network sparseness [33.80]. Computa-
tional implementation of exhaustive search, clustering,
or an optimization method which moves individual
nodes to increase connectivity, can find networks of
interacting molecules [33.81]. The structure and pa-
rameters of ecological networks, denoting how species
interact in an ecosystem, can be estimated using com-
putational methods based on an analysis of biological
flows from prey to predator species [33.82, 83]. Combi-
natorial optimization techniques can be used to find the
most important members of a social network [33.84].

It is often important to characterize probabilistic de-
pendencies between variables in a network, and, where
feasible, to seek evidence for causality. Probabilistic de-
pendencies can be represented in a form of directed
acyclic graph (i. e., where any relationship between two
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Describe compounds using relations and attributes

Warmr

Prune

2/3 1/3

Generate
level 1

Generate
level 2

Frequent
patterns

Form probabilistic
rules

Use patterns in
classification

Frequent patterns
from level 1

Prune

Prune

Generate
level 3

Frequent patterns
from level 2

Frequent patterns
from level 3

Fig. 33.1 Data-mining methodology
for the Warmr system. The inputs are
descriptions of compounds. Warmr
goes through successive rounds of
generating new patterns by adding to
existing patterns and pruning patterns
that do not occur frequently. At each
level another logical condition is
added to the pattern. The maximum
level searched is limited by preset
computer resources (after [33.65])

nodes A and B has a direction and there are no cy-
cles) known as a Bayesian network (BN) [33.85]. In
a BN, a node is conditionally independent of its nonde-
scendants given its parents. One of the more successful
computational approaches in finding such networks
involves first connecting all nodes with edges, then
deleting edges between variables that are independent,
or conditionally independent on a subset of the remain-
ing variables [33.67]; another step involves inferring the
direction of the remaining edges from conditional de-
pendencies. See Haughton et al. [33.86] for a review of
computational methods. Such networks can provide ev-
idence for causality [33.87, 88], though this approach
has its critics [33.89].

Closely related to the discovery of networks is the
discovery of ancestral relationships between entities.
This is of particular interest in biology, for the discov-
ery of phylogenetic relationships [33.90]. An important
technique is the computational application of maximum
likelihood methods, which seeks the phylogenetic tree
that maximizes the probability of the observations given
the tree [33.68, 91].

33.5.6 Evolutionary Computation

With the continuing development of faster computers,
it has become possible to evaluate increasingly large

sets of candidate hypotheses, models, or theories for
those which are consistent with available data, and
which are admissible on other grounds such as parsi-
mony and plausibility. How to generate the candidate
hypotheses, models, or theories to be tested remains
a serious challenge. Evolutionary computation is a pro-
cess for searching a large space of potential candidate
solutions by mimicking the Darwinian process of nat-
ural selection. The two main methods of evolutionary
computation are genetic algorithms, a method for find-
ing a set of parameters, and genetic programming,
a method for finding an algorithm, in the form of a com-
puter program. Here, we consider the application of
genetic programming [33.92, 93] to scientific discov-
ery. Genetic programming involves creating an initially
random population of programs. In successive iteration
cycles, a new population is generated by preferential
selection of those individuals which are better with re-
spect to a defined fitness function. In addition, a small
amount of random change is introduced into the new
programs (mutation); this helps the process explore new
regions of the search space. New variants are also cre-
ated by randomly combining two existing members of
the population (crossover).

The development of process-based theories in psy-
chology involves finding plausible psychological theo-
ries, constructed from basic processes, to explain the
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results of psychological experiments. Frias-Martinez
and Gobet [33.69] and Lane et al. [33.94] have applied
genetic programming to this problem. A theory rep-
resentation language allows a psychological theory to
be represented by a computer program, built up from
a set of operators corresponding to elementary psy-
chological processes. Operators specify actions such
as storing items in, or retrieving them from, short-
term memory, and simple logical operations. This set
of operators is based on previous theories in the psy-
chological literature. In the genetic program, the fitness
function measures how well predictions resulting from
a candidate psychological theory fit a data set; it can
also penalize theories that are too complex. Frias Mar-
tinez and Gobet [33.69] and Lane et al. [33.94] have
shown that the technique can be used to generate the-
ories to explain subjects’ behavior in the delayed match
to sample task [33.95], in which subjects must match
a new image to one of two images they have seen previ-
ously. The theories developed using genetic program-
ming generate predictions that fit the empirical data
well. In addition, simple and surprising theories can
be created [33.69]. Figure 33.2, adapted from [33.69],
shows an example of such a theory. Input 1 is the
new image, while input 2 is one of the previous im-
ages. The operators used in the theory are listed in
Table 33.2. This capacity to generate unexpected the-
ories offers the potential for these techniques to provide
new insights into the psychological phenomena under
study.

Schmidt and Lipson [33.70] describe a system for
finding laws embedded in data sets. It uses a technique
known as symbolic regression, and is based on genetic
programming. A key test for a candidate law is that
it should have good predictive ability, based on par-
tial derivatives between pairs of variables. Schmidt and
Lipson [33.70] represent an equation as a computer pro-
gram. An initially random population of equations is
created, and then a genetic programming algorithm is
applied.

33.5.7 Automation of Scientific Experiments

A great deal of scientific experimentation involves
labor-intensive cycles of setting up experiments, and
collecting and analyzing data. The robot scien-
tist [33.71, 96] automates this process, with the automa-
tion controlled by a computer algorithm. It iteratively
collects and analyzes data and generates hypotheses,

progn2

compare12progn2

putSTMputSTM

I2I1

Right or left

Fig. 33.2 Example of a theory generated by genetic pro-
gramming. According to this theory, the delayed match to
sample task is accomplished by comparing one of the new
images to the original image; the second new image is not
used (after [33.69])

Table 33.2 Operators used in the theory shown in Fig. 33.2

Operator Description
Progn2 Function: executes two inputs sequentially

Input: Input1, Input2
Output: the output produced by Input2

PutSTM Function: writes the input into short term
memory (STM)
Input: Input1
Output: the element written in STM (Input 1)

Compare12 Function: compares positions 1 and 2 of STM
and returns empty (NIL) if they are not equal
or the element if they are equal
Input: none
Output: NIL or the element being compared

determined directly from data, for applications such
as establishing which genes are involved in encoding
enzymes. Some previous scientific discovery methods
have incorporated in their logic the capacity to propose
experiments [33.40, 59], but the robot scientist is prob-
ably the first practical application of a fully automated
robotic system in which real world, rather than com-
putational, experiments are formulated, executed, and
analyzed.

Other automated systems, while arguably not as
complete as the robot scientist, have been developed
for the automation of the collection and analysis of data
in hostile environments [33.97]. This applies in areas
such as studies of underwater environments [33.98] and
space exploration [33.99].
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33.6 Discussion

The roots, nature, and psychology of scientific discov-
ery (Sect. 33.1–33.3) provide a context for understand-
ing the potential application of computational discovery
systems, and their limitations. Section 33.4 has de-
scribed examples of computational discovery systems
in mathematics; these have characteristics, such as the
use of logic, and of searching through large numbers of
cases to find possible patterns, in common with scien-
tific discovery systems.

The survey of scientific discovery methods in
Sect. 33.5 has shown that computers can do scientific
discovery, in the form of characterizing phenomena and
generating scientific explanations. Yet the wholesale re-
placement of human scientists by computers is not on
the horizon. Quite simply, computers are better suited
to some aspects of the scientific discovery process than
others.

What computers do particularly well is number
crunching: carrying out large numbers of calculations
and data operations, with great accuracy and at speed
which exceeds human capability by several orders of
magnitude. It follows that those areas where compu-
tational discovery methods have been most successful
tend to be those for which number crunching can most
readily be applied to discovery processes. The first
significant discovery system, heuristic DENDRAL, il-
lustrates this. The discovery of chemical topologies,
and structures, involves consideration of a potentially
enormous range of candidate solutions. Computational
brute force enables a systematic search to be carried
out, albeit within a limited parameter range. Rule-based
methods for making the search methods efficient, and
the facility to use specific knowledge to constrain the
search, are important, but it is the number-crunching
capacity of computers that made this approach feasi-
ble, even with the available computing power of the
mid-1960s, when the system was first proposed. The
later MECHEM system for finding chemical pathways
similarly depends on number crunching to carry out
a systematic search of possible pathways. This is not
to suggest that humans use such forms of systematic
search. As Giza [33.100] has argued, computational
scientific discovery systems can proceed in a radically
different manner from noncomputational methods, and
employ criteria for choosing candidate discoveries that
are different from those employed by human scientists.

The systems that are primarily rule-based,
such as BACON [33.20], GLAUBER [33.60] and
KEKADA [33.40], are those that come closest to
attempting to replicate how humans carry out scientific
discovery, at least to the extent that humans use induc-
tive rules. It has been argued that this approach is not

successful, in that these methods have not discovered
any new and important rules, generalizations, or laws:
See Gillies [33.30] for a discussion of this claim. This
does not detract from the possible use of such systems
to shed light on understanding an important part of the
basis for how humans make scientific discoveries. It
does, however, suggest that systems that are primarily
rule-based do not constitute the most practically
important tools currently available for computational
scientific discovery.

Classification, machine vision and data-mining
methods provide important computational discovery
tools, which fully utilize a computer’s capability to pro-
cess large amounts of information [33.65, 73]. These
methods essentially involve detecting or recognizing
patterns, which is similar in principle to finding conjec-
tures in mathematics [33.52]. Automatic determination
of network relationships is likely to prove to be increas-
ingly important [33.80], and may benefit from future
advances in statistical modeling and optimization tech-
niques, but human input is required for problems where
a strong degree of judgment and prior knowledge is re-
quired to construct causal relationships [33.89]. In the
specific field of determining phylogenetic relationships,
using established maximum-likelihood methods, com-
putational discovery has been very successful [33.91].

The use of evolutionary computational methods
in scientific discovery is relatively recent, and shows
promise. The application to psychological theories
[33.69] opens up the possibility of automatically dis-
covering useful models involving a sequence of sim-
ple processes. The approach, however, requires human
judgment in specifying the characteristics of operators
used to construct models, in the extraction of data from
published results, and in the interpretation of results.
Automation of experimental procedures will continue
to be important in hostile environments [33.97], and
may find further application for relatively predictable
cycles of hypothesis proposal and testing [33.71].

For computers to be really effective at the kinds of
discovery methods that humans use will require basic
developments in strong artificial intelligence, that is,
computers which can replicate general human capac-
ities. Is such a development likely? Penrose [33.101]
has suggested that human consciousness may be de-
pendent on nonalgorithmic physical processes, and not
representable by a computational algorithm, and that
this poses a serious barrier to strong AI; by way of
example he draws on the way mathematical truth is
discovered, arguing that there is no general algorithm
for determining the truth of a mathematical proposition.
Among the critics of this line of reasoning, however, is
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Dennett [33.102], who suggests that people make use
of reasoning methods that evolved for reasons related
to survival, and that these may happen to work well
for assessing mathematical propositions a high propor-
tion of the time. Another possible barrier to strong AI
is that inference depends on context [33.103, 104]: So
far, humans have proved better than machines in be-
ing able to judge how to make good generalizations.
Gillies [33.30] argues that humans have a political su-
periority to computers because computers are designed
and built by humans in order to carry out human tasks;
it follows that

“if a computer is designed to solve problems a, b,
c,. . . , it is likely to give rise to further problems x,
y, z,. . . which the computer system itself will not
be able to solve, but which will need some human
thinking for their resolution.”

In any event, the development of strong AI does not
appear to be on the immediate horizon. There is no clear
consensus on the prospects for strong AI in the medium
and long-term future.

A recurring theme in this review has been that the
application of computational scientific discovery sys-
tems requires human input – in areas such as judging
putative causal relationships [33.89], judging the cor-
rect context for making generalizations [33.103, 104],

and specifying operators used for constructing evolu-
tionary computational models [33.69]. An important
open question is the extent to which such aspects of
human judgmental skill could eventually be automated,
but there does not seem to be a strong prospect of sub-
stantial automation of this sort in the near future.

The immediate trend will be for more development
of discovery systems oriented to the kind of things
computers do well. This is the case in several modern
applications of AI, where problems are solved using
the computer’s ability to use large quantities of data,
rather than in mimicry of how humans do the same
task. For example,Google translate does not try to con-
struct models of what a sentence means, but instead
scans the internet for data on how each sentence may
be translated. In this way, the problem can be solved
with a computer, but without employing a method that
is human-like. Similarly, it is likely that areas of scien-
tific discovery will be achieved by computers working
in computer-like ways, with humans providing added
value in terms of synthesis or creative insights. This har-
nessing of the complementary qualities of humans and
machines is likely to increase the rate at which scientific
discoveries are made [33.105].

In conclusion, computational scientific discovery
methods are an increasingly important tool in science.
But the role of the human scientist remains, for the fore-
seeable future, essential.
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34. Computer Simulations and Computational Models
in Science

Cyrille Imbert

Computational science and computer simulations
have significantly changed the face of science in
recent times, even though attempts to extend our
computational capacities are by no means new
and computer simulations are more or less ac-
cepted across scientific fields as legitimate ways
of reaching results (Sect. 34.1). Also, a great variety
of computational models and computer simu-
lations can be met across science, in terms of
the types of computers, computations, compu-
tational models, or physical models involved and
they can be used for various types of inquiries
and in different scientific contexts (Sect. 34.2).
For this reason, epistemological analyses of com-
puter simulations are contextual for a great part.
Still, computer simulations raise general ques-
tions regarding how their results are justified, how
computational models are selected, which type of
knowledge is thereby produced (Sect. 34.3), or
how computational accounts of phenomena partly
challenge traditional expectations regarding the
explanation and understanding of natural sys-
tems (Sect. 34.4). Computer simulations also share
various epistemological features with experiments
and thought experiments; hence, the need for
transversal analyses of these activities (Sect. 34.5).
Finally, providing a satisfactory and fruitful defini-
tion of computer simulations turns out to be more
difficult than expected, partly because this notion
is at the crossroads of difficult questions like the
nature of representation and computation or the
success of scientific inquiries (Sect. 34.6). Over-
all, a pointed analysis of computer simulations
in parallel requires developing insights about the
evolving place of human capacities and humans
within (computational) science (Sect. 34.7).
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For several decades, much of science has been com-
putational, that is, scientific activity where computers
play a central and essential role. Still, computational
science is larger than the set of activities resorting to
computer simulations. For example, experimental sci-
ence, from vast experiments in nuclear physics at the
European Organization for Nuclear Research (CERN)
to computational genomics, relies heavily on comput-
ers and computational models for data acquisition and
their treatment, but does not seem to involve computer
simulations proper. In any case, there is a great and
still proliferating variety of types of computer simu-
lations, which are used for different types of inquiries
and in different types of theoretical contexts. For this
reason, one should be careful when describing the phi-
losophy of computer simulations and nonjustified gen-
eralizations should be avoided. At the same time, how
much the development of computer simulations has
been changing science is a legitimate question. Com-

puter simulations raise questions about the traditional
conceptualization of science in terms of experiments,
theories and models, about the ways that usual scien-
tific activities like predicting, theorizing, controlling, or
explaining are carried out with the help of these new
tools and, more generally, how the production of sci-
entific knowledge by human creatures is modified by
computer simulations. Importantly, while the specific
philosophical analysis of computer simulations is re-
cent (even if it was preceded by the development of the
philosophical study of scientific models) and compu-
tational science is a few decades old, the development
of computational tools and mathematical techniques
aimed at bypassing the complexity of problems be-
longs to a much older tradition. This means that claims
about how much computer simulations change science,
and how much a closer attention to computer simula-
tions should change our picture of scientific activity, are
questions to be treated with circumspection.

34.1 Computer Simulations in Perspective

When discussing philosophical and epistemological is-
sues related to computational models and computer
simulations, different chronologies should be kept in
mind. The blossoming of the philosophy of mod-
els and simulations, within the philosophy of science
is something recent (Sect. 34.1.1). The development
of techniques aimed at extending our inferential and
computational powers corresponds to a longer trend,
even if the recent invention of powerful digital ma-
chines has changed the face of computational science
(Sect. 34.1.2). Finally, the acceptation of computer
simulations as legitimate scientific tools across the dif-
ferent fields goes at various paces (Sect. 34.1.3). This
means that, even if computer simulations do change
the face of science, much care is needed when analyz-
ing the aspects of science which are actually changed,
and how we should modify our picture of science
when we adopt a computer simulation-based perspec-
tive (Sect. 34.1.4).

34.1.1 The Recent Philosophy
of Scientific Models
and Computer Simulations

While the use of computer simulations in the empiri-
cal sciences, in particular physics, developed after the
construction of the (ENIAC) computer during World
War II [34.1], and started changing how the empir-
ical sciences were practiced, for decades computer-
related discussions among philosophers were primarily
focused on the development of artificial intelligence
and the analysis of human cognition. Particularly ac-
tive were debates in philosophy of mind regarding
the question of the computational theory of the mind,
that is, whether the mind can be likened to a digital
computer, and in particular to a classical machine em-
ploying rules and symbolic representations [34.2–6].
However, within the mainstream philosophy of science,
continued interest for computational science, compu-
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tational models, and digital simulations of empirical
systems as such did not really start until the early 1990s,
with articles by Humphreys [34.7, 8], Rohrlich [34.9] or
Hartmann [34.10]. (Such a description of the field is
necessarily unfair to earlier works about the use of com-
puter simulations in the empirical sciences. Particular
mention should be given to the works of Bunge [34.11]
or Simon [34.12].) An article by Hughes about the
investigations of the Ising model [34.13], a special is-
sue of Science in Context edited by Sismondo [34.14]
and works by Winsberg [34.15–17], who completed
his Ph. D. in 1999 about computer simulations, also
contributed to the development of this field. Finally,
in 2006, the Models and Simulations Conference took
place, which was the first of what was to become a still
active conference series, which has contributed to mak-
ing the issue of computational science one of the fields
of philosophy of science.

Philosophical works about scientific models, a very
close field, were not significantly older. The impor-
tance of the notion of set-theoretic model had been
emphasized by partisans of the model-theoretic view
of theories in the 1970s, but, if one puts aside works
by pioneers like Black [34.18] or Hesse [34.19], this
did not launch investigations about scientific models
proper. Overall, the intense epistemological study of
models did not start until the 1980s, with in particular
a seminal article by Redhead about scientific models
in physics [34.20]. Members of the Stanford School
also argued against the view that science was unified
and that theories played a dominant role in scien-
tific activities such as the selection and construction
of models [34.21], and conversely emphasized the au-
tonomy of experimental and modeling practices. This
context was appropriate for an independent investiga-
tion about the role of models in science, which bloomed
at the end of the 1990s [34.22] and was further fed
by a renewal of interest for the question of scien-
tific representation [34.23–25]. These investigations of
models paved the way for new studies focused neither
on theories nor on experiments. However, while the dif-
ficulty to explore a model was already acknowledged
in works by Redhead and Cartwright, interest for the
actual modes of its exploration, in particular by com-
puter simulations, was not triggered. Indeed, the focus
remained on the effects of the complexity of the in-
quiry on scientific representations, with studies about
simplifications, approximations, or idealizations (Even
Laymon’s 1990 paper [34.26], in spite on its apparent
focus on computer simulation, mainly deals with the
nature of approximation and what it is to accept or be-
lieve a theory.), or how to articulate the model-theoretic
view of theories and the uses of models and repre-
sentations in actual scientific practices, by taking into

account scientific users, qua intentional cognitive crea-
tures [34.27, 28], and their cognitively constrained ways
to handle models by means of inferences, graphs, pic-
tures or diagrams (Kulvicki [34.29], Giardino Chap. 22,
this volume; Bechtel Chap. 27, this volume). Overall,
in spite of the close connection within scientific prac-
tice between the uses of models and their computational
explorations, the issue of computational models and
computer simulations was not seen clearly as a fruit-
ful field of inquiry of its own, this trend of thought
being explicitly and vividly brought to the fore in
2008 in a deliberately provocative paper by Frigg and
Reiss [34.30].

34.1.2 Numerical Methods
and Computational Science:
An Old Tradition

The second relevant chronology is that of the ad-
vancement in attempts to solve complex mathemati-
cal problems by developing computing machines and
mathematical methods. Importantly, while the develop-
ment of digital computers in the mid-twentieth century
changed the face of scientific computation, humans
did not wait for this decisive breakthrough to extend
their mathematical and computational powers. Further,
as Mahoney wrote it, “the computer is not one thing,
but many different things, and the same holds true of
computing” [34.31], and it is only in the twentieth cen-
tury that different historical strands related to logic,
mathematics, or technologies came together. On the
one hand, early mathematical procedures, like New-
ton’s method to find the roots of real-valued functions,
or Euler’s method to solve ordinary differential equa-
tions, were developed to provide numerical approxi-
mations for problems in numerical analysis. This field
was already important to investigate physical systems
but, with the advent of digital computers, it became
a crucial part of (computational) science. On the other
hand, mechanical calculating tools, such as abacuses
or slide rules, were used from the Antiquity through
the centuries. The invention by Pascal of a device
(the Pascaline) to perform additions and subtractions,
and the conceptualization by Babbage of mechanical
computing systems fed by punched cards, were im-
portant additional steps. Human computers were also
used. For example, in 1758, Clairaut predicted the re-
turn of Halley’s comet, by dividing the computational
work with other colleagues [34.32]. Gaspard de Prony
produced the logarithm and trigonometric tables in
the early nineteenth century by dividing the compu-
tational tasks into elementary operations, which were
carried out by unemployed hairdressers with little ed-
ucation. Human computers were used during World
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War I to compute artillery tables and World War II
to help with the Manhattan project [34.33, 34]. Fi-
nally, mechanical analog computers were developed
for scientific purposes by engineers and scientists like
Thomson or Kelvin, in the late nineteenth century,
Vannevar Bush, between the two World Wars, or En-
rico Fermi, in 1947, and such computers were used
till the 1960s. Finally, even in the digital era, new
technological change can have a large impact. For
decades, access to computational resources was diffi-
cult and only possible in the framework of big projects.
Typically, Schelling’s first simulations of residential
segregation [34.35] were hand made. An important
recent step has been the development of personal com-
puters, which has brought more flexibility and may
have triggered the development of new modeling prac-
tices [34.36].

34.1.3 A More or Less Recent Adoption
Across Scientific Fields

The development of computational science and the use
of computational models and simulation methods vary
from one field to another. Since the 1940s onward,
computer simulations have been used in physics, and
computers were also used in artificial intelligence as
early as the late 1950s. However, some fields have re-
sisted such methods, and still do, as far as commonly
accepted mainstreammethods are concerned. Typically,
the development of computational models and com-
puter simulations in the human and social sciences,
with the possibility of analyzing diachronic interac-
tions between agents (versus static models describing
equilibria) is much more recent. As emphasized ear-
lier, Schelling’s initial dynamic model of segregation
was first run manually in 1969. Attempts to use com-
putational science to predict social and economic be-
havior were globally met with suspicion in the 1960s
and 1970s, all the more since these studies were of-
ten carried out by scholars who did not belong to
well-entrenched traditions in these fields (such as sci-
entists studying complexity, including human behavior,
in institutions like the Santa Fe Institute). Overall,
in economics, computer simulations are still not ac-
cepted [34.37]. Similarly, the development of a specific
(and still somewhat distinct) subfield using computa-
tional methods to analyze social phenomena is recent,
with the edition by Hegselmann et al. of the volume
Modelling and Simulation in the Social Sciences from
the Philosophy of Science Point of View [34.38], the
need felt to create, in 1998, the Journal of Artificial
Societies and Social Simulation and the publication in
2005 of the handbook Simulation for the Social Scien-
tist by Gilbert and Troitzsch [34.39].

34.1.4 Methodological Caveat

These different chronological perspectives call for the
following comments.

First, philosophers should be careful when devel-
oping an epistemology of computational models and
computer simulations. Modeling and simulating prac-
tices have been developed in various epistemic contexts
in scientific fields in which well-entrenched theories
are more or less present and which have different
methodological and scientific norms. Thus, the role of
computer simulations and their epistemological assess-
ment can significantly differ from one case to another,
and bold generalizations should be carefully justified or
avoided. As just mentioned, the use of computer sim-
ulations is central and accepted in fields like climate
science (even if it raises important problems) but is
still regarded with great suspicion in fields like eco-
nomics [34.37, 40].

Second, how much computational models and com-
puter simulations correspond to epistemologically dif-
ferent practices, which should be described in terms
of some computational turn, cannot be assumed, but
should be investigated on a case-by-case basis regarding
all potentially relevant aspects. This can be illustrated
with the question of the tractability of scientific mod-
els. Humphreys, in his 2004 book Extending Ourselves,
proposes the following two principles to analyze sci-
ence: “It is the invention and deployment of tractable
mathematics that drives much progress in the physi-
cal sciences”; and its converse version: “most scien-
tific models are specifically tailored to fit, and hence
are constrained by, the available mathematics” [34.41,
pp. 55–56]. These two principles suggest both a con-
tinuist and discontinuist reading of the development
of science. First, students of science need to assess
which precise aspects of scientific practices have been
changed by the development of computers and whether
these changes should be seen as a scientific revolution,
or simply as an extension of existing modes of rea-
soning [34.42]. In this perspective, questions about the
tractability and complexity of models can no longer be
ignored, and may be crucial to an understanding of how
new branches of modeling and computational practices
can develop and of how the dynamics of science can
be qualitatively different [34.43]. At the same time, sci-
entific practices were also constrained by the available
mathematics before the advent of computers, and new
findings in mathematics already paved the way for the
development of new scientific practices. For example,
Lakatos emphasizes that [34.44, p. 137]

“the greatness of the Newtonian programme comes
partly from the development – by Newtonians of
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classical infinitesimal analysis which was a crucial
precondition for its success.”

From this point of view, a continuist reading is also
required.

Third, the computational perspective may require
partly revising the philosophical treatment of questions
about science, and scientific representation in particular.
Computer simulations are actual activities of investi-
gation of scientific models, and, for this reason, the
tractability and computational constraints that they face
can hardly be ignored when analyzing them. They force
us to adopt an in practice perspective, where what mat-
ters is not the logical content of representations (that
is, the information which agents can access in prin-
ciple, with unlimited resources), but the results and
conclusions which agents can in practice reach with the
inferential resources they have [34.41, §5.5]. By con-
trasts, traditional analyses of scientific models adopt an
in-principle stance: the question of their exploration and
of the tractability of the methods used to explore them
is one question among others, and is implicitly ideal-
ized away when discussing other issues. This implies
surreptitiously smuggling in the unjustified claim that
the distinction between what is possible in principle and
what is possible in practice can be ignored for the inves-
tigation of these other issues, which may sometimes be
controversial.

At the same time, philosophers of science draw
their examples from the scientific literature, which, by

definition, presents successful investigations of models
which must have been found to be, one way or an-
other, tractable enough regarding the inquiries pursued.
In brief, discussions about the scientific models which
are found in scientific practices are ipso facto concern-
ing computationally tractable models, or models having
computationally tractable versions.

How much these remarks imply that existing anal-
yses about scientific models have been discretely
skewed, or on the contrary that the constraints of
tractability have already been taken into account, needs
to be ascertained, and the answer may be different de-
pending on the question investigated. For example, for
decades the question of the relations between fields has
mainly been treated in terms of relations between theo-
ries. While this perspective is in part legitimate, recent
investigations suggest that tractable models may also be
a relevant unit to analyze scientific theoretical, method-
ological or practical transfers between fields [34.41,
§3.3], [34.45, 46]. In any case, when discussing ques-
tions related to scientific representation, explanation, or
confirmation, philosophers of science must watch out
that answers may sometimes differ for the models that
scientists work with daily (and which more and more
require computers to be investigated), and for simple
analytically solvable models, which philosophers more
naturally focus upon, and which may have a specific
scientific status regarding the construction of knowl-
edge and the development of families of models in each
field.

34.2 The Variety of Computer Simulations
and Computational Models

Computer simulations involve the use of computers
to represent and investigate the behavior of physical
systems (Sect. 34.2.1). Beyond this simple character-
ization, various types of computer simulations can be
met in science, each with its specificities, and, it is
important to distinguish them to avoid undue extrap-
olations. Differences can be met at various levels of
description. Computing machines can be digital or ana-
log (Sect. 34.2.2). Digital computers are usually used
to carry out numerical computations (Sect. 34.2.3),
even if all computer simulations do not involve op-
erations on numbers (Sect. 34.2.4). In both cases,
computations may be deterministic or nondeterminis-
tic (Sect. 34.2.5). Finally, various types of mathematical
and physical computational models can be met across
science, such as equation-based models, agent-based
models, coupled models or multiscale models, but, not
all important computational methods or mathematical

frameworks are used to carry out computer simulations
(Sect. 34.2.6).

My purpose in this section is to present and charac-
terize different important types of simulations, which
are used in scientific practice and will regularly be
referred to in the following sections, and to high-
light some specific epistemological questions related to
them.

34.2.1 Working Characterization

In science, computer simulations are based on the use
of computers. A computer is a physical apparatus which
can reliably be used to carry out logical and mathemat-
ical operations. A computer simulation corresponds to
the actual use of a computer to investigate a physical
system S, by computationally generating the descrip-
tion of some of the states of one of the potential
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trajectories of S in the state space of a computational
model of S (working characterization).

This characterization is not meant as a full-blown
definition (Sect. 34.6) but as a synthetic presentation of
important features of computer simulations.

First, it emphasizes that the development of com-
puters is a central step in the recent evolution of science,
which was made possible by steady conceptual and
technical progresses in the twentieth century. It can
therefore be expected that computational aspects are
often, though not necessarily always, central for the
epistemological analysis of computational science and
computer simulations (Sect. 34.3). Second, the work-
ing definition is meant to emphasize that all uses of
computers in science cannot be seen as computer sim-
ulations. Typically, the use of computers to analyze big
data is not considered as a computer simulation since
the dynamics of the target system is not represented.
Third, the characterization remains neutral regarding
the question of whether in science there are simulations
that are not based on the use of computers (what-
ever these could be). It is not incompatible with the
claim that computer simulations are some sort of ex-
perimental activity, even if people willing to endorse
such claims need to explain and justify in which sense
the corresponding uses of computers can be considered
as experimental (Sect. 34.5). Finally, since different
types of computers exist, computer simulations may
correspond to various types of objects. The working
definition emphasizes that, in order to analyze actual
science, the emphasis should be primarily on models
of computations that can have an actual physical re-
alization, and on physical systems that can be used
in practice for scientific purposes – even if investiga-
tions about potential machines, and how some physical
systems could instantiate them, may be relevant for
foundational issues.

I now turn to the description of important types of
computer simulations that have been, or still are, used
in science and that figure in epistemological discussions
about computer simulations.

34.2.2 Analog Simulations
and Their Specificities

Analog computers were important tools for scientific
computing till the late 1960s, during which with hand-
books of analog computation were still being writ-
ten [34.47, 48], and attempts were made in the early
1970s to link analog and digital computers. Analog
simulations and physical analog systems are still occa-
sionally used to investigate physical systems.

An analog computer is a physical machine which
is able to carry out algebraic and integrodifferential

operations upon continuous physical signals. Thus, op-
erations that would be difficult to program on a digital
computer are immediately possible on an analog ma-
chine. The specificity of analog machines is that they
contain physical elements whose dynamics decisively
contribute to the dynamic instantiation of these math-
ematical operations. For a machine to be used as an
analog computer, its physical dynamics must be explic-
itly known and completely under control so that there
is no uncertainty about the operations which are carried
out. While systems like wind tunnels cannot be made to
compute several different dynamics, mechanical analog
computers like the differential analyzer and electrical
analog computers can be used as general-purpose com-
putational tools.

Even if analog computers and analog simulations
are seldom used nowadays, understanding them is epis-
temologically important. For instance, while quantum
computation is an extension of classical digital com-
putation, quantum analog computing, which involves
no binary encoding, may prove useful for the purpose
of the quantum simulation of physical systems [34.49].
Analog computers are considered to be potentially more
powerful than digital machines and to be actually in-
stantiated by physical systems, even if we are unable
to use them to the full extent of their capacities be-
cause of analog noise or the impossibility of precisely
extracting the information they process. The analysis
of analog computability is also important for foun-
dational studies aimed at determining which types of
actual computers devices could be used for the pur-
poses of computer simulations, how much resources we
may need to simulate physical systems or what natu-
ral systems can compute [34.50–52]. For example, the
General Purpose Analog Computer was introduced by
Shannon as a model of the differential analyzer, which
was used from the 1930s to 1960s.

Finally, understanding how analog computers work
is important to understand analog simulations and how
they differ from digital simulations. As is pitifully
emphasized by Arnold [34.53, p. 52], the failure to
distinguish properly between digital computer simula-
tions and analog simulations can be (and has recently
been) a major source of error in the philosophical dis-
cussions of computer simulations. Analog computers
physically instantiate the mathematical dynamics which
they are used to investigate. Therefore, the analog com-
putational model that is analyzed is instantiated both
by the physical computer and by the target system that
is being simulated. Thus, the simulating and simulated
processes share a common structure and are isomor-
phic [34.54], which need not be the case for digital
simulations (Sect. 34.5.3). Importantly, this common
structure is purely mathematical, and involves dimen-
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sionless quantities [34.55, Chap. 8]. While the need to
describe systems in terms of dimensionless quantities
is a general one in the empirical sciences [34.56–58],
and is also crucial for digital simulations, here it is
specifically important to understand the type of reason-
ing involved in analog simulations. Indeed, the physical
description of the simulating and simulated systems
matter only in so far as one needs to justify that they in-
stantiate a common dimensionless dynamical structure.
In brief, such analogical reasoning does not involve
any direct comparison between the physical material
properties of the simulating and simulated systems:
the mathematical structure mediates the comparison. In
other words, even with analog simulations, an analysis
of the similarities of the two systems is irrelevant once
one knows which analog computation is being carried
out by both systems.

34.2.3 Digital Machines, Numerical Physics,
and Types of Equivalence

In digital machines, information is processed discretely,
coded in binary digits (1 or 0), and stored in transistors.
Computations involve the transition between computa-
tional states. These transitions are described in terms
of logical rules between the states. If these rules can
be described in a general form, they may be described
in terms of equations involving variables. Digital com-
puters can have various types of architecture with dif-
ferent computational performances. Traditionally, soft-
ware was written for sequential computation, in which
one instruction is executed at a time. In contrast, modern
supercomputers are designed to solve tasks in parallel,
and parallelism can be supported at different levels of
architecture, which often implies the need to adapt algo-
rithms, if not models, to parallel computation [34.59].

Digital machines can be used to develop different
types of computer simulations. Much computational
science is numerical: binary sequences code for num-
bers and computers carry out numerical operations on
these numbers by processing the binary strings. Since
computers can only devote limited memory to repre-
sent numbers (e.g., with floating-point representation),
numerical science usually involves numerical approxi-
mations. In other words, computer simulations do not
provide exact solutions to equations – even if the notion
of an exact solution is not as straightforward as philoso-
phers usually take it to be [34.60].

Different types of equivalence between compu-
tations, and, by extension, computer simulations,
should be distinguished beyond equivalence at the bit
level [34.61]. Logical and mathematical expressions
and algorithms can be mathematically equivalent when
they refer to, or compute, the same mathematical object

or some of its properties. Because of floating-point rep-
resentation, round-off errors cannot be avoided in simu-
lations. When algorithms result in small cumulative er-
rors, they are stable and two such stable algorithms may
be considered as numerically equivalent – although they
need not be computationally equivalent in terms of their
computational efficiency. Finally, based on the type
of inquiry pursued, wider notions of representational
equivalence can be defined at the computational model
or computer simulation level. Typically, two computa-
tions yielding the same average quantity, or describing
the same topology of a trajectory, may be considered
as equivalent. Overall, this shows that analyses of the
failures and predictive or explanatory successes of com-
puter simulations must often be rooted in the technical
details of computational practices [34.62]. From this
point of view, an important part of computational sci-
ence can be seen as the continuation of the numerical
analysis tradition presented in Sect. 34.1.2.

34.2.4 Non-Numerical Digital Models

A large part of science gives a central role to scientific
theories couched in terms of differential equations re-
lating continuous functions with their derivatives. For
this reason, much of computational science is based
on finite-difference equations aimed at finding ap-
proximate numerical solutions to differential equations.
However this theory- and equation-oriented picture
does not exhaust actual practices in computational sci-
ence. First, computer simulations can be carried out in
the absence of theories – which turns out to be a prob-
lem when it comes to the explanatory value of computer
simulations (Sect. 34.4). Second, even when equation-
based theories exist, computational models are not nec-
essarily completely determined by these theories and by
mathematical results describing how to discretize equa-
tions appropriately (Sect. 34.3.2). Finally, even when
well entrenched, equation-based, theories exist, digital,
but non-numerical, computer simulations can be de-
veloped. This perspective was advocated in the 1980s
by computer scientists like Fredkin, Toffoli, or Mar-
golus. Building on the idea previously expressed by
Feynman, that maybe “nature, at some extremely mi-
croscopic scale, operates exactly like discrete computer
logic” [34.63], they wanted to develop “a less round-
about way to make nature model itself” [34.64, p. 121]
than the use of computers to obtain approximate numer-
ical solutions of equations. The idea was to represent
more directly physical processes by means of phys-
ically minded models, with interactions on a spatial
lattice providing an emulation “of the spatial locality of
physical law” [34.65] and to use exact models obeying
discrete symbolic dynamics to dispense with numer-
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ical approximations. In practice, this resulted in the
renewed development of cellular automata (hereafter
CA) studies and their use for empirical investigations.
A CA involves cells in a specific geometry; each cell
can be in one of a finite set of states, and evolves fol-
lowing a synchronous local update rule based on the
states of the neighboring cells. The field of CA was
pioneered in the 1940s by Ulam’s works on lattice net-
works and von Neumann’s works on self-replicating
automata. It was shown over the decades that such mod-
els, though apparently over-simplistic, can not only be
successfully used in fields as different as the social sci-
ences [34.66] and artificial life [34.67], but also physics,
in which they were shown in the late 1970s and 1980s to
be mesoscopic alternate to Navier–Stokes macroscopic
equations [34.68].

34.2.5 Nondeterministic Simulations

Another important distinction is between determinis-
tic and nondeterministic algorithms. From the onset,
computers were used to execute nondeterministic algo-
rithms, which may behave differently for different runs.

Nondeterministic simulations involve using random
number generators, which can be based on random
signals produced by random physical processes, or
on algorithms producing pseudorandom numbers with
good randomness properties. Overall, the treatment of
randomness in computer simulations is a tricky issue
since generating truly random signals, with no spurious
regularities which may spoil the results by introducing
unwanted patterns, turns out to be difficult.

Monte Carlo methods, also called Monte Carlo
experiments, are a widely used type of nondetermin-
istic simulations. They were central to the Manhattan
project, which led to the production of the first nu-
clear bombs and contributed heavily to the development
of computer simulations. They can be used for vari-
ous purposes such as the calculation of mathematical
quantities like Pi or the assessment of average quan-
tities in statistical physics by appropriately sampling
some interval or region of a state space. These practices
are hard to classify and, depending on the case, seem
to correspond to computational methods, experiments,
or full-blown computer simulations. Metropolis and
Ulam [34.69] is a seminal work, Galison [34.70, 71]
correspond to historical studies, and Humphreys [34.8],
Beisbart and Norton [34.72]) to epistemological
analyses.

34.2.6 Other Types of Computer Simulations

It is difficult to do justice to all the kinds of simu-
lations that are seen in scientific practice. New com-

putational methods are regularly invented, and these
often challenge previous attempts to provide rational
typologies. Further, the features presented in the pre-
vious sections are often mixed in complex ways. For
example, CA-based methods in fluid dynamics, which
were not originally supposed to involve numbers or of-
fer exact computations, were finally turned into lattice
Boltzmann methods, which involve making local av-
erages [34.73]. Here, I shall merely present types of
computer simulations that are widely discussed in the
philosophical literature.

Agent-Based Methods
Agent-based methods involve the microlevel descrip-
tion of agents and their local interactions (in contrast
to global descriptions like balance or equilibrium equa-
tions), and provide tools to analyze the microscopic
generation of phenomena. They are often opposed to
equation-based approaches, but the distinction is not
completely sharp, since equations do not need to de-
scribe global behaviors and, when discretized, often
yield local update rules. Agent-based models and simu-
lations are used across fields to analyze artificial, social,
biological, etc., agents. CA models like the Schelling
model of segregation can be seen as agent-based models
even though most such agent-based also involve num-
bers in the descriptions of local interactions. Because
they rely on microscopic descriptions, agent-based sim-
ulations are often at the core of debates about issues
such as emergence [34.74], explanation [34.75], or
methodological individualism in science [34.76].

Coupled and Multiscale Models
Extremely elaborate computational models, developed
and studied by large numbers of scientists, are in-
creasingly used to investigate complex systems such as
Earth’s atmosphere, be it for the purpose of precise pre-
dictions and weather forecasting or for the analysis of
larger less precise trends of climate studies. While in
fluid dynamics, it is sometimes possible to carry out
direct simulations, where the whole range of spatial
and temporal scales from the dissipation to the integral
scale are represented [34.77, Chap. 9], such methods
are too costly for atmosphere simulations, in which sub-
grid models of turbulence or cloud formation need to be
included (see Edwards [34.78] and Heymann [34.79]
for accessible and clear introductions). Also, different
models sometimes need to be coupled like in the case
of global coupled ocean-atmosphere general circulation
models.

These complex computer simulations raise a num-
ber of epistemological issues. First, in the case of
multiscale or coupled models, the physical and com-
putational compatibility of the different models can be
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a tricky issue, and one must be careful that it does
not create spurious behavior in the computer simulation
(see Winsberg [34.16, 80], Humphreys [34.41, 81] for
more analyses about such models). Second, since there
are various ways of taking into account subgrid phe-
nomena, pluralism in the modeling approaches cannot
be avoided [34.82]. Importantly, the existence of differ-
ent incompatible models need not be seen as a problem,
and scientists can try to learn by comparing their results
or elaborate ensemblemethods to try to deal with uncer-
tainties [34.83]. The development of investigations of
such large-scale phenomena requires collective work,
both within and between research teams. Typically, not
only the interpretation of the models, their justification,
the numerical codes [34.84], but also the standard of
results [34.78, 85] must be shared by members of the
corresponding communities. An important but still un-
explored question is howmuch the collective dimension
of these activities influences epistemologically how
they are carried out. From this point of view, the epis-
temology and philosophy of computational models and
computer simulations can be seen as another chapter of
the analysis of the collective dimension of science.

Computational Methods
versus Computer Simulations

Not all major families of mathematical and compu-
tational methods are used to produce computational
models or computer simulations of empirical systems.
Evolutionary algorithms are used for the investigation
of artificial worlds, or of foundational issues about evo-
lution, and they have important applications in the field
of optimization methods. Artificial neural networks are
used in the field of machine learning and data learn-
ing and to predict the behavior of physical systems
out of large databases. Bayesian networks are helpful
to model knowledge, develop reasoning methods, or
to treat data. Overall, all these computational methods
have clear practical applications. They can be used for
scientific tasks, sometimes concurrently with computer
simulations in the case of predictive tasks. However, no
genuine representations of physical systems and their
dynamics seem to be attached to their use – even if, as
the development of CA-based simulations has shown,
novel formal settings may eventually have unexpected
applications for modeling purposes in the empirical
sciences.

34.3 Epistemology of Computational Models
and Computer Simulations

Epistemologists analyze whether and howmuch knowl-
edge claims are justified. In this case, it requires analyz-
ing the specific roles played by computer simulations
in the production and generation of items of knowl-
edge (Sect. 34.3.1). Different levels of description and
analysis can be relevant when investigating the epis-
temology of computer simulations, in addition to that
of the computational model and how it is theoretically
or experimentally justified (Sect. 34.3.2). Importantly,
how computer simulations are justified, and why spe-
cific computational models are used by scientists, are
overlapping (though not identical) questions. For ex-
ample, field- or inquiry-specific explanations of the
use of computer simulations fail to account for cross-
disciplinary recurrences in the use of computational
models, which may have more general mathematical
or computational explanations (Sect. 34.3.3). Overall,
computer simulations are one of the main sources of
knowledge and data in contemporary science, even if
the sense in which they produce new data and knowl-
edge is often misunderstood (Sect. 34.3.4).

34.3.1 Computer Simulations
and Their Scientific Roles

Science, as an institution, aims to reach epistemic goals
of various sorts, both propositional (like reaching some
epistemic states, typically justified true beliefs) and
practical (like being able to reliably manipulate some
physical systems). Epistemologically analyzing science
requires the study of the reliability and efficiency of sci-
entific procedures to reach these goals. Accordingly, to
develop the epistemology of computer simulations, one
first needs to single out their different scientific goals.

Even if they also serve pedagogical or expository
purposes, most computer simulations can be described
as activities aimed to develop knowledge. There ex-
ist various types of scientific knowledge (see Humph-
reys [34.81] for an overview), which raise specific prob-
lems, and, conversely, various types of knowledge can
be produced by computer simulations.

Typically, items of knowledge may differ in how
they are justified (theoretically, experimentally, induc-
tively, etc.), and whether they were reached by a priori
or a posteriori investigations. They may also differ
regarding the activities needed to produce them and
the type of information that they provide. For exam-
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ple, predictive or explanatory knowledge, or knowledge
about how systems behave and can be controlled are
of different types. Some scientific roles can be general
(predicting) and others are very specific. For example,
computer simulations are used to develop evidential
standards in physics by simulating detection procedures
and identifying patterns of data (signatures) [34.86].
Overall, developing a coherent and fine-grained episte-
mology of computer simulations would require drawing
a map of their various roles to see how much their epis-
temological features are general or contextual and role
specific.

Let us now be more specific. In the twentieth cen-
tury, the role of experiments, as sources of empirical
evidence about nature and guides in the selection of
theories, was repeatedly, if not exclusively, empha-
sized by empiricist philosophers of science. Conversely,
activities which did not provide such evidence were
mainly seen as serving theoretical purposes. Typically,
models were first seen as being primarily of a theoret-
ical nature [34.20, §5]. In this perspective, Models as
Mediators, in 1999, represented a significant advance.
Morgan and Morrison, by presenting a more precise
“account of what [models] do” in science [34.20, p. 18],
offered a more nuanced epistemological picture, where
models were shown to have functions as diverse as
investigating theories and the world, intervening, help-
ing for measurement purposes, etc. Since an important
role of computer simulations is to demonstrate the
content of models [34.13] or unfold well-defined sce-
narios [34.87], computer simulations can be expected
to have, or contribute to, similar roles to those described
by Morgan and Morrison and to potentially share these
roles with other demonstrative activities like argumen-
tation or mental simulations.

Importantly, such a description of science, where
items or activities as diverse as theories, models, com-
puter simulations, thought experiments, or experiments
may serve partly overlapping purposes, remains com-
patible with empiricism provided that experiments are
seen as, in the architecture of knowledge, the only ul-
timate source of primary evidence about the nature of
physical systems. It is also compatible with the claim
that secondary, derived sources of knowledge, like the-
ories, models, or simulations, can sometimes be more
reliable than experiments to provide information about
how systems behave, in particular in cases in which ex-
perimental evidence is hard to come by (Sect. 34.5.4).

Overall, it is unlikely that there is such a thing as
the epistemology of computational models and simu-
lations. If the various roles of computer simulations
are specific cases of general functions, like demon-
strating or unfolding, there may be such a thing as
a general, but incomplete, epistemology of computer

simulations, corresponding to the general epistemolog-
ical problems raised by such general functions. In any
case, to complete the picture, one needs to go deeper
into the analysis of the roles that computer simulations
serve within scientific practices and how they fulfill
these roles in various types of contexts. This program
is not incompatible with the philosophical perspectives
of some of the advocates of the so-called practice turn
in science [34.88], and in particular of authors who put
contextually described scientific activities at the core of
their description of science [34.89, 90].

34.3.2 Aspects of the Epistemological
Analysis of Computer Simulations

A Multilayered Epistemology
Epistemology analyzes the types of justifications that
we have for entertaining knowledge claims, and inves-
tigates how and why we epistemically fail or succeed.
In the case of computer simulations, failure may take
place at various levels, from the material implementa-
tion of the computation to the physical model that is at
the core of the inquiry, and at all the intermediate se-
mantic levels of interpretation that are needed to use
computers for the investigation of models (see Barber-
ousse et al. [34.91] for a general description and Grim
et al. [34.92] for a discussion of some specific failures
found in computer simulations). Overall, the epistemol-
ogy of computer simulations involves discussing the
reasons that we have for claiming:

1. The computers that we use work correctly.
2. The programs or algorithms do what we want them

to do.
3. The computer simulations, qua physical represen-

tations, correctly depict what we want them to
represent.

Steps 1 and 2 correspond to questions related to
engineering and computer science. I shall not discuss
these at length but will simply illustrate them to show
how serious they are in this context. For example,
at the architectural level, parallel computing requires
coordination the different cores of computers so that
all potential write-conflicts in the memory are solved.
At the program level, when trying to solve a prob-
lem P with an unknown solution S, scientists need to
prove the correctness of the algorithms they use and
to verify that the programs written do indeed execute
these algorithms. Many such verification problems are
undecidable, which means that no general versatile pro-
cedure can be found to make this verification for all
cases. However, this does not imply that proofs of the
correctness of the algorithm cannot sometimes be pro-
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vided for specific problems. Overall, scientists in this
field still actively investigate and debate how much al-
gorithms can be verified (see Fetzer [34.93], Asperti
et al. [34.94] and Oberkampf and Roy [34.95] for dis-
cussions). At a higher mathematical level, as we saw
earlier, many computational methods provide numeri-
cal methods for approximately solving problems, and
the stability of algorithms can be a source of concern,
which means that analyzing computational errors is part
of the epistemology of simulations [34.62].

Finally, one needs to assess whether the approxi-
mations in the solution, as well as the representational
inadequacies of the model, are acceptable regarding
the physical inquiry pursued. At this interpretational
level, because of the variety of theoretical contexts
in which computer simulations are carried out, there
is no single and general way in which the reliabil-
ity of the results they provide can be analyzed. The
credentials of computer simulations will be different
depending on whether a sound theory is being used,
how much uncertainty there is about the initial condi-
tions, how complex the target system is, whether drastic
simplification assumptions have been made etc. Also,
depending on what the simulation is used for, and what
type of knowledge it is meant to provide, the justi-
ficatory requirements will be more or less stringent.
It takes different arguments to justify that based on
a simulation one knows how to represent, control, pre-
dict, explain, or understand the behavior of the system
(see Sect. 34.4 for a discussion of the last two cases,
and [34.96] for similar analyses). Similarly, precise
quantitative spatial-temporal predictions are in need
of much pointed justifications than computer simula-
tions aimed at studying average quantities or qualitative
behaviors of systems. Importantly, this discussion of
the reliability of computer simulations overlaps sig-
nificantly with that of the epistemology of physical
models, and with how the results issued from approx-
imate, idealized, coarse grained, or simply partly false
models can still be scientifically valuable (see Por-
tides Chap. 2, this volume; Frigg and Nguyen Chap. 3,
this volume). However, in the present context, it is im-
portant to emphasize that, even if the content of models
obviously constrains the reliability of the information
that can be extracted from them, models do not by
themselves produce results – only procedures which in-
vestigate them do. In this perspective, the epistemology
of computer simulations is a reminder that reliabil-
ity primarily characterizes practices or activities that
produce knowledge and that models, taken alone, are
not such practices. In other words, epistemological dis-
cussions about the reliability of models as knowledge
providers make sense only by explicitly reintroducing
such practices or when it can be assumed that reliably

extracting all their content is possible, an assumption
that, in the framework of computational science, is of-
ten not plausible.

From Theoretical to Empirical Justifications
Computer simulations have often been viewed as ways
of exploring theories by hypothetico-deductive meth-
ods. This characterization captures a part of the truth,
since existing theories are often a starting point for the
construction of computer simulations. In simple cases,
computer simulations can mainly be determined by the-
ories, like in the case of direct simulations [34.77] in
fluid dynamics, which derive from Navier–Stokes equa-
tions, and in which all relevant scales are simulated and
no turbulence model is involved.

However, taken as a general description, this view
misrepresents how computer simulations are often pro-
duced and their validity justified. As emphasized by
Lenhard [34.97], even when theoretical equations are
in the background, computer simulations often result
from some cooperation between theory and experi-
ments. For example, in 1955 when Norman Phillips
managed to reproduce atmospheric wind and pressure
relations with a six-equation model, which arrange-
ment of equations could lead to an adequate model of
the global atmosphere was uncertain and the need for
experimental validation was primordial to confirm his
speculative modeling assumptions. Overall, the role of
empirical inputs in simulation studies is usually cru-
cial to develop phenomenological modules of models,
parameterize simulations, or investigate their reliability
based on their empirical successes [34.15, 17].

At the same time, since computer simulations are
used precisely in cases where empirical data are absent,
sparse, or unreliable [34.16], sufficient data to build up
and empirically validate a computational model may
be missing. In brief, in some cases, computer simula-
tions can be sufficiently constrained neither by theories
nor by data and are somewhat autonomous. From an
epistemological point of view, this potential situation
of theoretical and experimental under-determination is
not something to be hailed, since it undermines the sci-
entific value of their results (see also Sect. 34.4.2).

The Epistemology of Complex Systems
Because computer simulations are generally used to
analyze complex systems, their epistemology partly
overlaps that of complex systems and their modeling.
It involves the analysis of simplification procedures
at the representational or demonstration levels and of
how various theoretical or experimental justifications
are often used concomitantly. Overall, when it comes
to investigating complex systems, obtaining reliable
knowledge is difficult. Thus, any trick or procedure that
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works is welcome and the result is often what Winsberg
has labeled a motley epistemology [34.16].

At the same time, sweeping generalizations should
be avoided. Philosophers studying computer simula-
tions have too often cashed in their epistemology in
terms of that of the most complex cases, such as com-
puter simulations in climate science, which are charac-
terized by extreme uncertainties and the complexity of
their dynamics. But computer simulations are used to
investigate systems that have various types and degrees
of complexity, and whose investigation meets different
sorts of difficulties. It is completely legitimate, and po-
litically important, that philosophers epistemologically
analyze computational models and computer simula-
tions in climate science (see, e.g., [34.98] for an early
influential article). However, to obtain a finer grained
and more disentangled picture of the epistemology of
computer simulations, and not to put everything in the
same boat, a more analytic methodology should be ap-
plied. More specifically, one should first analyze how
the results are justified in more simple cases of com-
puter simulations where specific scientific difficulties
are met independently. In a second step, it can be an-
alyzed how adding up scientific difficulties changes
justificatory strategies and when exactly more holistic
epistemological analyses are appropriate [34.99]. In this
perspective, much remains to be done.

Epistemic Opacity
Epistemic opacity is present in computer simulations to
various degrees and has various origins.

Models are often said to be white, gray, or black
boxes depending on how they represent their target sys-
tem. White-box models describe the fundamental laws
or causal mechanisms of systems whereas black-box
models simply correctly connect different aspects of
their behavior. This distinction partly overlaps with that
of theoretical and phenomenological models (see Bar-
berousse and Imbert [34.100, §3.2] for sharper distinc-
tions about these last notions). Computer simulations
can be based on all types of such models, which may
affect the understanding that they yield [34.101] (see
also Sect. 34.4).

Opacity can also be present at the computational
model or computational process level. Global epistemic
opacity may arise from the complexity of the computa-
tion when it is not possible for an agent to inspect and
verify all steps of the process [34.41, §3.7], [34.102]. It
is in part contingent since it is rooted in our limitations
as epistemic creatures, but it may be in part intrinsic in
the sense that the complexity of the computationmay be
irreducible (see Sect. 34.4.3). Importantly, it is compati-
ble with local epistemic transparency, when any step of
the process can be inspected by a human mind – which

may prove useful in cases in which problems can be
located by testing parts of the process and applying a di-
chotomy procedure. Local transparency requires that all
details of the physical models and computational algo-
rithms used be transparent, which may be more or less
the case. Usually, computer simulationsmake heavy use
of mathematical resource libraries such as code lines,
routines, functions, algorithms, etc. In applied science,
more or less opaque computational software can be
proposed to simulate various types of systems, for ex-
ample, in computational fluid dynamics [34.91, p. 567].
This raises epistemological problems since black-box
software is built on physical models with limited do-
mains of physical validity, and results will usually be
returned even when users unknowingly apply such soft-
ware outside these domains of validity.

Another form of epistemic opacity for individual
scientists arises from the fact that investigating natu-
ral systems by computer simulations may require dif-
ferent types of experts, both from the empirical and
mathematical sciences. As a result, no single scien-
tist has a thorough understanding of all the details of
the computational model and computational dynam-
ics. Such type of opacity is not specific to computer
simulations, since it is a consequence of the epis-
temic dependence between scientists within collabora-
tions [34.103].

34.3.3 Selecting Computational Models
and Practices

How do individual scientists decide to pursue specific
theories, and, in particular, what types of sociological,
psychological, or epistemic factors play a role in such
processes? Conversely, do selected theories share spe-
cific features or properties? Mutatis mutandis, similar
questions can be asked about other elements of science,
such as research programs, experiments, models, prac-
tices, and, in the present case, computational models
and computer simulations. Philosophers have mainly
analyzed these questions by focusing on the explicit
scientific justifications of individual practices, and the
content of the representations involved. As we shall see,
this is only a part of the story.

Explanation of Uses
versus Justification of Uses

A helpful distinction is that between the explanation
(and context) of use of a practice and its scientific jus-
tification within a scientific inquiry aimed at reaching
specific purposes. To use words close to Reichen-
bach’s [34.104, pp. 36–37], while the latter deals with
the objective relation that scientists consciously try to
establish between these given <activities> (simula-
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tions, experiments, etc.,) and the conclusions that are
obtained from them, other aspects of material, computa-
tional, cognitive, or social natures, potentially unknown
to the scientific agents involved in the inquiry, may play
a role to explain that these activities were actually car-
ried out. For example, in the case of the Millennium
Run (a costly simulation in astrophysics), the results
were made publicly accessible. Scientists who were not
involved in the process leading to the decision to carry
out this simulation could try to make the best of it since
it was already there and milk it as much as possible
for different purposes. Or, some scientists may decide
to study biological entities like proteins or membranes
by means of Monte Carlo simulations, because mem-
bers of their teams happen to be familiar with these
tools. However, once they have decided to do so, they
must still justify how their computer simulations sup-
port their conclusions.

In the perspective of explaining actual scientific
uses, one also needs to distinguish between explana-
tions aimed to account for specific uses (e.g., Why was
the millennium simulation carried out in 2005 by the
Virgo consortium?) and those aimed to explain more
general patterns, corresponding to the use of practices
of a given type, within or across several fields of science
(e.g., Why are Monte Carlo simulations regularly used
in this area of physics?, Why are they used regularly
in science?). Importantly, since different instantiations
of a pattern may have different explanations, the ag-
gregated frequency of a scientific practice, like that of
the use of the Ising model across science, may be the
combined effect of general transversal factors and of
inquiry- or field-specific features [34.105].

Field-Specific versus Cross-Disciplinary
Explanations

A tempting move has often been to answer that sci-
entific choices are primarily, if not completely, theory
driven – and are therefore field specific. After all, theo-
ries guide scientists in their predictive and explanatory
activities by fueling the content of their representa-
tions of natural systems. However, a reason to look for
additional elements of explanations is that the spec-
trum of actual modeling and computational practices is
smaller than our scientific knowledge and goals would
allow [34.21, 41, 106]. For example, why do the har-
monic oscillator, the Ising model, the Lotka–Volterra
model, Monte Carlo simulations, etc., play such promi-
nent roles throughout science?

As highlighted by Barberousse and Imbert
[34.105], a variety of significantly different expla-
nations of the greater or lesser use of models of
a given type, and of scientific practices, can be found,
beyond the straightforward suggestion that there are

regularities in nature, which are mirrored by modeling
and computational practices.

Local Factors
The explanation may be rooted in the specificities of
modeling and computational activities. In particular, if
explaining is better achieved by limiting the number
of (types) of (computational) models [34.21, pp. 144–
5], or explanatory argument patterns [34.107], it is
no surprise that often the same computational mod-
els and practices are met. Also, scientists may feel
the need to avoid dispersion of their efforts in cases
when research programs need to be pursued for a long
time before good results can be reached and it is
more profitable to exploit a local mine than to go dig-
ging somewhere else [34.106, Chaps. 4 and 5], [34.21,
pp. 143–4]. More generally, the recurrence of compu-
tational practices may be viewed as another example of
the benefits of adopting scientific standards [34.108].
One may also, in the Kuhnian tradition, put the em-
phasis on the education of scientists, who are taught
to see new problems through the lens of specific prob-
lems or exemplars [34.106, p. 189], and emphasize that
this education has a massive influence on the lineages
of models or practices which are later developed. This
story can have a more or less contingentist version, de-
pending on why the original models or practices at the
lineage seeds are adopted in the first place, and why
these uses are perpetuated and scientists do not emanci-
pate from them after schooling.

Theories may also play an indirect role in the se-
lection of computational models. For example, models
naturally couched in the standard formalism of a theory
may be easier to use, even if the same physics can also
be put to work by using other models. Barberousse and
Imbert [34.100] analyze the case of lattice methods for
fluid simulations in depth, which, though significantly
different from approaches based on Navier–Stokes dif-
ferential equations, can be used for the same purposes,
even if this requires spending time learning and har-
nessing new methods and formalisms, which physicists
may be reluctant to do.

Computational
and Mathematical Explanations

As seen in Sect. 34.1.4, Humphreys [34.41, 81], sug-
gests that most scientific models are tailored to fit the
available mathematics, hence the importance in sci-
entific practice of tractable models (see Humphreys’s
notion of computational template [34.41, §3.4], and
further analyses in [34.45]). Even if one grants the
potential importance of such mathematical and compu-
tational factors, cashing out in detail the corresponding
explanation is not straightforward. Barberousse and
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Imbert [34.105] emphasize that there are various com-
putational explanations. The objective computational
landscape (how intrinsically difficult problems are, how
frequent easy problems are) probably influences how
science develops, even if knowing exactly what it looks
like and how it constrains scientific activity is of the ut-
most difficulty. However, the epistemic computational
landscape (scientists’ beliefs about the objective com-
putational landscape) may just be as important since it
frames modeling choices made by scientists.

Other potentially influential factors may also in-
clude how difficult it is to explore the objective land-
scape (and the corresponding beliefs regarding the
easiness of this exploration), how much scientists, who
try to avoid failure, are prone to resort to tractable
models, or which techniques are used to select such
tractable models (since some specific techniques, like
polynomial approximations, may repeatedly select the
same models within the pool of tractable models). Fi-
nally, modeling conservativeness may also stem from
the computational and result pressure experienced by
scientists, that is, how scarce computational resources
are in their scientific environment and how much scien-
tists need to publish results regularly.

Universality, Minimality,
and Multiple Realizability

Other explanations may be offered in terms of how
weak the hypotheses are to satisfy a model or a dis-
tribution. For example, the Poisson distribution is often
met because various types of stochastic processes sat-
isfy the few conditions that are required to derive
it [34.41, pp. 88–89]. Relationships between models
and how models approximate to each other may also
be important. Typically, the Gaussian distribution is
the limit of various other distributions (see however,
Lyon [34.109] for a more refined analysis and the claim
that in Nature Gaussian distributions are common, but
not pervasive). More generally, models that capture uni-
versal features of physical systems and are rooted in
basic properties, such as their topology, can be ex-
pected to be met more often. Therefore, for reasons
having to do with the mathematics of coarse-grain de-
scriptions, and the explanation of multiple realizability,
many systems fall into the same class and have similar
descriptions [34.110–112] when minimal, macro-level,
or simply qualitative models are built and explored.

Importantly, all the above explanations are not ex-
clusive. Typically, the emphasis on tractability may be
a general one in the sense that models always need to
be tractable if they are to be used by scientists.

34.3.4 The Production of ‘New’ Knowledge:
In What Sense?

Be Careful of Red Herrings!
It is commonly agreed that computer simulations
produce new knowledge, new data, new results, or
new information about physical systems (Humphreys
[34.41], Winsberg [34.113, pp. 578–579], Norton and
Suppe [34.114, p. 88], Barberousse et al. [34.91,
p. 557], Beisbart [34.115]). This can be considered as
a factual statement, since contemporary science, which
is considered to produce knowledge, relies more and
more heavily on computer simulations.

At the same time, the notion of knowledge should
not be a red herring. It is commonly considered that
experiments, inferences, thought experiments, repre-
sentations, or models can bring knowledge, which then
generates the puzzle that widely different activities have
similar powers. The puzzle may be seen as somewhat
artificial since knowledge, especially scientific, can be
of different types [34.81], and when new knowledge is
produced, the novelty can also be of different types. In
this perspective, it may be that what is produced by
each of these activities falls under a general identical
concept but is significantly different. From this point
of view, the real question concerning computer simu-
lations is not whether they produce knowledge, but in
which particular sense they produce knowledge, what
kind of knowledge they produce, what is specific to
the knowledge produced by computer simulations, and
what type of novelty is involved.

A comparison can be made with thought experi-
ments, for which the question of how they can produce
new knowledge has also been debated. Both activi-
ties correspond to the exploration of virtual situations,
and do not involve direct interactions with the sys-
tems investigated. From this point of view, computer
simulations and thought experiments can be seen as
platonic investigation of ideas, with this difference
that, for computer simulations, the mind is assisted by
computers [34.41, p. 115–116]. Overall, computer sim-
ulations have been claimed to sometimes play the same
role of unfolding as thought experiments [34.87], have
sometimes been equated with some types of thought
experiments [34.116], and it has been suggested that
computational modeling might bring the end of thought
experiments [34.117]. Importantly, even if thought ex-
periments are perhaps less used in science than for-
merly, this latter claim seems implausible. The reason
is that there are different kinds of thought experiments,
and many reveal conceptual possibilities that have lit-
tle to do with computational explorations. Arguably, the
possibility to set up computer simulations would have
added nothing to famous thought experiments such as
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those made by Galileo, Einstein, Podolsky and Rosen,
or Schrödinger. (I am grateful to Paul Humphreys for
emphasizing this point.) In any case, a satisfactory
account of these activities should account for both
similarities and differences in how they work epistemo-
logically and how they are used.

In any case, the question of how and what we
can learn about reality by using these methods arises,
even if the sources of puzzlement do not exactly touch
the same points in each case. Indeed, how mental
thought experiments work is more opaque than how
computer simulations do. For this reason, their ratio-
nal reconstruction as logical arguments [34.118, p. 354]
is more controversial than that of computer simula-
tions [34.115], and it is less clear whether their posi-
tive or negative epistemic credentials are those of the
corresponding reconstructed argument [34.119]. (For
example, if certain thought experiments are reliable
because mental reasoning capacities about physical sit-
uations have been molded by evolution, development,
or daily experiments, it is not clear that their logi-
cal reconstruction will more vividly make clear why
they are reliable.) The situation is clearer for com-
puter simulations since the process is externalized and
is based on more transparent mechanisms (see how-
ever Sect. 34.3.2). Then, if computer simulations are
nothing else than (computationally assisted) thinking
corresponding to the application of formal rules, and
their output is somewhat contained in the description of
the computational model, how knowledge is generated
is clearer but the charge of the lack of novelty is heavier.

The Need for an Adequate Notion of Content
Suppose that a physical system S is in a state s at time t
and obeys deterministic dynamicsD. Then, the descrip-
tion of D and s characterizes a mathematical structure
M, which is the trajectory of S in its phase space and
is known as such. If a computer simulation unfolds this
trajectory, then it explicitly shows which states S will
be in. At the same time, any joint description of one
of these states and of the dynamics denotes the same
structure M, which is known to characterize the evo-
lution of S. So, from a logical point of view, no new
content has been unraveled by the computer simulation,
which can at best be seen as a means of producing new
descriptions of identical contents. In brief, if knowl-
edge is equated with that of logical content, computer
simulations do not seem to be necessarily producing
new knowledge. We may even be tempted to describe
computer simulations as somewhat infertile and thereby
perpetuate a tradition according to which formal or me-
chanical procedures to draw inferences, and rules of
logic in particular, are sterile, as far as discovery is con-
cerned, and can at best be used to present pieces of

knowledge that have already been found – a position
defended by Descartes in 1637 in the Discours de la
Méthode [34.120]. This kind of puzzle, though particu-
larly acute for computer simulations, is not specific to
them and is nothing new for philosophers of language –
Frege and Russell already analyzed similar ones. How-
ever, this shows that, pace the neglect for linguistic
issues in the present philosophy of science, without an
adequate theory of reference and notion of content that
would make clear what exactly we know and do not
know when we make a scientific statement, we are ill-
equipped to precisely analyze the knowledge generated
by computer simulations [34.41, 121].

Computational science may also remain somewhat
mysterious if one reasons with the idealizations usu-
ally made by philosophers of science. As emphasized
in Sect. 34.1.4, idealizing away the practical constraints
faced by users is characteristic of much traditional phi-
losophy of science and theories of rationality. In the
present case, it is true that “in principle, there is nothing
in a simulation that could not be worked out with-
out computers” [34.122, p. 368]. Nevertheless, adopting
this in principle position is unlikely to be fruitful here
since, when it comes to actual computational science,
which scientific content can be reached in practice is
a crucial issue if one wants to understand how com-
putational knowledge develops and pushes back the
boundaries of science (see Humphreys [34.41, p. 154]
and Imbert [34.102, §6]).

Overall, it is clear that present computational pro-
cedures and computer simulations do contribute to the
development of scientific knowledge. Thus, it is incum-
bent on epistemologists and philosophers of sciences to
develop conceptual frameworks to understand how and
in what sense computer simulations extend our science
and what type of novelty is involved.

Computer Simulations
and Conceptual Emergence

Computer simulations unfold the content of computa-
tional models. How to characterize the novelty of the
knowledge that they bring us? Since the notion of nov-
elty is also involved in discussions about emergence,
the literature about this latter notion can be profitably
put to work here.

Just as emergence may concern property instances
and not types [34.123, 124, p. 589], the notion of nov-
elty needed here should apply to tokens of properties
instantiated in distinctive systems and circumstances, or
to specific regularities the scope of which covers such
tokens and circumstances. For example, the apparition
of vortices in fluids is in a sense nothing new, since the
behavior of fluids is covered by existing theories in fluid
dynamics, no new concept is involved, and other phe-
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nomena of this type are already understood for some
well-studied configurations. At the same time, finding
out that patterns of vortices emerge in configurations of
a new type is a scientific achievement and the discovery
of some new piece of knowledge.

Importantly, as emphasized by Barberousse and
Vorms [34.125, p. 41], the notion of novelty should be
separated from that of surprise. When the exact value
of a variable is precisely learnt and lies within the
range that is enabled by some physical hypothesis or
principle, we have a kind of unsurprising novelty. Bar-
berousse and Vorms give an example from experimental
science, but computer simulations may also provide ex-
act values for quantities, which agree with general laws
(e.g., laws of thermodynamics) and are therefore partly
expected.

In addition, computer simulations can provide cases
of surprising novelty, concerning behaviors that are
covered by existing theories like chaotic behavior for
classical mechanics. Indeed, Lorenz attractor and be-
haviors of a similar type were discovered by means
of computer simulations of a simplified mathematical
model initially designed to analyze atmospheric con-
vection, and this stimulated the development of chaos
theory [34.125, p. 42].

This leads us to a type of novelty, related to
what Humphreys calls conceptual emergence. Some-
thing is conceptually emergent relative to a theoretical
framework F when it requires a conceptual apparatus
that is not in F to be effectively represented [34.41,
p. 131], [34.123, p. 585]. The conceptual apparatus
may require new predicates, new laws and sometimes
the introduction of a new theory. Importantly, con-
ceptual emergence is not merely an epistemic notion.
It does not depend on the concepts we already pos-
sess and the conceptual irreducibility is between two
conceptual frameworks. Further, even if instances of
the target pattern can be described at the microlevel
without the conceptually emergent concepts, the de-
scription of the pattern itself, if it is made without
these novel concepts, is bound to be a massive dis-
junction of microproperties, which misrepresents the

macro-pattern qua pattern. Also, the same conceptually
emergent phenomena may arise in different situations
and its description may therefore require an indepen-
dent conceptual framework, just like the regularities of
special science require new concepts, unless one is pre-
pared to describe their content in terms of a massive
disjunction of all the cases they cover [34.126].

Interestingly, various phenomena investigated by
computational science are conceptually emergent. Even
if computer simulations are sufficient to generate them,
identifying, presenting, and understanding them may
require further analyses of the simulated data, re-
descriptions at higher scales and the development of
new theoretical tools. For example, traffic stop-and-go
patterns in CA models of car traffic, emergent phe-
nomena in agent-based simulations, and much of the
knowledge acquired in classical fluid dynamics seem
to correspond to the identification and analysis of con-
ceptually emergent phenomena. Effectively, it is by
conceptually representing these phenomena in different
frameworks that one manages to gain novel informa-
tion about these systems, above and beyond our blind
knowledge of the microdynamics that generates them.

It is important to emphasize that different types
of novelty described above are also met in experi-
ments exploring the behavior of systems for which the
fundamental physics is known. In other words, the po-
tential novelty of experimental results should not be
overemphasized. Even if only experiments can con-
found us [34.127, pp. 220–221] through results which
are not covered by our theories or models, many of
the new empirical data that these experiments provide
us with are no more novel than those produced by
computer simulations. The statements describing these
results are not strongly referential, in the sense that no
unknown aspects of the deep nature of the correspond-
ing systems would be unveiled by a radically new act
of reference [34.87, pp. 3463–3464]. These statements
derive from what we already know about the physical
systems investigated, and the experimental systems un-
ravel them for us. In this sense, they are merely weakly
referential.

34.4 Computer Simulations, Explanation, and Understanding

Can scientists provide explanations by simulating phe-
nomena? If the answer is based on the explanatory
requirements corresponding to the existing accounts
of explanation, it is hard to see why some computer
simulations could not be explanatory (Sect. 34.4.1).
Why the specificities of computer simulations should
necessarily deprive them for their explanatory poten-
tial is also unclear (Sect. 34.4.2), which is compatible

with the claim that computer simulations are used for
inquiries whose results are, on average, less explana-
tory (Sect. 34.4.3). Be this as it may, because they
heavily rely on informational and computational re-
sources, computer simulations challenge our intuitions
about explanatoriness, and in particular the expecta-
tion that good explanations should enable scientists to
enjoy first-person objective understanding of the sys-
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tems they investigate (Sect. 34.4.4). Even if computer
simulations fail to meet these expectations because of
their epistemic opacity, understanding may sometimes
be regained by appropriately visualizing the results or
studying phenomena at a coarser level (Sect. 34.4.5). In
any case, scientific judgments about such issues are in-
fluenced by disciplinary norms, which may sometimes
evolve with the development of computational science
(Sect. 34.4.6).

34.4.1 Traditional Accounts of Explanation

Philosophers of science have discussed intensively the
issue of scientific explanation over the last decades.
The seminal works of Hempel were published in the
1940s, when computational science started to develop.
However, until recently, discussions about computer
simulations and explanations did not interfere with
each other – which could suggest that for theorists
of explanation, how explanations are produced does
not in fact matter. While it is true that many of the
examples of explanatory inquiries analyzed in the liter-
ature are simple and, at least in their most elementary
versions, do not belong to computational science, it
is hard to see why computer simulations could not
in some cases satisfy the requirements corresponding
to major accounts of explanations. According to the
deductive-nomological (hereafter DN) model, one ex-
plains a phenomenon when a sentence describing it is
logically deduced from true premises essentially con-
taining a scientific law [34.128, pp. 247–248]. For
example, the explanation of the trajectory of a comet,
by means of a computer simulation of its trajectory
based on the laws of classical (or relativistic) mechanics
together with the initial positions of all bodies signif-
icantly influencing its trajectory, seems to qualify as
a perfect example of DN explanation – provided that
computer simulations can be seen as deductions [34.91,
115].

Analog statements can be made concerning the
causal and unificationist models of explanations. The
computer simulation of the comet’s trajectory is a way
to trace the corresponding causal processes, described
in terms of mark transmission [34.129] or of conserved
quantities such as energy and momentum [34.130].
Other causal theorists of explanation like Railton have
claimed that explanatory progress is made by detail-
ing the various causal mechanisms of the world and
all the nomological information relevant to the inves-
tigated phenomenon; the corresponding “ideal explana-
tory text” is thereby slowly unveiled [34.131]. But, one
should note that, because such ideal explanatory texts
are necessarily complex, their investigation is almost in-
evitably made by computational means.

Similarly, computer simulations can sometimes be
instantiations of argument patterns that are part of what
Kitcher describes as the explanatory store unifying our
beliefs [34.107]. For example, the computation of the
comet’s trajectory can be seen as an instantiation of
“the Newtonian schema for giving explanations of mo-
tions in terms of underlying forces” [34.132, p. 121,
p. 179].

Be this as it may, computer simulations have often
been claimed, both by scientists and philosophers, to be
somewhat problematic concerning explanatoriness and
lacking some of the features that are expected to go
with the fulfillment of explanatory requirements. This
reproach of unexplanatoriness can be understood in sev-
eral senses.

34.4.2 Computer Simulations:
Intrinsically Unexplanatory?

One may first claim that computer simulations in gen-
eral, or some specific types of them, do not meet
one’s favorite explanatory requirements. For example,
agent-based simulations may be described as not usu-
ally involving covering laws nor providing explanatory
causal mechanisms or histories [34.75, 133]. However,
one should not ascribe to computer simulations re-
proaches that should be made to the field itself. If
a field does not offer well-entrenched causal laws and
one is convinced that explanations should be based
on such laws, then the computer simulations made in
such fields are not explanatory, but this has nothing to
do with computer simulations in general. Also, some
computer simulations are built with scientific material
like phenomenological regularities, which potentially
makes them unexplanatory, but this material could also
be used in the context of explanatory inquiries involv-
ing arguments or closed form solutions to models. Thus,
the problem comes from the use of this material and not
from the reliance on one or another mode of demon-
stration – and claiming that computer simulations are
unexplanatory is like blaming the hammer for the hard-
ness of the rock.

For this reproach to be meaningful (and specific
to computer simulations), it should be the case that
other inquiries based on the same material are indeed
explanatory, but that the corresponding explanations
based on computer simulation are not, because of spe-
cific features of computer simulations or some types
of them. It is not completely clear how this can be
so. Computer simulations are simply means of explor-
ing scientific models and hypotheses by implementing
algorithms, which provide information about tractable
versions of these models or hypotheses. Therefore, their
explanatory peculiarity, if any, should be an effect of
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specific features like the use of algorithms, coding lan-
guages, or external computational processes.

There is no denying that the need to format scien-
tific models and hypotheses into representations that
are suitable for computational treatment comes with
constraints. For example, a recent challenge has been
to adapt coupled circulation models and their algo-
rithms to the architecture of modern massively parallel
supercomputers. Similarly, when one uses CA mod-
els for fluid dynamics, the physical hypotheses must
be expressed in the straightjacket of up-to-date rules
between neighboring cells on a grid. Beyond these gen-
uine constraints on computational practices, one should
remember that, computational languages, provided they
are rich enough, are content neutral in the sense that any
content that can be expressed with some language can
also be expressed with them. Similarly, computational
devices like the computers we use daily are universal
machines in the sense that any solution to a compu-
tational problem (or inference) that can be produced
by other machines can also be produced by them. For
these reasons, it is hard to see why, in principle, com-
puter simulations should be explanatorily limited, since
the theoretical content and inferences related to other
means of inquiries can also be processed by them.

The case of CA models abovementioned exempli-
fies nicely this point. For several decades, CA mod-
els have been used under various names in various
fields; from Schelling’s investigations about spatial seg-
regation in neighborhoods, analysis of shock waves
in models of car traffic, models of galaxies, inves-
tigations of the Ising model, to fluid dynamics (see
Ilachinski [34.134] for a survey). Because existing the-
ories and scientific laws are not expressed in terms of
CA, some philosophers have claimed that CA-based
simulations were merely phenomenological [34.135,
pp. 208–209], [34.9, p. 516]. Nevertheless, Barberousse
and Imbert [34.100] have argued that such bold general
statements do not resist close scrutiny. They present the
case of lattice gas models of fluids and argue that, be-
yond their unusual logical nature, from a physical point
of view, such mesoscopic models and computer sim-
ulations make use of the same underlying physics of
conserved quantities as more classical models, and can
be seen as no less theoretical than concurrent computer
simulations of fluids based on macroscopic Navier–
Stokes equations. Therefore, there is no reason why
such computer simulations could not be usable for sim-
ilar explanatory purposes.

Overall, there is no denying that some (and possi-
bly many) computer simulations are not explanatory.
Providing various examples of unexplanatory computer
simulations is scientifically valuable, but it says nothing
general about their general lack of explanatory power,

unless one shows why unexplanatoriness stems from
specific features of (some types of) computer simula-
tions qua simulations. In the absence of such conceptual
analyses, one can simply conclude that some scientific
uses of computer simulations, or some computational
practices, turn out to be unexplanatory.

34.4.3 Computer Simulations:
More Frequently Unexplanatory?

A different claim is that, given the current uses of
computer simulations in science, they are more often
unexplanatory than other scientific items or activities,
even if this is partly a contingent matter of fact. The
explanatoriness of computer simulations can be threat-
ened in various ways. Computational models may be
built on false descriptions of target systems or may lack
theoretical support and simply encapsulate phenomeno-
logical regularities; they may have been spoiled by the
approximations, idealizations, and modeling tricks used
to simplify models and make them tractable; they may
depart from the well-entrenched explanatory norms in
a field or may not correspond to accepted explanatory
methods. Clearly, none of these features is specific to
computer simulations. However, it may be the case that
because of their current uses in science, computer sim-
ulations more frequently instantiate them.

The Lure of Computational Explorations
Because they are powerful heuristic tools, and because
other means of exploration are often not available,
computer simulations are more often used to toy and
tinker with hypotheses, models, or mechanisms and,
more generally, to experiment on theories [34.135,
136]. This may especially be the case in fields where
there is no well-established theory to justify (or inval-
idate) the construction of models, or where collected
evidence is not sufficient to check that the simulated
mechanisms correspond to actual mechanisms in target
systems. For example, in cognitive science, competing
theories of the mind and its architecture coexisted for
decades, and even modern techniques of imaging like
fMRI (functional magnetic resonance imaging), though
empirically informative, do not provide sufficient evi-
dence to determine how the brain works precisely in
terms of causal mechanisms. Accordingly, in this field,
developing a model that is able to simulate the cog-
nitive performances of an agent does not imply that
one has understood and explained how her brain works,
and more refined strategies that constrain the functional
architecture must be developed if one wants to make
explanatory claims [34.4, Chap. 5]. The issue is all
the more complex in this specific field since the in-
quiry may also involve determining (verses assuming)
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whether neural processes are computations [34.137].
Similarly, in the social sciences, empirically validat-
ing a simulation is far from being straightforward and
as a result the epistemic and, in particular, explana-
tory value of computer simulations is often question-
able [34.138].

Overall, since computer simulations offer powerful
tools to investigate hypotheses and match phenomena,
it is a temptation for scientists to take a step further and
claim that their computer simulations have explanatory
value. In brief, computer simulations offer a somewhat
natural environment for such undue explanatory claims.

The Worries of Under-Determination
In the case of computer simulations, the higher fre-
quency of inappropriate explanatory claims may be
reinforced by the combination of several factors.

When toying with hypotheses, scientists are often
interested in trying to reproduce some target phe-
nomenology, so they often do not tinker in a neutral
way. The specific problemwith computer simulations is
that, in many cases, getting the phenomenology right is
somewhat too easy, and the general problem of under-
determination of theoretical claims by the evidence is
particularly acute.

First, computer simulations are often used in cases
where data are scarce, incomplete, or of low quality
(see, e.g., [34.78, Chap. 10] for the case of climate data
and how making data global was a long and difficult
process). The scarcity of data can also be a primary mo-
tivation to use computer simulations to inquire about
a system for which experiments are difficult or impos-
sible to carry out, like in astrophysics [34.139]. Further-
more, knowledge of the initial and boundary conditions
out of which the computer simulations should be fed
may also be incomplete, which leaves more latitude
for scientists to fill in the blanks and possibly match
data. As a result, confidence in the result of com-
puter simulations like the Millennium Run and in their
representational and explanatory success is in part un-
dermined [34.139].

Second, computer simulations usually involve more
variables and parameters than theories. For example,
for a 10� 10 grid with cells characterized by three
variables, the total number of variables is already 300.
This raises the legitimate suspicion that, by tuning vari-
ables in an appropriate way, there is always a means
to obtain the right phenomenology. (Ad hoc tuning
is of course not completely straightforward, since the
many variables involved in a computer simulation are
usually jointly constrained. Typically, in a fluid simu-
lation, all cells of the grid obey the same update rule
and are correlated.) This possibility of tuning variables
and parameters is indeed used in fields like machine

learning, which can be based, for example, on the use
of artificial neurons. In such fields, one first combines
a limited number of elementary mathematical functions
(e.g., artificial neurons) that, when adequately parame-
terized, reproduce potentially complex behaviors found
in databases (the learning phase). In a second step,
one uses the parameterized functions (e.g., the trained
neural network) on new cases in the hope that extrap-
olation and prediction are possible. In such cases, even
if the right phenomenology is reproduced, and extrap-
olation partly works, it is clear that the trained neural
network and the corresponding mathematical functions
do not explain the phenomena. Overall, this means
that the ability to reproduce some potentially complex
phenomenon is far from being sufficient to claim that
the corresponding computer simulation has explanatory
power (see also [34.140] for the issue of the over-fitting
of computer simulations to data).

Third, when scientists do succeed, they may be sub-
ject, as other human creatures, to confirmation biases,
overweigh their success and tend to ignore the fact that
various mechanisms or laws can produce the same data
(or that other aspects of their computer simulations do
not fit). While such biases are not specific to computa-
tional inquiries, they are all the more epistemologically
dangerous since matching phenomena is easy.

Complex Systems Resist Explanation
Because they are very powerful tools, computer simu-
lations are specifically used for difficult investigations,
which usually have features that may spoil their ex-
planatory character [34.141, 142]. Typically, in the nat-
ural sciences, computer simulations and computational
methods are centrally used for the study of so-called
complex systems [34.143, 144], see also Chap. 35. Re-
alistically investigating complex systems would imply
taking into account many interrelated nonlinear aspects
of their dynamics including long-distance interactions
and, in spite of the power of modern computers, the cor-
responding models are usually intractable. Therefore,
drastic simplifications need to be made in both the con-
struction of the model and its mathematical treatment,
which often threatens the epistemic value of the results.

Importantly, for the above reasons, the problem of
the explanatory value of computer simulations can arise
even in fields like fluid dynamics where the underly-
ing theories are well known. It is no surprise that this
problem is more acute in fields, such as the human and
social sciences, in which no such theories are available,
the investigated objects are even more complex, sound
data are more difficult to collect and interpret, and the
very nature of what counts as a sound explanation and
genuine understanding is more debated [34.145, 146]
especially in relation to computer simulations [34.133].
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For these reasons, even if there are good arguments for
claiming that computer simulations do not fare worse
than other methods like analytic models or experi-
ments (see [34.40] for the case of economics), it is not
surprising that their potential explanatory power is un-
dervalued.

Overall, it is plausible that often computer simula-
tions have less explanatory power than other methods,
and that this does not stem from their nature but from
the type of uses they usually have in science. If this is
the case, the question of the explanatory power of com-
puter simulations is to be treated on a case-by-case basis
by using the same criteria as for assessing the explana-
tory power of other scientific activities, pace the distrust
that shrouds the use of computer simulations.

34.4.4 Too Replete to Be Explanatory?
The Era of Lurking Suspicion

Theories of explanation should capture our intuitions
about what is explanatory. From this point of view,
it is interesting to see whether computer simulations
meet these intuitions, especially when they fulfill the
explanatory requirements described by theories of ex-
planations.

Computer Simulations
and Explanatory Relevance

Good explanations should not include explanatorily
irrelevant material. While determining whether some
piece of information is explanatorily relevant to explain
some target fact is a scientific task, finding a satis-
factory notion of explanatory relevance is a task for
philosophers. Despite progresses concerning this prob-
lem, current accounts of explanation still fall short of
capturing this notion [34.147, 148]. At the same time,
existing results are sufficient to understand why com-
puter simulations raise concerns regarding explanatory
relevance.

Scientific information, in particular causal laws,
accounts for the behavior of phenomena. Thus, it is le-
gitimate, when trying to explain some phenomenon, to
show that its occurrence can be derived from a scientific
description of the corresponding system. Nevertheless,
even then, one may fall short of satisfying the require-
ment of explanatory relevance. This is clearly explained
by Salmon in his 1989 review of theories of explanation,
where he asks “Why are irrelevancies harmless to argu-
ments but fatal to explanations?” and further states that
“irrelevant premises are pointless, but they have no ef-
fect whatever on the validity of the argument” [34.149,
p. 102]. While philosophers have mainly focused on
the discussion of irrelevant unscientific premises, the
problem actually lies deeper. Parts of the content of

laws or mechanisms, essentially involved in explana-
tory arguments, can be irrelevant to the explanation of
aspects of phenomena that are covered by these laws or
mechanisms [34.148]. So the problem is not simply to
discard inessential (unscientific or scientific) premises,
but also to determine, within the content of the scien-
tific premises that are essentially used in explanatory
derivations, what is relevant and what is not [34.102,
148, 150].

This problem is especially acute for computer sim-
ulations. Take a computer simulation that unfolds the
detailed evolution of a system based on the description
of its initial state and the laws governing it. Then all
aspects of the computational model are actually used in
the computational derivation. At the same time, all such
aspects are not necessarily explanatorily relevant with
respect to all facets of the computed behavior. Typically,
some aspects of the computed behavior may simply de-
pend on the topology of the system, on symmetries in
its dynamics or initial conditions, on the fact that some
initial quantity is above some threshold, etc.

Accordingly, the following methodological maxim
may be proposed: the more an explanation (resp. an
argument) contains independent pieces of scientific in-
formation, the more we are entitled to suspect that it
contains irrelevancies (regarding the target behavior).

At the same time, one should remain aware that
explaining some target phenomenon may sometimes
irreducibly require that all the massive gory details in-
volved in the simulation of the corresponding system
are included. For example, as chaos theory shows it,
explaining the emergence and evolution of a hurricane
may essentially require describing the flapping of a but-
terfly’s wings weeks earlier.

An additional problem is that there is no general
scientific method to tell whether a premise, or some
part of the information it conveys, is relevant. Con-
trarily to what the hexed salt example [34.151] may
perhaps suggest, irrelevant pieces of information within
an explanation do not wear this irrelevance on their
sleeves and are by no means easy to identify. This is
the problem of the lack of transparency, or of opacity,
of irrelevant information.

Overall, since they are based on informationally
replete descriptions of their target systems, computer
simulations legitimately raise the suspicion of being
computational arguments that contain many irrelevan-
cies, and therefore of being poor explanations – even
when they are not.

Computer Simulations, Understanding,
and Inferential Immediacy

Mutatis mutandis, similar conclusions can be reached
regarding the issue of computational resources. Since
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this issue is closely related to the question of how much
computer simulations can bring about understanding,
things shall be presented through the lens of this latter
notion.

It is usually expected that explanations bring under-
standing. Theorists of understanding, while disagreeing
on the precise nature of this notion, have explored
its various dimensions, which provides a good toolkit
to analyze how computer simulations fare on this is-
sue.

Hempel cashes in the notion of understanding in
terms of nomic expectability. From this point of view,
taken as explanatory arguments, computer simulations
seem able to provide understanding since, like other
scientific representations, they can rely on nomological
regularities. Further, in contrast to sketchy explanations,
they make the nomic dependence of events explicit.
Consider the explanation analyzed by Scriven that “the
impact of my knee on the desk caused the tipping over
of the inkwell” [34.152]. The hidden strategy described
byWoodward [34.153] is to claim that the value of this
latter nonnomological explanation is to be measured
against an ideal explanation, which is fully deductive
and nomological and describes the detailed succession
of events that led to the stain on the carpet, even if this
complete explanation is often inaccessible. From this
point of view, a computer simulation can offer a way to
approach such an ideal explanation, by providing an ex-
plicit deduction of the lawful succession of events that
brought about the explanandum. However, an epistemic
problem is that, once such a computer simulation has
been carried out (and properly stored), it is possible to
explicitly highlight any part of it, but it is not possible to
scrutinize all parts because there are too many of them.
This is one of the reasons why computer simulations are
intrinsically opaque to human minds [34.41, §5.3], see
also Sect. 34.3.2.

Be this as it may, causal theorists of explanation
should agree that computer simulations often contribute
significantly to developing our understanding by re-
ducing uncertainty about the content of causal ideal
explanatory texts, as requested in [34.131].

Computer simulations also seem to be able to pro-
vide unificatory understanding. For unificationists like
Kitcher, understanding is a matter of “deriving descrip-
tions of many phenomena using the same pattern of
derivation again and again” [34.107, p. 423]. Since
computer simulations offer more ways of deriving phe-
nomena, by providing new patterns of derivation or
instantiating existing patterns in more complex cases,
at least some of them contribute to unification.

Things are less straightforward with Woodward’s
account of explanation and understanding. Woodward
argues that a good explanation provides “understanding

by exhibiting a pattern of counterfactual dependence
between explanans and explanandum” [34.154, p. 13].
From this point of view, computer simulations fare well
since, if one does not go beyond their domain of va-
lidity, they provide general patterns of counterfactual
dependence between their inputs I and outputsO, which
are obtained by applying t times their update algorithms
(UA), that is, more formally, O.t; l/D UAt.I/.

Is there a philosophical catch? Woodward also re-
quires that the pattern of counterfactual dependence be
described in terms of a functional relation. But what
is to count as a function in this context? Functions
can be defined explicitly (by means of algorithms) or
implicitly (by means of equations). The advantage of
computer simulations is that they provide algorithmic
formulations based on elementary operations of how the
explanandum varies with the explanans. From this point
of view, computer simulations are more explicit than
models, which simply provide equations linking the ex-
planans and the explanandum. However, the problem is
that with computer simulations any kind of functional
immediacy is lost, since it is computationally costly
to carry out the algorithm. Indeed, Woodward usually
describes straightforward examples of functional de-
pendence like Y D 3X1C 4X2. With such functions, we
may feel that the description of the counterfactual de-
pendence is just there, since, by simply instantiating
the variables and carrying out the few operations in-
volved, specific numerical relations are accessible. In
such simple cases, a human mind can do the work
by itself and answer the corresponding what-if-things-
had-been-different (what-if) questions. In contrast, with
a computer simulation, computing the output takes
much computational power. So the tentative conclusion
is that computer simulations provide understanding in
Woodward’s sense, but this understanding is not imme-
diately accessible, the degree of (non)-immediacy being
described by the computational resources it takes to
answer each what-if question. Importantly, an equation-
based model may give the illusion of immediacy, since
the equation presents a short description of how the
variables are correlated. However, one should watch
out that short equations can be unsolvable, and short
descriptions of algorithms (like O.t; l/D UAt.I/) with
simple inputs can yield complex behaviors that are
computationally costly to predict [34.155].

Similar conclusions can be reached if one focuses
on analyses of understanding proper.De Regt andDieks
propose to analyze understanding in terms of intelligi-
bility, where this latter notion implies the ability to rec-
ognize qualitative characteristic consequences without
performing exact calculations [34.156]. In this sense,
understanding seems to be a matter of immediacy, as
was already suggested by Feynman, who described it as
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the ability to foresee the behavior of a system, at least
qualitatively, or the consequences of a theory, without
solving exactly the equations or performing exact cal-
culations [34.157, Vol. 2, 2–1].

Depending on the cases, foreseeing consequences
requires logical and cognitive operations to a greater or
lesser extent. Thus, the above ideas may be rephrased in
a more gradualist way, by saying that the less inferen-
tial or computational steps one needs to go through to
foresee the behavior of a system or the consequences of
a theory, the better we understand it. In this perspective,
computer simulations fare terribly badly, since they in-
volve going through many gory computational steps
and, even once these have been carried out, scientists
usually end up with no simple picture of the results and
no inferential shortcuts that could exempt them from
this computational stodginess for future similar investi-
gations.

Understanding: What Do We Lose
with Computer Simulations?

Before the advent of computational science, explana-
tory advances in science were always the direct product
of human minds and pen-and-rubber methods. There-
fore, any actual scientific explanation that satisfied the
requirements for explanatoriness was also human sized,
and the epistemic benefits logically contained within
such explanations could actually be enjoyed by compe-
tent and informed epistemic agents. In [34.158, p. 299],
Hempel states that an explanatory argument shows that
“the occurrence [of an event] was to be expected” and
he adds “in a purely logical sense.” This addition em-
phasizes that expectation should not be understood as
a psychological notion nor refer to the psychological
aspects of the activity of explaining. In the case of
computer simulations, this addition is somewhat su-
perfluous. Nomic expectability remains for scientists,
since, based on computer simulations, they may know
that they can entertain the belief that an event should
happen. However, this belief is completely cold. Since
the activity of reasoning is externalized in computers,
it is no longer part of the proper cognition of scientists
and does not come with the psychological side-effects
associated with first-person epistemic activities, such as
emotions or feelings of expectation, impressions of cer-
tainty and clarity, or the oft-mentioned aha or eureka
feeling which usually comes with first-person experi-
ences of understanding. In other words, with computer
simulations, the mind is no longer the carrier of the ac-
tivity of explanation, and simply records what it should
believe. Unfortunately, epistemic benefits associated
with the individual ability to carry out this activity are
also lost. Since the explanatory argument can no longer
be surveyed by a human mind, the details of the rela-

tions between the premises of the explanatory argument
and its conclusion are opaque. Therefore, scientists are
no longer able to encompass uno intuitu all aspects of
the explanation and how they are related, to develop
expectations about counterfactual situations (in which
similar hypotheses are met), and the unificatory knowl-
edge that only global insights can provide is also lost.
Overall, with computer simulations the objective in-
telligibility that is enclosed in explanations and can
be accessed by first-person epistemic appropriation of
the explanatory arguments can no longer be completely
enjoyed by scientists (see also [34.159] for further anal-
yses about epistemic opacity in this context). In this
perspective, the problem of computer simulations is not
that they have less explanatory value but that we can-
not have epistemic access to this explanatory value.
In brief, this problem would not pertain to the logic
of computer-simulation-based explanations but to their
epistemology.

New Standards for Understanding?
The gradualist description regarding the need of cogni-
tive and logical operations to foresee consequences (see
Sect. 34.4.4 Computer Simulations, Understanding,
and Inferential Immediacy) suggests that the bound-
ary between cases where intelligibility is present or
is lost is not completely sharp. Importantly, the abil-
ity to foresee consequences depends on various factors
such as the knowledge of physical or mathematical
theorems to facilitate deductions, the knowledge of
powerful formalisms to facilitate inferences, how much
the intuition of scientists has been trained to anticipate
consequences of a certain type and has somewhat in-
ternalized inferential routines, etc., [34.102, §6.4]. In
other words, at least in some cases, the frontiers of what
has a computational explanation, but remains unintelli-
gible to a human mind, can be pushed back to some
extent.

This raises the question of how much the frontiers
of intelligibility can be extended and whether the ideal
of inferential or computational briefness for explana-
tions should be considered as a normative standard.
Two positions are possible. One may claim that genuine
explanations should always yield the possibility for
human subjects to access the corresponding understand-
ing. Or one may claim that, as shown by computational
science, we have gone beyond human-sized science, not
all good explanations can be comprehended by human
minds, and this is not a defect of our science, even if it
is clearly an epistemic inconvenience.

A motivation for endorsing the former claim is that
the lack of intelligibility of explanations often stems
from epistemic flaws of the agents producing them and
can be corrected. Typically, in science, results are often
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laboriously proved and, with the advance of scientific
understanding, shorter and clearer proofs, or quicker al-
gorithms, are found.

Overall, it seems sound to adopt the following
methodological maxim: the more resources we need to
produce (or check) an explanation (resp. an argument,
a proof), the more we are entitled to suspect, in the
absence of contrary evidence, that the explanation is
unduly complex. From this point of view, computer sim-
ulations do not seem flawless, since they make abundant
use of computational and inferential resources. Accord-
ingly, it is legitimate to suspect computer simulations
of providing unduly complex explanations, which have
simpler versions yielding the expected accessible un-
derstanding.

Nevertheless, this philosophical stance may be in-
appropriate in many cases. There is a strong suspicion
that explaining phenomena often requires using an
irreducible amount of resources. This idea of computa-
tional irreducibility has been vocally advanced, though
not clearly defined, by Wolfram [34.155], and philoso-
phers have toyed with close intuitions in recent dis-
cussions about emergence [34.74, 123, 124, 160–162].
Capturing the idea in a clear, robust and fruitful def-
inition is a difficult on-going task [34.163]. However,
there seems to be an agreement that this intuitive no-
tion is not empty, which is what matters for the purpose
of the present discussion. Overall, this means that in all
such cases, asking for computationally simple explana-
tions does not make sense, since such explanations do
not exist. In this perspective, tailoring our explanatory
ideals to our human capacities is wishful thinking, since
in many cases, the inaccessibility of the usual epistemic
benefits of explanations does not stem from our epis-
temic shortcomings.

This suggests that we may have to bite the bullet
and say that, sometimes, computer simulations do bring
full-fledged explanation and objective understanding,
even if, because of our limited cognitive capacities, we
cannot enjoy this understanding and the epistemic bene-
fits harbored by such explanations. In other words, both
of the above philosophical options are correct, though
in different cases.

Ideally, one would like to be able to know when
each of these two options should be adopted. Unfor-
tunately, determining whether a computational process
can be shortcut or a computational problem solved by
quicker algorithms, seems to be in practice opaque
(problem of the lack of transparency of the optimal-
ity of the computational process). This means that in
most cases, when facing a computational explanation
of a phenomenon, one does not know whether there
are computationally or inferentially shorter versions of
this explanation (and we are to be epistemically blamed

for being so explanatorily laborious), or whether one
cannot do better (and the process is intrinsically com-
plex).

Overall, because determining whether explanations
are informationally minimal (regarding the use of rele-
vant information) and whether arguments or computa-
tions are optimal is opaque, computer simulations are
doomed to remain shrouded in suspicion about their ex-
planatoriness, even in cases in which there is no better
(that is, shorter or less informationally replete) ex-
planation. In brief, the era of suspicion regarding the
explanatoriness of computer simulations will not end
soon.

34.4.5 Bypassing the Opacity
of Simulations

Even when computer simulations are epistemically
opaque, some strategies can be tried to regain predictive
power, control, and potentially understanding regarding
the corresponding inquiries.

Understanding, Control
and Higher Level Patterns

As emphasized by Lenhard [34.159], by manipulating
computational models and observing which behavior
patterns are obtained, scientists can try to control the
processes involved and develop “a feeling for the con-
sequences.” Lenhard suggests that this understanding
by control, which is oriented toward design rules and
predictions, corresponds to a pragmatic account of un-
derstanding, which is also involved in the building of
reliable technological artifacts.

Other authors have emphasized that, even if the de-
tails of computer simulations cannot be followed by
human minds, one may sometimes still obtain valuable
insights by building coarse-grained representations of
the corresponding target systems and analyzing whether
macro-dynamics emerge when microinformation is
thrown away [34.164]. Surprisingly, the existence of
coarse-grained dynamics seems to be compatible with
complex, potentially computationally irreducible, dy-
namics at the microlevel [34.165, 166], even if this by
no means warrants that control or understanding can
always be regained at the macro-level. Thus, the ques-
tion arises as to when and how much epistemic virtues
like predictive power, control, and potentially under-
standing, which are somewhat lost at the microlevel,
can be partly recovered at the macro-level, and how the
corresponding patterns can be detected. The treatment
of such questions requires the analysis of logical and
mathematical relations between descriptions of systems
at different scales and, for this reason, it should gain
from ongoing debates and research in the philosophical
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and scientific literature about the emergence of simple
behavior in complex systems.

Visualization and Understanding
Another important issue is how to exploit macro-level
patterns that are present in computer simulations to re-
store partial cognitive grasp of the simulated systems
by humans. Given the type of creatures that we are,
and in particular the high visual performance of the
brain, using visual interfaces can be part of the an-
swer. Indeed, the format of scientific representations
partly determines what scientists can do with them –
whereas, as emphasized by [34.41, p. 95], philosophers
have often considered the logical content of a repre-
sentation to be the only important element to analyze
them. To go further into these issues, sharp analy-
ses of representational systems and their properties are
required. Tools and concepts developed in the Goodma-
nian tradition prove to be extremely useful [34.167]. For
example, Kulvicki [34.29] highlights how much graphs
and images can present information more immediately
than symbolic representations can. This notion of im-
mediacy is cashed in in terms of semantic salience,
syntactic salience or extractability. Vorms further shows
how taking into account formats of representation in
the analysis of scientific reasoning is crucial, since in-
ferences have different cognitive costs depending on
the format of representation [34.168]. Jebeile [34.169]
applies similar concepts to computational models and
argues that visualization tools can have a specific ex-
planatory role since they do not merely present compu-
tational data in more accessible ways, but also suggest
interpretations that are not contained in the original
data, highlight relations between these data, and thereby
point at elements of answers to what-if questions.

Overall, the issue of how much visualization can
convey objective understanding remains debated. For

example, Kuorikoski [34.164] acknowledges that visual
representations are cognitive aids but emphasizes that
they often merely bring about a feeling and illusion of
understanding. So, there is the need of epistemological
analyses which would make clear in which cases, and
how, visual representations can be reliable guides and
self-certifying vectors of knowledge, which partly en-
able their users to determine whether and how much
they should trust them.

34.4.6 Understanding and Disciplinary
Norms

All the above discussion has been based on gen-
eral arguments about explanations and understanding.
However, as already emphasized, explanatory norms
sometimes differ from one field to another, economics
being, at least in its mainstream branches, a paradig-
matic case of a field in which simulation methods are
shunned [34.37]. Similarly, the explanatory status of
computer simulations and computational models varies
across fields like cognitive sciences, artificial intelli-
gence [34.137], artificial life [34.170] or within fields
themselves (see, e.g., [34.171] for the case of computa-
tional chemistry and [34.79] for that of climate science).

This is not the place to discuss whether these varia-
tions regarding explanatory norms are deep, or whether
they result from differences in theoretical contexts, in
the degrees of complexity of the systems investigated,
in the difficulties to collect evidence about them, in
the scientific maturity and empirical success of these
fields, etc. Such questions cannot be answered on the
basis of armchair investigations. Field-specific studies
of the explanatoriness of computer simulations, made
by scholars who are in the same time acutely aware
of present discussions about scientific explanation, are
needed.

34.5 Comparing: Computer Simulations, Experiments
and Thought Experiments

Computer simulations, experiments, and, to a lesser
extent, thought experiments share various similarities,
which calls for an explanation. Indeed, similarities
between experimental activities and computational sci-
ence are even found in mathematics, where some
methods are claimed to be experimental (Sect. 34.5.1).
Computer simulations, experiments and thought exper-
iments can sometimes be seen as ways of carrying out
similar activities, or activities having similar constraints
(Sect. 34.5.2). Should an additional step be made, and
computer simulations be considered as experiments?

A close scrutiny of the existing arguments in favor of
this claim shows that it meets insuperable difficulties,
both regarding the analysis of computer simulations and
experiments. Further, the claim does not even seem nec-
essary to account for the importance of the material
aspects of simulations (Sect. 34.5.3). Finally, even if
computer simulations can yield knowledge, which can
sometimes be more reliable than that produced by ex-
periments, unless a strong case against empiricism is
properly made, computer simulations do not seem to
seriously threaten the unique foundational role of exper-
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iments as the source of primary evidence upon which
science is built (Sect. 34.5.4). In any case, discussions
about the relationships between experiments and com-
puter simulations should remain compatible with the
actual existence of hybrid (both computational and ex-
perimental) methods (Sect. 34.5.5).

When in the 1990s philosophers of science started
investigating computer simulations, they soon realized
that the object of their inquiry cross-cut traditional
categories like those of theories, models, experiments
or thought experiments. Similarities with experiments
were particularly striking, since, among other things,
computer simulations involved the treatment of mas-
sive data and statistical reasoning, required robustness
analysis, and were claimed to yield new knowledge.
As a result, computer simulations were suggestively
dubbed by various authors as computer experiments,
numerical experimentation or in-silico thought experi-
ments, even though it was not always conceptually clear
what these potentially metaphorical characterizations
meant exactly.

All such similarities are worth analyzing and poten-
tially call for explanations. They may be the sign of an
identical nature between (some of) these activities, of
common essential features, or may just be shallow or
fortuitous. Clarifying this issue is also a way to analyze
these activities more acutely by singling out what is spe-
cific to each or common to them and to determine to
what extent epistemological insights can be transferred
between them.

34.5.1 Computational Mathematics
and the Experimental Stance

Experimental Proofs in Mathematics
Since aspects related to the representation of material
systems are absent from mathematics, a comparison
with this field can be hoped to be fruitful to an-
alyze what exactly is experimental in computational
science.

The mathematical legitimacy of computers for the
production of proofs has been discussed for several
decades. Computational proofs like that of the four-
color theorem by Appel et al. [34.172, 173] were rapidly
labeled quasi-empirical and discussions raged about
how they should be interpreted [34.174, p. 244]. Such
computational proofs can actually be seen as having
roots in the older tradition of quasi-empirical mathe-
matics, practiced for example by mathematicians like
Euler, and philosophically defended by authors like
Lakatos [34.175] or Putnam [34.176]. Interestingly,
even in these contexts, the labels empirical or exper-
imental were used to refer to various aspects of the
activity of proving results.

Like experiments, computational proofs involve ex-
ternal processes, which are fallible. Their reliability can
then be seen as being partly of a probable nature and
needs to be assessed a posteriori by running these exter-
nal processes several times and checking that the appara-
tus involvedworked correctly. By contrast, proofswhich
can be actively and directly produced by humans minds,
can provide a priori knowledge, the validity of which
is assessed by (mentally) inspecting the proof itself,
qua mathematical entity. Further, computational proofs,
like experiments and empirical methods in mathemat-
ics, usually provide particular numerical results: as the
computational physicist Keith Roberts writes it, “each
individual calculation is [. . . ] analogous to a single ex-
periment or observation and provides only numerical or
graphical results” (quoted in [34.70, p. 137]). Therefore,
to obtain more general statements (and possibly theo-
ries), probabilistic inductive steps are needed. Overall,
such debates illustrate the need to clarify the use in this
context of labels like experimental or empirical.

The Experimental Stance
The case of computational mathematics also makes
clear how scientists can adopt an experimental stance
for inquiries where no physical process is investigated,
and the nature of the object which is experimented upon
is completely known.

Experimenting involves being able to trigger
changes, or to intervene on material or symbolic dy-
namical processes, and to record how they vary ac-
cordingly. As noted by Dowling [34.136, p. 265] and
Jebeile [34.169, II, §7.2], processes for which the dy-
namics is known can also work as black boxes, since
the opacity of the process may stem either from our lack
of knowledge about its dynamics, or from the math-
ematical unpredictability (or epistemic inaccessibility)
of its known dynamics. In this perspective, contrarily
to Guala [34.177], being a black box is not a specific
feature of experiments.

Finally, when experimenting on a material or for-
mal object, it is better that interactions with the object
be made easy and the results be easily accessible to the
experimenters (e.g., by means of visual interfaces) so
that tinkering is made possible [34.136] and intuitions,
familiarity, and possibly some form of understand-
ing [34.159, 169, III] can be developed.

34.5.2 Common Basal Features

Some similarities of computer simulations and experi-
ments (and thought experiments) may be accounted for
by highlighting common basal features of these activ-
ities, which in turn account for the existence of their
common epistemological features, such as the shared
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concerns of practitioners of experiments and computer
simulations for “error tracking, locality, replicability,
and stability” [34.70, p. 142]. In this perspective, one
should characterize the nature and status of these com-
mon basal features.

Role or Functional Substitutability
Though computer simulations, thought experiments and
experiments are activities of different types, they can
sometimes be claimed to play identical roles. Typically,
computer simulations are used to gain knowledge about
how physical systems behave (hereafter behavioral
knowledge) when experiments are unreliable, or mak-
ing them is politically or ethically unacceptable [34.41,
p. 107]. Importantly, acknowledging that computer sim-
ulations can sometimes be used as substitutes for exper-
iments by no means implies that they can play all the
roles of experiments (Sect. 34.5.4). Further, one should
be aware that, at a high-level of abstraction, all activi-
ties may be described as doing similar things; therefore,
these shared roles should be shown in addition to have
nontrivial epistemological implications. For example,
one may argue that providing knowledge or producing
data are roles that are endorsed by computer simula-
tions, thought experiments, or experiments. However,
this may be seen as some partially sterile hand-waving.
Indeed this points at a too abstract similarity if these ac-
tivities produce items of knowledge of totally different
types, and nothing epistemologically valuable can be
inferred from this shared characterization (see [34.81]
for a presentation of the different types of knowledge
involved in science).

El Skaf and Imbert [34.87] make an additional step
when they claim that these activities can in certain cases
be functionally substitutable, that is, that we can some-
times use one instead of the other for the purpose of
a common inquiry – which remains compatible with
the fact that these activities do not play the roles in
question in the same way, that they come with dif-
ferent epistemic credentials, provide different benefits,
and therefore, as role holders, are not epistemologically
substitutable. El Skaf and Imbert, in particular, claim
that computer simulations, experiments, and thought
experiments are sometimes used for the purpose of
unfolding scenarios (see also Hughes’ notion of demon-
stration in Sect. 34.6.1) and argue that investigations
concerning the possibility of a physical Maxwellian
demon were indeed pursued by experimental, computa-
tional and thought experimental means. The existence
of such common roles then provides grounds for an-
alyzing similarities in the epistemological structure of
the corresponding inquiries.

Morrison [34.178] goes even further since she ar-
gues that some computer simulations are used as mea-

suring instruments and therefore that they have the
same epistemic status as experimental measurements.
She first claims that models can serve as measuring
instruments, and then shows that this role can be ful-
filled in connection with both computer simulations and
experiments, which are similarly model shaped. An im-
portant part of her strategy is to relax the conditions
for something to count as an experiment, by discretely
giving primacy, in the definitions of scientific activi-
ties, to the roles which are played (here measuring)
and by downplaying the importance of physical in-
teractions with the investigated target systems in the
definition of experiments (which are simply seen as
a way to perform this measuring role). Giere’s rejoin-
der denies the acceptability of this strategy, and follows
the empiricist tradition, when he claims that “a substi-
tute for a measurement is not a measurement, which
traditionally requires causal interaction with the target
system” [34.179, p. 60]. Indeed, the potential additional
pay-offs of experiments, as primary sources of radically
new evidence, come from these causal interactions. Ac-
cordingly, their specificity is not due to their roles,
qua information sources (since thought experiments,
models, or theories are also information sources), but
from the type of epistemological credentials that come
with the corresponding information, and grounds our
ultimate scientific beliefs. A different nonempiricist
epistemology might be developed, but the bait must
then be swallowed explicitly, and it must be explained
why such an epistemology, in which activities are ex-
clusively individuated on the basis of their function
and the importance of other differences is downplayed,
should be preferred. In any case, an account of how to
individuate these functions would be needed, since at
a high level of abstraction, various activities can be seen
as performing the same function.

Beyond Anthropocentric Empiricism
To practice science, humans need to collect observa-
tions and make inferences. Since human capacities are
limited, various instruments have been developed to ex-
tend them and these instruments have been partly com-
putational for decades. These parallel developments of
observational and inferential capacities come with com-
mon epistemological features. In both cases, restricted
empiricism, which gives a large and central role to
human sensorial or inferential capacities in the descrip-
tion of how scientific activities are carried out, is no
longer an appropriate paradigm to understand scientific
practices. Indeed, the place of human capacities within
modern science needs to be reconsidered [34.8, 41,
180]. Further, the externalization of observations and
inferences comes at the price of some epistemic opacity
and passivity for the practitioner, since, as humans, we
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no longer consciously carry out these activities. Instead
we simply state the results of experimental or computa-
tional apparatus. However, this also comes with gains in
objectivity since observational and informational proce-
dures are now carried out by external, transparent and
controlled apparatus, which no longer have hidden psy-
chological biases nor commit fallacies.

The development of computational instruments and
computer simulations also raises similar epistemolog-
ical problems. For example, the apparently innocuous
notion of data seems to raise new issues in the con-
text of computational science. Computer simulations,
like models, have been claimed to be useful to probe
physical systems and to be used as measuring instru-
ments [34.178]. Whatever the interpretation of such
statements (Sect. 34.5.3), it is a fact that both computer
simulations and computational instruments provide us
with data, which raises transversal questions.

A datum is simply the value of a variable. It can be
taken to describe a property of any object. In this sim-
ple sense, data coming from experiments and computer
simulations can play a similar role by standing for the
properties of some target system within some represen-
tational inquiries. Furthermore, in both cases, their in-
terpretation usually involves heavy computational treat-
ments. In particular, mathematical transforms of various
types serve to separate information from noise, remove
artifacts, or recover information about a system prop-
erty out of intertwined causal signals, like in computed
tomography imaging techniques [34.121]. From this
point of view, as emphasized by Humphreys [34.181],
here one departs from a principle frequently used by tra-
ditional empiricists, and according to which “the closer
we stay to the raw data, the more likely those data are
to be reliable sources of evidence.”

At the same time, there are different types of epis-
temological data, and the need for their common study
should not introduce confusion in their understanding.
In science, one seeks to determine how much data reli-
ably stand for their target, and which properties exactly
they refer to. Humphreys’s remark above the compu-
tational treatment of data, reproduced above, highlights
the fact that causal information concerning the source is
crucial to treat and interpret data and to determine what
empirical content they bring about this source (this is
the inverse inference problem), given that data do not
wear on their sleeves details of how they were pro-
duced. From this point of view, experimental and com-
putational data have utterly different causal histories –
so what gives its sense to the computational treatment
is potentially of a different nature [34.91, 121]. Overall,
more pointed comparative analyses of data obtained by
computer simulations and computational instruments
are still to be carried out, to understand their semantics

and epistemology and highlight both their nonacciden-
tal similarities and specific differences (see [34.182] for
the case of computational instruments).

Computational science must also face the challenge
of data management. While the steps of traditional
mathematical proofs and arguments, once produced,
can be verified by scientists, things are usually dif-
ferent for computer solutions, even if they are merely
executions of computational programs [34.91], or ar-
guments [34.72]. Details of computer simulations are
in general not stored since this would require too large
amounts of memory (even if, in some cases like theMil-
lennium Run, scientists may decide to keep track of the
evolution of the computer simulation). In other words,
like experimental science, computational science in-
volves choosing which data to keep track of, developing
powerful devices to store them, finding appropriate
ways to organize them, providing efficient interfaces
to visualize, search, and process them, and, more gen-
erally, developing new methods to produce knowledge
from them. This also raises questions about how these
data can or should be accessed by the scientific com-
munity, and which economic model is appropriate for
them [34.183]. In brief, the epistemology of computer
simulations here meets that of big data [34.184, 185],
even if it cannot be assumed that on-going debates
and analysis about the latter, because they are mostly
focused on questions raised by empirically collected
data, will naturally apply to, or be insightful for, the
corresponding problems raised by computer simula-
tions.

Different Activities, Similar Patterns
of Reasoning

As noted by Parker [34.186], strategies developed to
build confidence in experimental results, and described
in particular by Allan Franklin, seem to have close
analogs for the justification of results generated by
computer simulations. Indeed, the interpretation of the
results of computer simulations as evidence for hy-
potheses about physical systems can sometimes be
made through an error-statistical perspective [34.187]
as in the case of experiments [34.188].

Similar patterns of reasoning are also used to ar-
gue in favor of the existence of specific mechanisms or
entities on the basis of patterns within data, modes of
visualizations of these patterns, or our ability to manip-
ulate the actual or represented systems and find pattern
regularities in their behavior (see [34.71] for a descrip-
tion of the homomorphic tradition, in which visual
forms are given much importance, in contrast to the
homologic tradition, which is more based on logical re-
lationships). More generally, visualization techniques,
aimed to facilitate the reasoning about results present in
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large databases, are crucial in the case of both experi-
ments and computer simulations (Sect. 34.4.4).

Importantly, these similarities may have different
explanations. For example, they may simply stem from
the need to treat massive amount of data by efficient
standard procedures, or be a consequence of features
shared by experimental and computational data, inde-
pendently of their quantity, like the presence of noise,
or may correspond to the application of general types
of evidential or explanatory arguments to data having
different natures.

The Reproducibility of Results
Reproducibility is a typical requirement for experi-
ments, though it is one that is sometimes difficult to
achieve because of the tacit knowledge involved in the
carrying out of experiments [34.189]. Similar prob-
lems may arise with computer simulations. Even if the
latter are nothing more than computations and are in
principle reproducible, in practice reproducibility may
sometimes be difficult, especially in the context of big
science. For example, computer simulations may be too
big to be reproduced (all the more since scientists have
in general little incentive to reproduce results). Numer-
ical codes may not be public (because they are not
published or shared), and many of the computational
details may be left tacit. Finally, computer simulations
involving stochastic processes may not be exactly re-
producible because the random numbers came from
external physical signals or because the details of the
pseudorandom number generator are not made public.

Experimenters’ and Simulationists’ Regresses
Good scientific results are usually expected to be robust
against various changes [34.190], in particular those
related to implementation or material details, and this
is why failure of exact reproducibility should not be
a worry.

Still, when one faces an inability to reproduce a re-
sult, the problem may arise from a lack of robustness or
flaw in the original experiment or computer simulation,
or from a failure to reproduce it correctly. Accordingly,
as emphasized by Gelfert [34.191], computer simula-
tions are affected by a problem similar to that of the
experimenter’s regress [34.192], which is met when to
determine whether an experimental apparatus is work-
ing properly scientists have no criterion other than the
fact that it produces the expected results. As noted by
Godin and Gingras [34.193], regresses like that high-
lighted by Collins are instances of well-known types of
arguments already analyzed in the framework of ancient
skepticism (more specifically, regresses or circular rela-
tions regarding justification). As such, they are specific
neither to experiments nor to computer simulations –

even if solutions to these problems, as those described
by Godin and Gingras or Franklin [34.194], may be
partly activity specific. In any case, adopting a gen-
eral comparative perspective provides a way to analyze
more acutely what is epistemologically specific or com-
mon to scientific activities.

34.5.3 Are Computer Simulations
Experiments?

Some authors go as far as claiming that, at least in some
cases, what we call computer simulations are in fact ex-
periments. In this perspective, Monte Carlo methods,
sometimes labeled Monte Carlo experiments or Monte
Carlo simulations, seem to be a philosophical test case
(like analog simulations, Sect. 34.2.2). Such methods
are used to compute numbers (e.g., pi), sample target
distributions or produce dynamical trajectories with ad-
equate average properties. They rely crucially on the
use of randomness [34.8, 72]. They may look closer to
experiments because they sometimes use physical sys-
tems, like a Geiger counter, to generate random events.

Still, Beisbart and Norton claim that Monte Carlo
methods are not experiments, since randomizers can
be replaced by computer codes of pseudorandomiz-
ers [34.72, p. 412]. This shows that these computer
simulations do not require contact with the random-
izer as an external object; therefore no direct empirical
discovery about the nature of physical systems can be
made by them and they should not be seen as having
an experimental nature. In brief, in Monte Carlo simu-
lations, the physical systems involved are simply used
as computers to generate mathematically random se-
quences.

Beyond the analysis of specific cases, some au-
thors have defended the bolder claim that all computer
simulations are experiments (what Winsberg calls the
identity thesis [34.195, §5]). While this goes against
inherited scientific common sense (computations are
not experiments!), the claim should be carefully exam-
ined. Indeed, in principle there is no impossibility here:
while computations, logically defined, are not experi-
ments, we need physical machines to carry them out.
Therefore, in the end, computers, instruments and ex-
perimental systems are physical systems that we use for
the purpose of doing science – and it all boils down to
how we conceptualize in a coherent and fruitful way
these external worldly activities. In brief, perhaps, after
all, we would be better off revising our epistemolog-
ical notions so that computer simulations are seen as
genuine examples of experiments – a revisionary po-
sition with regard to the empiricist tradition since it
ignores the specificity of experiments as primary evi-
dential sources of knowledge.
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In what follows, I review existing arguments in
favor of the claim that computer simulations are exper-
iments, and how these arguments have been criticized.
Overall, as we shall see, in contrast to what is claimed
in [34.195, §5], it is very dubious that discussions about
the identity thesis are simply a matter of perspective and
where the emphasis is placed. A minute, conceptually
rigorous, and sharp treatment of this question can be
found in [34.53, 72, 91, 196] and [34.169, Chap. 7].

Problems with Analyses in Terms
of Common Physical Structures

Some authors analyze computer simulations as manip-
ulations of physical systems (the computers), which
instantiate or realize models that are also instantiated
or realized by the investigated physical systems.

Norton and Suppe [34.114] are good representatives
of this tradition. They first try to describe formal re-
lations between what they call a lumped model, the
structure of the target system, and the programmed
computer, which is supposed to embed the lumped
model. They further argue that these relations account
for the experiment-like character of computer sim-
ulations: instead of experimenting on real systems,
computer simulations are used as physical stand-ins
or analogs to probe real-world phenomena, and one
thereby learns thing about the represented systems. This
suggestive position has charmed various authors. It also
has similarities with accounts of scientific representa-
tion made in terms of similarity [34.28], isomorphism,
or weaker relationships between the representation and
the target system [34.197, 198], even if the authors that
defend the above view have not adopted so far this line
of argument.

However, in the case of computer simulations, this
view does not seem to resist close scrutiny, for rea-
sons specific to computational activities. While in the
case of analog simulations both the represented sys-
tem and the analog computer instantiate a common
mathematical structure (Sect. 34.2.2), such a claim can-
not be made for digital computers. The general idea
is that steps of computational processes are multiply
realizable and that, conversely, how physical states of
computers are to be interpreted is contextual and partly
arbitrary [34.4]. It is true that for every step of a com-
putation to be carried out in practice, one needs to use
a physical machine that can be seen as instantiating the
corresponding transition rule. However, physically dif-
ferent machines can be used to carry out different parts
of a computation (for example when the computation
is distributed). Furthermore, even if a single machine
is used, different runs of the program will correspond
to different physical processes, since the computer may
process several tasks in the same time and contextually

decide how its memories are organized, and even within
the same computation, a single part of the memory may
be used at different steps to code for different physi-
cal variables [34.91, pp. 564–566], [34.196, pp. 81–84].
Overall, in the general case, the relation between the
physical states of the represented target system and the
physical states of the computer(s) that may be used to
simulate its behavior is a many-many one, and the idea
that the phenomenon is recreated in the machine “is
fundamentally flawed for it contradicts basic principles
of computer architecture” [34.196, p. 84]: in the case
of a successful computer simulation, one can simply
say that every step of the computation has been carried
out by some appropriate physical mechanism, but there
is no such thing as a computer instantiating the struc-
ture of the model investigated. (Note that the argument
based on multiple realizability is in the spirit of those
originally developed by Fodor [34.126] in his discus-
sion of the reduction of the special sciences).

Problems with Common Analyses in Terms
of Intervention or Observation

Computer simulations have also been claimed to qualify
as experiments “in which the system intervened on is
a programmed digital computer” [34.199, p. 488], or
to involve observations of the computer as a material
system [34.114, p. 88]. Winsberg even goes as far as to
claim that [34.195]

“nothing but a debate about nomenclature [. . . ]
would prevent us from saying that the epistemic
target of a storm simulation is the computer, and
that the storm is merely the epistemic motivation for
studying the computer.”

Such claims can be answered along the same lines
as the previous argument. There is of course no denying
that when one runs a computer simulation one inter-
acts with the interface of the computer, which triggers
some physical change in the computer so that the right
computation is carried out. Similarly, once the compu-
tation is finished, the physical state of the memory in
which the result is stored, triggers a causal mechanism
that produces changes in the interface so that the re-
sult can be read by the user. However, the definition of
an intervention at the model level does not determine
a specific intervention at the physical level of the com-
puter. The reason is that, as emphasized above, even
within the same computational process, the way that
the intervened model variable is physically represented
in the computer may vary, and how the computer, qua
physical system, evolves precisely may depend on var-
ious parameters such as the other tasks that it carries
out at the same time. In brief, the idea that actual com-
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puter simulations, defined at the model level, could be
seen as the investigation of the computer, qua physical
machine, which is used to carry them out, seems to be
riddled with insuperable difficulties.

Finally, one should mention that epistemic access to
the physical states of the computer corresponding to the
successive steps of a computation is usually not possi-
ble in practice [34.196, p. 81].

Problems with General Analyses in Terms
of Epistemological and Representational
Structure

Some authors have also argued that computer simula-
tions and experiments share an epistemological struc-
ture, or epistemological aspects, and have used this
claim to justify the identity thesis.

For example, it has been claimed that in both cases
one interacts with a system to gain knowledge about
a target system, and the internal and external validity of
the processes needs to be checked. This type of analysis
stems from a 2002 paper byGuala [34.177] in which he
presents a laboratory experiment in economics aimed
at investigating behavioral decision making by giving
decisional tasks to real human subjects in the labo-
ratory. In this case, a hypothesis about how agents
behave in the laboratory is investigated (internal va-
lidity hypotheses); then, based on similarities between
the experimental situation and the real-life situation,
an external hypothesis is made about the behavior of
agents in real life situations (external validity hypothe-
sis). The notion of internal validity comes from social
science and corresponds to the (approximate) truth
of inferences about causal relationships regarding the
system that is experimented on. External validity corre-
sponds to the (approximate) truth of the generalization
of causal inferences from an initial system, for which
internal validity has been demonstrated, to a larger class
of systems. Guala further claims that both computer
simulations and experiments fit this epistemological
description in terms of internal and external validity ar-
guments, but cautiously concludes that their “difference
must lie elsewhere” [34.177]. According to him, com-
puter simulations and experiments are different, since in
the latter case there is a material similarity between the
object and the target, whereas, in the former case, there
is a formal similarity between the simulating and the
simulated systems (a claim which seems to be falling
under the above criticism directed at Norton and Suppe
and their followers).

Guala’s conceptual description is endorsed by most
authors who try to picture computer simulations as
some sort of experiment. For example, Winsberg ac-
cepts the description, but claims that the difference
between experiments and computer simulations lies

in the type of background knowledge that researchers
use to justify the external validity hypothesis [34.113,
p. 587], a position which is again revisionary with
regard to the empiricist tradition if this is the only speci-
ficity ascribed to experiments.

A serious worry is that describing the investigation
of the computational model in terms of internal valid-
ity is problematic and artificial, since, as can be seen
above, computer simulations cannot be considered as
investigations of the causal behavior of the computer,
qua physical system. For the same reason, the use of
the notion of external validity is inappropriate, since
for computer simulations inferences about the target
system do not involve the generalization of causal re-
lations taking place in the computer to other systems
by comparing their material properties but involve the
representational validity of the computational model.

A final problem is that the characterization of the
methodology of experimental studies in terms of inter-
nal and external validity, though useful in the social
sciences, is not a general one. Using it as an accepted
general framework to compare experiments and com-
puter simulations looks like a hasty extrapolation of
the case of laboratory experiments in experimental eco-
nomics, not to mention the fact that economics may be
seen as a bold pick to build a general conceptual frame-
work for experimental studies.

It is true that in experiments, the measured prop-
erties are often not the ones that we are primarily
interested in and the former are used as evidence about
these latter target properties. Typically, vorticity in tur-
bulent flows is difficult to measure directly, and is often
assessed by measuring velocity, based on imaging tech-
niques. In more complex cases, the properties measured
can be seen as a way to observe different and poten-
tially remote target systems, as is vividly analyzed by
Shapere with his case study of the observation of the
core of the sun by the counting of 37Ar atoms in a tank
within a mine on Earth [34.180]. Importantly, in all such
cases, the measuring apparatus, the directly measured
property, and the indirectly probed target system are
related by causal processes. The uses of the collected
empirical information then vary with the type of inquiry
pursued. The evidence may be informational about the
physics of a particular system, like the Sun. Or, it may
be used to confirm or falsify theories (like in the case
of the 1919 experiment by Eddington and the relativ-
ity theory). In some cases, though by no means all, it
may be used to draw inferences about the nature or be-
havior of a larger class of similar systems – which are
not related to the measured system by a causal rela-
tionships. If this latter case of reasoning about external
validity is taken as paradigmatic for experiments, and
the causal processes between the target experimented
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systems (the source) and the measuring apparatus (the
receptors), which are present in all experiments, are
considered as a secondary feature, experimental activi-
ties are misrepresented. As Peschard nicely puts it “the
idea that the experiments conducted in the laboratory
are aimed at understanding some system that is outside
the laboratory is a source of confusion” [34.200]. Gen-
eral conceptual frameworks that do not introduce such
confusion are however possible. For example, Peschard
proposes [34.200]

“to make a distinction between the target system,
that is manipulated in the experiment or represented
in the computer simulation, and the epistemic mo-
tivation, which in both cases may be different from
the target system ”

(see also the distinction between the result of the
unfolding of a scenario and the final result of the inquiry
in [34.87]).

Overall, the common description provided by
Guala, and heavily relied upon in [34.113, 199] to sup-
port versions of the identity thesis can be defended only
by squeezing experiments and computer simulations
into a straightjacket which misrepresents these activi-
ties, is not specifically fruitful, and meets insuperable
difficulties.

Materiality Matters
Clearly, for both experiments and computer simula-
tions, materiality is crucial. However, it does matter
differently, and one does not need to endorse a version
of the identity thesis to acknowledge the importance
of materiality when claiming for example that, to un-
derstand computational science, the emphasis should
be on computer simulations which can be in practice,
and therefore materially, carried out by actual sys-
tems [34.41, 91].

For experiments, material details are relevant
throughout the whole inquiry when producing, dis-
cussing and interpreting results, their validity and their
scope (especially if one tries to extrapolate from the in-
vestigated system to a larger class of materially similar
ones). By contrast, for computer simulations, material
details are important to establish the reliability of the
computation, but not beyond: only the mathematical
and physical details of the investigation matter when
discussing and interpreting the results of the computer
simulation and the reliability of the inquiry.

34.5.4 Knowledge Production,
Superiority Claims, and Empiricism

The question of the epistemic superiority of experi-
ments over simulations has also been discussed. Parke

[34.201] takes it for granted that “experiments are com-
monly thought to have epistemic privilege over simula-
tions” and claims that this is in fact a context-sensitive
issue. As we shall see, if one puts aside the question of
the specific role of experiments as the source of primary
evidence about nature, it is not clear whether the gen-
eral version of the superiority claim has actually been
defended, or whether a straw man is attacked.

Computer Simulations, Experiments and the
Production of Radically New Evidence

Let us try to specify what the general superiority claim
could be and how it has really been defended.

The obvious sense in which experiments may be su-
perior is that they can provide scientists with primary
evidence about physical systems, which originate in in-
teractions with these systems, and cannot be the product
of our present theoretical beliefs. It is unlikely that com-
puter simulation can endorse this role. As Simon pithily
puts it, “a simulation is no better than the assumptions
built into it, and a computer can do only what it is
programmed to do” [34.12, p. 14]. From this perspec-
tive, experiments have the potential to surprise us in
a unique way, in the sense that they can provide results
contradictory to our most entrenched theories, whereas
a computer simulation cannot be more fertile than the
scientific model used to build it (even if computer sim-
ulations can surprise us and bring about novel results,
see Sect. 34.3.4). This is what Morgan seems to have
in mind when she emphasizes that “[N]ew behaviour
patterns, ones that surprise and at first confound the
profession, are only possible if experimental subjects
are given the freedom to behave other than expected,”
whereas “however unexpected the model outcomes,
they can be traced back to, and re-explained in terms of,
the model” [34.202, pp. 324–5]. In brief, experiments
are superior in the sense that, in the empirical sciences,
they can serve a function which computer simulations
cannot.

Roush [34.203] has highlighted another aspect re-
garding which experiments can be superior to simula-
tions. She first insists that we should compare the two
methods other things being equal, especially in terms of
what is known about the target situation. Then, in any
case in which there are elements in the experimenter’s
study system that affect the results and are unknown,
we may still run the experiment and learn how the target
system behaves; by contrast, in the same epistemic situ-
ation, the simulationist cannot build a reliable computer
simulation that yields the same knowledge. However,
when all the physical elements that affect the result are
known, a simulation may be as good as an experiment,
and it is a practical issue to determine which one can in
practice be carried out in the most reliable way.



Part
G
|34.5

766 Part G Modelling and Computational Issues

Thus, for a quantitative comparison to be meaning-
ful it should be related to roles which can be shared
by experiments and computer simulations, such as the
production of behavioral knowledge about physical
systems, the relevant dynamics of which is known
(Sect. 34.5.2).

Grounds for Comparative Claims
Scientists and philosophers have emphasized over the
last decades that computer simulations are often mere
simulations [34.177], the results of which should be
taken carefully. As seen above, economists shun sim-
ulation; similarly, Peck states that evolutionary biolo-
gists view simulationswith suspicion and even contempt
[34.204, p. 530]. Nevertheless, however well advised
these judgmentsmay be, they cannot by themselves sup-
port a general and comparative claim of superiority in
favor of other methods, but at most the claim that, in
fields where other methods are successful and computer
simulations have little epistemicwarrants or face serious
problems, these other methods will usually or on aver-
age be more reliable (exceptions remaining possible).

Some authors have discussed the comparative claim
by analyzing the power of the types of inferences made
to justify knowledge claims in each case. In [34.199],
Parker adopts Guala’s description of experiments (resp.
computer simulations) as having material (resp. for-
mal) similarities with their target systems (see the
discussion in Sect. 34.5.3) and studies the claim that
inferences made on the basis of material similarities
would have an epistemic privilege. (Guala does not
seem to endorse a comparative claim. He argues that
material similarities are a specific feature of experi-
ments, implying that the prior knowledge needed to
develop simulations is different from that needed to
develop experiments.) Again, the common description
in terms of internal and external validity regarding
the inferences from one physical system to another
gives the semblance of a new problem. However, if,
as suggested above, the material properties of comput-
ers matter only in so far as they enable scientists to
make logically sound computations, and no similarity
between systems is involved, the grounds and rationale
for this discussion between the properties of the com-
puter and those of the target system collapse. A way to
save the argument is to claim that the aforementioned
formal similarities are simply those between the com-
putational model and the target system, but then the
question boils down to the much more familiar compar-
ison between model-based knowledge (here extracted
by computational means) and some type of experiment-
based knowledge.

On what grounds could the general privilege of
experiment-based behavioral knowledge then be de-

fended? Since experiments and computer simulations
are different activities, which are faced with specific
difficulties, it is hard to see why computer simulations
should always fare worse. Why could simulations based
on reliable models not sometimes provide more reli-
able information than hazardous experiments? Indeed,
it is commonly agreed that, when experiments cannot
be carried out, are unreliable, or ethically unacceptable,
computer simulations may be a preferable way to gain
information [34.41, p. 107].

Justified Contextual Superiority Claims
Interestingly, superiority claims can sometimes be
made in specific contexts. Morgan presents cases in
economics in which a precise and contextual version of
the superiority claim may be legitimate [34.202].

Like Guala, Morgan discusses laboratory experi-
ments in economics, that is, purified, controlled, and
constrained versions of real world systems, which are
studied in artificial laboratory environments (in con-
trast with field experiments, which “follow economic
behavior in the wild” [34.202, p. 325]) and are aimed
at investigating what is or would be the case in ac-
tual (nonsimplified) economic situations. Mathematical
models can also be used for such inquiries and, in each
case, scientists run the risk of describing artificial be-
haviors. Morgan then makes the following contextual
claim that “any comparison with the model experiment
is still very much to the real experiment’s advantage
here” [34.202, p. 321] (my emphasis) on the grounds
that, in this case, the problem of making ampliative
analog inferences from laboratory system to real-world
systems is nothing compared with the problem of the
realism of assumptions for models exploring artificial
models [34.202, pp. 321–322]. She does not justify
this point further, but a plausible interpretation is that,
in such cases, mathematical models necessarily ab-
stract away essential parts of the dynamics of decision
making, which arguably are preserved in experiments
because of the material similarity between the labora-
tory and real agents. In brief, while material similarity
plays a role in her argument she does not make the
general claim in the core of her paper that material sim-
ilarity will always provide more reliable grounds for
external validity claims than other methods (even if her
formulation is less cautious in her conclusion).

Overall, such sound contextual comparative judg-
ments require two premises: first that in some context
computer simulations are not reliable (or have relia-
bility r) and second that in the same context material
similarities provide reasonably reliable inferences (or
have reliability s> r). (Indeed, analogical reasoning
based on material similarities, in which one reasons
based on systems that are representative of or for larger
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classes of systems [34.127], can sometimes be pow-
erful ways to make sound – though not infallible! –
contextual inferences. As emphasized by Harré and
Morgan, “shared ontology [. . . ] has epistemological
implications” [34.202, p. 323], since “the apparatus is
a version of the naturally occurring phenomenon and
the material setup in which it occurs” [34.205, pp. 27–
8]. After all, different samples of the same substance
obey the same laws, even if contextual influences may
change how they behave and any extrapolation is not
possible.)

34.5.5 The Epistemological Challenge
of Hybrid Methods

Whether computer simulations and experiments are on-
tologically, conceptually, and epistemologically distinct
activities or not, it is a fact that jointly experimental and
computational mixed activities have been developed
by scientists. Their study was pioneered by Morgan,
who presents various types of hybrid cases in eco-
nomics [34.206] and biomechanics [34.127]. For exam-
ple, she reports different mixed studies aimed at inves-
tigating the strength of bones and carried out by cutting
slices of bone samples, photographing them, creating
digital 3-D images, and applying the laws of mechanics
to these experiment-based representations. Morgan fur-
ther attempts to provide a principled typology of these
activities. This proves difficult because “modern sci-
ence is busy multiplying the number of hybrids on our
epistemological map” and because the qualities of hy-

brids “run along several dimensions” [34.127, p. 233].
Overall, sciences illustrate “how difficult it is to cut
cleanly, in any practical way, between the philosopher’s
categories of theory, experiment and evidence” [34.127,
p. 232], and, we may add, computer simulations or
thought experiments.

Should these hybrid methods lead philosophers to
reconsider the conceptual frontiers between experi-
ments and computer simulations? We can first note that
their existence may be seen as a confirmation that the
traditional picture of science, in which theoretical, rep-
resentational or inferential methods on one hand and
experimental activities on the other play completely
different but complementary roles, is not satisfactory
(Sect. 34.5.2). Then, if one grants that activities like
experiments, thought experiments and computer sim-
ulations can sometimes play identical roles, it is no
surprise that they can also be jointly used to fulfill them.
Similarly, a group of four online players of queen of
spades sometimes involve virtual players – but most
people will be reluctant to see this as sufficient grounds
for claiming that bots are human creatures.

In any case, these hybrid activities raise episte-
mological questions. What, if anything, distinguishes
a computer simulation that makes heavy use of em-
pirical data from a measurement involving the com-
putational refinement of such data [34.53, 121]? How
much should the results of these methods be consid-
ered as empirical? Overall, what type of knowledge and
data is thereby generated (see [34.53] for incipient an-
swers)?

34.6 The Definition of Computational Models and Simulations

The main definitions of computer simulations are criti-
cally presented: Humphreys’s 1994 definition in terms
of computer-implemented methods, Hartmann’s 1996
definition in terms of imitation of one process by
another process, Hughes’s DDI (denotation, demonstra-
tion, interpretation) account of theoretical representa-
tion, and finally Humphreys’s 2004 definition, with its
emphasis on the notion of a computational template
(Sect. 34.6.1). The questions that a satisfactory defi-
nition should answer are then discussed, in particular
which notions should be primitive in the definition,
whether computer simulations should be defined as log-
ical or physical entities, whether they correspond to
success terms, how the definition should accommo-
date the possibility of scientific failure and the pursuit
of partly open inquiries, or to what extent computer
simulations are social, intentional, or natural entities
(Sect. 34.6.2).

I come back finally to the issue of the definition of
computer simulations. Providing a definition may look
at first sight to be easy, since what computers are is
well-known and clear cases of computer simulations
are well identified. However, a sound definition should
also be helpful to analyze less straightforward cases and
be fruitful regarding epistemological issues related to
computer simulations, not least by forcing philosophers
to clarify the various intuitions which are entertained
across scientific fields about these methods.

It is not difficult to present definitions that accom-
modate some types of computer simulations or some
particular (or field specific) uses of computer simula-
tions. Nevertheless, failing to distinguish between what
is typical of computer simulations in general and what
is specific to particular cases can lead (and has led) to
heedless generalizations (Sect. 34.5.3). Things are all
the more tricky as the very same types of computer
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simulations, qua formal tools (e.g., agent-based, CA
models, equation-based simulations, etc.,) can be used
in different epistemic contexts for different purposes,
and require totally different epistemological analyses.
The case of CA-based computer simulations exempli-
fies the risk of too quick essentialist characterizations.
While it was believed that these models were appropri-
ate for phenomenological simulations only [34.9, 135],
their use in fluid dynamics has shown that they could
supply theoretical models based on the same underly-
ing physics as traditional methods [34.100].

The following section is organized as follows. Ex-
isting definitions and the problems they raise are pre-
sented first, and then issues that a good definition of
computer simulations should clarify are emphasized.

34.6.1 Existing Definitions of Simulations

Computer-Implemented Methods
As emphasized by Humphreys, a crucial feature of sim-
ulations is that they enable scientists to go beyond what
is possible for humans to do with their native inferential
abilities and pen-and-paper methods. Accordingly, he
offered in 1991 the following working definition [34.7]:

“A computer simulation is any computer-imple-
mented method for exploring the properties of
mathematical models where analytic methods are
unavailable.”

This definition requires that we possess a clear defi-
nition of what counts as an analytic method, which is
not a straightforward issue [34.60]. Further, as noted
by Hartmann et al. [34.10, pp. 83–84], it is possi-
ble to simulate processes for which available models
are analytically solvable. Finally, as acknowledged by
Humphreys, the definition covers areas of computer-as-
sisted science that one may be reluctant to call computer
simulations. Indeed, this distinction does sometimes
matter in scientific practice. Typically, economists are
not reluctant to use computers to analyze models but
shun computer simulations [34.37]. Since both com-
putational methods and computer simulations involve
computational processes, their difference must be either
in the different types (or uses) of computations involved
either at the mathematical and/or the representational
level.

One Process Imitating Another Process
Hartmann proposes the following characterization,
which gives the primacy to the representation of the
temporal evolution of systems [34.10, p. 83]:

“A model is called dynamic, if it [. . . ] includes as-
sumptions about the time-evolution of the system.

[. . . ] Simulations are closely related to dynamic
models. More concretely, a simulation results when
the equations of the underlying dynamic model are
solved. This model is designed to imitate the time-
evolution of a real system. To put it another way,
a simulation imitates one process by another pro-
cess. In this definition, the term process refers solely
to some object or system whose state changes in
time. If the simulation is run on a computer, it is
called a computer simulation.”

This definition has been criticized along the follow-
ing lines. First, as noted by Hughes [34.13, p. 130],
the definition rules out computer simulations that do
not represent the time evolution of systems, whereas ar-
guably one can simulate how the properties of models
or systems vary in their phase space with other param-
eters, such as temperature. Accordingly, a justification
for the privilege granted to the representation of tempo-
ral trajectories should be found, or the definition should
be refined, for example, by saying that computer simu-
lations represent successive aspects or states of a well-
defined trajectory of a system along a physical variable
through its state space. Second, the idea that a specific
trajectory is meant to be representedmay also have to be
abandoned. For example, in Monte Carlo simulations,
we learn something about average values of quantities
along sets of target trajectories by generating a poten-
tial representative of these trajectories, but the computer
simulations are not aimed at representing any trajectory
in particular. One may also want a computer simula-
tion to be simply informative about structural aspects of
a system.Overall, the temporal dynamics of the simulat-
ing computer is a crucial aspect of computer simulations
since it “enables us to draw conclusions about the be-
havior of the model” [34.13, p. 130] by unfolding these
conclusions in the temporal dimension of our world,
but the temporal dynamics of the target system may not
have to be represented for something to count as a com-
puter simulation.

Third, the definition is probably too centered on
models and their solutions [34.207], since it equates
computer simulations with the solving of a dynamic
model that represents the target system. This is tan-
tamount to ignoring the fact that describing computer
simulations as mathematical solutions of dynamic mod-
els is not completely satisfactory. What is being solved
is a computational model (as in Humphreys’s defini-
tion [34.41], see below), which can be significantly
different from, and somewhat independent of, the ini-
tial dynamic model of the system, which usually de-
rives from existing theories. Effectively, different layers
of models, often justified empirically, can be needed
in-between [34.13, 97, 208]. For this reason, the repre-
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sentational relation between the initial dynamic model
and the target system, and between the computational
system and the target system, are epistemologically dis-
tinct.

Finally, the definition may be reproached for en-
tertaining a recurrent confusion about the role of ma-
teriality in computer simulations (Sect. 34.5.3), by
describing the representational relation as being be-
tween two physical processes, and not between the
computational model and succession of mathemati-
cal states which unfold it (in whatever way they are
physically implemented and computed) and the target
system.

Computer Simulations as Demonstrations
Hughes does not propose a specific definition of com-
puter simulations since he believes that computer sim-
ulations naturally fit in the DDI account of scien-
tific representation that he otherwise defends [34.13,
p. 132]. According to the DDI, which involves de-
notation, demonstration, and interpretation as compo-
nents [34.13, p. 125]:

“Elements of the subject of the model (a physi-
cal system evincing a particular kind of behavior,
like ferromagnetism) are denoted by elements of
the model; the internal dynamic of the model then
allows conclusions (answers to specific questions)
to be demonstrated within the model; these conclu-
sions can then be interpreted in terms of the subject
of the model.”

The demonstration can be carried out by a physical
model (in the case of analog simulations) or by a log-
ical or mathematical deduction, such as a traditional
mathematical proof, or a computer simulation. Further,
according to Hughes, in contrast to Hartmann’s ac-
count, “the DDI account allows for more than one layer
of representation” [34.209, p. 79]. Overall, a virtue of
this account is that it emphasizes the common episte-
mological structures of different activities by pointing
at a similar demonstrative step, which excavates the
epistemic content and resources of the model (see
also [34.210] for refinements, [34.87] for an analysis
which extends the idea of demonstration, or unfolding,
to thought experiments and some types of experiments,
and [34.72] for the related idea that computer simula-
tions are arguments). While as a definition of computer
simulation, Hughes’s sketchy proposal has somewhat
been neglected (see however [34.208]) it is a legiti-
mate contender and it remains to be seen how much
a more developed version of is would provide a fruitful
framework for philosophical discussions about com-
puter simulations.

Computer Simulations as the Concrete
Production of Solutions to Computational
Models

In order to answer problems with the previous defini-
tions, Humphreys proposed in 2004 another definition
of computer simulations, which is built along the fol-
lowing lines [34.41]. He defines the notion of a theoret-
ical template, which is implicitly defined as a general
relation between quantities characterizing a physical
system, like Newton’s second law, Schrödinger’s equa-
tion, or Maxwell’s equations. A theoretical template
can be made less general by specifying some of its
variables. When the result is computationally tractable,
we end up with a computational template. (Thus, what
qualifies as a computational template seems to depend
on our computational capacities at a given time.) When
a computational template is given (among other things)
an interpretation, construction assumptions, and an ini-
tial justification, it becomes a computational model.
Finally, Humphreys offers the following characteriza-
tion [34.41, pp. 110–111]:

“System S provides a core simulation of an object
or process B just in case S is a concrete computa-
tional device that produces, via a temporal process,
solutions to a computational model [. . . ] that cor-
rectly represents B, either dynamically or statically.
If in addition the computational model used by S
correctly represents the structure of the real system
R, then S provides a core simulation of system R
with respect to B.”

Another important distinction lies between the com-
puter simulation of the behavior of a system and that
of its dynamics [34.41, p. 111] since, even when the
computational model initially represents the structure
and dynamics of the system, the way its solutions are
computed may not follow the corresponding causal pro-
cesses. Indeed, in a computer simulation, the purpose
is not that the computational procedure exactly mim-
ics the causal processes, but that it efficiently yields
the target information from which an appropriate dy-
namic representation of the target causal processes can
finally be built for the user. For reasons of computa-
tional efficiency, the representation may be temporally
and spatially dismembered at the computational level
(e.g., by computing the successive states in a different
order), as may happen with the use of parallel process-
ing, or of any procedure aimed at partially short cutting
the actual physical dynamics.

The space here is insufficient to analyze all the as-
pects of the above definition and to do justice to their
justification – all the more so since further compli-
cations may be required to accommodate even more
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complex cases [34.208]. Suffice it to say that this elab-
orate definition, which is aimed at providing a synthetic
answer to the problems raised by previous definitions,
is one of the most regularly referred to in the literature.

34.6.2 Pending Issues

Simulating or Computing
Giving a definition of computer simulations implies
choosing which notions should be regarded as primi-
tive and how to order them logically. Some authors first
define the notion of simulation and present computer
simulations as a specific type of simulations. For exam-
ple, Bunge first defines the notion of analogy, then that
of simulation, and finally that of representation, as sub-
relation of simulation. For him, an object x simulates
another object y when (among other things) (1) there
is a suitable analogy between x and y and (2) the anal-
ogy is valuable to x, or to another party z that controls x
(see [34.11, p. 20] for more details).

A potential benefit of this strategy is that it be-
comes possible to unify in the same general framework
various different types of analogous relations between
systems such as organism versus society, organism ver-
sus automaton, scale ship versus its model, computer
simulations of both molecular and biological evolu-
tion, etc. Similarly, Winsberg [34.195, §1.3] suggests
that the hydraulic dynamic scale model of the San
Francisco Bay model should be viewed as a case of
simulation (see [34.211] for a recent presentation and
philosophical discussion of this example in the context
of modeling). While scale models can obey the same
dimensionless equations as their target systems and be
used to provide analog simulations of them, Winsberg’s
claim is not uncontroversial and may require an ex-
tension of the notion of simulation. Indeed the model
and the Bay itself do not exactly obey the same mathe-
matical equations. For example, distortions between the
vertical and horizontal scales in the model increase the
hydraulic efficiency, which implies adding copper strips
and the need for empirical calibration. Therefore, this
is not exactly a case of a bona fide analog simulation
(Sect. 34.2.2) but of a complex dynamical representa-
tion between closely analogous systems. In any case,
if one adopts such positions, it is then a small step to
describe other cases of analogical reasoning between
material systems (and possibly cases of experimental
economics, in which the dynamics of the analogous tar-
get system is not precisely known and external validity
is to be assessed by comparing the material systems in-
volved) as cases of simulations (Sect. 34.5.3).

At the same time, unification is welcome only if
it is really fruitful (and is, of course, not misleading).
As seen above, the problem with such analyses is that

they tend to describe computer simulations as involv-
ing a representational relationship between twomaterial
systems and to misconstrue how computers work (see
again Sect. 34.5.3). They thereby tend to misrepre-
sent the epistemological role of the physical properties
of computers and the fact that computational science
involves two distinct steps; one in which computer sci-
entists warrant that the computer is reliable and another
in which scientists use computations and do not need to
know anything about computers qua physical systems.
A way out of this deadlock may be to use a flexible
notion of simulation, which can be applied to relations
between physical or logical–mathematical simulating
processes and the target simulated physical processes.
Then, the question remains as to what exactly is gained
(and lost) from an epistemological point of view by
putting in the same category modes of reasoning of
such different types – if one puts aside the empha-
sis on the obvious similarities with analog simulations,
which are a very specific type of computer simulation
(Sect. 34.2.2). Overall, it is currently far from clear
whether this unificatory move should be philosophi-
cally praised.

Abstract Entities or Physical Processes
Arguably, computations are logical entities that can
be carried out by physical computers. Then, the ques-
tion arises should computer simulations also be seen
as abstract logical entities, or should they be seen as
material processes instantiating abstract computations?
Hartmann’s definitions present computer simulations
as processes, whereas Humphreys’s definition is more
careful in the sense that the computing systems simply
produce the solution or provide the computer simula-
tion. Clearly, to analyze computational science, it is
paramount to take into account material and practical
constraints since a computer simulation is not really
a part of our science and we have no access to its
content unless a material system carries it out a for
us. At the same time, just like the identity of a text is
not at the material level, the identity of a computing
simulation (and the corresponding equivalence relation-
ship between runs of the same computer simulation) is
defined at the logical (if not the mathematical) level
and the physical computer simply presents a token of
the computer simulation. From this point of view, the
material existence of computer simulations and the in
principle/in practice distinction emphasized byHumph-
reys [34.41] have epistemological, not ontological, sig-
nificance, that is, they pertain to what we may learn
by interacting with actual tokens of computer simula-
tions [34.91, p. 573] but not to the nature of computer
simulations. Similarly the identity of a proof seems to
be at the logical level, even if a proof has no existence
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nor use for us unless some mathematician provides
some token of it.

Success, Failure, and the Definition
of Computer Simulations

A computer simulation is something that reproduces the
behavior or dynamics of a target system. The problem
with characterizations of this type is that they make
computer simulation a success term and if a computer
simulation mis-reproduces the target behavior, it is no
longer a computer simulation. This problem is a gen-
eral one for representations, but is specifically acute for
scientific representations (Frigg and Nguyen Chap. 3,
this volume). Indeed, while anything in art can be
used to represent anything else, scientific representa-
tions are meant to be informative about the natural
systems they represent. This is part of their essential
specificities and, arguably, a definition according to
which any process could be described as a scientific
computer simulation of any other process is not satis-
factory. At the same time, one does not want something
to be a computer simulation, or a scientific represen-
tation, based on whether it is scientifically successful
and exactly mirrors its target (remember that, for some
scientific inquiries, representational faithfulness is not
a goal and may even impede the success of the investi-
gation [34.212] and [34.23, Chaps. 1 and 3].

An option is to say that something is a scientific rep-
resentation if it correctly depicts what its user wants
it to represent. However, this may raise a problem for
computer simulations that were carried out and had
subsequent nonintended uses, like the millennium sim-
ulation. It may also raise a problem for fictions, which
strictly speaking seem to represent nothing [34.25,
p. 770].

Finally, failed representations, which do not repre-
sent what their producers believe them to depict, are
also a problem. Representational inquiries can fail in
many ways, and failures are present on a daily ba-
sis in scientific activity, from theories and experiments
to models and simulations. For this reason, descrip-
tions of scientific activities should be compatible with
failure, especially if they are to account for scientific
progress and the development of more successful in-
quiries. Indeed, it would be weird to claim that many
of the computer simulations that scientists perform
and publish about are actually not computer simula-
tions. Further, whether a genuine computer simulation
is carried out should be in general transparent to the
practitioner, and this cannot be the case if computer
simulation is defined as a success term and scientific
failure is frequent (see also [34.213, pp. 57–58]).

Overall, a question is to determine where the fron-
tier should lie between unsuccessful or failed computer

simulations, and potential cases in which something
that was believed to be a computer simulation by scien-
tists actually is not. This in turn requires knowing how
computer simulations can fail specifically [34.92] and
which failures are specific to them. In brief, one needs
to be able to decide on a justified basis which failures
disqualify something from being a computer simulation
and which ones simply alter its scientific, epistemic, or
semantic value. This analysis may also have to be co-
herent with analyses about how other types of scientific
activities such as experiments and thought experiments
can fail [34.214], especially when these activities play
similar or identical roles.

An option to consider is that something is a com-
puter simulation based on criteria that do not involve
empirical success, and that it qualifies as an empiri-
cal success depending on additional semantic properties
and on whether it correctly represents the relevant as-
pects of its (real or fictional) target system(s). This
option is potentially encompassing enough (the scien-
tifically short-sighted student can be said to perform
a computer simulation), but discriminating between
good and bad computer simulations is still possible. It
is compatible with the fact that research inquiries are
often open and scientists need not know in advance
what in their results will have representational value
in the end. Finally, it is also compatible with a differ-
ent treatment of representational and implementation
failures. Indeed, the possibility of being unsuccess-
ful at the representational level is consubstantial to
empirical inquiries and is in this sense normal. By
contrast, an implementation failure is simply some-
thing that should be fixed. It corresponds to a case in
which we did not manage to carry out the intended
computation, whereas computing is not supposed to be
a scientific obstacle, and we learn nothing by fixing the
failure.

Natural, Intentional, or Social Entities?
A similar but distinct issue is to determine which type
of objects computer simulations are, qua token physical
processes carried out by computing devices – a question
which is close to that of the nature of physical comput-
ers and is also related to that of the ontology of model
(Gelfert Chap. 1, this volume).

Arguably, they are not simply natural objects which
are defined by some set of physical properties and exist
independently of the existence of the agents using them.
Indeed, because computations can be multirealized and
some runs of computations built by patching different
bits of computation on physically different machines,
it is unlikely that all computations can be described in
terms of natural kind predicates (massively disjunctive
descriptions not being allowed here) [34.126].



Part
G
|34.6

772 Part G Modelling and Computational Issues

Further, for both computations and computer simu-
lations, pragmatic conditions of use seem to matter. To
quote Guala commenting on the anthropomorphism of
Bunge’s definition (see above), [34.177, p. 61]

“it makes no sense to say that a natural geyser sim-
ulates a volcano, as no one controls the simulating
process and the process itself is not useful to anyone
in particular.”

Indeed, even if any physical system can be seen
as computing some (potentially trivial) functions (see
below), any physical object cannot be used as a (gen-
eral) computer, and we may have to endorse a posi-
tion along the lines of Searle’s notion of social ob-
jects [34.215], or of any analysis doing the same work:
a physical object X counts as Y in virtue of certain cog-
nitive acts or states out of which they acquire certain
sorts of functions (here computing), given that these
objects need to demonstrate appropriate physical prop-
erties so that they may serve these functions for us.
A specificity of computer simulations is that, unlike en-
trenched social objects, such as cars or wedding rings,
a small group of users may actually be enough for
a physical system to be seen as carrying out a computer
simulation. Thus, the evolution of a physical system
(like a fluid) may count for some users as an ana-
log computer, which performs a computer simulation,
and for other users as an experiment, even if experi-
ments and computer simulations are in general objects
of different types, and this case is unlikely to be met in
practice (Sect. 34.5.3).

In any case, what is needed for something to be
used as a computer or a computer simulation is not
completely clear. The physical process must clearly be
recognized as instantiating a computer model. Control
is useful but not necessarily mandatory (e.g., we may
use the geyser to simulate a similar physical system,
even if the geyser would not count as a controlled ver-
satile analog computer). The possibility to extract the
computed information is clearly useful – an issue that
matters for discussions about analog and quantum com-
puter simulations, and of course cryptography.

An alternative position is not to mention users in the
definition and to claim that, pace the peculiar case of
man-made computations (which may make use heav-
ily of the possibility offered by multiple realizability,
see Sect. 34.5.3), physical processes are the one-piece
physical instantiations of running computer models
(resp. computer simulations) and, as such, are computa-
tions (even if, sometimes, trivial ones). See [34.216] for
a sober assessment of this pancomputationialist posi-
tion. In this perspective, onemay say that it is a practical
problem to create artificial human-friendly computers
which can in addition be controlled and the informa-

tion of which can be extracted. While such positions
may be palatable for those, like Konrad Zuse, Edward
Fredkin and their followers [34.64, 217, 218], who want
to see nature as a computer, it is not clear that such pan-
computationalist theses, whatever their intrinsic merits
for discussing foundational issues like the computa-
tional power of nature or which types of computers are
physically possible, serve the purpose of understanding
science as it is actually practiced.

An important distinct question is whether inten-
tional or pragmatic analyses should also be endorsed
regarding computational models and computer sim-
ulations, qua representational mathematical entities,
that is, how much the intentions of users and con-
ditions detailing how their use by scientists is pos-
sible, should be part and parcel of their definitions.
Arguably, a scientific model is not simply a piece
of syntax or an entity which inherently and by it-
self represents, completely or partially, a target system
in virtue of the mathematical similarities it intrinsi-
cally possesses with this system. In order to understand
how scientific representations and computer simula-
tions work and actually play their scientific role, their
description may have to include captions, legends, ar-
gumentative contexts, intentions of users, etc., since
these elements are part of what makes them scientifi-
cally meaningful units. Indeed, how one and the same
mathematical model represents significantly varies de-
pending on the inquiry, subject matter and knowledge
of the modelers. This is particularly clear in the case
of computational templates, which are used across
fields of research for different representational and
epistemological purposes [34.41, §3.7], and which are
scientific units at the level of which different types
of theoretical and conceptual exchanges take place
within and across disciplines [34.45]. Overall, this is-
sue is not specific to computer simulations but can
be raised for other scientific representations [34.23,
168, 219–221]. Thus, this point shall not be developed
further.

Computer Simulations
and Computational Inquiries

How should computer simulations be delineated? Com-
puter simulations do not wear on their sleeves how they
were built, contribute to scientific inquiries, should be
interpreted and how their results should be analyzed.
Accordingly, authors like Frigg and Reiss distinguish
between computer simulations in the narrow sense (cor-
responding to the use of the computer), and in the
broad sense (corresponding to the “entire process of
constructing, using and justifying a model that in-
volves analytically intractable mathematics” [34.30, p.
596]). See also the distinction between the unfolding
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of a scenario and the computational inquiry involv-
ing this unfolding at its core [34.87], or the descrip-
tion of how the demonstration activity is encapsulated
in other activities in the DDI account of representa-
tion [34.13].

Whatever the choice which is made, there is tension
here. As underlined above, an analysis of the identity of
scientific representations cannot rest on the logical and
mathematical properties of scientific models and their
similarities with their physical targets, and indications
about how these representations are to be interpreted
cannot be discarded as irrelevant to the analysis of their
nature and uses. At the same time, computer simu-
lation, qua computational process, and the arguments
that are developed by humans about it, are activities
of different natures and play different roles. Therefore
an encompassing definition should not lead to blur the
specificities of the different components of computa-
tional inquiries (just like a good account of thought
experiments should not blur that they crucially involve
mental activities at their core and are part of inquiries
also involving scientific arguments).

34.6.3 When Epistemology Cross-Cuts
Ontology

Whatever the exact definition of computer simulations,
it is clear that they are of a computational nature, in-
volve representations of their target systems and that
their dynamics is aimed at investigating the content of
these representations.

Importantly, whereas the investigation of scien-
tific representations is traditionally associated with the
production of theoretical knowledge, the nature of com-

puter simulations does not seem to determine the type
of knowledge they produce.

Clearly, computer simulations can yield theoretical
knowledge when they are used to investigate theoretical
models. At the same time, even if computer simula-
tions are not experiments (Sect. 34.5.3), they produce
knowledge, which may qualify as empirical in different
and important senses. As we have seen, computer sim-
ulations provide information about natural systems, the
validity of which may be justified by empirical creden-
tials rooted in interactions with physical systems for as-
pects as various as the origin of their inputs, the flesh of
their representations of systems (see in Sect. 34.5.5 the
examples by Morgan about the studies of the strength
of bones), the calibration or choice of their parameters,
or their global validation by comparison with experi-
ments (Sect. 34.3.2). However, information about the
dynamics represented cannot completely be of empir-
ical origin, since it involves the description of general
relations between physical states, and general relations
cannot be observed.

From this point of view, computer simulations may
be seen as a mathematical mode of demonstrating the
content of scientific representations that is in a sense
neutral regarding the type of content that is processed:
empirically (resp. theoretically) justified representa-
tions in, empirically (resp. theoretically) justified in-
formation (or knowledge) out. This suggests that when
analyzing and classifying types of scientific data and
knowledge, the ways that they are produced and pro-
cessed (experimentally or computationally) and where
their reliability comes from (e.g., theoretical credentials
or experimental warrants) are, at least in part, indepen-
dent questions.

34.7 Conclusion: Human-Centered,
but no Longer Human-Tailored Science

Computer simulations and computational science keep
developing and partly change scientific practices
(Sect. 34.7.1). Human capacities no longer play the
role they had in traditional science, hence the need to
analyze the articulation of computational and mental
activities within computational science (Sect. 34.7.2).
This requires in particular studying computational sci-
ence for its own sake, which however should not be
seen as implying that computer simulations always cor-
respond to scientific activities of radically new types
(Sect. 34.7.3). In any case, whatever the exact relations
between computer simulations and traditional activities
like theorizing, experimenting or modeling, it is a fact
that recent investigations about computer simulations

have shed light on epistemological issues which were
de facto not treated in the framework of previous philo-
sophical studies of science (Sect. 34.7.4).

Before the development of computers, humans were
involved at every step of scientific inquiries. Various
types of devices, tools, or instruments were invented to
assist human senses and inferential abilities, and they
were tailored to fit human capacities and organs. In
brief, science was for the most anthropocentric science,
that is to paraphrase Humphreys [34.41, §1.1] “science
by the people for the people,” and analysts of science,
from Locke, Descartes, Kant to Kuhn, or Quine offered
a human-centered epistemology [34.123, 124, p. 616].
Similarly, theories and models needed to be couched
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in formalisms which made their symbolic manipulation
possible for humans (hence the success of differential
calculus), problems were selected in such a way that
they could be solved by humans, results were retrieved
in ways such that humans could survey or browse them,
etc.

34.7.1 The Partial Mutation
of Scientific Practices

The use of computers within representational inquiries
has modified, and keeps modifying, scientific prac-
tices. Theorizing is easier and therefore less academ-
ically risky, even in the absence of well-entrenched
backing-up theories; solutions to new problems be-
come tractable and how scientific problems are selected
evolves; the models which are investigated no longer
need to be easily manipulated by human minds (e.g.,
CA are well adapted for computations, but ill-suited to
carry out mental inferences [34.43]; the exploration of
models is primarily done by computers, making men-
tal explorations and traditional activities like thought
experiments are somewhat more dispensable [34.117]
and [34.41, pp. 115–116]; the treatment of computa-
tional results, as well as their verification, is made by
computational procedures; the storage of data, but also
their exploration by expected or additional inquirers,
are also computer based. Finally, the human, mate-
rial, and social structure of science is also modified
by computers, with a different organization of scien-
tific labor, the emergence in the empirical sciences of
computer-oriented scientists, like numerical physicists
and computational biologists or chemists, or the devel-
opment of big computational pieces of equipment and
centers, the access to which is scientifically controlled
by the scientific community (like for big experimental
pieces of equipment).

34.7.2 The New Place of Humans
in Science

Overall, the place and role of humans in science has
been modified by computational science. Arguably, hu-
man minds are still at the center of (computational)
science, like spiders in their webs or pilots in their
spacecrafts, since science is still led, controlled, and
used by people. Thus, we are in a hybrid scenario
in which we face what Humphreys calls the anthro-
pocentric predicament of how, we, as humans, can
“understand and evaluate computationally based scien-
tific methods that transcend our own abilities” [34.42,
p. 134]. In other words, interfaces and interplays be-
tween humans and computers are the core loci from

which computational science is controlled and its re-
sults skimmed by its human beneficiaries. More con-
cretely, scientific problems still need to be selected;
computational models, even if designed for computers,
need to be scientifically chosen (e.g., CA-based mod-
els of fluids were first demonstrated to yield the right
Navier–Stokes-like behavior by means of traditional an-
alytic methods [34.43]; results of computer simulations,
even if produced and processed by computers, need to
be analyzed relative to the goals of our inquiries; and ul-
timately scientific human-sized understanding needs to
be developed for new fundamental or applied scientific
orientations to be taken.

34.7.3 Analyzing Computational Practices
for Their Own Sake

Over the last three decades, philosophers of science
have emphasized that in most cases computer simu-
lations cannot simply be viewed as extensions of our
theoretical activities. However, as discussed above, the
assimilation of computer simulations with experimental
studies is still not satisfactory. A temptation has been to
describe the situation as one in which computer stud-
ies lay in-between theories and experiments. While this
description captures the inadequacy of traditional char-
acterizations based on a sharp and exclusive dichotomy
between scientific activities, it is at best a metaphor.
Further, this one-dimensional picture does little jus-
tice to, let alone help one understand, the intricate and
multidimensional web of complex and context-sensitive
relations between these activities.

An alternative is to analyze computational models,
computer simulations, and computational science for
their own sake. Indeed, computer simulations clearly
provide a variety of new types of scientific practices,
the analysis of which is a problem in its own right. Im-
portantly, this by no means implies that these practices
require a radically new or autonomous epistemology
or methodology. Similarly mathematical and scientific
problems can be genuinely independent, even when in
the end they can be reduced by complex procedures
to a set of known or solved problems. Indeed, the
epistemology of computer simulations often overlaps
piecewise with that of existing activities like theorizing,
experimenting, or thought experimenting. Disentan-
gling these threads, clarifying similarities, highlighting
specific features of computational methods, and analyz-
ing how the results of computer simulations are justified
in actual cases is an independent task for naturalistic
philosophers, even if one believes that, in principle,
computer simulations boil down to specific mixes of al-
ready existing, more basic activities.
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34.7.4 The Epistemological Treatment
of New Issues

In practice, the analysis of computer simulations has
raised philosophical issues, which were not treated by
philosophers before computational studies were taken
as an independent object of inquiry, either because they
were ignored or unnoticed in the framework of previ-
ous descriptions of science, or because they are gen-
uinely novel [34.96, 124, 207]. This a posteriori justifies
making the epistemological analysis of computational
models and computer simulations a specific field of
the philosophy of science. How much computer sim-
ulations will keep modifying scientific practices and
howmuch their philosophical analysis will finally bring
about further changes in the treatment of important
issues like realism, empiricism, confirmation, explana-
tion, or emergence, to quote just a few, remains an open
question.
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35. Simulation of Complex Systems

Paul Davidsson, Franziska Klügl, Harko Verhagen

Understanding and managing complex systems
has become one of the biggest challenges for
research, policy and industry. Modeling and sim-
ulation of complex systems promises to enable
us to understand how a human nervous sys-
tem and brain not just maintain the activities
of a metabolism, but enable the production of
intelligent behavior, how huge ecosystems adapt
to changes, or what actually influences climatic
changes. Also man-made systems are getting more
complex and difficult, or even impossible, to grasp.
Therefore we need methods and tools that can
help us in, for example, estimating how different
infrastructure investments will affect the trans-
port system and understanding the behavior of
large Internet-based systems in different situa-
tions. This type of system is becoming the focus
of research and sustainable management as there
are now techniques, tools and the computational
resources available. This chapter discusses model-
ing and simulation of such complex systems. We
will start by discussing what characterizes complex
systems.
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35.1 Complex Systems

What makes a system complex can be formulated from
various points of view. In daily speech, complex may
be primarily a relative notion depending on what a hu-
man observer may experience as not so easy to grasp
or control. A formal definition capturing what a com-
plex system is, with the necessary general validity, turns
out to be difficult to formulate. There is currently no
generally accepted definition of the term complex sys-
tem [35.1]. Since there are many sources of complexity,
very different systems can be described as complex
ones. There are many different notions of complex-
ity. In computer science complexity has two major
facets: information complexity (how large is the min-
imal description of the information that fully capture
it?) or computation complexity (how much time [space]
does an algorithm need for solving a problem in rela-
tion to the problem size?). Yet, these technical terms

do not match the intuition of a complex system be-
ing difficult to understand, verify or control. Ladyman
et al. [35.1] collect various definitions from different
domains. Those definitions focus on structures, on the
effect of initial conditions, self organization and infor-
mal complicatedness. Based on the analysis of these
definitions, they discuss a list of features that we
will tackle in the next section as they form the core
properties of complex systems. None of them alone
forms a definitory aspect, but combinations give an im-
portant impression of what a complex system might
be.

Over the years there have been a number of ap-
proaches aimed at capturing complex systems. Orig-
inating in physics, the idea of self-organized critical-
ity [35.2] was central for the analysis of complexity.
Critical attractor and nonequilibrium system are the
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central terms in the related vocabulary. A second re-
lated approach is termed complex adaptive systems,
originating more from biology, based on the idea that
complexity arises from many entities adapting to their
local environment.

35.1.1 Features Associated
with Complex Systems

Following the discussion above, an intuition of what is
a complex system can be best imparted by describing
the features of complex systems. None of the features
alone capture a complex system and a complex system
does not need to exhibit all of them. A complex sys-
tem in physics may have a completely different shape
compared to a complex system in biology or social sci-
ence. Nevertheless, a combination of those features can
be identified at any complex system that we will con-
sider in the following.

Nonlinearity
Nonlinearity is one of the most frequently identified
properties of a complex system. It basically describes
that when combining results/solutions/behavior from
multiple elements into one system, these do not add
in a linear way, but rather in a nonlinear way due to
interactions between elements. Examples of nonlinear
systems are systems in which saturation occurs. Promi-
nent are also systems in which a small change causes
a big effect somewhere else. Weather, economies, social
systems form examples for this kind of chaotic system.

Nonlinear phenomena are hard to model, capture
and analyze mathematically. Often simulation is a last
resort for handling the complexity, yet not each simula-
tion paradigm is suitable.

Distributedness, Scale and Interaction
Many systems coined as complex ones, especially in
biology or social science, are large and distributed.
That means they contain a huge number of entities that
are distributed in some way. This may not just refer
to geographic distribution, but also to an entity tak-
ing a position in a network of relations. The important
idea is that there is a form of local interaction, an en-
tity or component interacts with a (selected) number of
others distributed over some form of more or less ab-
stract environment. Scale also plays an important role
simply because a small system can be overlooked, in
a huge one perceiving what happens where in that dis-
tributed system obscures the overall dynamics, or as
Auyang [35.3, p. 11] coins it:

“The relational network is chiefly responsible for
the great variety of phenomena in the world. It is

also responsible for the difficulty in studying large
composite systems.”

Clearly, the origins of complexity are not merely in
the number of entities capable of participating in an in-
teraction, but there is some form of trade-off between
the complexity of interaction and the number of inter-
acting entities. Clearly the interaction of hundreds of
millions of humans creates a complex system of epi-
demic spread [35.4], but there are also examples for sys-
tems with only a few entities, but complex interactions;
for example the model describing the emergence of po-
litical actors [35.5] contains only 10 entities deciding
about whether to pay tribute or not based on decisions
taken before. Although there are only a few entities,
their decision making and interaction is based on sev-
eral feedback loops resulting in a complex system.

Multiple Levels of Observation,
Self Organization, Emergence

Auyang [35.3] assumes that complexity arises from
large-scale composition. The idea of a system com-
posed of many interacting entities may lead to complex-
ity even if the interaction does not lead to nonlinearity.
In such a system, there are at least two levels of ob-
servation: the individual entity and the overall system
level. The behavior and pattern observable on the lat-
ter originate from actions and interactions among the
lower level entities, between the entities and their en-
vironment as well as if there is some manifestation on
a high level (some form of organization) this may also
impact on the lower level entities.

Two additional concepts are relevant in relation
to the multilevel feature of complex systems: self or-
ganization and emergence. Self organization denotes
some process in which local interactions of lower-level
entities produce some form of sustainable regularity
from an initially unordered situation. Often random
fluctuations are responsible for locating the produced
regularity. In his famous book Kauffman [35.6] dis-
cusses self organization in biological systems based
on (evolutionary) adaptation, clearly distinguishing true
self organization from organization following some
predefined scheme expressing some intention to build
structure. A key to self organization is that local de-
cision making is adaptive to a changed environment;
that means the local behavior is not fully predefined
but at least conditional to environmental conditions.
Prominent examples for self-organizing systems can be
found in many natural systems, percolation processes in
physics, genesis of structures in biology, bird flocking,
etc. The principles are also used in technology, mainly
in systems such as swarm robotics or biologically in-
spired optimization.
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A related concept, capturing phenomena or patterns
originating from local interaction on a lower level is
emergence. In addition to self organization, it contains
some associated aspect of astonishment. As this is of-
ten very subjective, the actual definition of the term
emergence is partially controversial. The whole is more
than the sum of its parts forms the intuitive character-
ization. This idea fascinated researchers from Aristotle
to Holland [35.7]. More formal approaches for defining
emergence are based on the idea that the description
of the overall phenomenon uses different vocabulary
than the description of the description of the lower-
level entities producing the phenomenon. Well-known
examples are the Mexican wave in cheering audiences
in which the individual spectators stand up depending
on their neighbors’ actions so that a wave forms, or
traffic jams originating from too high density of vehi-
cles. The congestion travels into the opposite direction
than the individual vehicles. Darley [35.8] discusses
the dilemma of relating the definition of emergence to
some limited understanding by an observer and defines
emergence as a phenomenon that is best predicted by
simulation.

Adaptivity, Flexible Decision Making
and Feedback Loops

The features tackled so far mostly address the system
level, but there is an important aspect also in the individ-
ual entities’ behavior making up the complex system:
For producing a complex system, decision making and
interaction of the lower-level entities requires some de-
gree of freedom. The entities must be able to adapt

their decision making to their local context. Only if the
entities can adapt, feedback loops can be formulated
and something complex (unexpected) can be produced.
Flexible decision making refers to the next action the
entity chooses to perform possibly being related to the
extent with which an entity does something or referring
to the selection of the interaction partner. Adaptivity
hereby means a change in the behavior in reaction to
some immediate environmental context, for example
governed by some rules that control an entity to change
its movement direction before bumping into a suddenly
occurring obstacle. True learning is different from adap-
tive behavior: it changes the behavior program itself –
for example, the entity learns a new rule about how
to deal with obstacles. Learning can also happen on
the system (population) level in the form of evolution
combining the production of new entities with a fitness-
based selection and/or survival.

35.1.2 Summing Up

The last section attempted to capture the idea of a com-
plex system based on particular features. The main
assumption hereby is a complex system originates from
multilevel systems in which phenomena and patterns on
the overall system level are produced by entities that are
capable of flexible behavior and interaction.

Complex systems – as characterized here – are best
analyzed and their overall behavior is best predicted
using simulation. In the following, we will focus on dif-
ferent approaches and different motivations to modeling
and simulating complex systems.

35.2 Modeling Complex Systems

Already in the early days of computer development,
modeling and simulation were used in different research
areas to predict the behavior of complex systems. Such
models were typically based on differential equations
and focused on describing phenomena on the over-
all system level. For instance, models of predator-prey
populations could fairly accurately reproduce empiri-
cal data, but were limited in the sense that the models
did not capture the actual low-level entity behavior
and decision making, as well as the interaction be-
tween entities, but were based on the assumption that all
low-level units were homogeneous. The development
of individual-based modeling offers a possible solution
to this problem with its (seemingly) natural mapping
onto interacting, individual entities with incomplete in-
formation and capabilities, leading to models without
global control, with decentralized data, asynchronous

computing, and inclusion of heterogeneities. These
models also offer the possibility of studying the dynam-
ics of the interaction processes instead of focusing on
the (static) results of these processes [35.9, 10].

The main task of computer simulation is the cre-
ation and execution of a formal model of the behavior
of the system being simulated. Formal means here that
the model is represented using a formal language with
so clearly defined syntax and semantics that the model
can be executed using a computer. In scientific research,
computer simulation forms a research methodology that
can be contrasted to empirically driven research. As
such, simulation belongs to the same family of research
as analytical models. One way of formally modeling
a system is to use a mathematical model, and then
attempt to find analytical solutions enabling the pre-
diction of the behavior of the system from a set of
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parameters and initial conditions. Computer simula-
tion, on the other hand, is often used when simple
closed-form analytic solutions are not possible, which
is typically the case for complex systems.

Computer simulation consists of three main steps:

1. Designing a model of an actual or theoretical system
2. Executing the model on a computer, and
3. Analyzing the execution output.

Although there are many different types of com-
puter simulation, they typically attempt to generate
a sample of representative scenarios for a model in
which a complete enumeration of all possible states
would be prohibitive or impossible. In this chapter we
will describe simulation as a tool for understanding the
behavior of complex systems. For a deeper philosoph-
ical treatment of the concept of simulation, we refer to
Chap. 34 of this book by Imbert.

35.2.1 Macro-Level Versus Micro-Level
Simulation

As indicated above, we can identify two main ap-
proaches to modeling of complex systems:

� Macro-level (or equation-based) simulation, which
is typically based on mathematical differential or
difference models. It views the overall system with
its set of (the population) individual entities as one
structure that can be characterized by a number of
variables.� Micro-level simulation, in which the behaviors and
decision making of the specific individual entities
are explicitly modeled. In contrast to macro-level
simulation, it views the overall system behavior as
emerging from the interactions between individu-
als. Thus only with micro-level simulation, the idea
that complex effects need not have complex causes,
can be explored. Micro-level simulation is some-
times referred to as multi-agent-based simulation
(MABS), or agent-based simulation.

As argued by Parunak et al. [35.11], micro-level
simulation is most appropriate for domains character-
ized by a high degree of localization and distribution
and dominated by discrete decisions. Equation-based
modeling, on the other hand, is most naturally applied
to systems that can be modeled centrally and in which
the dynamics are dominated by physical laws rather
than information processing. Clearly, in many cases
an abstract view onto aggregate dynamics as provided
by macro-level simulation may be sufficient. However,
for simulating complex systems micro-level approaches
are more relevant. In the following sections we will

describe common ways of implementing micro-level
simulations.

Cellular Automata
Individual-based modeling can be traced back to von
Neumann, who in the 1950s invented what was later
termed cellular automata [35.12]. The core definition
of a cellular automaton refers to a model of a system
that is discrete in time, space and state, yet the term is
often used in a broader way denoting to models with
discrete space (cells). In principle, such a simulation
model consists of a grid of cells, i. e., entities, each
in one of a finite number of states. The state of a cell
at time t is a function of the states of a finite number
of cells (called its neighborhood) at time t� 1. These
neighbors are a selection of cells relative to the spec-
ified cell, and do not change. Every cell has the same
rule for updating, based on the values in this neigh-
borhood. Each time the rules are applied to the whole
grid a new generation is created. These were used by
Conway [35.13] in the 1970s when he constructed the
well-known Game of Life. It is based on very simple
rules determining the life and death of the cells in a vir-
tual world in the form of a two-dimensional (2-D) grid
just based on the state of a few neighbors, but was able
to produce astonishing macro-level dynamics as shown
in Fig. 35.1.

Inspired by this work, researchers developed more
refined models, often modeling the social behavior of
groups of animals or artificial creatures based on local
interactions. With respect to human societies, Epstein
and Axtell [35.14] developed in the 1990s one of the
first agent-based models, called Sugarscape, to explore
the role of social phenomena such as seasonal mi-
grations, pollution, sexual reproduction, combat, and
transmission of disease. This work is in spirit closely
related to one of the best-known and earliest exam-
ples of the use of simulation in social science, namely,
the Schellingmodel [35.15], in which cellular automata
were used to simulate the emergence of segregation pat-
terns in neighborhoods based on a few simple rules ex-
pressing the preferences of the agents. Another pioneer
from the 1950s worth mentioning is Barricelli [35.16],
who to some extent used agent-based modeling for sim-
ulating biological systems.

The cellular automata models closely resemble the
models used in statistical physics, which has inspired
physicists to include the simulation of social phe-
nomena in large-scale social systems in their research
agenda. In this area, sometimes referred to as so-
ciophysics, phenomena such as opinion spreading in
a society and competition between languages have been
studied. These models originally described the behavior
of atoms and molecules, which are quite simple objects,
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c)

Fig. 35.1a–c Macro-level
phenomena produces by
purely local rules determining
the state (whiteD dead,
aliveD dark) of a cell based
on the neighbors’ state in the
Game of Life

and the macro-level phenomena caused by their interac-
tion (rather than by complex behavior of the individual
as in the case of humans). Thus, in these models little
attention is paid to individual variation and the indi-
vidual decision making is rather primitively modeled.
A prominent example of sociophysics is the work of
Galam [35.17].

Another prominent example of a model in which lo-
cal interactions lead to interesting macro-level behavior
is the Boid model by Reynolds [35.18], which simu-
lates coordinated animal motion such as bird flocks and
fish schools. The underlying spatial representation and
consequently the state of the entities in form of direc-
tion of movement are continuous values. So it is not
a cellular automata in the narrow sense, yet belongs
to the same category of models that generate com-
plex system behavior from locally interacting, simple
entities.

Dynamic Micro-Simulation
One of the first, and most simple, ways of perform-
ing micro-level simulation in social science is often
called dynamic micro-simulation [35.19, 20]. It is used
to simulate the effect of the passing of time on indi-
viduals. Data from a (preferably large) random sample
from the population to be simulated is used to initially
characterize the simulated individuals. Some examples
of sampled features are: age, sex, employment status,
income, and health status. A set of transition probabili-
ties are used to describe how these features will change
over a given time period, e.g., there is a probability that
an employed person will become unemployed over the
course of a year. The transition probabilities are ap-
plied to the population for each individual in turn and
then repeatedly reapplied for a number of simulated
time periods. Sometimes it is necessary to also model
changes in the population, for example birth, death, and

marriage. This type of simulation can be used to, for
example, predict the outcome of different social poli-
cies. However, the quality of such simulations depends
on the quality of:

� The random sample, which must be representative,
and� The transition probabilities, which must be valid
and complete.

Micro-Level Simulation in Technical Domains
Also for socio-technical systems, that means for sys-
tems in which people and technology interact, a number
of micro-level modeling and simulation techniques ex-
ist. Examples are complex production lines in which
human workers cooperate with machines executing
more or less automated process steps. Formulating
a complex system using for example a Petri nets and
queuing system is based on a process-oriented point of
view of locally interacting entities and is particularly
apt for entities traveling through a complex system in
a more or less automated way not involving individual
reasoning and on-the-fly adaptation.

Petri nets hereby have been accepted as a power-
ful formal modeling tool for dealing with performance
and functionality issues in systems with distributed
concurrent processes based on local behavior – for
example complex software systems (see as an introduc-
tion [35.21]). According to its basic definition, the core
of a Petri net (of the type condition-event net) model
is a bipartite graph consisting of a finite set of places
connected with elements from a finite set of transitions.
Places can hold tokens (one or more tokens with or
without colors) that travel from place to place when
a transition fires. The colors of the token represent its
internal state and allow formulating behavior depend-
ing on internal state.
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Queuing systems are used for performance analy-
sis in distributed systems in which entities are traveling
through a system, for example patients through a hos-
pital or jobs through a production system (see for
introduction: [35.22]). Also queuing systems models
are graphs with two different types of nodes: servers
and queues. The servers represent resources that the
jobs have to be processed by. If the server is busy, the
job has to wait in the queue in front of that resource.
Every queue may have its special queuing discipline.
Connections between the different elements are ei-
ther deterministic (without branching) or probabilistic
(branching or merging).

These micro-level models and simulations are used
for complex socio-technical systems – with a focus on
technology – that benefit from a distributed, process-
oriented point of view. In contrast to cellular automata,
space is abstracted to times that a token or job needs
for traveling between places or servers. Simulated time
is usually handled event-based, that means simulated
time is advanced to times in which change happens that
triggers other changes. A general formalism for object-
oriented modeling and simulation is Discrete Event
System Specification (DEVS) [35.23], which is possi-
ble to use for micro-level modeling and simulation for
complex systems. Based on the concept of eventually
coupled systems, the underlying abstractions are quite
generic and thus can be used without doubt, but they
are not specifically supportive for modeling complex
systems. Below, we will introduce agent-based simu-
lation – a micro-level modeling approach for complex
systems that is more general than these more formalized
modeling and simulation paradigms.

35.2.2 Purpose of Modeling
Complex Systems

Modeling and simulation of complex systems can be
done for different purposes, such as:

� Supporting theory building and evaluation� Supporting the engineering of systems, e.g., valida-
tion, testing, etc.� Supporting planning, policy making, and other de-
cision making and� Training, in order to improve a person’s skills in
a certain domain.

It is possible to distinguish between four types of
end users: scientists, who use the models in the research
process to gain new knowledge or verify hypotheses;
policymakers, who use it for making strategic decisions;
managers (of systems), who use it to make operational
decisions; and other professionals, such as architects,
who use it in their daily work. Below we describe how

these types of end users may use modeling and simula-
tion of complex systems for different purposes.

Supporting Theory Building and Evaluation
In the context of theory building, a simulation model
can be seen as an experimental method or as a the-
ory in itself [35.24]. In the former case, simulations are
run to test the predictions of theories, whereas in the
latter case simulations in themselves are formal mod-
els of theories. Using a formal language for describing
ambiguous, natural language-based theories helps to
find inconsistencies and other problems, and thus con-
tributes to theory building.

Simulation may also be used to evaluate a particular
theory, model, hypothesis, or system, or compare two
or more of these. Moreover, simulation can be used to
verify whether a theory, model, hypothesis, system, or
software is correct. Using simulation studies as an ex-
perimental tool offers great possibilities. For instance,
many experiments with human societies are either un-
ethical or even impossible to conduct. Experiments in
silico, on the other hand, are fully possible. These can
also breathe new life into the ever-present debate in so-
ciology on the micro-macro link [35.25].

Supporting the Engineering of Systems
Many large-scale technical systems are distributed and
involve complex interactions between humans and ma-
chines. The idea is to model the behavior of human
users in terms of software entities (see next section). In
particular, this seems useful in situations where it is too
expensive, difficult, inconvenient, tiresome, or even im-
possible for real human users to test out a new technical
system. Of course, also the technical system, or parts
thereof, may be simulated. For instance, if the technical
system includes hardware that is expensive and/or spe-
cial purpose, it is natural to simulate also this part of the
system when testing out the control software. An exam-
ple of such a case is the testing of control systems for
intelligent buildings, where software entities simulate
the behavior of the people in the building [35.26].

Supporting Planning, Policy Making,
and Other Decision Making

In simulation for decision making the focus is on ex-
ploring different possible future scenarios in order to
choose between alternative actions. Besides this type of
prediction, modeling of complex systems may be used
for analysis; to gain deeper knowledge and understand-
ing of a certain phenomenon.

An area in which several studies of this kind have
been carried out is disaster management, such as ex-
periments concerning different roles and the efficiency
of reactions to emergencies [35.27]. Here also software
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entities are models of humans. Based on individuals’
observations, personal characteristics and skills, past
experience and role characteristics, and social network,
the entities create a plan to execute. The effect of adding
a role (floor warden) in a fire alarm scenario upon
the evacuation efficiency in an abstract environment
is analyzed. Sometimes environmental information is
based on GIS (geographical information system) data,
thereby tying the simulation closer to the physical real-
ity [35.24]. In yet another study, real-world data were
used for both the environment and the software en-
tities’ internal decision-making model to analyze the
effect of different insurance policies on the willingness
of modeled humans to pay for a disaster insurance pol-
icy [35.28].

Another application area for this type of simula-
tion study is disease spreading. Again, software entities
are used to represent human beings and the simulation
model is linked to real-world geographical data. One
study [35.29] also included software entities that repre-
sent towns acting as the epicenter of disease outbreak.
The town entity’s behavior repertoire consisted of dif-

ferent containment strategies. The simulation model
can be quickly adapted to local circumstances via the
geographical data (given that there is data on the pop-
ulation as well) and is used to determine the effects of
different containment strategies.

A third area where social simulation has been used
to support planning and policy making is traffic and
transport. An example of this is the simulation of all
car travel in Switzerland during morning peak traf-
fic [35.30].

Training
The main advantage of using modeling and simulation
for training purposes is to be part of a real-world-like
situation without real-world consequences. Especially
in the military the use of simulation for training pur-
poses is widespread. Also in medicine, where mistakes
can be very expensive in terms of money and lives, the
use of simulation in education is on the rise.

An early product in this area was a tool to help train
police officers to manage large public gatherings such
as crowds, demonstrations, and marches [35.31].

35.3 Agent-Based Simulation of Complex Systems

A special case of micro-level modeling is agent-based
modeling. Multi-agent systems [35.32] consist of in-
teracting entities embedded into a shared environment
are coined as agents. Agents are characterized by some
kind of agency and autonomy. There are many enti-
ties that can be referred to as agents, see [35.33] for
a famous example describing a thermostat as an agent.
Less controversial examples of agents are autonomous
robots and human beings. Agency contains hereby no-
tions of situatedness – being embedded into a (local)
environment that is accessible to the agent by sensors
and manipulatable using sensors. A second important
aspect of agency relates to the agents’ social abilities.
This means that the agent is capable of interacting with
other agents, taking part in conversations, coordinating
activities, etc. Autonomy is the most difficult aspect as
it relates to different aspects ranging from the agent is
capable of executing a particular sequence of actions
without human interventions to the agent learns and
adapts its behavior without external control.

Agent-based models mostly focus on the emergence
of macro-level properties from the local interaction
of adaptive agents that influence one another [35.9,
34]. However, simulations in computational organiza-
tion theory [35.35, 36], for example, often try to analyze
the influence of macro-level phenomena on individuals.
Given that complex systems are characterized by com-

plexity in the interaction of entities that in themselves
are and behave in an understandableway and that agents
are the computational implementation of such entities, it
is clear that agent-basedmodeling is a suitable paradigm
for implementing and studying complex systems. It is
supported by their generative nature [35.36]. Figure 35.2
illustrates the general principle.

There are mainly two reasons for the increasing
popularity of agent-based simulation: the intuitiveness
and the flexibility of the paradigm. The ontological cor-
respondence between agents and original actors facili-
tates understanding of the model. The unit of descrip-
tion is the active entity in the model: real pedestrians
are mapped to agents in crowd simulation or households
in demographic models. Figure 35.3 illustrates this us-
ing the example of a bee and the general concept of an
agent.

The second major advantage is the freedom of de-
sign. Agent-based models can contain heterogeneous
entities, heterogeneous spatial environments or arbi-
trary complex agent decision making. This flexibility
basically allows remodeling of any other micro-level
model using an agent-based simulation. In other sim-
ulation paradigms, heterogeneity of entities or space,
structural variation (entities leaving or entering the
system) or context-dependent and flexible individual
decision making are hard to achieve in a direct way.
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Observation levelI (t) O (t)Dynamics/structure
on macro level

Generation level
Agents with local
behavior, situated

interaction in explicit
environment

Fig. 35.2 The principle of agent-
based simulation
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Fig. 35.3 Correspondence of concepts
between real-world actors (such as
bees) and agents

35.3.1 Elements of Agent-Based
Simulation Models

Let us now focus on how the system to be simulated
is modeled. This depends on the type of system that
should be simulated and for what purpose the simu-
lation is done. A model of a system consists of a set
of entities and an environment (in which the entities
are situated). The entities are either individuals (agents)
that have some decision-making capabilities, or objects
(resources) that have no agency and are purely physical.
There are a number of characteristics that can be used to
differentiate between different types of models. We will
first look at how individuals are being modeled, then
on the interaction between the individuals, and finally
how the environment is being modeled. Figure 35.4
summarizes these three basic aspects of agent-based
simulation. In the following, the different elements of
an agent-based simulation model are discussed. Sec-
tion 35.3.2 deals with the engineering aspects also
manifested in the simulation infrastructure used.

Model of an Individual
A model of an individual could range from being very
simple, such a one binary variable (e.g., alive or dead)
that is changed using only a single rule, to being very
complex. The complexity of the model for a given
simulation should be determined by the complexity
of the individuals being simulated. Note that in com-
plex systems very complex collective behavior could
be achieved from very simple individual models, if the
number is sufficiently large.

Environment

Simulation platform

Interaction/
organisation

Agents

Fig. 35.4 Illustration of the three elements of an agent-
based model. A fourth relevant part is the simulation
platform that will be discussed in Sect. 35.3.2,More Issues
in Engineering Agent-Based Simulations

We can distinguish between modeling of the state
of an individual and the behavior of the individual,
i. e., the decisions and actions it takes. The state of
an individual, in turn, can be divided into the physical
and the mental state. The description of the physi-
cal state may include, for example, the position of
the individual, and if it is a person being simulated
features such as age, sex, and health status. The physi-
cal state is typically modeled as a feature vector, i. e.,
a list of attribute and value pairs. However, this is
not always the case as in some domain the physical
state of individual is not modeled at all, for example
the Principles of Synthetic Intelligence (PSI) agent by
Künzel and Hämmer [35.37] that was used to give stu-
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dents theoretical insights in the area of psychological
theory.

Whereas the physical state often is simple to model,
the modeling of the mental state is typically much
more complex, especially if the individuals modeled
are human beings. A common approach is to model
the beliefs, desires, and intentions of the individual,
for instance by using the belief–desire–intention (BDI)
model [35.38, 39]. Such a model may include the so-
cial state of the individual, i. e., which norms it adheres
to, which coalitions it belongs to, etc. Although the
BDI model is not based on any experimental evidence
of human cognition it has proved to be quite useful
in many applications. There has also been some work
on incorporating emotions in models of the mental
state of individuals [35.40] as well as obligations (cf.
the beliefs, obligations, inentions and desires (BOID)
model [35.41] which extends the BDI with obligations).

The modeling of the behaviors (and decisions) of
the individuals can be done in a variety of ways,
from simple probabilities to sophisticated reasoning
and planning mechanisms. As an example where the
former is used, we can mention dynamic micro-
simulation as described in Sect. 35.2.1,DynamicMicro-
Simulation, which was one of the first ways of perform-
ing individual-based simulation and is still frequently
used. In traditional micro-simulation, the behavior of
each individual is regarded as a black box. The behav-
ior is modeled in terms of probabilities and no attempt
is made to justify these in terms of individual prefer-
ences, decisions, plans, etc. Thus, better results may be
gained if also the cognitive processes of the individuals
were simulated. Opening the black box of individual
decision making can be done in several ways. A ba-
sic and common approach is to use decision rules, for
instance, in the form of a set of situation-action rules.
That is, if an individual and/or the environment is in
state X then the individual will perform action Y. By
combining decision rules and the BDI model quite so-
phisticated behavior can be modeled. Other models of
individual cognition used in agent-based social simula-
tion include the use of Soar (a computer implementation
of Allen Newell’s unified theory of cognition [35.42]),
which was for example used in Steve for generating
a believable simulated tutor [35.43]. Another unified
theory of individual cognition for which a computer
implementation exists is Adaptive Control of Thought-
Rational (ACT-R) [35.44]„ which is realized as a pro-
duction system. A less general example is the Consumat
model [35.45], a meta-model combining several psy-
chological theories on decision making in a consumer
situation. Also, nonsymbolic approaches such as neural
networks have been used to model the agents’ decision
making [35.27].

As we have seen, the behavior of individual could
be either deterministic or stochastic. Also the basis for
the behavior of the individuals may vary. We can iden-
tify the following categories:

� The state of the individual itself: In most social sim-
ulation models the physical and/or mental state of
an individual plays an important role in determin-
ing its behavior.� The state of the environment: Also the state of the
environment surrounding the individual often in-
fluences the behavior of an individual. Thus, an
individual may act differently in different contexts
although its physical and mental state is the same.� The state of other individuals: One popular type of
simulation where the behaviors of individuals are
based on the state of other individuals is those using
cellular automata. As introduced above, the state of
each cell is updated as a function of the states of
a particular set of neighbors. In this case, informa-
tion about the state of other individuals can be seen
as gained through observations. Another possibility
is to gain the knowledge through communication
and in this case the individuals do not have to be
limited to the neighbors.� Social states (norms etc.) as viewed by the agent: For
simulation of social behavior the agents need to be
equipped with mechanisms for reasoning at the so-
cial level (unless the social level is regarded as emer-
gent from individual behavior and decisionmaking).
Several models have been based on theories from
economy, social psychology, sociology etc. An ex-
ample of this is provided by Guye-Vuillème [35.46]
who has developed an agent-based model for simu-
lating human interaction in a virtual reality environ-
ment. The model is based on sociological concepts
such as roles, values, and norms and motivational
theories from social psychology to simulate persons
with social identities and relationships.

In most simulation studies, the behavior of the in-
dividuals is static, i. e., the decision rules or reasoning
mechanisms do not change during the simulation. How-
ever, human beings and most animals do have an ability
to adapt and learn. To model dynamic behavior of in-
dividuals through learning or adaptation can be done in
many ways. For instance, both ACT-R and Soar have
learning built in. Other types of learning include the
internal modeling of individuals (or the environment)
where the models are updated more or less continu-
ously.

Finally, there are some more general aspects to con-
sider the modeling of individuals. One such aspect is
whether all the agents share the same behavior or they
behave differently, i. e., representation of behavior is ei-
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ther individual or uniform. Another general aspect is
the number of individuals modeled, i. e., the size of
the model, which may vary from a few individuals to
billions of individuals. Moreover, the population of in-
dividuals could be either static or dynamic. In dynamic
populations, changes in the population are modeled,
typically births and deaths.

Model of the Interaction Between Individuals
In dynamic micro-simulation each simulated individual
is considered in isolation without regard to their in-
teraction with others. However, in many situations the
interaction between the individuals is crucial for the be-
havior at system level. Thus, in such cases better results
will be achieved if the interactions between individuals
were simulated. Two important aspects of interactions
are who is interacting with whom, i. e., the interaction
topology, and the form of interaction.

A basic form of interaction is physical interac-
tion (or interaction based on spatial proximity). As we
have seen, this is used in simulations based on cel-
lular automata, e.g., in the Game of Life, introduced
in Sect. 35.2.1, Dynamic Micro-Simulation. Another
example is the Boids model [35.18], which simulates
coordinated animal motion such as bird flocks and fish
schools in order to study emergent phenomena. In these
examples, the interaction topology is limited to the indi-
viduals immediately surrounding an individual. In other
cases, as we will see below, the interaction topology
is defined more generally in terms of a (social) net-
work. Such a network can be either static, i. e., the
topology does not change during a simulation, or dy-
namic. In these networks the interaction is typically
language based. An example of this is the work by Ver-
hagen [35.47] where agents that are part of a group use
direct communication between the group members to
form shared group preferences regarding the decisions
they make. Communication is steered by the structure
of the social network regardless of the physical location
of the agents within the simulated world.

Model of the Environment
The state of the environment is usually represented by
a set of (global) parameters, for example temperature.
In addition, there are a number of important aspects of
the environment model, such as:

� Spatial explicitness: In some models, there is actu-
ally no notion of physical space at all. An example
of a scenario where location is of less importance is,
for example, innovation networks [35.48] in which
the individuals are high tech firms that each have
a knowledge base that they use to develop artifacts
to launch on a simulated market. The firms are able

to improve their innovations through research or by
exchanging knowledge with other firms. However,
in many scenarios location is very important, and
in those each individual (and sometimes each ob-
ject) is assigned a specific location at each time step
of the simulation. In this case, the individuals may
be either static (the entity does not change location
during the simulation) or mobile. The location could
either be specified as absolute positions in the envi-
ronment, or in terms of relative positions between
entities. In some areas the simulation software is
integrated with a geographical information system
(GIS) in order to achieve a closer match to reality,
see [35.49].� Time: There are in principle two ways to address
time, and one is to ignore it. In static simulation
time is not explicitly modeled; there is only a be-
fore and an after state. However, most simulations
are dynamic, where time is modeled as a sequence
of time steps. Typically, each individualmay change
state between each time step.� Exogenous events: This is the case when the state
of the environment, for example the temperature,
changes without any influence or action from the
individuals. Exogenous events, in case they are
modeled, may also change the state of entities, for
example, decay of resources, or cause new entities
to appear. This is a way to make the environment
stochastic rather than deterministic.

35.3.2 Engineering Agent-Based
Simulations

Factors to Consider When Choosing a Model
In contrast to some of the more traditional approaches,
such as system dynamics modeling, agent-based mod-
eling does not yet have any standard procedures that can
support the model development. During the last decade
some attempts in this direction have been proposed. For
example, Grimm et al. [35.50] proposed a structure for
documenting an agent-based simulation model origi-
nally in the area of ecological systems. However, it is
often the case that the only formal description of the
model is the actual program code. However, it may be
useful to use the unified modeling language (UML) to
specify the model [35.51].

Some of the modeling decisions are determined by
the features of the system to be simulated, in particular
those regarding the interaction model and the environ-
ment model. The hardest design decision is often how
the mental state and the behaviors of individuals should
be modeled, in particular in the case when the individu-
als are human beings. For simpler animals or machines,
a feature vector together with a set of transitions rules
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is often sufficient. Depending on the phenomena being
studied, this may be sufficient also when modeling hu-
man beings. Gilbert [35.52] provides some guidelines
whether a more sophisticated cognitive model is nec-
essary or not. He states that the most common reason
for ignoring other levels is that the properties of these
other levels can be assumed to be constant, and exem-
plifies this by studies of markets in equilibrium where
the preferences of individual actors is assumed to re-
main constant (note, however, that this may not always
be true). Another reason for ignoring other levels, ac-
cording to Gilbert, is when there are many alternative
processes at the lower level that could give rise to the
same phenomenon. He exemplifies this by the famous
study by Schelling [35.14] regarding residential segre-
gation. Although Schelling used a very crude model
of the mental state and behavior of the individuals,
i. e., ignoring the underlying motivations for household
migration, the simulation results were valid (as the un-
derlying motivations were not relevant for the purpose
of Schelling’s study). On the other hand, there are many
situations where a more sophisticated cognitive model
is useful, in particular when the mental state or behav-
ior of the individual provides constraints on, or in other
ways influences the behavior at the system level. How-
ever, as Gilbert concludes, the current research is not
sufficiently mature in order to give advice on which
cognitive model to use (BDI, Soar, ACT-R, or other).
Rather, he suggests that more pragmatic considerations
should guide the selection.

The model of the environment is mostly dictated by
the system to be simulated, where the modeler has to
decide on the granularity of the values of the attributes
of the environment. The interaction model is often cho-
sen based on the theory or practical situation that is the
basis for the simulation, but sometimes the limitations
of the formal framework used restricts the possibilities.
Also here the modeler has to decide upon the granular-
ity of the values of the attributes. In general Edmonds
and Moss [35.53] give the advice that a modeler shall
not optimize for simplicity of the model, but more for
understandability and believability.

More Issues in Engineering Agent-Based
Simulations

Decisionmaking about the granularity of agent decision
is not the only issue when developing an agent-based
simulation model for a complex system – yet is the
most important one. In the following we will discuss
more issues. A more elaborate discussion of issues can
be found in [35.54].

Generative Micro-Macro Link. A basic reason for at-
tractiveness of agent-based simulation for complex sys-

tem modeling comes from its generative nature [35.36].
The structure and dynamics of the overall system are
not directly described, but generated from behavior and
interactions of simulated, individual agents. So, there
are at least two levels of modeling and observation: the
low-level agents and the aggregate system level. Run-
ning the low level produces the structure and behavior
on the aggregate level; in general, a formal a priori anal-
ysis before simulating the system is hardly possible,
only by running the simulation, the what, where and
when of a social phenomenon emerging from the low-
level agents, can be fully determined. Formal analyses
(or even prediction) of overall simulation outcomes
from low-level agent behavior are difficult or impossi-
ble.

In many applications, a certain macro level phe-
nomenon in the original system is to be reproduced
or optimized. Thus, the micro-level rules determin-
ing the behavior have to be adapted in a way that
the intended aggregate phenomenon is produced. For
agent-based simulation, exploratory, experience-based,
less informal methodologies appear to be more appro-
priate [35.55]. The basic question on how to come up
with the appropriate low-level behavior is left to indi-
vidual creativity and experience. This issue, together
with the general level of granularity of the model has
also been discussed in the last subsection.

Critical Parameter Structures and Calibration.
A simple model is preferable as it contains fewer as-
sumptions and thus less parameters. Parameters may be
factors in formulas or thresholds for decision making.
Also values for initial values for state variables of all
entities are parameters. A model with too many param-
eters can be tuned to produce anything. That means,
a constellation of parameter values can be found, so that
the given agent actions and interactions produce any
intended overall outcome. So, structural falsification
becomes impossible. This limits the analytical value of
the model if not accompanied with rigorous processes
for quality assurance.

Many parameters also cause practical problems:
they need to be set to appropriate values. The necessary
effort for calibration becomes an issue in developing
agent-based simulations. Hereby, one has to pay atten-
tion as the sheer number of parameters may be critical.
This can be remedied by putting parameters in rela-
tion to each other. Another important problem relates
to the nature of the parameters themselves. A single
parameter can have an enormous effect on the over-
all aggregated behavior when shared by many agents
or if there are nonlinear feedback loops amplifying its
effect. Izquierdo and Polhill [35.56] denoted decision
threshold parameters as knife-edge parameters: if the
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behavior of the agent changes depending on this pa-
rameter. Setting such a parameter homogeneously for
all agents can cause chaotic behavior: small changes
in the parameter values result in completely different
phenomena. This issue can be addressed by allow-
ing individual values for the individual agents or by
smoothing the effects of a threshold with some stochas-
tic transition. Finally, the test whether the simulation
leads to the intended system and individual behavior
may not be automatized – especially in abstract mod-
els without sufficient underlying empirical data – but
human intelligence is needed to identify whether the
generated pattern of the complex system is the searched
one.

Size and Scalability. There is a variety of complex
system models with respect to the number of agents,
ranging from one-agent systems capable of complex
interaction behavior to large-scale simulations with sev-
eral millions of agents. For many complex system
models, a minimum agent number is necessary – for
example the effect of pheromone-based ant recruit-
ment cannot be shown by only a small number of
simulated ants, but the number of agents has to be
synchronized with the environmental configuration and
the evaporation rate of the pheromone used to estab-
lish a pheromone trail. Scalability with respect to agent
numbers is only half of the story: scalability depends on
the complexity of the agent behavior and architecture
as discussed above. Complex system models contain
agents that are capable of flexible decision making,
which is clearly more costly than fully scripted behav-
ior programs. With an appropriate tool, as one of the
platforms discussed in Sect. 35.3.2,More Issues in En-
gineering Agent-Based Simulations, at least the simpler
scalability issues are addressable.

Other Technical Issues. Besides those principled
problems, there one can identify engineering issues at
technical design and implementation – often supported
by tools and platforms. If an analysis of the dynamics
of the complex system model is needed, the model must
be implemented. This is challenging in a way similar to
multi-agent systems. Simulated multi-agent systems are
also consisting of distributed intelligent decision mak-
ers, each with its own thread of control, its local beliefs
and interacting and acting in parallel. In addition to the
challenges developing a multi-agent system, one can
identify:

� Issues about extended design choices on the envi-
ronmental model. For facilitating the design of the
agents, the environmental model can be augmented:
A prominent example is crowd simulations using

floor fields capturing gradient data for path finding.
Information is explicitly stored in the environment
without any correspondence to the original system,
but for making agent implementationmore efficient.
Again, it is a matter of modelers’ experience to
know how far one can go with these additions.� During simulation, virtual time is advanced to ex-
press the dynamics of the model. As environment
and time are artificial, the modeler needs a way
for explicitly handling artificial parallelism of the
agent’s update. In principle, every agent could run
in its own software process, but for simple agents
explicitly handling virtual parallelism is more effi-
cient. Depending on used infrastructure, the mod-
eler has to take care about these low-level aspects
of simulation implementation.

Tools for Agent-Based Simulation of Complex
Systems

Despite the many available tools, implementation of an
agent-based simulation model is still not trivial. The
currently most prominent tools suitable for complex
systems are Swarm, Repast, MASON and NetLogo.
Platforms such as SeSAm support modeling better, yet
simulation runs tend to be slow. In the following, we
will shortly discuss these tools. More elaborate com-
parisons can be found in [35.57, 58] or [35.59]

Swarm. Swarm [35.60] is one of the earliest tools for
implementation of agent-based simulations (ABSs) and
complex systems. Practically, it provides libraries (in
Objective-C or newly also JAVA) that developers can
use when building their simulations. Agents are hierar-
chically organized in Swarms.

Repast. Repast (Recursive Porous Agent Simulation
Toolkit [35.61]) is also a Java-based platform. Fol-
lowing the hierarchical structure of Swarm, Repast
provides a library of classes for the most common tasks
associated with the implementation of an ABS. Besides,
since the initial focus of Repast was social science, it in-
cludes some tools that are useful in this domain such as
network analysis. The Repast Simphony forms a visual
modeling extension based on state charts.

MASON. MASON (Multi-Agent Simulator Of Neigh-
borhoods [35.62]) forms a library based on Java with
the goal to particularly support large-scale simulations.

NetLogo. NetLogo [35.63] is currently probably the
most used platform. It was particularly designed for
complex system modeling and simulation with the end
user in mind. A NetLogo model has basically three el-
ements. The first is the actual implementation of model
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behavior. The used modeling language resembles Starl-
ogo, which is easy to understand and learn. The second
and third element of a NetLogo model is the simulation
interface for visualization and parameter settings and
a third explicit element is a structured documentation.

NetLogo is becoming increasingly popular due to
its extensive documentation, the existence of good tu-
torials, and a large library of preexisting models. Intro-
ductory books such as [35.64] are based on NetLogo.

SeSAm. The Shell for Simulated Agent Systems
[35.65] provides a fully visual interface for the model
development. A proprietary model representation lan-
guage forms the basis for visual programming, etc. The
kernel of a SeSAm simulation consists of the behavior
models of agents and the world, which is represented as
a special, global agent that may manage different kinds
of maps.

Other Tools. In repositories for agent-based simula-
tion platforms many more systems are listed [35.66]

and [35.67]. An overview is practically impossible.
Many other tools are specifically designed for partic-
ular purposes. For example, MadKit relies upon an
organizational model of agents’ societies. Therefore
its particular strength is in models focusing on intra-
and inter-organizational processes. Similarly, COR-
MAS (Common-pool Resources and Multi-Agent Sys-
tems) is a programming environment that targets natural
resources management.

In principle, an agent-based simulation platform
shall not just support the implementation of agent be-
havior, but provide basic infrastructure for, for example,
integration of input data, handling virtual time, model
instrumentation, data collection, and others. Depending
on the nature of the tool, the expressiveness of the lan-
guage for capturing the agent behaviormight be limited.
Whether it is sufficient or not, is dependent on the actual
objective behind simulating the complex system. Nev-
ertheless, a good development platform amends some
of the issues discussed above and thus enables the mod-
eler to concentrate on the core aspects of the model.

35.4 Summing Up and Future Trends

The ability to understand and manage different types
of complex systems is becoming more and more im-
portant, both for research, businesses and government.
As we have seen, agent-based modeling and simulation
seems a promising approach to many problems involv-
ing the simulation of complex systems of interacting
entities. Although a large number of different meth-
ods and tools for agent-based modeling and simulation
have been developed, it seems that the full potential of
the agent concept often is not realized. In particular,
this is the case when modeling complex systems that
include human actors. For instance, most models use
a very primitive model of agent cognition yet as argued
in [35.52] cognitive layers of agent architectures should
be intertwined with social layer.

The question of how to balance complexity of the
agents’ reasoning and transparency and comprehen-
siveness of the overall system behavior forms one of
the many open issues from a methodological point of
view. Although agent-based modeling of complex sys-
tem forms a highly attractive approach for the full
variety of possible objectives, there is not yet any
established method for developing a model in a sys-

tematic way, comparable to system dynamics. This
may be due to the fact that modeling per se often
contributes to understanding a complex system. That
is, the complex system to be modeled is not fully
understood by the stakeholders or even by the mod-
elers themselves before the modeling and simulation
endeavor starts – independent of which objective the
model is developed for. Thus, model development and
model analysis also contain elements of original sys-
tem exploration that, especially in the case of com-
plex systems, may lead to new questions and insights
influencing the ongoing model development process.
Even if the specific open issues that we discussed in
Sect. 35.3.2, More Issues in Engineering Agent-Based
Simulations, are addressed by new methodologies to
be developed, this will probably remain as a profound
issue as long as there are systems that appear to be
complex. More generally, we argue that the art and
practice of engineering agent-based models is an im-
portant area of future research; as for handling, predict-
ing and especially for understanding complex systems,
modeling and simulation form the centerpiece of any
activity.
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36. Models and Experiments in Robotics

Francesco Amigoni, Viola Schiaffonati

This chapter surveys the practices that are being
employed in experimentally assessing the spe-
cial class of computational models embedded in
robots. The assessment of these models is partic-
ularly challenging mainly due to the difficulty of
accurately estimating and modeling the interac-
tions between the robots and their environments,
especially in the case of autonomous robots, which
make decisions without continuous human su-
pervision. The field of autonomous robotics has
recognized this difficulty and launched a number
of initiatives to deal with it. This chapter, after
a conceptual premise and a broad introduction
to the experimental issues of robotics, critically
reviews these initiatives that range from taking
inspiration from traditional experimental prac-
tices, to simulations, benchmarking, standards,
and competitions.
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36.1 A Conceptual Premise

The issues involved in the experimental assessment of
computational models are several and diverse. In this
chapter, we focus on a challenging class of computa-
tional models that present complex interactions with the
real world, namely those of robotics, and in particular of
autonomous robotics (intended as the discipline aiming
at developing robots that operate in unpredictable en-
vironments without a continuous human supervision),
and on how experiments have recently been conceptual-
ized, discussed, and performed in this field. Taking the
perspective that robots are a way to implement mod-
els of human-designed processes, these models need to
be validated and experiments are usually the way to
carry out this validation. This section, therefore, is ded-
icated to the clarification of the key concepts – robot
system, computational model, technical artifact, and ex-
periment – that constitute the starting points of what
will be discussed in the rest of the chapter.

In general, a robot system can be conceived as
a computational model, provided with a specific ar-

chitecture, capable to interact with the surrounding
physical environment by means of sensors and actua-
tors, and to fulfill a function which is the reason why
the system has been designed and implemented. By
a computational model, we mean a representation that
is formulated in terms of computable functions [36.1],
where a function X. / is said to be computable if for
each argument n of X, the corresponding value X.n/
can be obtained by adopting a mechanical calculus (al-
gorithm). In other words, a model is computational if it
can be defined in purely mechanical terms: only me-
chanical procedures of calculus are required to give
reason of it. But what is modeled in the case of a robot
system, given that the associated model is computa-
tional? First, the phenomena or the behavior that the
robot system should represent; then, (part of) the envi-
ronment in which the robot system is inserted and with
which it should interact, where the interaction between
the system and the environment strongly depends on the
way the system itself is modeled.
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Let us focus our attention now on the reasons why
a robot system is built; these are generally related to
responding to some needs, such as to perform some ac-
tions in the environment or, more generally, to obtain
a desired behavior. The conceptualization of robots as
technical artifacts [36.2], namely as material objects
that have been deliberately produced by humans in or-
der to fulfill a practical function, may help in better
clarifying these reasons. The term artifact emphasizes
the fact that these objects are not naturally occurring,
but they are the result of purposeful human actions.
More generally, technical artifacts can be characterized
as possessing three key features:

� The technical function that is related to the question
What is the technical artifact for? In robotics, the
technical function can be defined by referring to the
task the robots have to accomplish and to the envi-
ronment in which the task is performed. Note that
a task includes both an activity and a way to quan-
tify a performance in executing this activity.� The physical composition that is related to the ques-
tion What does the technical artifact consist of? In
particular, the physical components of robots are se-
lected in order to cope with the intended task and
environment. For example, using wheels for loco-
motion can be afforded only if the environment in
which robots are expected to move is rather smooth,
planar, and relatively empty. If this is not the case,
locomotion needs to be based on legs or crawlers, or
the use of aerial robots could be considered. Simi-
larly, equipping a robot with a thermal camera could
be useful if the task is to detect victims, while if the
task is to assess the topological structure of a build-
ing, other sensors could be more appropriate.� The instructions for use that are related to the ques-
tion How must the technical artifact be used? For
example, the use of autonomous robots in search
and rescue applications is a rather complex job and
usually requires the presence of human operators to
supervise operations and to actively intervene on the
system in case of unexpected problems. Hence, the
instructions for using these robots are significantly
complex and usually require human operators to un-
dergo some training. Timing in issuing commands
and attention in guaranteeing the safety of all in-
volved people (and, to a lesser degree, of all robots)
are fundamental and should be part of the training
of human operators.

These three features are not independent of each
other: to fulfill the technical function that the artifact
is for, the artifact itself has to be physically composed
in a certain way and the user has to carry out certain
actions, specified by the instructions for use. In sum-

mary, a technical artifact can be said to be a “physical
object with a technical function and use plan designed
and made by human beings” [36.2, p. 7].

Adopting the view that a robot system is a technical
artifact embedding a computational model of an in-
tended behavior, its assessment is usually conducted on
the field, and experiments are a way to achieve this as-
sessment in a rigorous way. In this context, experiments
can be seen as a way to evaluate technical artifacts ac-
cording to whether and to what amount the function
for which they have been built is fulfilled. Apparently,
a contradiction seems to arise when considering the
necessity of evaluating an artifact, that has been de-
signed and implemented by a human being, and whose
complete knowledge, thus, should be under the con-
trol of that designer. However, not only these types of
artifacts can be so complex that it is difficult to fully
manage their knowledge, but also their interaction with
the environment is largely unpredictable and, there-
fore, a rigorous evaluation is needed, which is mainly
based on experimentation. Obviously, experimentation
can take many forms and to help clarify the kind of
experimentation embraced in autonomous robotics, we
deem useful to adopt the distinction between epistemic
experiments and directly action-guiding experiments
recently pointed out by Hansson [36.3].

Epistemic experiments provide us with information
about the workings of the world we live in. The out-
come looked for is precisely the one providing such
information and does not need to coincide with any-
thing that any person would wish to happen (except
as part of the experiment itself). This is the traditional
view of experimentation that both historical and philo-
sophical accounts of experimental methods have been
almost exclusively devoted to analyze. But if we look at
the practice of experimentation in prescientific times, as
Hansson suggests, we can recognize that there are also
so-called directly action-guiding experiments, namely
experiments that satisfy the following two criteria:

� The outcome looked for should consist in the attain-
ment of some desired goal of human action.� The interventions studied should be potential can-
didates for being performed in a nonexperimental
setting in order to achieve that goal.

These criteria are satisfied, for example, in a clini-
cal trial of an analgesic, where the outcome looked for
is pain reduction, and the intervention is a treatment
to be administered to achieve this outcome in ordinary
patients. A systematic test on an autonomous robot em-
ployed to assist an elderly person in her home is also
an example of a directly action-guiding experiment: the
outcome looked for is the proper interaction of the robot
with the person and the experimental intervention con-
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sists in the careful tuning of the abilities that the robot
must possess to positively achieve this goal.

The notion of directly action-guiding experiments
can be applied to a number of different situations, and
indeed to many technological tests performed in the en-
gineering disciplines, including robotics. In the rest of
the chapter, we will base our analysis and discussion

referring mostly to this notion of experiment, even if it
will be evident that a clear cut distinction between epis-
temic and directly action-guiding experiments is not
always possible being the experimental validation of
robot systems at the intersection between science and
engineering under many respects, as we will try to evi-
dence in the next sections.

36.2 Experimental Issues in Robotics

The experimental validation of robots has been play-
ing a decisive role in many areas of robotics, such as
in industrial robotics, by addressing both the measures
of robot performance and the assessment of their safety.
These experiments usually take the form of tests, where
standardized procedures have been developed. To as-
sess, for example, the performance of commercialized
industrial manipulators (in terms of accuracy, repeata-
bility, and spatial resolution) rigorous testing protocols
have been provided (see later). In other areas of robotics
research, such as in the field of autonomous robotics
for service applications, the term experiment has been
intended more vaguely and experimental activities are
often carried out with lower standards of methodologi-
cal rigor.

In the last years, however, the autonomous robotics
community has experienced a growing interest for the
development of good experimental methodologies. This
interest can be traced back to different reasons: from
a scientific perspective, it concerns the desire of this
rather novel community to adopt the samemethodologi-
cal standards of other scientific disciplines; from a more
practical and commercial perspective, it deals with the
possibility of measuring some parameters in a standard
way (e.g., safety of a home assistant robot) or of having
objective benchmarks to compare and evaluate different
products.

In an effort of improving the quality of experimen-
tal activities, some attempts [36.4] have been made to
take inspirations from how experiments are performed
in traditional sciences, such as physics and biology,
by trying to translate in the practice of autonomous
robotics the general experimental principles of natu-
ral sciences (comparison, repeatability, reproducibility,
justification, explanation, : : :). However, from a recent
analysis [36.5], it emerges that these principles are not
yet full part of the current research practice. Let us
consider for example reproducibility, namely the pos-
sibility to independently verify the results of a given
experiment so that different experimenters should be
able to achieve the same results, by starting from the
same initial conditions, by using the same type of
instruments, and by adopting the same experimental

techniques. Notwithstanding emphasis is put on the im-
portance of reproducibility (usually called replicability
in this context) as a way to increase the experimental
level of the field, good practices to promote it, such as
the availability of shared data and code, are still not very
common and few attempts have been made to critically
analyze how reproducibility should be attained in ex-
periments with autonomous robots.

It is true that, dealing with technical artifacts,
robotics cannot be fully assimilated to a natural sci-
ence, where experiments are generally conducted for
hypotheses testing purposes and with a strong theo-
retical background. Robotics possess an engineering
component that makes it plausible to adopt the notion
of directly action-guiding experiment to give reason of
its experimental practice: experiments in engineering
fields have other objects (technical artifacts rather than
natural phenomena) and other purposes (testing rather
than understanding) – to put it simple – with respect to
experiments in the sciences. Robot systems are human-
made artifacts; accordingly, experiments have the goal
of demonstrating that a given artifact is working with
respect to a reference model (e.g., its requirements or
its expected behavior) and, possibly, that it works better
than other similar artifacts with respect to some met-
rics, thus making experiments closer to tests typical of
engineering disciplines. At the same time, the most ad-
vanced robot systems are extremely complex, and their
behavior is hardly predictable, even by their own de-
signers, especially when considering their interactions
with the natural world, which are difficult, if not im-
possible, to model in a fully satisfactory way. In this
sense, experiments in autonomous robotics have also
the goal of understanding how these complex systems
work and interact with the environment and, therefore,
are somehow similar to experiments in the natural sci-
ences. We will see how this peculiar position at the
intersection between science and engineering is re-
flected also in the experimental practice characterizing
the field.

In the following sections, we attempt to depict the
picture of how the topic of experiments in autonomous
robotics has been recently addressed. However, as this
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debate is still very open, we will not present any sys-
tematic and complete survey, but rather a number of
issues, results, initiatives – also partially overlapped –
able to give back the sense of this intriguing and in-
terdisciplinary research field, devoted not only to the
investigation and development of methodological ap-
proaches, but also to rethink of the traditional notion
of experiment as developed so far. The rest of the chap-

ter, thus, will cover various topics stemming from the
attempt to develop good experimental methodologies in
autonomous robotics, to simulations, benchmarks, stan-
dards, and competitions. Being the field not yet fully
systematized, we will present the state of the art in-
tertwined with some considerations in order to offer
a more structured, even if still partial, view of this field
and its progress.

36.3 From Experimental Computer Science to Good Experimental
Methodologies in Autonomous Robotics

The reflection on experiments and the application of the
experimental method to the broad field of computer sci-
ence has traversed the history of this discipline from its
beginning. Probably one of the first and most famous
definitions of computer science as an experimental sci-
ence goes back to the 1976 paper by Newell and Simon
published in the occasion of their acceptance of the Tur-
ing award [36.6, 114]:

“Computer science is an empirical discipline. We
would have called it an experimental science, but
like astronomy, economics, and geology, some of its
unique forms of observation and experience do not
fit a narrow stereotype of the experimental method.
None the less, they are experiments. Each new
machine that is built is an experiment. Actually con-
structing the machine poses a question to nature;
and we listen for the answer by observing the ma-
chine in operation and analyzing it by all analytical
and measurement means available.”

This conception of machines and programs as ex-
periments has been influential for many years, promot-
ing the idea that the appeal to experience is fundamental
in contrast with the view of computer science as a pure
mathematical and deductive discipline.

The quest for experiments in computing began to
be treated systematically at the beginning of the 1980s,
following a crisis in what was then called experimen-
tal computer science. In an Association for Computing
Machinery (ACM) report published in 1979 [36.7], ex-
perimental research in computer science is strongly
related to the measurement and testing of computing
algorithms and systems. At the same time, a rejuve-
nation of experimental computer science is advocated
from very concrete perspectives: for example, by pro-
moting experimental facilities for computer systems
research. Experimental computer science is to be reju-
venated also according to Denning, who proposed in
a short article that the experimental work produced in
computer science should be judged by traditional stan-

dards [36.8]. In a way, this approach tries to go beyond
the construct and test paradigm of Newell and Simon,
by proposing that experimental computer science has to
deal with the process of supporting and testing hypothe-
ses, thus making computing closer to the standards of
rigor and the practice of traditional sciences.

More recently, a trend has once again emerged to-
ward making the experimental scientific method take
center stage in computing. These recent efforts have
shown a renewed need for an experimental method-
ology in this discipline [36.9–12]. Experiments are
deemed to have an impact on several aspects of comput-
ing: their importance is recognized for assessing com-
puting systems’ performance and for triggering new
developments. Despite the increasing interest in a more
rigorous methodological approach to computing, many
lament that the current methodology is inadequate
and that, in comparison with other fields (e.g., nat-
ural sciences), computer scientists should experiment
more [36.13]. Indeed, several articles describe demon-
strations rather than real experiments [36.14], and their
sections on experimental results present just weak ex-
amples to show the superiority of the proposed solution
over a limited amount of alternatives [36.15, 16]. Many
of these recommendations [36.17–20] present common
traits: they stem from the acknowledgment of a cri-
sis in computing that is meant to be overcome with
a greater maturity of the discipline, in terms of a more
rigorous experimental method and a more scientifically
grounded approach to the search for solutions. Taking
inspiration from experimental principles adopted in tra-
ditional scientific disciplines has become a leitmotif in
many analyses, which recognize, for example, the ben-
efits of replicable results [36.21] or the importance of
negative results [36.22], two of the cornerstones of ex-
perimental scientific method. However, some authors
warn about the acritical adoption of principles coming
from traditional science [36.23].

The same concerns can be individuated also in the
debate about the nature and role of experiments in
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autonomous robotics. A seminal paper in this respect
is [36.24] that, despite its emphasis on artificial intelli-
gence (AI) and artificial agents, presents an insightful
analysis on the topic of experimentation that constitutes
the basics of the current debate in autonomous robotics.
This paper, in particular, analyzes the possible relation-
ships between controlled experimentation and the rise
of benchmarks and testbeds as current research tools.
At the same time, it warns against the idea that their
use is sufficient to achieve scientific progress. Accord-
ing to the authors, unless generalization and explanation
are provided, benchmarks and testbeds, even when ap-
propriately providing metrics for comparing competing
systems, do not constitute real scientific progress.

The interest in solidly based experimental research
in autonomous robotics has progressively increased in
the last 20 years. An interesting example is given by
the symposium series on Experimental Robotics, which
have been held starting from 1989 on the topics of
experimental robotics research [36.25]. However, it is
only in the last years that this interest has been cou-
pled with a careful analysis on how the concept of
experimentation should be translated in the practice
of autonomous robotics, also giving rise to a debate
about the status of the discipline itself. To this end both
the creation of the EURON Special Interest Group on
Good Experimental Methodology in Robotics Research
(GEM) and the series of workshops about replicable
experiments in robotics [36.26] have been playing a de-
cisive role. The workshop series has contributed to
raise several issues and to increase the sensibility of
the community on these topics. If we consider the ar-
ticle [36.27] as representative of the kind of approach
advocated we can see that, besides the discussion of
practical issues, several more theoretical aspects are
discussed, ranging from the scientific status of robotics
to the definition of a robotics experiment. If, from the
one side, much emphasis is put on the definition of
a replicable robotic experiment, taking inspiration from
the traditional approach of experimental sciences, from
the other side, the guidelines proposed within the GEM
Special Interest Group represent an attempt to trans-
late in practice the same definition. In particular, the
paper [36.26] presents a structured set of questions in-
tended to help reviewers recognize, and authors write,
high quality papers reporting of replicable experimen-
tal work, addressing questions such as Are the system
assumptions/hypotheses clear? Are the evaluation cri-
teria spelled out explicitly? Is there enough information
to reproduce the work? Are the drawn conclusions pre-
cise and valid? The questions are further debated in the
special issue on Replicable and Measurable Robotics
Research of the IEEE Robotics and Automation Maga-
zine [36.28].

Within the context set by the above efforts, a par-
ticular interesting proposal in the direction of promot-
ing rigorous experimental research in robotics is that
described in [36.29] in which, besides adopting the
standards by which scientific experiments are usually
designed, conducted, and presented, particular attention
is devoted to the other sciences of the artificial, e.g.,
human–computer interaction and human–robot interac-
tion, as a way for shaping good experimental research
practices in the broader robotics community. It is worth
noticing that this work is extremely mature in the ac-
knowledgment and in the analysis of the many open
critical issues toward the construction of a science of
robotics, putting a right emphasis in particular on two
key points: the humility to give oneself the chance to be
wrong and the importance of generalizable results that,
even if difficult, are not impossible.

In the same direction [36.4] identifies some basics
issues of experiments in mobile robot localization and
mapping, starting from a representative sample of the
current state of the art. These issues, when viewed in the
context of some general principles about experiments
in science (comparison, reproducibility and repeatabil-
ity, justification and explanation), permit to derive some
insightful considerations on the role of experiments in
mobile robotics, ranging from questions about the pur-
pose of experiments to the current publication policies
that should be revised accordingly. In particular, the
analysis is conducted in the light of some principles that
have been proposed for the development of good exper-
imental methodologies in autonomous robotics, and in
particular:

� Comparison, as the knowledge of what has been
already done within a field and the possibility for
researchers to accurately compare new results with
the old ones.� Reproducibility, as the possibility for independent
scientists to verify the results of a given experiment
by repeating it with the same initial conditions, in-
struments, and techniques.� Repeatability, as the property of an experiment that
yields the same outcome from a number of trials,
possibly performed at different times and in differ-
ent places.� Justification and explanation, as the capacities to
derive well-justified conclusions and to look for an
explanation.

Moreover, [36.5] arguably provides one of the few
systematic analyses of the current experimental trends
in the autonomous robotics papers presented over 11
years at the International Conference on Autonomous
Agents and Multiagent Systems (AAMAS).
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The experimental trends identified from the sample
of papers considered for the analysis range from those
that fit with the above principles (more experiments in
recent years, more use of simulations than real robots,
increased use of standard platforms) to those that point
out some issues that are still critical at the moment
(weakness of experimental comparison of systems, lit-
tle attention to statistical analysis, low availability of
data and code) and show that some of the general ex-
perimental principles listed above are currently poorly
attained.

It is interesting to observe that, from the general
discussions on the ways to promote good experimen-
tal methodologies, in the very last years also more
concrete proposals have been advanced. From the one
side, attempts have been made to practically translate
the general guidelines in different specific robotic con-
texts (see [36.30] for an example of how experimental
methodologies and suitable metrics for performance
evaluation can be applied to carry out repeatable exper-
iments for unmanned marine vehicles). From the other
side, different frameworks to practically promote repro-
ducibility of robot systems experiments have been put
at work (see [36.31], for an example of a novel process
facilitating the reproduction of robotic experiments by

means of different software tools and [36.32] for a fa-
cility for experimenting with robots from remote).

An important issue in evaluation of experimental re-
sults in robotics is relative to ground truth, namely to
the availability of the optimal behavior or of the per-
fect performance of a robot in a task. For example, for
a robot intended to build the map of an initially un-
known building, the ground truth is the blueprint of the
building; for a robot intended to estimate its own lo-
cation within a known environment using the data it
perceives, the ground truth is the actual position of the
robot (for instance, measured by hand). What some-
times makes the evaluation of robot systems difficult
is the impossibility of knowing the ground truth, both
before and after the completion of the tasks.

In what follows, we analyze the various concrete
forms taken by the debate for the development of good
experimental methodologies in autonomous robotics:
we start by discussing computer simulations and how
they are used as experiments in this field; then we
continue with benchmarking as a way to objectively
evaluate robots systems and the role played in it by
standards, to conclude with an analysis on how com-
petitions and challenges are developing toward a more
experimental attitude.

36.4 Simulation

Although it is out of the scope of the present section
to provide a systematic definition of simulations and to
discuss the epistemological problems arising from their
growing use in scientific practice (for a complete dis-
cussion on these issues see Chap. 34 this handbook), we
start with a general terminological clarification to focus
later on the way in which computer simulations are used
as experiments in the field of autonomous robotics.

The ways a simulation can be defined are different
and have been the object of attention of many scholars,
particularly in the last 20 years (Chap. 34 this hand-
book). Without the pretense of taking into account the
whole debate, we can say that in general a simulation
can be considered a way to reproduce the behavior of
a system using another system (in line with [36.33]),
by providing a dynamic representation of a portion of
reality. Simulations are closely related to dynamic mod-
els that include assumptions about the time-evolution
of a system, as they are based on models that represent
a dynamic portion of reality. However, simulations rep-
resent reality in a different way thanmodels do.Without
entering the discussion on the various meanings of the
term model [36.34], it is sufficient for us to say that
a model is a representation, where what is represented

in the model depends on the purposes for which the
model has been conceived. Consider for instance a scale
physical model of a bridge, which is a representation
replicating some features of the real object (the bridge
that is going to be built) by abstracting from the full
details and concentrating on the aspects relevant for
the purpose. For example, if the scale model has been
constructed in order to show to its purchasers the fi-
nal shape of the bridge, then it will not be important
its material, color, or dimension. If, instead, the scale
model has been constructed to test the resistance of
some materials, used in construction, to some atmo-
spheric agents, the sole model is not sufficient, but it
has to be put in a (controlled) environment where it can
be subjected to the actions of the atmospheric condi-
tions. In this case the model is executed in the reality by
means of the actions performed by the environment.We
call this execution of a model a simulation. When the
model is computational, namely a formal mechanism
able to compute functions (Sect. 36.1) and executed by
a computer, we call it a computer simulation. There-
fore, not every execution of a computational model is
a simulation. To call it a simulation, a computational
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model must represent a system whose state changes in
time.

It is undoubtedly evident that science today has
entered what has been called the age of computer simu-
lation [36.35]: the massive use of computer simulations
in virtually every domain of science has drawn at-
tention to their epistemological justification. Recently
the experimental properties of computer simulations
have been examined, and philosophers have begun to
consider in what sense, if any, computer simulations
are experiments (see [36.36] for a detailed analysis of
this debate). Positions range from a full acceptance
of the identity thesis (computer simulation studies are
literally instances of experiments) to its rejection in dif-
ferent degrees. We believe that focusing on autonomous
robotics, simulations can be used as experiments in the
case in which the purposes of simulation and those of
experiment coincide. This happens when experiments
and simulations are performed for discovering new
explanatory hypotheses, for confirming or refusing the-
ories, for choosing among competing hypotheses, and
so on. Indeed, besides exploiting similar techniques,
experiments and simulations share the ability and ne-
cessity of controlling the features under investigation.
The set-up of a simulation presents several communali-
ties with that of an experiment: hypotheses to be tested,
circumstances to be controlled, and parameters to be
set. Moreover, simulations can be used as experiments
for a number of practical reasons. They can be used
to perform several accelerated experiments, as simula-
tions can be repeated exactly with small efforts, with
guarantee of a precision degree not always possible in
empirical cases. Simulations can be used to perform ex-
periments that are difficult to make in reality, being free
from many of the practical limitations of real experi-
ments, such as the possibility to change boundaries and
initial conditions. Simulations can also be used to per-
form experiments that are impossible to make in reality,
such as studying realms of reality which are not phys-
ically accessible. However, it is perfectly plausible to
have simulations that are made without any experimen-
tal purpose in mind (for example, think of simulations
adopted for teaching purposes).

The use of computer simulations in science calls
for the epistemological justification of their results.
Usually the reasons for trusting simulations are two-
sided: either the models used in simulations are strongly
grounded in well-founded theories or there are exper-
imental data against which simulation results can be
checked. This is not always possible when simulations
are used as forms of explorative experiments, where
neither well-founded theories nor experimental data are
present, and where the main sources of credibility for
such simulations seem to be: the prior successes of the

model-building techniques adopted, the production of
outcomes fitting well with previously accepted data, ob-
servations, and intuitions, and the capability of making
successful predictions and of producing practical ac-
complishments.

In autonomous robotics, the use of simulations
for experimental purposes has grown along the years
(see the most recent proceedings of the conference se-
ries on Simulation, Modeling, and Programming for
Autonomous Robots [36.37] for an overview of the dif-
ferent applications). Several papers today present only
experiments performed in simulation to validate a pro-
posed robot system. Simulations provide a convenient
way to explore different robotic scenarios at lower cost
with respect to using real robots. They reduce the ef-
fort needed for writing software programs, debugging
them, and displaying results. They also often run much
faster than their real counterparts. As we have seen,
a simulation needs a dynamic model of the system it
reproduces. In the case of autonomous mobile robotics,
the system that is reproduced is a robot that acts in
an environment. The dynamic model must therefore in-
clude a representation of the robot and a representation
of its interaction with the environment. Let us detail
the elements involved in these two representations in
the case of mobile robots. Roughly speaking, a mobile
robot is modeled by representing its locomotion, sens-
ing, and control subsystems. The interaction of a mobile
robot with an environment is a complex issue. For ex-
ample, it involves a model describing the behavior of
the robot in the environment after the control subsys-
tem issued a command. If the command is go forward
50 cm, the actual movement of a wheeled robot in a real
environment could be more or less than half a meter
because of slipping wheels, of rough terrain, of errors
in the motors moving the wheels, and of several other
reasons. Indeed, it is not always easy to capture this
variability in a computational model. Similar problems
emerge in modeling the perception of the robot in the
environment. Current robotic simulations model in dif-
ferent ways the uncertainties on the effects of actions
and on the perceptions. A first approach to uncertainty
is usually based on use of physical engines (see below),
while a second approach is based on artificially adding
uncertainty to the data, according to different probabil-
ity distributions.

Autonomy makes modeling a robot’s interaction
with the environment even more complicated, because
these interactions are hardly predictable. This is prob-
ably one of the reasons for the late adoption of sim-
ulations in autonomous robotics. Until few years ago,
the models of interaction between robots and the world
were not sufficiently accurate and using simulations
based on these models was simply not convenient for
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the community. If a simulation is based on inaccu-
rate models of the interaction with the world, it is
not representative of the behavior of real autonomous
robots and, as such, cannot be used to validate the be-
havior of the simulated robots and to generalize it to
real robots. Nowadays, one of the most used simula-
tor for autonomous mobile robots, USARSim [36.38],
models the interaction of robots with the environment
using a software, called Unreal engine, initially de-
veloped for a multiplayer combat-oriented first-person
shooter computer game, Unreal Tournament 2004. Un-
real engine contains a physical engine that accurately
simulates the interaction of three-dimensional physi-
cal objects and that allows to obtain highly realistic
simulations, which have been validated against real
data [36.39, 40]. Resorting to components developed in
the extremely competitive field of computer games is
an interesting way to have state-of-the-art models of the
physical interaction between objects.

Another interesting trend that is emerging is the use
of publicly available data sets composed of data col-
lected in the real world by some researchers ([36.41,
42] can be considered among the first examples of
this tendency). These data sets consist in sensor data
collected in real-world experimental tests of robot sys-
tems and made available to test other robot systems.
From the one hand, we can think of these data sets as
models of the interaction between the robots and the
real environment. Using these data sets appears very
similar to perform a simulation, in which the under-
lying model is very precise, because it exactly records
the interaction of real robots with real world. Accord-
ing to this view, the difficulty of building a model for
a simulation of how a robot perceives the environ-
ment is addressed by letting the data collected during
real operations be the model. From the other hand, us-
ing publicly available data sets can be considered as
a real (not simulated) experiment, in which activities
of collecting and processing real-world data are per-
formed in different places at different times. Another
initiative, OpenSLAM [36.43], takes a step further and
aims at sharing not only data sets, but also the code
of the software systems of robots, in this case relative
to the simultaneous localization and mapping problem.
What is emerging here is a sort of continuum, ranging
from performing completely simulated experiments, to
using data sets like to performing real-world experi-
ments.

If we consider the systematic, even if limited, anal-
ysis of the trends in using simulations for experimental
purposes in autonomous robotics that we have already
discussed [36.5], we can observe an increasing use
of simulations over the years. Results show that the
fraction of papers with experiments that use simulated

robots has increased and, in general, simulation domi-
nates over real robots, which can be explained by the
lower costs and the relatively easier operational aspects
of simulation (Fig. 36.1).

It is interesting to notice that the fraction of papers
presenting experiments with real robots is somehow
constant over the years. This could be related to the fact
that papers addressing some topics, like target tracking,
are more frequently presenting experiments with real
robots. A common situation is that in which extensive
experiments are performed in simulation and simpler
demonstrations are performed with real robots. By con-
sidering the simulation tools, with a particular focus on
standard simulators as opposed to custom ones (where
the former ones refer to commercial or publicly avail-
able systems, while the latter ones refer to systems that
are usually not available outside the laboratory that de-
veloped them), the use of standard simulators seems to
be increasing over the years, which could be related to
the fact that more and more reliable simulation plat-
forms have recently become available (Fig. 36.2).

Looking at the standard simulators used in the last
years, it emerges that most of them are used in compe-
titions like RoboCup (Table 36.1).

Despite their increasing use in this community,
simulations are often criticized for not being realistic
enough, and for producing results that do not trans-
fer easily to the real world, such that until few years
ago simulations were considered as fake robotics by
most researchers. Such problems arise when simulation
models are too naive, because they embed insufficient
knowledge on the real system, sensors and actuators
models are not carefully calibrated, real-world noise is
not accounted for, and, most importantly, the correspon-
dence between the simulated performance and that in
the real world is not validated. Particularly interesting

Simulated robots
Real robots

2002 03 05 06 08 09 10 11 2012

Fraction of papers

Year

1

0.8

0.6

0.4

0.2

0

Fig. 36.1 Fraction of robotics papers at AAMAS that use
simulated and real robots in experiments (after [36.5])
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Table 36.1 Standard real robot systems used in robotics papers at AAMAS (after [36.5])

Simulator Number
of papers

2002 2003 2005 2006 2008 2009 2010 2011 2012

(Player/) Stage or Gazebo 4 1 1 2
RoboCup simulators (e.g., USARSim) 6 1 1 1 2 1
Cyberbotics’ Webots 6 2 1 1 1 1

Standard simulators
Custom simulators

2002 03 05 06 08 09 10 11 2012

Fraction of papers

Year

1

0.8

0.6

0.4

0.2

0

Fig. 36.2 Fraction of robotics papers at AAMAS that em-
ploy standard and custom simulators (after [36.5])

for this discussion, as it is representative of many open
issues, is a post about simulations as a research tool in
robotics recently appeared on Winfield’s blog [36.44].
Besides the provocative opening (“If you write papers
with results based on simulation and submit them for
peer-review, then be warned: if I should review your

paper then I will probably recommend it is rejected.”),
a list of insightful criticisms is discussed. It is claimed
that papers presenting results based on simulation have
the following problems, not always related to the very
nature of simulations but sometimes to the presentation
of results: the lack of details on the simulation tools
used, the lack of validation in the case of custom built
simulators, the fact that the robots used to test the al-
gorithms are not specified (real robots or abstractions
of robots?), the lack of information on how the robot is
modeled in the simulator, the lack of a serious analysis
of the limits of these simulation tools (the so-called re-
ality gap), the necessity to provide access to all of code
in order to make others repeat the same results. The
post concludes by equating an engineering simulation
to any scientific instrument [36.45] and with the invita-
tion to treat it accordingly, namely to fit for purpose, to
be set-up and calibrated for the task at hand, and to be
understood – especially in its limitations. These discus-
sions, far from providing definite answers, show how
the simulation topic is under attention today and give
the feeling of the evolution not only of the tools, but also
of the methodological analysis required to use them in
an appropriate way.

36.5 Benchmarking and Standards

Devising rigorous evaluation procedures to assess the
capabilities, reliability, dependability, and performance
of robot systems in precisely defined settings is often
referred to as benchmarking. Objective evaluation of
robot systems is a need for their scientific and techni-
cal evolution, for their industrial employment, and for
their market positioning. Not surprisingly, benchmark-
ing is strictly related to the development of standards
for robot systems. This section surveys the efforts in
these two areas, keeping the discussion at a general
level without attempting to cover all the details of the
several benchmarking and standard activities relative to
specific areas of robotics.

As already discussed, an early attempt to set up
a methodological framework that accounts for the re-
lationships between controlled experiments and bench-
marks for artificial agents (of which robots constitute

a significant class) is reported in [36.24]. In this frame-
work, benchmarks are intended to involve “precisely
defined, standard tasks” [36.24, p. 17] and, ideally,
“problems that are both amenable to precise analysis
and representative of a more complex and sophisticated
reality” [36.24, p. 19] and that “cannot depend on
any system-specific details, nor can the scoring system”
[36.24, p. 19]. The goal of benchmarks is then to tell “us
something we want to know about the behavior” [36.24,
p. 18] of an agent, for which a model of the task is re-
quired, especially “when we design benchmarks to be
failed, but in this case, we need a model of the factors
that make the benchmark difficult” [36.24, p. 19]. On
the other hand, controlled experimentation is seen as
a different activity, in which [36.24, p. 17] “a researcher
varies the features of a system or the environment in
which it is embedded and measures the effects of these
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variations on aspects of system performance” arguably
resulting in more generalizable significant results with
respect to benchmarks.

From 1999, significant efforts to promote bench-
marks in robotics have been put in place within the
EU-funded European Robotics Network (EURON).
EURON has performed a number of actions with the
goal not only to define specific benchmarks, but also to
propose and encourage the acceptance of benchmarks
in the community, which culminated in the First Euro-
pean Workshop on Benchmarks in Robotics Research
and in the IROS Workshop on Benchmarks in Robotics
Research, both held in 2006 [36.46]. Starting from these
seminal events, a series of similar workshops have blos-
somed with the organization and supervision of the
EURON GEM Special Interest Group [36.26]. The ac-
tivities performed in EURON include the proposal of
a list of features that a benchmark should have [36.47]:
it has to be defined for a task valuable in the real world,
it has to be standard and precisely defined, it has to
be associated to some performance metrics, it has to
be repeatable, independent, and unambiguous, and it
has to be widely accepted. Another contribution from
EURON is the advancement of the idea that compe-
titions could serve as benchmarks for “comparing the
performance of competing systems by means of very
well-defined rules and metrics” [36.46, p. 4]. del Po-
bil [36.46] also presents an exhaustive survey of the
state of the art of the efforts in comparative research,
including competitions, benchmarks, challenges, and
relevant conferences.

Along the direction traced by EURON, some other
projects have been funded by the European Union
and have aimed at defining benchmarks for specific
robotics domains. For example, EUROP (EUropean
RObotic Platform) supported activities on standards,
RoSta [36.48] defined a standard benchmark for mo-
bile service robots, and Rawseeds [36.42] produced and
made publicly available high-quality data sets collected
by robots in real environments, corresponding ground
truth data, and benchmark problems on which different
algorithms for robot self-localization and mapping can
be compared.

In the United States, the National Institute of Stan-
dards and Technology (NIST) has actively promoted
competitions and field exercises as “two different yet
effective ways of systematically evaluating the perfor-
mance of robotic systems” [36.49, p. 2]. For example,
NIST has worked toward the development of perfor-
mance metrics and standards for robots employed in
urban search and rescue applications, taking care “not
to explicitly test for particular technological solutions;
rather, the tests measure how effectively or efficiently
a robot can complete certain tasks, without assuming

a particular approach” [36.49, p. 3]. In this way, robot
capabilities can be evaluated without inhibiting inno-
vations of robot developers. Such standard test meth-
ods [36.50] include detailed specifications of tasks that
users expect the robot to perform reliably, of scripts for
the test administrator and the robot operator to follow,
and of quantitative ways to measure the performance
of the robot (Fig. 36.3). In parallel to the definition of
such standard benchmarking procedures, the PerMIS
(Performance Metrics for Intelligent Systems) work-
shop series has been established as one of the main
venues for discussing and disseminating the definition
of methodologies to measure the performance of robots
in different settings, from industrial to military applica-
tions [36.51].

As a matter of fact, practical use of benchmarks
(developed by independent organizations) is still lim-
ited for most robot applications, notwithstanding sev-
eral proposals have been advanced for benchmark-
ing robot-specific capabilities, for instance path plan-
ning [36.52], navigation [36.53], simultaneous local-
ization and mapping [36.54], and object manipula-
tion [36.55].

Benchmarks have also been proposed to compara-
tively evaluate robotics software and architectures, as
for example in [36.56]. How to move from bench-
marking basic robot capabilities to benchmarking more
complex cognitive activities is not yet well understood
paralleling, in a sense, the difficulty in choosing human
intelligence benchmarks. A possibility [36.57] seems to
be evaluating a whole robot system (as opposite to eval-
uating some of its components) while executing a task

Fig. 36.3 NIST Robot Test Facility (photo by NIST)
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which is intended to be difficult and to require the in-
tegration of different components (e.g., foraging and
survival require navigation, image processing, learning,
: : :). Other two proposals for developing benchmarks
for cognitive abilities of robots consist in a collection
of individual tasks that, although individually limited
in breadth, collectively cover a broad spectrum [36.58]
and in setting up a Total Turing Test in which a hu-
man interrogator should distinguish the performance
of an autonomous robot from that of a tele-operated
robot in performing a given task [36.59]. In this context,
tasks intended to test the cognitive abilities of robots
are sometimes embedded in competitions (as discussed
later).

Some negative effects of benchmarks have been
reported in other technology domains. For example,
to overcome some limitations of computer processors
early benchmarks, designed to measure millions of in-
structions per second (MIPS) and millions of floating
point operations per second (MFLOPS), benchmarks
evaluating performance of processors using real-world
applications were later introduced, but producers then
developed specific optimizations in the attempt to per-
form well on benchmarks [36.52]. Knowing these
shortcomings and building on experiences from other
domains [36.60] should be considered to avoid the same
errors in developing robot benchmarks.

Standardization activities have been performed with
the aim of defining methods for the quantitative mea-
surement of the performance of robot systems in order
to keep a global quality culture, to set minimum require-

ment levels, to reduce confusion of consumers when
developing innovative robots for specific domains (like
manufacturing, floor cleaning, . . . ), and to help scien-
tific research. Unsurprisingly, standard activities have
been mostly related to security of industrial robots.
For example, ISO (International Organization for Stan-
dardization) and IEC (International Electrotechnical
Commission) have issued standards for safety of indus-
trial and personal care robots ([36.61] for a survey of
these and other standard activities within ISO). Other
safety standards have been promoted by RIA (Robotic
Industries Association) and ANSI (American National
Standards Institute). Another focus for standards is the
vocabulary. For example, IEEE (Institute of Electrical
and Electronics Engineers) has developed a formal ref-
erence vocabulary for communicating knowledge about
robotics and automation both among robots and be-
tween robots and humans [36.62]. Finally, standards for
interoperability in robot software development [36.63]
and in robot operations, like navigation [36.62], have
been proposed.

Overall, benchmarking and standardizing complex
systems like robots pose a number of problems [36.49].
For example, developing standards for robot capabili-
ties (like navigation and self-localization) appear to be
of a different, and more difficult, nature than developing
standards for other devices and technologies (like the
Ethernet and other network technologies). Moreover,
standards that regulate the interaction between different
subsystems usually result in being too thick, becoming
hard to apply.

36.6 Competitions and Challenges

Robot competitions and challenges have flourished
since the 1970s, now counting dozens of events per
year. From the beginning, it has been recognized that
competitions can play several roles in robotics, for
example to promote education and research, to push
the field forward, to entertain general audience, and
to build community [36.64–67]. These roles are of-
ten conflicting and balancing them in devising a robot
competition has been proven difficult [36.68]. After
some early recommendations about being “careful not
to confuse a competition with research” [36.69, p. 39],
a more recent trend advocates for recasting robotics
challenges and competitions as experiments, recogniz-
ing that [36.70, p. 10]:

“[c]hallenge and competition events in robotics pro-
vide an excellent vehicle for advancing the state
of the art and evaluating new algorithms and tech-

niques in the context of a common problem do-
main.”

Along the same line, it has also been proposed to
use competitions as benchmarks, since they provide
standardized test beds that are largely independent of
the settings roboticists usually experience in their labo-
ratories and allow for direct comparison of approaches
for solving a task [36.71]. However, in defining good
benchmarks, designers of competitions should avoid to
encourage ad hoc solutions instead of more adaptable
and flexible approaches [36.68]. This section discusses
in some depth the advancements and the results ob-
tained adopting the perspective that views competitions
as sort of experiments.

From a broad perspective, competitions and chal-
lenges share some similarities with experiments.
Robots usually compete in precisely definite settings
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and are scored according to precise performance mea-
sures, which parallel, at least to some degree, the
controlled conditions and measures of experiments.
However, competitions and challenges often evaluate
whole robot systems, while experiments presented in
the literature mainly evaluate a single robot ability or
subsystem. Moreover, some challenges are intended to
be performed just once, while experiments aims at be-
ing reproducible (Table 36.2). More generally, robotics
competitions and challenges usually evaluate general
abilities of robot systems and push to development of
solutions, while experiments evaluate specific hypothe-
ses, explore phenomena, and share result.

A robotics competition (challenge) usually involves
some robots, a dynamic, but rather controlled, envi-
ronment, a clear measure of success, and rules for
calculating scores [36.72–74]. Without attempting at
providing any exhaustive survey and detailed account
of how specific events are organized and run, in the
following we discuss some robotics challenges and
competitions in order to trying to assess their potential
role as experiments.

One of the best known examples is RoboCup
[36.75], which is taking place since 1996 and aims at
providing “a standard problem so that various theories,
algorithms, and architectures can be evaluated. Com-
puter chess is a typical example of such a standard
problem.” RoboCup features robotic soccer (Fig. 36.4),
rescue, and home competitions, in which robots com-
pete in dynamic unpredictable environments with real-
time constraints. Competitions take place both in the
real world and in simulation. The environments are pre-
cisely defined and can be easily reproduced in different
places. However, this is not true for other elements that
characterize the competition, like the opponent team
and the light and noise conditions. In the soccer compe-
titions, the measures and the criteria according to which
two robot systems (teams) are compared are clearly de-
fined only for the purposes of the game. For example,
it is difficult to draw any conclusion about the general
behavior of robots and their components from the fact
that one team won, say, 2 W 0 against another team. In
other leagues, like in RoboCup@Home, some attempts
have been recently made toward more solid procedures
to benchmark and track the progress of robots in per-

Table 36.2 Competitions versus experiments

Competitions Experiments
Precisely defined settings Controlled conditions 

Performance measure Measures 

Involve whole robot
systems

Evaluate single robot
abilities



Sometimes performed just
one time

Tend to be reproducible 

Fig. 36.4 Humanoid Kid Size League match at RoboCup
2011 (photo by Viktor Orekhov, http://www.robocup2013.
org/press/)

forming tasks (that are possibly changed over time to
keep the competitions challenging) [36.76].

The DARPA Robotic Challenge (DRC) [36.77]
consists of tasks related to human assistance in respond-
ing to disasters, “[i]t was designed to be extremely
difficult.” Tasks are related to the development of au-
tonomous humanoid-like robots able to operate in haz-
ardous settings. During the DRC trials, in December
2013 (Fig. 36.5), the main scoring mechanism has been
task completion (e.g., number of open valves), while
time has not been a factor (taking 30 s and 30min to
complete a task is worth the same amount of points), but
is used as tiebreaker. The goal of the DRC trials, beyond
selecting teams that will advance to the finals, has been
to set up “a baseline on the current state of robotics.”
In the DRC finals, that took place in June 2015, speed
weighted more in the score.

The interest in designing competitions as experi-
ments has also resulted in two projects funded by the
European Union under the FP7 Challenge 2 Cognitive
Systems and Robotics. euRathlon [36.78] is an outdoor
competition for robots involved in emergency-response
scenarios. In the words of their organizers:

“euRathlon aims to be an important milestone for
robotics research. Not only will it provide opportu-
nities to put the latest robotics technologies to test
under realistic disaster scenario conditions, we also
recognise that there is currently an urgent need to
develop useful benchmarks that will advance the
field of robotics.”

The 2013 competition has been for ground robots,
the 2014 competition for underwater robots (Fig. 36.6),
and the 2015 competition required a “team of terrestrial,
marine, and aerial robots to work collaboratively to sur-
vey the scene, collect environmental data and identify

http://www.robocup2013.org/press/
http://www.robocup2013.org/press/
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Fig. 36.5 A test trial of the DARPA Robotic Challenge
(DARPA)

critical hazards.” The settings in which the compe-
titions take place are precisely defined to represent
mock emergency-response scenarios, including condi-
tions like limited visibility and salty water. Scores of
the competitions have been a mix of measured quanti-
ties and subjective judgments given by a human Judging
Team. Data sets recorded during the competition are
made publicly available to the community as “a valu-
able pool for benchmarking, testing and comparison”.

The other EU-funded project is RoCKIn [36.79]
that addresses domestic (RoCKIn@Home) and indus-
trial (RoCKIn@Work) environments, focusing on au-
tonomous service and industrial robots, respectively

a) b)

Fig. 36.7a,b
RoCKIn@Home (a) and
RoCKIn@Work (b) competi-
tions (copyright by RoCKIn
project)

Fig. 36.6 euRathlon 2014 competition (http://www.
eurathlon.eu/)

(Fig. 36.7). Explicit emphasis is put on “assess, com-
pare, and evaluate competing approaches” exploit-
ing “benchmarking procedures and good experimental
methods” making the “integration of benchmarking
technology with the competition concept Œ: : :� one of
the main objectives of RoCKIn.” In both @Home and
@Work competitions, rules precisely define the settings
for the competitions. One of the distinctive features
of RoCKIn is in its scoring system, which is based
on the presence of two classes of benchmarks, called
task benchmarks and functionality benchmarks, some-
how following the approaches proposed in [36.47] and
in [36.80]. The first ones are devoted to evaluating
the performance of integrated robot systems, while
the second ones focus on the performance of specific
subsystems (like object recognition and localization).
A task benchmark deals with complete robot systems,
implying that a large set of interacting robot elements
are examined together at the same time. Functionality
benchmarks define a precise setup in which a single
robot functionality can be evaluated. Such evaluation
is performed according to well-specified quantitative
measures and criteria, specific for the functionality un-
der test. Also RoCKIn makes data collected during
competitions available to the community.

From the above picture, it emerges that the ques-
tion whether robotics competitions and challenges are

http://www.eurathlon.eu/
http://www.eurathlon.eu/
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experiments is far from being satisfactorily answered.
However, an interesting attempt to provide a partial
answer could come from considering different com-
petitions and challenges as different forms of experi-
mentation, for example starting from the taxonomies of
experiments performed in computing and in AI as pre-
sented in [36.81] and [36.80]. For instance, referring
to the classification of [36.81], RoboCup soccer com-
petitions seem to be between feasibility experiments,
that are basically a form of empirical demonstration,
intended as an existence of proof of the ability to build
a tool or a system, and trial experiments, which take
a step further and evaluate various aspects of systems
using some predefined variables which are often mea-
sured in laboratories, but can occur also in real contexts
of use (with some limitations). The DARPA Robotics
Challenge and euRathlon support the idea of field ex-

periments, which are similar to trial experiments, but
take place outside the laboratory in complex sociotech-
nical contexts of use. Finally, the RoCKIn competitions
seem to aim at moving toward comparison experi-
ments, which refer to comparing different solutions in
some setup and based on some precisely defined mea-
sures and criteria to assess the performance. Overall,
no current competition fulfills the requirements for the
controlled experiments, namely the golden standard of
experimentation in the natural sciences that refers to
the original idea of experiment as controlled experi-
ence, where the activity of rigorously controlling (by
implementing experimental principles such as repro-
ducibility or repeatability) the factors that are under
investigation is central, while eliminating the confound-
ing factors, and allowing for generalization and predic-
tion.

36.7 Conclusions
In this chapter, we have discussed the issues involved in
the experimental assessment of computational models
embedded in autonomous robots. These are particularly
challenging because of their interaction with the real
world. The current debate on the development of good
experimental methodologies in this field has been our
starting point, together with the acknowledgment that
robotics, at least from a methodological point of view,
lies in between science and engineering. This is also
the reason why, besides the traditional notion of epis-
temic experiment, also that of directly action-guiding
experiment, as recently conceptualized in the philos-
ophy of science and technology [36.3], is relevant.
This field is still very open and, thus, it is impos-
sible to present a coherent and systematic view. For
this reason, we have chosen to present a number of
topics and initiatives that are currently under discus-

sion and various and profitable interconnections among
them. In doing so, we have tried to give an overview
of the main trends, but at the same time we have
pointed out many criticalities and some promising di-
rections.

Besides the undeniable role for the development
of the disciplinary status of autonomous robotics and
its methodological maturity, we believe that this de-
bate has the potential to constitute a possible starting
point to revise and enlarge traditional model-based
science [36.82], intended as a way to representing
and understanding the world, toward model-based en-
gineering, where specific scientific and technological
practices are taken into account and where modeling
practices are justified mostly from a pragmatic point of
view in a methodological context that privileges con-
texts and purposes over representations [36.83].
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37. Biorobotics

Edoardo Datteri

Starting from a reflection on the various roles
played by simulations in scientific research, this
chapter provides an overview of the biorobotic
strategy for testing mechanistic explanations of
animal behavior. After briefly summarizing the
history and state of the art of biorobotics, it also
addresses some key epistemological and method-
ological issues that need to be taken into serious
consideration when setting up and performing
biorobotic experiments. These issues mainly con-
cern the relationship between the biorobot and
the theoretical model under investigation, the
choice of criteria for comparing animal and robotic
behaviors, and the pros and cons of computer
versus robotic simulations.
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37.1 Robots as Models of Living Systems

37.1.1 Data-Oriented and Model-Oriented
Simulations

Computing devices are used in contemporary biolog-
ical and psychological research not only as number-
crunching tools for the analysis of experimental data,
but also to simulate theoretical models of biological
and cognitive systems. Two broad classes of computer
simulation studies are found in the current scientific lit-
erature. A typical example of the first class is biomolec-
ular simulation of the behavior of ion channels [37.1].
Ion channels are proteins arranged to form pores in
the membrane of cells. Under particular chemical and
physiological conditions, they undergo conformational
changes that permit or block the movement of particular
substances across the membrane. A detailed reconstruc-
tion of these changes is difficult to obtain via current
molecular imaging technologies [37.1, p. 430]:

“A variety of experimental techniques can provide
information about the dynamics of proteins and
other biomolecules, but they are generally limited

in their spatial and temporal resolution, and most
report ensemble average properties rather than the
motion of individual molecules.”

Computer simulations may be used to overcome
these difficulties. The detailed molecular structure of
a particular class of ion channels may be represented by
a program and the system may be allowed to compute
the conformational changes that these channels would
undergo under various chemical conditions, accord-
ing to the physical laws governing atomic interactions.
Simulations of this kind therefore [37.1, p. 429]:

“serve as a computational microscope, revealing
biomolecular mechanisms at spatial and temporal
scales that are difficult to observe experimentally.”

Biomolecular simulations exemplify one of the
roles played by computer simulations in scientific re-
search, namely the role of generating data about the
behavior of a system. This is the use made of computer
simulations in what we will here refer to as data-ori-
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ented simulation studies. As illustrated by the proposed
example, data-oriented simulations may be particularly
useful when the required data are difficult or impossi-
ble to obtain by means of conventional observational or
measurement techniques: in these cases, “simulations
[: : :] replace experiments and observations as sources
of data about the world” [37.2].

Simulations are not always used for this purpose,
however. In many cases, they are used to test a theoret-
ical model of the target system, rather than to obtain
data about it. This is a model-oriented use of simu-
lations (Fig. 37.1). A distinction between these two
classes of simulation studies has also been proposed by
Guala [37.3], who defined it in the following terms:

“Typically, simulations are used in one of two dif-
ferent ways: either (1) to bootstrap from the fact that
a given effect (which we have observed in system
A) can be produced by means of simulation B, to
the fact that the relations governing the behavior of
B also govern the behavior of A. Or (2) to argue that
a certain effect observed by simulating with B will
also be observed in the case of A because the two
are governed by similar relations.”

Cases 1 and 2 correspond to model-oriented and
data-oriented simulation studies, respectively.

In cognitive science and neuroscience, robots are
often used as model-oriented simulations. For example,
in so-called biorobotic studies, which are the main fo-
cus of this chapter, robots are used to test theoretical
models of human and animal behavior. Interestingly,
biorobotic, model-oriented simulation studies predate
the creation of the first digital computer. What is per-

Target system SMechanism M governs produces

Simulation
system A

Behaviour B in
conditions C

Behaviour B in
conditions C

Mechanism M governs produces

?

Data-oriented simulations: What is the behaviour?

Target system S? governs produces

Simulation
system A

Behaviour B in
conditions CMechanism M governs produces

Model-oriented simulations: What is the mechanism?

Fig. 37.1 Diagram illustrating the
distinction between data-oriented
and model-oriented simulations. As
explained in the text, data-oriented
simulation systems implement the
mechanism governing the target
system S (as illustrated by the double
arrow) to find out what behavior
S would display under conditions
C. In model-oriented simulation
experiments, matches or mismatches
between the behaviors of S and A
under conditions C are taken as a basis
for testing whether the mechanism
implemented in S coincides with the
mechanism M implemented in A or
not

haps the first example of biorobotic simulation dates
to 1913, when engineers John Hammond Jr. and Ben-
jamin Miessner built a robot, known as the electric
dog, which was able to track light sources by means of
a simple sensory-motor mechanism. Notably, the mech-
anism implemented was similar in many respects to
that which physiologist Jacques Loeb [37.4] had sug-
gested was used by moths to seek light sources [37.5].
The fact that by virtue of this mechanism the robot was
able to generate a light-seeking behavior – thus repli-
cating the behavior of moths to some extent – was
taken by Loeb himself as corroborating his claim that
the hypothesized mechanism could also account for the
light-seeking abilities of moths. The behavior of the
electric dog robot was thus taken as a basis on which
to test (and ultimately in this case, to accept) a theoret-
ical model of insect behavior.

Since that first pioneering instance, robots have
been used to test a variety of models of animal be-
havior: a history and a concise summary of the state
of the art are provided in Sect. 37.2. One purpose of
this chapter is to outline the structure of robotic model-
oriented simulation experiments. It is worth noting that
the expression simulation experiments is used here to
refer to scientific experiments involving (robotic) simu-
lation systems. It is not meant to imply that simulations
are experiments in any significant sense of the term.
Rather, it is here assumed that simulation systems are
something that can be experimented on, given that one
can assess their behavior under various experimental
conditions and in response to interventions of various
kinds. Moreover, it is assumed that simulation systems
may be actively used as experimental tools at some step
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in a procedure aimed at gathering data on, or testing
a model of, a biological system (see Chap. 34 by Imbert
in this volume and [37.6], for an analysis of whether
simulations can be literally regarded as experiments).

Another purpose of this chapter is to raise some
interesting methodological and epistemological issues
biorobotics experiments give rise to, including the issue
of understanding under what conditions one is justi-
fied in taking robotic behaviors as a basis for accepting
or rejecting a biological or cognitive theoretical model
(for other epistemological and methodological analyses
of biorobotic methodology that address many of the is-
sues discussed here, see [37.7–10]). These issues point
to the existence of a gap between being able to repro-
duce a given behavior in a robotic or computer system
and being able to explain it. Before going on to ad-
dress them, and to examine the structure of biorobotic
methodology in detail, it may be useful to provide
a preliminary analysis of the notions of theory and ex-
planation in cognitive science and neuroscience.

37.1.2 The Structure
of Biorobotic Methodology

Behavioral Explananda
Explaining human and animal behavior is one of the pri-
mary goals of the cognitive sciences and neurosciences.
The phenomena to be explained in these areas – whose
linguistic formulation is often referred to as explanan-
dum (plural explananda) in philosophical analyses of
the concept of explanation – typically consist of be-
havioral regularities, that is to say, regular connections
between a set of environmental conditions C and a be-
havior B (for the sake of brevity, in this chapter the
term explanandum refers both to the statement de-
scribing the phenomenon to be explained and to the
phenomenon itself). The term C refers to a more or less
large set of environmental conditions (such as the pres-
ence of a light source, a minimum external temperature
of 20ıC, the absence of electromagnetic fields), while
B stands for a more or less abstract description of the
motor behavior of the target system (such as percent-
age success rate in hitting the light source over a given
period of time, or the trajectory followed by the ani-
mal while approaching the light source). For example,
Loeb’s explanandum, which consists of a regular con-
nection between the presence of a light source (C) and
the generation of motor trajectories leading to the light
(B), may be formulated in this way.

Cognitive and neuroscientific research often seeks
to explain human and animal capacities, such as the
ability to control arm movements in order to reach a tar-
get specified within a given sensory frame of reference
(see for example [37.11]). Capacities may be reformu-

lated as behavioral regularities [37.12]: for example, the
ability to reach a target with one’s hand may be refor-
mulated as a regular connection between the presence
of a target (possibly plus other conditions of environ-
mental normalcy) and the generation of movements
bringing the arm endpoint into proximity of this target.
Higher-level cognitive capacities may be formulated as
behavioral regularities too. Contemporary research on
spatial memory capacities in rats [37.13] seeks to ex-
plain, for example, why rats regularly make fewer and
fewer errors in locating a reward in a maze on each
successive trial, and why they make errors of a par-
ticular sort when some aspects of the environment are
selectively changed. Many cognitive studies attempt to
explain why humans regularly manage to solve par-
ticular classes of problems or why they show regular
reactions to certain complex stimuli (for example, why
it systematically takes a longer time to say the color of
the word red written in green than to say the color of
the word green written in green, the so-called Stroop
effect, [37.14]). This is not to say that the explanation
of singular behaviors – why did system S display be-
havior B in experimental trial number 312? – is never
pursued. Indeed, that question would first be addressed
by identifying the conditions C holding in trial num-
ber 312 and supposedly responsible for that singular (or
exceptional) behavior. From that point on, the explanan-
dum would then take the form: why does S regularly
produce B under conditions C?

Behavioral Mechanisms
Explanations in the cognitive sciences and neuro-
sciences typically include a description of a mechanism
M supposedly responsible for a behavioral regularity
R (for the sake of brevity, the term M will be used in
this text to refer both to the description of a mechanism
and to the mechanism itself, depending on the context).
Detailed analyses of the structure of neuroscientific
and cognitive mechanism descriptions are provided
in [37.15–18]. For the purposes of the present discus-
sion, it is sufficient to note that explanatory mechanism
descriptions specify a number of components, charac-
terize the behavior of each component in a more or less
precise way, and define how these components interact
with one other. For example, Wolpert et al. [37.11] ex-
plained motor control abilities in humans by describing
a mechanism made up of various components (notably
including an inverse model of the controlled object)
and the mutual connections among these components
(for example, by stating that some parameters of the
inverse model component vary as a function of output
from a feedback controller component). The behavior
of each component is typically formulated as a regular-
ity (which takes the form of an input-output regularity
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in cognitive models). For example, the behavior of the
inverse model component in [37.11] is characterized
as a mapping from desired trajectories to motor com-
mands.

Here a fundamental difference emerges between ex-
planations in neuroscience and in cognitive science.
Neuroscientific explanations use the theoretical vo-
cabulary of the neurosciences to describe explanatory
mechanisms: they define mechanisms in terms of the
electrical or chemical behavior of neurons and neu-
ral areas. Cognitive science explanations describe ex-
planatory mechanisms in terms of representations and
information processing modules: the components of
cognitive science mechanisms typically perform input-
output mappings among representations possessed by
the system (see [37.19] for a more specific analysis of
the relationship between cognitive and neuroscientific
mechanism descriptions).

Note that the term theory is often used in these
fields to denote explanatory mechanism descriptions.
For example, the theory on rodent navigation described
in [37.20], and tested by means of computer model-
based simulations, coincides with the description of
a mechanism that supposedly enables rats to effect
a number of spatial behaviors. The term explanation
on the other hand is typically used to denote a struc-
ture composed of an explanandum and an explanatory
mechanism description.

Abstraction
To set the stage for the ensuing discussion of the
methodological issues arising in biorobotics, it is worth
reflecting on the abstract character of mechanistic ex-
planations of behavior. Such explanations may be said
to be abstract for at least two reasons. To introduce
the first of these reasons, let us once more focus on
Loeb’s explanandum: when moths are in the proxim-
ity of a light source, they regularly generate movements
leading to it. As it stands, this is a literally false asser-
tion. Any generalization (i. e., a statement expressing
a regularity) is strictly speaking false when it has ex-
ceptions, and moths do not always reach light sources.
They will be unable to do that, for example, if their
light receptors are damaged, if some other internal drive
prevails over the light-seeking one, or if transparent
glass is interposed between them and the light source.
For analogous reasons, rats do not always improve
their goal-seeking abilities in mazes on successive tri-
als: the explananda addressed by contemporary studies
on spatial memory in rats consist of, strictly speaking,
literally false (exception-ridden) generalizations. They
would be true only in the absence of a number of possi-
bly perturbing factors, which typically are not, or only
partially, specified in C. How then may we interpret

the claim that S regularly produces B under conditions
C? Should one end up conceding that neuroscientists
and cognitive scientists work with literally false (i. e.,
exception-ridden) explananda?

To adopt a more reasonable position, in line with
the so-called semantic conception of scientific theo-
ries [37.21], we may say that neuroscientific and cog-
nitive explananda state the behavior of ideal systems.
According to this interpretation, claiming that system
S regularly produces behavior B under conditions C
amounts to making a counterfactual claim about an
ideal system placed under ideal conditions: were S sub-
jected only to conditions C – in other words, were
C a correct and complete description of the condi-
tions under which S stands – it would regularly display
behavior B. Mechanism descriptions are abstract too.
They clearly do not describe all the mechanisms found
in the target system S, but only the mechanismM that is
supposed to produce the behavior to be explained; and it
is assumed thatM will produce that behavior only if no
perturbing condition intervenes. In other terms, claim-
ing that system S exhibits R by virtue of mechanismM
amounts to making a counterfactual assertion to the ef-
fect that, were M the only mechanism at work in S, it
would produce R.

In sum, cognitive and neuroscientific theories are
formulated to explain ideal behavioral regularities.
They pursue this goal by modeling the behavior of an
ideal system governed by the postulated mechanism
M and by nothing else: hence, they are abstract ex-
planations. This view is well expressed by Frederick
Suppe [37.21, pp. 82–83]:

“The theory does not attempt to characterize the
phenomena in all their complexity, but only at-
tempts to do so in terms of a few parameters
abstracted from the phenomena. For example, clas-
sical particle mechanics attempts to characterize
mechanical phenomena as if they depended only
on the abstracted position and momentum param-
eters. In point of fact, however, other unselected
parameters usually do influence the phenomena; so
the theory does not characterize the actual phenom-
ena, but rather characterizes the contribution of the
selected parameters to the actual phenomena, de-
scribing what the phenomena would have been had
the abstracted parameters been the only parameters
influencing them.”

Note that some contemporary philosophers of sci-
ence forcefully claim, contrary to what I argue here,
that neuroscientists and cognitive scientists address
exception-ridden explananda (for example [37.15]).
The prima facie plausibility of this hypothesis is given
by the apparently exception-ridden character of most
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neuroscientific explananda (the examples on moth lo-
comotion and rat navigation being cases in point). The
view proposed here – i. e., that neuroscientists seek to
explain the behavior of ideal systems – is preferred, in-
sofar as it is more consonant with scientific practice
(see [37.22], for a discussion) and fully in line with
the semantic view of scientific theories, whose virtues
with respect to the so-called received view have been
extensively emphasized in the philosophical literature.
Whether the methodological analysis of biorobotic ex-
periments proposed here may also fit with a different
conception of scientific theories is a question that goes
beyond the scope of the current chapter, whose aim is
to provide (at the least) a plausible account of how, and
under what conditions, biorobotic experiments can as-
sist in the discovery of, and theorization on, biological
and cognitive mechanisms.

Explanation
Having analyzed the nature of biorobotic explananda
and theories, it is worth focusing on the notion of expla-
nation. Explaining S’s behavior B under C by reference
to M amounts to making two closely related, but con-
ceptually distinct claims. The first is that:

1 All systems governed only by M produce behavior
B when only conditions C hold.

This assertion concerns what, in Suppe’s seman-
tic analysis of scientific theories [37.21], is labeled
the class of theory-induced systems, that is to say, the
class of the ideal systems defined by the theory un-
der investigation. Explaining S’s behavior by reference
to M, however, implies also asserting the existence of
a close relationship between S and the class of the
theory-induced systems defined by M, a relationship
that we express here as follows (see [37.21] for a more
detailed analysis of the relationship between theory-
induced systems and the systems whose behavior is to
be explained):

2 S implements mechanismM.

This amounts to asserting that S has a number of
components behaving and organized as specified in M.
Of course in reality S will have other components and
will be affected by boundary conditions not included
in the ideal theory-induced systems (here we assume
that the ideal theory-induced systems are impoverished
versions of the concrete systems under investigation,
obtained by abstracting out components and features
that are deemed to be irrelevant for the present explana-
tory purposes; however, some theory-induced systems
have features that are incompatible with the theory it-
self; see Suppe’s analysis of idealization as distinct
from abstraction in [37.21]).

Claims 1 and 2 are conceptually independent of one
another. It may be the case that M exhibits behavior B
under C (as asserted by Claim 1), and that, at the same
time, S does not implement M even though it displays
behavior B under C: in that case, one concludes that S
displays B under C by virtue of a different mechanism
toM. It may also be the case that S actually implements
M, but thatM does not produce B under C:M will then
be responsible for other behaviors exhibited by S, and
will be irrelevant to explaining why S produces B under
C. In both cases, by rejecting either Claim 1 or 2, one
rejects the explanation stating that S produces B under
C by virtue ofM.

Distinguishing between these two claims enables us
to understand how robots may be used to test cognitive
and neuroscientific explanations. Indeed, to evaluate
whether S’s behavior B under C may be explained by
reference to M, one must have good reason to argue
that M is implemented in S (Claim 2) and that M alone
is responsible for B under C (Claim 1). As we shall
see in the next section, biorobots can be especially
useful for testing the latter claim. Before addressing
this point, it should be noted that dysfunctional behav-
iors are typically explained mechanistically in cognitive
and neuroscience. A dysfunctional behavior is one that
differs, to some extent, from the behavior normally
produced under particular conditions C by individuals
belonging to a particular reference class. Explanation of
these behaviors proceeds by identifying the mechanism
M responsible for the normal behavior, and by finding
out how M would need to be damaged to produce the
dysfunctional behavior. For a thorough epistemologi-
cal and methodological discussion on the explanation
of dysfunctional behaviors in cognitive neuroscience,
see [37.23].

Biorobotics and the Study of Ideal Mechanisms
In the previous section, it is argued that two claims are
made in asserting that S’s behavior B under C may be
explained by reference to M. The first states that a sys-
tem governed only by mechanismM, in the ideal setting
in which only conditions C hold, would produce be-
havior B (or more concisely, that M can produce B
underC). Testing a claim in this form only by reasoning
about the structure of M and the contents of C is likely
to be very difficult, even when M is relatively simple.
In [37.24], a basic mechanism is proposed to explain
lobsters’ ability to reach the source of chemical streams
in water (a behavior known as chemotaxis). The pro-
posed mechanism is structurally similar to that of one
of the first Braitenberg vehicles [37.25] and, inciden-
tally, to the mechanism proposed by Loeb to explain the
light-seeking abilities of moths. According to the pro-
posed mechanism, the system has two chemical sensors
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(chemoreceptors) located at the two sides of the animal.
The higher the chemical concentration perceived by one
receptor, the greater the movement on the opposite side
of the animal: high concentration on the right side will
induce rapid movement of the left motor organs, and
vice versa. At first sight, this mechanism seems to be
able to guarantee efficient chemotaxis. Suppose, for ex-
ample, that the source of the chemical stream is located
to the right of the animal, at a certain distance from it.
In this circumstance, chemical concentration will prob-
ably be higher on the animal’s right side. According to
the proposed mechanism, the left motor organs will be
moved faster than the right ones, making the system
veer to the right, and thus towards the chemical source.

Is this argument sufficient to conclude that the pro-
posed mechanism guarantees efficient chemotaxis? The
answer largely depends on whether higher chemical
concentration on the right (or left) reliably signals that
the source is located on the right (or left) of the an-
imal, a question that in turn depends on the shape
of the chemical plume. If the plume is concave and
highly irregular, a higher concentration will not always
be a good indicator of the true position of the source.
Without accurate information about the structure of the
environment and the exact distribution of the relevant
sensory stimuli one cannot easily predict the behavior
of the system, even if the mechanism is relatively sim-
ple. This lesson, extensively illustrated by [37.25], has
been also offered in the cybernetic era by the pioneer
of electroencephalography William Grey Walter. This
scientist famously built simple light-seeking devices
whose sensory-motormechanismwas not very different
from the mechanism later formulated by [37.24]. Yet
the behavior of the devices in domestic environments
turned out to be extremely difficult to predict: according
to their creator, they even displayed forms of “uncer-
tainty, randomness, free will” [37.26, p. 44]. Herbert
Simon similarly pointed out that very simple mecha-
nisms – whatever simple may mean in this context –
can exhibit behaviors that are difficult to predict, if the
environment is rich with unpredictable stimuli [37.27].

To sum up, whether a system governed by the mech-
anism described above can in fact replicate efficient
chemotaxis in a realistic underwater environment is
difficult to assess only by reasoning about the struc-
ture of the mechanism itself. Here biorobotic, model-
oriented simulations may help. In the previous section,
we claimed that mechanism descriptions in cognitive
science and neuroscience may be said to be abstract
for two reasons, of which so far we have discussed
only one (i. e., abstraction from the numerous bound-
ary conditions and concurrent mechanisms at work in
real systems). The second reason concerns the material
substrate of the target system. A fundamental assump-

tion of mechanistic theorizing in cognitive science and
neuroscience is that whether a system governed only by
M can exhibit R or not is a question that does not de-
pend on the material the system is made of. Nothing
prevents M from being implemented in both biologi-
cal systems and artificial systems. Equivalently, there
is no reason to deny a priori that any given living
system and any given robotic or computer device can
implement the same mechanism. Biorobotic methodol-
ogy consists precisely of building a system A governed
by M (i. e., a robotic simulation of M, see Fig. 37.2),
and assessing – by means of an appropriately conducted
biorobotic experiment – whether A produces behavior
B under conditions C, that is to say, whether it repli-
cates the behavior whose manifestation by S (see the
left side of Fig. 37.2) is to be explained. If it does, one
may be induced to conclude that the hypothesis that sys-
tems governed byM exhibit B under C is corroborated,
thus providing partial support for the claim that the liv-
ing system S produces B under C; otherwise, one may
be induced to reject this hypothesis.

One of the fundamental epistemological issues aris-
ing in biorobotic experimentation is easily identified. In
this methodology, one draws conclusions regarding the
behavior of an ideal theory-induced system (i. e., a sys-
tem governed only by M in the ideal setting in which
only conditions C hold) by analyzing the behavior of
a real man-made system. In Sect. 37.3.1 we will reason
about whether this inference may be justified, pointing
out that – quite paradoxically – biorobotic experiments
conducted with the aim of explaining biological behav-
iors must rely on the explanation of robotic behaviors,
which is not always (as vividly illustrated by Braiten-
berg) as straightforward as it may seem.

Biorobots are thus used as epistemic tools to acquire
information about the behavior that a system governed

Robotic
system ALiving system S

Behaviour B in
conditions C

Behaviour B in
conditions C

Mechanism M
governs governs

produces produces

explainsexplains

Fig. 37.2 Diagram showing the functional relationships
holding among the mechanism M under investigation, the
living system S, the robotic system A, and the behavior to
be explained, in biorobotic studies on animal behavior
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by M would exhibit under the ideal conditions C, that
is to say, to explore the behavioral implications of M.
Such a tool may be useful when it is difficult to arrive
at these implications only by considering the structure
of M, as illustrated by the study on lobster naviga-
tion. Indeed, in that study, the robotic simulation of
the mechanistic hypothesis formulated by the authors
turned out not to be able to perform efficient chemo-
taxis. After a number of control experiments aimed at
excluding a particular class of artifacts due to the struc-
ture of the robot (discussed in Sect. 37.3.1), the authors
concluded that the proposed mechanism could not ac-
count for the chemotaxis behavior, therefore rejecting
Claim 1. The authors’ diagnosis was that, as discussed
above, higher chemical concentrations are not reliable
indicators of the direction of the chemical source, due
to the turbulence of the water and to the consequently
irregular shape of the chemical stream.

This example helps to draw out even further the dis-
tinction between data-oriented and model-oriented sim-
ulationsmade in Sect. 37.1.1. In biorobotics, the robotic
simulationA is used to ascertain the behavioral implica-
tions of the mechanismM supposedly implemented in S
under conditionsC. This is also true of the data-oriented
biochemical simulations mentioned above: they are
used to acquire information about the behavior that ion
channels would display in some circumstances accord-
ing to a hypothesis about their structure and to the best
available theories on atomic interactions. The output of
data-oriented simulations is therefore an implication of
these theories. However, the theories underpinning the
biomolecular simulation have already been accepted as
the best current theories on the matter, and it is for this
reason that their implications – outputted by the simu-
lation – are interpreted as the behavior that the target
system would display in the simulated circumstances.
In biorobotic model-oriented studies, on the contrary,
the underlying mechanistic models are not accepted at
first, and their implications – analyzed against the data
available about the target system – are taken as a basis
for evaluating their plausibility. Mismatches between
the behavior of the target system and of the simula-
tion are undesired in data-oriented simulation studies.
In model-oriented simulation studies, on the contrary,
they constitute a valuable experimental result, as they
may be taken as good reason to reject the mechanism
under assessment.

Internal Comparisons and Lesion Studies
The overt motor behavior of the robot is not the only
aspect of the robot that may be compared with S’s
behavior. While the robotic simulation is running, its
internal components continuously change state, and in
some cases it may be interesting to make comparisons

with the state of the corresponding components in the
nervous system of the target system, if suitable data are
available. In [37.28, p. 199], for example, a simulation
of a neural network mechanism supposedly underlying
spatial memory in rats was described. The behavior of
the artificial neurons, identified during the functioning
of the robot, was compared with the behavior of given
hippocampal neurons in the rat nervous system, which
were thought to correspond to the artificial ones, and the
two were found to match to some extent [37.28, p. 199]:

“The responses of simulated neuronal units in the
hippocampal areas during its exploratory behavior
are comparable to those of neurons in the rodent
hippocampus.”

Detection of such internalmatches may be taken as
further evidence corroborating the simulated theoretical
model.

It is also to be noted that biorobotic studies may in-
volve experiments in which artificial lesions are created
in given components of the robot and the resulting be-
havior assessed. Such experiments may be useful for
testing mechanistic explanations of dysfunctional be-
haviors. As discussed earlier, dysfunctional behavior
B� under C is explained mechanistically as the result of
a specific impairment of the mechanism M responsible
for the corresponding normal behavior B under C. The
explanatory mechanism, in these cases, consists of an
impaired versionM� ofM. To test whetherM� can pro-
duce B�, one may build a robotic implementation ofM,
injure it so that it may be considered an implementation
of M�, and assess whether it exhibits behavior B�. An
example of a (nonrobotic) model-oriented lesion study
is described in [37.29]. Experiments involving changes
to particular aspects of a biorobot may also be useful
for arguing that the same mechanism M, with minor
modifications, can account for a variety of different
phenomena. Suppose that mechanism M, simulated in
a robot A, turns out to be able to exhibit behavior R; and
suppose that, by changing some parameters of it – with-
out modifying the overall structure of the mechanism –
A displays behavior R� different from R. One may take
this result as a basis on which to conclude that M has
some potential for unification, according to the anal-
ysis of scientific unification provided by philosopher
Philip Kitcher [37.30] (it is worth noting, however, that
possessing a high unification potential is not, accord-
ing to some authors, either necessary nor sufficient to
provide a good explanation – see for example [37.31];
as far as necessity is concerned, in particular, it is not
clear whether a mechanism description that can explain
behavior R1 should depend on whether it can explain
a different behavior R2). Finally, as discussed later in
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Sect. 37.1.2, artificial lesion experiments may also help
to test whether the robot accurately implements the the-
oretical model under scrutiny.

Biorobotics and the Study of Neural
Implementation

Showing that M can produce R (Claim 1), as discussed
in the previous section, is necessary in order to claim
that S’s behavior R may be explained by reference to
M. But it is not sufficient, as it does not exclude that
S exhibits R by virtue of a mechanism that is differ-
ent from M but equally efficient (as mentioned earlier,
there is a gap between being able to reproduce R in
a machine and being able to explain R). One must there-
fore also show that M is implemented in S, that is
to say, that S has components that are organized and
behave as prescribed by M: this is the second claim
introduced in Sect. 37.1.2, Explanation. A variety of
experimental techniques may be used for this purpose,
depending on whether M is expressed using cognitive
(representational) or neuroscientific theoretical vocab-
ulary. Can biorobotic experimentation help in this case
too?

It follows from the previous discussion that, if robot
A implementingM displays behaviorR, one cannot con-
clude that M is implemented in S too. Similarly, if A
does not display R, one is not authorized to conclude
that M is not implemented in S. It may be the case
that M is implemented in S without producing R. In
the biorobotic experiments on lobster chemotaxis dis-
cussed earlier, the robot consistently failed to reach the
source of the chemical stream. Based on these results,
the authors concluded that the simulated mechanismM
did not guarantee efficient chemotaxis. This theoretical
conclusion does not imply that M is not implemented
in lobsters, however. Indeed, as the authors suggest
at a certain point of their discussion, M could be re-
garded as too simple rather than completely wrong.
Indeed, there are good reasons to believe that it might
be an effective chemotaxis mechanism in the presence
of homogeneous chemical plumes. But the plumes that
real lobsters are able to track are irregular and fila-
mentous. Therefore, one might conclude that lobsters’
chemotaxis mechanism is totally different from M; or,
alternatively, one might well conclude that lobsters use
M supplemented with other components that enable
the system to locate the right track when the plume
is too scattered. In the latter case, M would be im-
plemented in S (although not only M) while, at the
same time, M as it stands would be irrelevant to ex-
plaining lobsters’ chemotaxis. To generalize, a target
system S might implement M even though M is not
the mechanism responsible for the behavior to be ex-
plained.

Constraining and Revising the Space
of Possible Mechanisms

For the reasons illustrated in the previous section, one
cannot obtain from a biorobotic experiment per se any
strong reason to decide whether S implementsM or not.
However, weak reasons may be obtained in some cases.
Suppose that, based on a number of biorobotic exper-
iments, one concludes that M is the only mechanism
producing R out of several alternative mechanisms, and
that no more adequate mechanistic hypothesis can be
conceived. This result would increase one’s confidence
that M is the mechanism producing R in S, that is to
say, that M is implemented in S, although it may still
not be viewed as providing strong evidence to support
this claim.

To take another example, suppose that M is known
to be partially implemented in S, i. e., that some compo-
nents of M can be found in S, while other components
of M are only fictional (i. e., no information is avail-
able as to whether they are in S or not). In this case,
success in robotically replicating R may be taken as
at least a weak reason for predicting that the fictional
components will also be found in S. This case is ex-
emplified by the biorobotic inquiry into mechanisms of
spatial memory in rats reported in [37.32]. These au-
thors’ mechanistic hypothesis mentioned a number of
neural structures that are known to exist in the nervous
system of rats, notably including a population of so-
called place cells, which fire selectively whenever the
rat crosses a particular point of the environment [37.13,
33]. To obtain an efficient goal-seeking mechanism, the
authors also postulated the existence of so-called goal
cells, whose function is to signal proximity to goal lo-
cations; these cells were argued by the authors to be
essential to goal-seeking behavior, even though no in-
formation on their existence in the rat nervous system
was available at the time of publication of the study.
In the biorobotic experiments, the robot implementing
place and goal cells was found to be able to generate
efficient goal-seeking behavior. This result provided at
least a weak reason to believe that goal cells are not
only fictional entities, but that they must be really im-
plemented in the rat brain. In this case too, successful
biorobotic replication of R may induce one to expect
that some fictional components ofM are to be found in
the target system S. It is worth noting that the construc-
tion of a biorobot may also guide the localization of
fictional components ofM within the target system. As
discussed earlier, the state of A’s components while the
system is runningmay be monitored and compared with
the internal state of S as established using an appro-
priate experimental technique. Thus, for example, one
might record the activity of artificial goal cells during
experiments, and search for neurons displaying compa-
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rable activity in the rat brain in order to identify the
neural counterparts of the fictional goal cells in the tar-
get system.

In sum, although the primary role of robotic model-
oriented simulation experiments is to support reasoning
on the relationship betweenM and the behavioral regu-

larity R to be explained, they may also assist indirectly
in the analysis of the relationship between M and the
target system S. The roles played by biorobotics in the
explanation of human and animal behaviors will be fur-
ther exemplified in the brief summary of the state of the
art in biorobotics provided in the next section.

37.2 A Short History of Biorobotics

37.2.1 Cybernetic and Artificial Intelligence

As mentioned above, the history of biorobotics
stretches back to the first decades of the twentieth cen-
tury: the idea of building electric or electromechanic
simulations of living system behaviors to discover the
mechanisms producing them was pursued by many
physiologists and psychologists even before the birth
of the digital computer. An example, in addition to
the electric dog described in Sect. 37.1, is the learn-
ing device built by engineer Bent Russell [37.34], which
featured hydraulic mechanisms loosely inspired by the
learning theories of Spencer and Thorndike (Russell’s
machine and many other model-oriented simulation
studies carried out in the twentieth century are dis-
cussed at length by philosopher and historian of sci-
ence Roberto Cordeschi in [37.5]). Other examples of
simulations carried out before the age of the digital
computer include various circuits built by psycholo-
gist Clark Hull and collaborators. An electronic device
built by Hull and the electrotechnical engineer Robert
G. Krueger proved able to replicate various forms of
Pavlovian conditioning [37.35]. A nonelectronic sim-
ulation of learning was built by Hull and chemist
H.D. Baernstein [37.36]. Baernstein’s device inspired
electrochemist Thomas Ross to build a robot able to
memorize the structure of mazes on the basis of a sort
of mechanical memory (reports on the device and its
memory abilities appeared in the journal Psychological
Review, [37.37, 38]). Some years later, cybernetics pi-
oneer Norbert Wiener et al. extensively discussed the
role of machines in the study of animal behavior in two
articles published in the journal Philosophy of Science
between 1943 and 1945 [37.39, 40], and William Grey
Walter built the earlier-mentioned turtles, which were
able to navigate, and react to light stimuli in, domestic
environments [37.26].

The use of model-oriented computer simulations
characterizes the information-processing approach to
psychology pursued by Herbert Simon and Allen
Newell in the artificial intelligence (AI) era. Their
famous logic theorist and general problem solver pro-
grams were presented not only as machines displaying

remarkable problem-solving abilities, but also as sim-
ulations of theoretical models of intelligent human
behavior couched in information-processing theoreti-
cal vocabulary [37.41, 42]. They proposed computer
simulations as tools “both for constructing theories
and for testing them” [37.43, p. 2011]. A similar
model-oriented simulation approach was also pur-
sued by Nathaniel Rochester et al. to test models of
brain functioning [37.44]. More recent model-oriented
computer simulations deployed to test neuroscientific
models of animal behavior include the LIMAX sys-
tem, used to theorize on the logic of learning in
the limax slug [37.45], and the computer simula-
tion built by Hawkins to test a model of learning in
Aplysia [37.46].

Information-processing theories of intelligent be-
havior developed during the artificial intelligence era
offered good bases for explaining and simulating var-
ious human-level problem-solving abilities exhibited in
well-structured environments. However, they turned out
to be inadequate for modeling sensory-motor behaviors
produced by living systems in partially structured or
chaotic environments, and under strict time constraints.
AI robots were extremely slow and unable to produce
timely reactions to environmental changes, not only
due to the speed limitations of the computers available
in the 1960s and 1970s, but also due to the structure
of the algorithms used to process sensory data and
plan motor behaviors (a paradigmatic example of an AI
robot is Shakey, described in [37.47]). In the mid-1980s
robots were built that exhibited efficient sensory-motor
behavioral capacities in partially structured environ-
ments based on a parallel and distributed architecture
dubbed behavior-based architecture [37.48]. Behavior-
based algorithms had many aspects in common with the
control architectures devised and implemented in the
cybernetic era and later described by Valentino Braiten-
berg [37.25]. Their formulation, and the sensory-motor
efficiency of the first behavior-based robots, renewed
the interest of the robotics community in the construc-
tion of robotic systems able to reproduce aspects of
animal behavior and in the robotic simulation of neu-
ral and psychological mechanisms.



Part
G
|37.3

826 Part G Modelling and Computational Issues

37.2.2 Contemporary Invertebrate
and Vertebrate Simulation Studies

Many model-oriented biorobotic studies have been con-
ducted, especially from the 1990s onwards. Some of
these concern invertebrate sensory-motor capacities.
In [37.49, 50] a series of biorobotic studies aimed at
explaining how female crickets find possible mates by
following their calling song were described. Other no-
table examples include biorobotic inquiries into the
mechanisms underlying the remarkable navigation abil-
ities of the desert ant Cataglyphis [37.51], the naviga-
tion mechanisms of flying insects [37.52, 53], moths’
ability to track chemical streams [37.54], and locust
visuomotor coordination [37.55]. As mentioned ear-
lier, biorobots have been used to study the mechanisms
of visuomotor coordination in lobsters too [37.24, 56].
Biorobotic simulations have also been deployed to
study sensory-motor behaviors in vertebrates. Exam-
ples include studies on locomotion in lampreys [37.57,
58] and salamanders [37.59], and on the mechanisms
underlying general aspects of locomotion exhibited by
a variety of animal species [37.60–63]. The mecha-
nisms underlying spatial memory and navigation in rats
have been investigated using biorobots in [37.20, 28,

32, 64, 65]. Sense of touch in animals has been ex-
plored bymeans of whisker-controlled robots in [37.66,
67]. Visuomotor coordination in the barn owl has been
studied by [37.68]. There have also been biorobotic in-
quiries into primate behavior, notably including studies
on postural control [37.69] and on cerebellar mecha-
nisms of motor control in humans [37.70]. See [37.71]
for a detailed discussion on the role of biorobotics in
the study of primate behavior.

Model-oriented simulative approaches have addi-
tionally been used to advance understanding of the de-
velopment of behavior (see for example the biorobotic
study on the development of visuomotor coordina-
tion in cats described in [37.72]). Detailed reviews of
biorobotic investigations on the evolution of behav-
ior are offered by [37.73] and [37.74]. It is worth
mentioning here the possibility of building hybrid
simulations of mechanism descriptions, i. e., simula-
tion systems in which some components of the tar-
get mechanism consist of biological tissues appropri-
ately connected with other components that are arti-
ficial. Systems of this kind have been used to study
the mechanisms of lamprey sensory-motor behavior
[37.75–77]; see [37.78] for a methodological analy-
sis.

37.3 Methodological Issues

37.3.1 The Epistemic Requirements
of Good Biorobots

Biological Mimicry
In the previous section, we reviewed studies illustrat-
ing the role played by biorobotics in the explanation
of human and animal behavior. In all of these stud-
ies, the behavior of a robotic system A is taken as
a basis for assessing whether a system governed by M
only would produce behavior B under C (as discussed
in Sect. 37.1.2, Explanation and Biorobotics and the
Study of Ideal Mechanisms). This assessment is essen-
tial, though not sufficient, in order to conclude that M
is the mechanism enabling S to exhibit B under C. In
the current section we ask under what conditions – if
any – one is really justified in bringing robotic behav-
iors to bear on the mechanism M under scrutiny. More
precisely, let us assume that A, in a sufficient set of ex-
perimental trials, has actually exhibited behavior R, thus
reproducing the behavior of the target system (an as-
sumption that is discussed in Sect. 37.2).What auxiliary
assumptions are needed to justifiably take this result as
a basis for concluding that M can generate B under C?
This key epistemological question has been addressed

in other methodological analyses of biorobotics [37.8,
9]. Awareness of these auxiliary assumptions may help
to carry out methodologically sensible biorobotic ex-
periments and to evaluate the soundness of studies
reported in the literature.

Some of these assumptions follow quite directly
from the discussion carried out so far. In order to take
A’s behavior as bearing on whether a system governed
only by M would display B in a setting in which only
conditions C hold, one must ensure that (a) A is gov-
erned only by M and (b) only conditions C hold in
the experimental setting. Let us focus on assumption
(a) and postpone discussion of assumption (b) until
Sect. 37.3.3. Assumption (a) places a constraint on the
structure of robot A, a constraint that may seem quite
hard to satisfy – not least, because robots are complex
devices: to work properly any given robot is likely to
need many peripheral components not mentioned in the
mechanism description under scrutiny, as we will dis-
cuss in the following subsection. It is worth noting,
however, that other authors seem to place even stronger
constraints on the structure of good biorobots.

Krichmar et al. [37.28], for example, proposed a list
of principles that should guide the design and building
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of good biorobots, which notably includes the follow-
ing one: “The device must be controlled by a simulated
nervous system having a design that reflects the brain’s
architecture and dynamics” [37.28, p. 198]. This prin-
ciple, similarly to assumption (a), places a constraint
on the mechanism governing the device. However, this
constraint is defined in terms of the mechanisms at work
in the target system (the brain). Reformulated using
our terminology, it prescribes that A be governed by
a mechanismM which is known to be (at least partially)
implemented in the target system S. A similar constraint
is formulated by [37.71, p. R910, emphasis added], who
claim that “robots incorporating the biomechanics of
the animal system under study become physical models
to test hypotheses”. Let us generalize by distinguishing
the following two constraints:

1. The robot A must be governed only byM.
2. M must be implemented in the target system S.

Let us label the combination of Constraints 1 and
2 biological mimicry. It goes without saying that bi-
ological mimicry is a much stronger constraint than
the mere prescription that A must be governed by M.
Note that the terms validation and verification are of-
ten used in the literature in reference to the evaluation
of these two requirements [37.2]. Validation refers to
the evaluation of the goodness of the theoretical model
(Requirement 2), while verification is the process of
checking whether the theoretical model has been accu-
rately simulated (Requirement 1).

Is biological mimicry, as defined above, required to
justify the use of A to test whetherM can produce B un-
der C or not? Arguably not. More precisely, Constraint
1 above is surely required: if A is not governed only
by M, it is not clear why one should interpret A’s be-
haviors as implied by M. On the contrary, Constraint 2
is not required for A to be a good biorobot. Remem-
ber that A’s role in biorobotics is to provide evidence of
the behavioral implications ofM under C (Sect. 37.1.2,
Biorobotics and the Study of Ideal Mechanisms). There
is no reason to claim that A’s behaviors may be inter-
preted as implied by M only if M is implemented in
S: a robot could well be used to explore the behav-
ioral implications of purely notional mechanisms that
are impossible to implement biologically. This brings
to light a substantial methodological difference between
data-oriented and model-oriented simulation studies. In
order to use A to generate data about the target system
S, Amust be a goodmodel of S – otherwise there are no
good reasons to interpret A’s behavior as the behavior
that S would exhibit under the same conditions. This
constraint is concisely stated by Wendy Parker in the
following terms [37.79]; see also [37.80, 81]:

“scientists typically select a simulating system on
the basis of its being hoped or believed to be similar
to the target system in ways deemed relevant, given
the goals of the simulation study.”

On the contrary, similarity between the mechanism
governing the machine and the mechanism at work in
the target system is not required to authorize the exper-
imental use of the machine in a model-oriented study.

Note that so far we have reasoned about the con-
ditions under which one is justified in interpreting A’s
behaviors as implications of M. We have argued that
Constraint 2 is not required in order to make this use of
A. This is not to say that simulation of a mechanism that
is already known to be (at least partially) realized in S is
not to be praised for other reasons not related to the jus-
tification of using A. One may well agree with [37.65,
p. 1527, emphasis added], who assert that:

“a close fidelity to the known properties of the ner-
vous system is likely to be a main ingredient of
success in modeling studies aimed at reaching an
understanding of higher brain function.”

They complain that, so far [37.65, p. 1501]:

“very little has been done to incorporate detailed
models of cellular and synaptic properties into large
scale simulations of interconnected networks in
multilevel systems.”

Darwin robots, on the contrary, “are based on phys-
iological and anatomical data” [37.65, p. 1498]. In-
deed, (robotic) simulations of mechanisms that “reflect
the brain’s architecture and dynamics” may offer in-
teresting experimental opportunities to cognitive and
neuroscience research. It could be that detailed in-
formation is available about the neural structures and
morphological features of a given species, but expla-
nations of how they are organized to produce behavior
are lacking. In this particular case, one might pro-
pose a particular organization of those components
(i. e., formulate a mechanism description M that in-
cludes them), simulate it using a robot, and verify
whether the robotic system can produce the behavior
under investigation. This case emphasizes the role that
biorobotics may play in systematizing anatomical and
physiological observations into potentially explanatory
mechanisms.

It is for these reasons that many authors actually aim
to build robotic systems, which at least partially meet
Constraint 2. Pyk et al. [37.54, p. 197], for example:

“report on a project that aims at constructing [. . . ]
a system based on [their] understanding of the
pheromone communication system of the moth.”
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Lambrinos et al. [37.51, p. 40], in commenting on
their biorobotic inquiry into the mechanisms underlying
the navigation strategies of the desert ant Cataglyphis,
pointed out that:

“the goal of this approach is to develop an under-
standing of natural systems by building a robot that
mimics some aspects of their sensory and nervous
system and their behavior.”

In a biorobotic study on forearm posture mainte-
nance in humans,Chou and Hannaford [37.69] claimed
that their goal was:

“to apply knowledge of human neuro-musculo-
skeletal motion control to a biomechanically de-
signed, neural controlled, ‘anthroform’ robotic arm
system”

Blanchard et al. [37.55] implemented a mechanistic
model of obstacle avoidance in locusts that was “based
closely on the anatomy and physiology”.

It follows from the present discussion that artificial
device A need not replicate the behavior of the target
living system S to be used to test a model M of S’s
behavior: what is required is that A be governed by
M, independently of whether it replicates S’s behav-
ior or not. Behavioral match between S and A is one of
the possible outcomes of the experiments, but it is not
among the epistemic requirements needed to use A to
test M. However, an electronic device accurately repro-
ducing the behavior of the corresponding living system
may be used as a component of a larger simulation
system in a model-oriented study. The robotic device
described in [37.82] is a case in point. As reported by
the authors, it was able to replicate accurately the output
of mammalian muscle spindles (sensors able to detect
changes in the length of muscles) based on a detailed
theoretical model of them. This device was not used to
discover theoretical models of muscle spindle behavior
as in model-oriented simulations (good models were al-
ready available), but was nevertheless intended to play
a useful role in scientific research. To make this clearer,
let us suppose thatM is a neural model of motor control
that has muscle spindles among its components. Build-
ing a robotic model-oriented simulation of M clearly
requires the inclusion of a robotic component that accu-
rately reproduces the behavior of muscle spindles. The
device described in [37.82] may be useful for this pur-
pose (rather than for the narrower purpose of testing
the plausibility of a model of the muscle spindle it-
self, which is already available). Similar considerations
apply to other attempts to build biologically accurate
sensors, see for example [37.83, 84].

To sum up, what is needed to license the use of robot
A as an experimental platform for investigating the im-

plications of mechanism descriptionM is that M be the
only mechanism governing A. Good biorobots need not
feature mechanisms closely based on the physiological
or psychological structure of the target system (al-
though biological mimicry may yield valuable findings
for cognitive and neuroscientific research). To be sure,
biorobotic simulations can be particularly useful when
no information is available on the biological implemen-
tation of M (thus, when Constraint 2 above is false):
they may assist in evaluating whetherM can generate in
principle the behavior under investigation, thus whether
a biological or psychological implementation of M is
worth searching for. Let us now focus on Constraint 1:
under what conditions, if any, may robot A be said to be
governed only by the mechanism under scrutiny?

Simulation Accuracy
The very aim of building a robot governed by a neu-
roscientific or cognitive mechanism seems puzzling at
first sight: how can an artificial, inorganic system be
governed by the same mechanism at work in a biologi-
cal system? Cognitive and neuroscientific mechanisms
are made up of neural and psychological components,
and for this reason it may seem more appropriate to
say that robots can at most realize artificial transla-
tions of them, but not exactly them. We earlier dispelled
this doubt in Sect. 37.1.2, Biorobotics and the Study
of Ideal Mechanisms. There is no a priori reason to
deny that an artificial system may be governed by the
same mechanism governing the behavior of a biolog-
ical or psychological system, despite the fundamental
difference in the matter of which the two systems are
made. Indeed, as discussed earlier, a basic tenet of the
mechanistic approach to scientific explanation pursued
in cognitive science and neuroscience is that whether
a system governed only by M can exhibit R or not is
a question that does not depend on the material that the
system is made of, but rather on the way that material
is organized (i. e., on whether that system is organized
as prescribed in M). For example, that one may ex-
plain spatial memory behaviors in rats by reference
to hippocampal place cells depends on the fact that
these cells fire regularly in correspondence with certain
points in the environment, rather than on the fact that
they are cells made of organicmolecules. Appropriately
replacing living place cells in the hippocampus of a rat
with electronic circuits displaying the same regulari-
ties would not alter the animal’s overall spatial memory
mechanism (replacements of this kind are made in
bionic model-based simulations of sensory-motor be-
haviors, of which an example is the aforementioned
study described in [37.77]).

In principle, then, there is no reason to deny that
a robotic system A may be governed by the same
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mechanismM supposedly governing biological or psy-
chological system S, even though A and S are made of
completely different materials. What matters, for A to
be governed by M, is whether A has components be-
having as specified in M (e.g., components correctly
reproducing the regularity associated with place cells)
and organized accordingly. What seems to be more dif-
ficult to establish is whether A is governed only by M,
an essential requirement in order to interpret A’s be-
havior as the behavior that a system governed only by
M would display under conditions C (as discussed in
Sect. 37.1.2, Explanation). Indeed, neuroscientific and
cognitive mechanism descriptions are typically much
simpler than the mechanisms actually implemented in
their robotic simulations. In these cases, the behavior
that a system governed only by M would have under
conditions C must be inferred from A’s behaviors un-
der C. What auxiliary assumptions are needed to draw
such an inference?

Let us try to address this question by making
a provisional distinction between the mechanism imple-
mented inA (MI) and the mechanism governing A (MG)
in particular circumstances. This distinction may be in-
formally stated as follows. The mechanism description
MI implemented in A is a full description of the compo-
nents making up the system, at some (e.g., electronic or
software) level of description. It describes the intended
behavior of the components and their organization in
normal conditions, and it may be thought of as the best
blueprint used by the builders of the robot during the
course of implementation. The mechanismMG govern-
ing A under a particular set of circumstances C is the
mechanism actually responsible for A’s behavior under
C. The two mechanism descriptions need not always be
identical.

First, if some components implemented in A are
silent, or exert a negligible influence on A’s behav-
ior under conditions C, they cannot be said to be
responsible for A’s behavior, and should be therefore
excluded from the mechanism governing A under C.
In this case, the mechanism MG governing A under
C is a restriction of the mechanism MI implemented
in A (MG may be obtained from MI by ignoring all
the ineffective components). Suppose, for example, that
A implements a mechanism establishing a relationship
between left light sensors and right motors and vice
versa (as in [37.24]), plus (a) a wireless communication
module for exchanging data with an external computer
and (b) a circuit that produces a wandering behavior
when environmental light is too low. All these com-
ponents figure in the description MI of the mechanism
implemented in the robot. However, the wireless com-
munication module will probably never have an impact

on A’s motor behavior. On the contrary, component (b)
may influence A’s behavior in some circumstances, for
example, in the dark. When there is sufficient environ-
mental light, however, this component will be silent and
will not be effectively responsible for A’s behavior: turn
it off, or extract it from the system, and A’s behav-
ior will not change under those conditions. Therefore,
when there is sufficient environmental light, MG does
not include (b).

Second, in some cases the behavior of certain com-
ponents implemented in the machine may violate the
behavior specified in the blueprint. Suppose that MI
prescribes that a transistor is placed between each light
sensor and the motor on the opposite side, to amplify
smaller sensory signals. Suppose, however, that under
particular conditions (for example, excessive heat) the
transistor displays an utterly anomalous behavior (for
example, its pins get short-circuited). In such cases,
the mechanism MG actually governing the robot is dif-
ferent from the mechanism MI specifying the normal
behavior of the components.

It follows from these remarks that the same robot
may be reasonably said to be governed by different
mechanisms in different conditions, even though there
is a sense in which it implements only one mechanism.
Let us now link this claim with the epistemic require-
ments of good biorobots. We have argued that to inform
about the behavior a system governed only byM would
display under conditions C, A must be governed only
by M. And we have illustrated that robots possessing
a rich mechanistic structure may be said to be gov-
erned by simpler mechanisms in some circumstances.
What is essential for a good biorobot, in other words, is
that M exactly coincides with the mechanism responsi-
ble for A’s behavior in circumstances C independently
of the other components implemented in it. How may
we establish whether this essential requirement is sat-
isfied by A – in other words, how does one go about
identifying the mechanism actually governing A under
conditions C? By nothing other than a process of expla-
nation, totally analogous to the process leading to the
identification of the mechanism governing the behavior
of any system. The mechanism description MG govern-
ing A underC, according to the proposed analysis of the
term governing, is a mechanistic theory of A, resulting
from an explanation of A’s behavior under C. Any ex-
planation will mention only the relevant factors making
the difference in the behavior to be explained [37.85,
86]. Thus the wandering component is not likely to fig-
ure in an explanation of the behavior in the light of the
phototaxis robot described above; nor the wireless com-
munication module, if the behavior to be explained is
restricted to the movements of the robot.
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Explaining Robotic Behaviors
These remarks illustrate a quite startling aspect of
biorobotic methodology: the use of robotic simulation
to test a mechanistic explanation of a biological be-
havior rests on explanations of the behavior of the
robot, aimed at determining whether the robot is actu-
ally governed by the mechanism under scrutiny. Such
explanation processes are essential to deciding whether
M is to be accepted or rejected as a basis for explain-
ing the target behavior. And the explanation of robotic
behaviors is not always straightforward, even for those
who have built the system: the behavior of man-made
systems may be as hard to understand as the behavior of
any physical system. The technical blueprint MI helps,
but in some cases it may be not enough. Often even the
builder, who knows the internal structure of the system
better than anyone else, will have to revisit it, formu-
late hypotheses as to why the robot produced peculiar
behaviors in certain circumstances, and carry out ex-
periments to test these hypotheses. It is by a process
of explanation that one identifies a fault in a transistor
or the unexpected activation of a component that was
presumed to be silent in particular experimental set-
tings. Detailed reports of robotic explanation processes
can be found in the biorobotic literature; see for exam-
ple [37.24] and [37.49].

It is worth noting, however, that further auxiliary as-
sumptions may be needed to interpret A’s behaviors as
the behavior that a system governed only by M would
produce under conditions C. Indeed, A may fail to be
governed byM for reasons not discussed so far. Current
technology might not permit the construction of com-
ponents behaving exactly as prescribed by M, obliging
the researcher to design components that at best exhibit
an adapted version of the required behavior. Alterna-
tively, the formulation of M might be too vague to
enable one to judge whether A is governed byM or not.
Consider that many cognitive and neuroscientific mod-
els have unfixed parameters, describe the behavior of
components only qualitatively, and display gaps, such
as missing components (these are referred to as mech-
anism sketches in [37.15]). All these underspecified
aspects must be fixed in the course of implementa-
tion. Given that a vague mechanism descriptionM may
be fully specified in a variety of ways, thus obtain-
ing various mechanism descriptionsM1, . . . Mn, which
potentially differ greatly from each other in terms of be-
havioral output, one may legitimately ask whether the
particular Mi governing A faithfully reflects the vague
theory M under scrutiny. And in some cases it may be
far from clear whether A’s behavior should be brought
to bear on a vagueM. Suppose, for example, that A fails
to exhibit the target biological behavior R. This result
may be taken as a good reason to reject Mi, that is, to

conclude that the particular parameters chosen to derive
Mi from the vague M cannot produce R. But it may not
be sufficient to also reject M, insofar as other different
parameters might well work.

In sum, to sensibly interpret A’s behavior as the be-
havior that a system governed only byM would display
under conditions C, one must first explain A’s behav-
ior and identify the mechanism that actually governs
A under C (which does not always coincide with the
best technical blueprint of the robot available). A mech-
anistic theory on the robot is crucially needed to infer
theoretical conclusions about M based on A’s behavior.
But in many cases other auxiliary premises are implic-
itly introduced, whose nature has yet to be precisely
identified. For in some cases the best one can do is to
build an inaccurate simulation of M. This may be due
to limitations in current technology or to the fact that
M is formulated in excessively vague terms. Or it may
be also due to the fact that, in the experiments, some
perturbing condition has actually interfered with the be-
havior of the robot, some component has unexpectedly
broken down, or a module that was expected to be silent
has interfered with A’s behavior. In some cases, such
artifacts are simply unavoidable. Should one therefore
discard the entire experimental setting? What auxiliary
assumptions are needed to justify theoretical conclu-
sions on M based on an inaccurate robotic simulation
of it? These are interesting questions for epistemologi-
cal research, which may lead to a deeper understanding
of the methodological structure and epistemological re-
quirements of good biorobotic studies.

37.3.2 On the Meaning of Behavior

Biorobotic experiments typically involve comparisons
between the behavior of A and the behavior of the target
system S. Matches or mismatches between the two (un-
der the auxiliary assumptions discussed in the previous
section) are taken as a basis for claiming that the mech-
anism description under scrutiny has been corroborated
or disproved. To make sense of what is really done in
biorobotic experiments, however, it is worth reflecting
on what the living system behavior that is compared
with robotic behaviors amounts to.

First, typically only some aspects of the behavior
of the target system are compared with some aspects of
the behavior of the robot. For example, in the aforemen-
tioned biorobotic studies on cricket phonotaxis [37.49]
and on lobster chemotaxis [37.24] various aspects of the
behavior of the robot were measured with great care in
the experiments. However, theoretical conclusions on
the target model M were drawn in both cases only by
reasoning on the ability of the robot to reach the source
of the stimulus, irrespectively for example of any match
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or mismatch between the trajectories followed by A and
S (as a matter of fact, in some cases it is impossible
to make fine-grained comparisons between A’s and S’s
behaviors due to the unavailability of data on S). Thus
acceptance or rejection of M was based on analysis of
only some aspects of A’s behavior.

This does not count as a methodological limitation
of these studies: there is no reason to claim that, in
a good biorobotic experiment, one must perform fine-
grained behavioral comparisons of the behavior of the
two systems. The aspects of S’s behavior that are ac-
tually taken into account in the comparison define the
explanandum of the biorobotic study, thus shaping the
class of the theoretical conclusions that can be legiti-
mately drawn from the experiments. If, for example,
one takes into account only the robot’s ability to find
the stimulus source, irrespective of the trajectory lead-
ing to it, one will at most draw theoretical conclusions
on the ability of the underlyingmechanismM to find the
source of the stimulus. Any theoretical conclusion onM
will be limited to whether it can explain that particular
aspect of the behavior of S. A finer-grained compari-
son between the trajectories taken by the two systems
will be needed only if the trajectories taken by S are
part of the explanandum. The choice of the criteria for
comparison crucially depends on what one wants to ex-
plain (see [37.87] for a detailed reflection on the metrics
enabling one to compare animal and robotic behaviors
based on a case study on the mechanisms of rat naviga-
tion).

These remarks invite us to reflect on the meaning
of the term behavior as it is used in biorobotics. The
behavior of the target system in a general sense is one
thing, while the behavior of the target system contained
in the explanandum of the study is another. Biorobotic
explananda always select some aspects of target system
behavior, and thus indirectly constrain the choice of the
criteria to be used for assessing whether the robotic sim-
ulation replicates the target system’s behavior or not.
Note that, however, biorobotic explananda do not only
consist of a filtered description of the behavior of the
target system – that is to say, a description that only
takes some aspects of that behavior into account. Re-
call that the behavior to be explained consists of the
behavior B regularly produced by the target system un-
der conditions C (and if C occur rarely, the behavioral
regularity R to be explained will be rarely instantiated).
Real moths do not always go towards a light source,
and female crickets find the source of male crickets’
calling songs only under particular conditions. Consider
also that, as pointed out in Sect. 37.1.2, Explanation,
biorobotic explananda are highly idealized: they state
behaviors that are produced in the ideal case in which
only conditions C hold. This is not to say that this ideal

case can never occur. The behavior to be explained may
be obtained in highly controlled experimental settings,
in which one tries to exclude or neutralize any bound-
ary condition that is not included under C. The list of
the conditions defined under C must be taken into ac-
count in the setting up of the biorobotic experiments,
whose purpose is to assess whether systems governed
only by M produce behavior B when only conditions C
hold. Therefore, ideally, the robot A should be observed
under experimental conditions that are as close as pos-
sible to the ideal conditions in which only C hold. The
explanandum thus crucially defines the conditions un-
der which the behavior of the robot is to be observed, in
addition to the criteria to be used for analyzing it. As it
will be stressed in the next section, the real conditions
under which the behavior of the robot is observed are
often far from ideal.

It is worth noting that the formulation of the be-
havioral regularity under investigation involves various
acts of observation and measurement. However, it also
involves careful selection of the environmental condi-
tions under which these observations andmeasurements
are carried out. This selection is definitely theory-laden:
possibly perturbing conditions are excluded or neutral-
ized in the experimental setup in light of theoretical
considerations – possibly supported by previous ex-
periments on the target system – that classify those
conditions as perturbing. The choice of environmental
conditions also depends on the researcher’s particular
interests: some conditions may be excluded because
they have behavioral effects that the researcher wants
to exclude from the explanandum to be explored. Con-
trary to the popular assumption that science starts from
the observation of something to be explained, the for-
mulation of an explanandum is typically a constructive
process involving progressive refinements of the condi-
tions under which the experimental acts of observation
are carried out, a process that is strongly driven by the-
oretical and pragmatic considerations.

It should also be noted that biorobotic studies do
not always start from the analysis of behavioral reg-
ularities displayed by particular living species. They
often aim at theorizing on the mechanisms underly-
ing very general behaviors, which cannot easily be
identified with the behavior of particular living sys-
tems under particular conditions. For example, Voegtlin
and Verschure [37.88] described a number of simula-
tion experiments aimed at exploring mechanisms that
produce a variety of learning-related behavioral phe-
nomena. The behavioral task that these robotic and
computer simulations were expected to perform was
a foraging task, in which the agent was required to
avoid collisions with obstacles while locating targets
dispersed in the environment. Many living systems are
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able to perform this task, human beings included, and
the simulation study reported did not focus on any one
of them in particular. In such cases, the target behavior
does not coincide with the behavior of a single living
species: it unifies the behavior of many living systems,
which may differ from each other in other respects.

Other simulation studies follow the so-called ani-
mat approach defined byWebb [37.89] as:

“the invention and study of an artificial creature that
does not correspond to any specific real animal, but
is (nevertheless) intended to provide some insight
into real issues in biological or cognitive science.”

It is worth stressing that there is a sense in which ev-
ery biorobotic explanandum is invented. As discussed
above, biorobotic explanations address behaviors ex-
hibited by living systems in highly artificial and con-
trolled conditions, which may even be totally different
from the real conditions in which the organism lives.
The behavior to be explained is carefully carved out
of the behavior exhibited by the system in ordinary
conditions based on theoretical and pragmatic consid-
erations. The animat approach, as defined above, brings
this constructive process of invention to an extreme. It
authorizes investigations on the mechanisms underly-
ing the behavior of imaginary systems, or the behavior
that existing systems might display under conditions
that can be never attained. Whether this approach can
really contribute to cognitive science or neuroscience
is a question that depends on the relationship between
the animat explananda and the questions addressed in
those research disciplines. As discussed above, studies
on animal behaviors often investigate highly idealized
or general explananda, whose relevance to cognitive or
neuroscientific research is typically justified by show-
ing how the behavior of particular biological species
may be considered as an instance of such general or
idealized behaviors. As argued by Webb [37.89], such
a justification must be provided by animat researchers
too, if they wish to effectively contribute to the study of
the behavior of existing living systems: they must show
that their explananda may be considered idealized or
general versions of specific neuroscientific or cognitive
explananda (on the basis of given criteria or rules for
idealizing and de-idealizing living system behaviors).

37.3.3 Robots and Their Environment:
Robotic versus Computer Simulations

It is a basic tenet of contemporary cognitive and neu-
roscience that a full understanding of the mechanisms
governing human and animal behavior cannot be at-
tained without carefully studying the structure of the

environment in which the target behavior emerges. This
tenet is closely related to the idea, discussed above
(Sect. 37.1.2, Biorobotics and the Study of Ideal Mech-
anisms), that simple mechanisms can display complex
behaviors in complex environments. Thus, when ob-
serving the behavior of a living system, one should first
carefully explore the environmental conditions in which
it is produced by S. This remark, once again, ultimately
concerns the selection of the proper explanandum to be
addressed. One must carefully select the conditions C
that define the behavioral regularity to be explained, by
including those that really make a difference to the be-
havior of the target system and excluding those that are
irrelevant. The formulation of a sufficiently inclusive
explanandum may contribute to simplifying the expla-
nation. Note that scientific discoveries, in biorobotics,
may consist both of the formulation of good explana-
tory mechanism descriptions and in the refinement of
previous explananda – in the latter case, one discov-
ers that environmental factors that had previously been
overlooked affect the behavior of the target system and
for this reason are to be included in the explanandum.

Another basic tenet of contemporary neuroscien-
tific and cognitive research is that the morphology of
the target system must be carefully analyzed and taken
into account in the explanation of behavior, given that
simple sensory-motor mechanisms may exploit partic-
ular features of the system’s body to achieve complex
behaviors [37.90]; see biorobotic examples in [37.49]
and [37.91]. Note that this tenet is perfectly consistent
with the abstract character of scientific explanations
discussed in Sect. 37.1.2, Biorobotics and the Study
of Ideal Mechanisms. There we argued that whether
mechanism M can explain behavior R or not is a ques-
tion that does not depend on the nature of the material
the system is made of, but on the way it is orga-
nized (i. e., on whether it is organized as prescribed
by M). However, it is one thing to deny that the ex-
planatory adequacy of M depends on the material S is
made of, and another to deny that it depends on the
body of S. Indeed, morphology describes the physical
organization of a system, and therefore a morphologi-
cal description is abstract – with respect to the matter
the system is made of – just as a neural or cognitive
mechanism description is. Suppose, for example, that S
is found to produce efficient locomotion by exploiting
particular passive elastic properties of its legs via a rel-
atively simple control mechanism. Still, the nature of
the material of which the legs are made of does not af-
fect the adequacy of this explanation (although whether
or not the legs possess the required elastic properties
may make a difference). Similarly to the example pro-
vided in Sect. 37.1.2, Biorobotics and the Study of
Ideal Mechanisms, if S’s legs are replaced with legs
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made of a completely different material, but possess-
ing the same elastic properties, the explanation will not
change.

We have argued that, to test whether M can explain
R, one must assess whether a system whose compo-
nents behave according to the regularities prescribed
by M, and are organized as specified in M, exhibits R
or not. It is often claimed that if M is based on the
morphology of a system and C defines a nontrivial set
of real-world conditions, a robotic simulation should
be built: robots have a body and their behavior may
be observed under real-world conditions. However, as
is occasionally acknowledged in the biorobotic liter-
ature [37.88], there is no reason to deny, at least in
principle, that an adequate test may also be effected by
creating a purely computer-based simulation of a sys-
tem with the selected morphological properties and
observing its behavior under a simulation of the real-
world conditions included under C.

One reason often put forward for preferring
a robotic simulation over a purely computer one in
biorobotic studies is that the physical properties of
S’s body and the various conditions C defined in the
explanandum may be technically difficult to simulate
in a sufficiently realistic way (this is the case of the
chemical plumes tracked by lobsters in water [37.24]).
Furthermore, a detailed description of conditions C is
often not available for simulation. Building an artifi-
cial body and immersing it in a real-world environment
allows one to sidestep these difficulties. Note, how-
ever, that the use of a robotic simulation introduces
distinctive methodological issues that are not raised
by computer simulation experiments. As discussed ear-
lier, in order to justifiably draw theoretical conclusions
about M on the basis of robot behaviors, one must
ensure that the robot really has the morphological prop-
erties mentioned in M, and that other properties of the

system do not exert a significant impact on its behavior
during the experiments. In addition, the experimental
settingmust be similar enough to the ideal case in which
only conditions C hold – otherwise, one cannot bring
robotic behaviors to bear on the hypothesis that sys-
tems governed by M generate behavior B under C. In
particular, it must be verified that no perturbing factor
significantly affected robotic behavior during the exper-
iments (consider that the class of factor that may perturb
the normal functioning of the robot is likely to be very
different from that perturbing the behavior of the tar-
get living system). This in turn requires, as discussed
above, explaining the behavior of the robot.

Computer simulations are on a par with biorobots in
this respect, as the need to explain what has happened
during the experiments – whether virtual or otherwise –
emerges in both cases. However, computer simulations
enable one to finely control all the conditions holding
in the simulated environment and, more importantly, to
create a virtual environment in which one is sure that
only conditionsC hold. This considerably simplifies the
process of explanation. Inquiring into the behavior of
a robot, in contrast, may give rise to difficulties of the
same order of magnitude of those involved in explain-
ing the behavior of any concrete system – including
those related to the discovery and detection of possible
perturbing factors. In sum, the emphasis on the morpho-
logical and environmental factors responsible for the
behavior under investigation is not a good reason, in
principle, to prefer robotic simulations over computer
simulations. The pros and cons of the former or the lat-
ter solution are to be evaluated on a case-by-case basis,
taking into account the technical complexities involved
in creating accurate simulations of the environment and
of the body of the system, and the methodological com-
plexities involved in explaining the behavior of the
simulation (see also [37.92]).

37.4 Conclusions

In this chapter we have outlined the structure of
biorobotic methodology for the study of the mecha-
nisms underlying animal behavior, presented a brief
summary of the state of the art in biorobotic research,
and discussed some of the epistemological and method-
ological issues arising, which notably concern the re-
lationship between the mechanistic theory to be tested
and the robot, the choice of criteria for comparing the
behavior of the robot with the behavior of the target sys-
tem, and the pros and cons of robotic versus computer
simulations. It is important to note that these issues
should not be taken as reasons for being skeptical about

the potential of the methodology, which (as pointed
out in the previous sections) has made many valuable
contributions to the study of animal behavior. Indeed,
many studies reported in the literature display a rigor-
ous approach to justifying their theoretical conclusions
by carefully reasoning about the relationship between
the model to be tested, the experimental settings, and
the structure of the robot used. Discussing these issues
from an epistemological and methodological point of
view may contribute to identifying criteria for setting-
up and carrying out good biorobotic experiments and,
more generally, to placing biorobotics as a strategy for
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the study of animal behavior on firmer methodological
grounds.

The issues addressed here point to the existence of
a profound gap between being able to reproduce a given
behavior in a robot and being able to explain it. This gap
is not only due to the fact that, as discussed in this chap-
ter, successful simulations do not offer strong evidential
grounds for assessing whether the implemented mech-
anism is implemented in the living system or not (and
we have argued that this question must be answered in
order to properly explain why the behavior under inves-
tigation is produced by the living system). It is also due
to the fact that reproducing the target behavior is not
the same as understanding how – i. e., by virtue of what
mechanism – that behavior has been produced by the
robotic system. And, as discussed in Sect. 37.3.1, Simu-
lation Accuracy, developing a theory on the biorobot
is an essential prerequisite for accepting or rejecting
a theoretical model on the basis of biorobotic experi-
ments: merely reproducing the behavior is not enough.
Consider also, in this regard, that computer and robotic
devices enable researchers to progress from “toy mod-
els” of behavior [37.93] to the fine-grained simulation
of complex theoretical models of the nervous system
(the Blue Brain Project of the École Polytechnique
Fédérale de Lausanne (EPFL) in Lausanne, aimed at
building a large-scale, neuron-level simulation of the
brain, is a case in point [37.94]). Still, it is an open ques-
tion whether large-scale, extremely complex theoretical
models – too large and detailed to be grasped by the hu-
man mind without external memory and computational

aids – really provide a basis for understanding the be-
havior they are able to produce in simulation. Progress
in the computer and robotic replication of living sys-
tem behaviors does not always go hand in hand with
progress in the explanation of them.

We have identified some auxiliary assumptions that
are needed to justifiably infer theoretical conclusions
about the target mechanism description from the anal-
ysis of robotic behaviors. Some of these assumptions
concern the choice of a good biorobot, of a good en-
vironmental setting, and of a good set of criteria for
comparing animal and robotic behaviors. However, al-
ternative auxiliary assumptions may be needed in many
cases. For instance, for theoretical and practical rea-
sons it may not be possible to build a perfectly accurate
robot, to reproduce the right environmental settings, and
to apply the proper criteria for comparisons. In these
cases, the auxiliary assumptions identified here turn out
to be false. But their falsity needs not neatly imply
the impossibility of justifying any theoretical conclu-
sion flowing from the experiments. Other assumptions
may be involved in the rational acceptance or refusal of
the target mechanism description based on experimen-
tal protocols that do not meet the constraints discussed
here. Identifying the nature of these rational assump-
tions, possibly based on a close analysis of case studies,
may significantly contribute to extending the regulative
framework presented here and, ultimately, to further
reinforcing the status of biorobotics as a methodolog-
ically sensible strategy for the modeling of animal
mechanisms.
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This part of the Handbook is devoted to the issue of
the use of models in physics, chemistry and the life
sciences. As is well known, the question of the role
of scientific models and representations has been thor-
oughly explored, and the available literature is rather
extensive. The novelty of the chapters collected in this
part of the Handbook is constituted by their focus on do-
mains of scientific inquiry that so far have not received
particular attention (if they have received any attention
at all). Indeed, in the past authors dealing with scien-
tific models almost exclusively focused on the role of
models in physics. The other sciences have been left
in the background, perhaps under the implicit, but un-
justified, assumption that, once the main philosophical
questions of models in physics had been clarified, the
results could be straightforwardly extended to the other
domains, and in particular to geology, biology, chem-
istry, and the other natural sciences in general. This
physicalistic sciovinism is an undeniable but not very
beneficial heritage of twentieth century philosophy of
science: given the fact that the major scientific rev-
olutions in the first part of this century happened in
the domain of physics, philosophers of science tried to
solve questions about explanation, realism, evidence,
laws, and models by just looking at physics and its
mathematical models. However, the scientific enterprise
has proven to be much more multifaceted and poly-
chromic than the unified picture handed over to us by
the former generations of philosophers has made us be-
lieve. Of course, there were significant exceptions also
in the last century, but a full awareness of the internal
complexity of science and scientific theorizing is prob-
ably yet to be achieved. To provide just one example,
the widespread conviction that biology has no laws be-
cause it is an historical science essentially characterized
by contingent factors – as well as the fact that mathe-
matics allegedly lacks a relevant role in biology – has
led many philosophers to ignore biology altogether in
their reflections on science.

One of the main merits of this section of the Hand-
book therefore lies in its pluralistic perspective. Chem-
istry, biology, geology – while regarded as importantly
connected to physics on several counts – are all consid-
ered on their own merits and treated in depth. The role
played by models in these disciplines, that is, is eval-
uated by the contributors in the specific terms that are
appropriate in the relevant domains and theories. And
the same holds for the chapters focusing on cognitive
science and the social sciences. Despite – and perhaps
in virtue of – the fact that each of them presupposes
a well-focused, specific perspective, the chapters that
follow also give new important insights on the topic of
models in general. The upshot is that the best way to

understand how models are constructed and applied to
the natural world consists in trying to achieve a syn-
thetic or – to put it in Plato’s terms – a synoptic grasp of
the different issues involved in the various disciplines,
thereby looking at specific domains and case studies
while, at the same time, not losing sight of the forest
in favor of the various trees that constitute it.

The chapters contained in this part of the Hand-
book are all clear, remarkably comprehensive, full of
new arguments, and enriched by a wealth of images,
graphs, and other forms of visual support. We are sure
that readers will find the careful look at new themes
and the in-depth analysis of particular aspects of model
building and model application particularly stimulat-
ing. Before closing this introduction, however, let us
briefly summarize each of the chapters that constitute
the present part of the Handbook.

In Chap. 38, Guiseppe Longo and Maël Montevil
explain how computer simulations brought important
novelties in the domain of knowledge construction. In
their chapter, they distinguish between mathematical
modeling, computer implementations of these mod-
els, and purely computational approaches. In all three
cases, they suggest that the questions that may be posed
concerning the processes under investigation receive
different answers. These differences are explored by
looking at the various theoretical symmetries that are
at work in each framework.

In Chap. 39, Susan Sterrett carries out a very de-
tailed examination of the role of analogue models in
experimentation. Analogue models are actual physical
setups used to model something else, useful when what
one wishes to investigate is difficult to observe or ex-
periment upon, due to size or distance in space or time.
Sterrett describes and discusses several experiments in-
volving analogue models, and the tools for constructing
them and interpreting their results.

In Chap. 40, William Goodwin aims to identify
the most significant philosophical insights that have
emerged out of the increased interest in scientific mod-
els, and to reflect on these insights in the context of
chemistry, a discipline that has been relatively neglected
in the philosophical literature. Goodwin argues that in
chemistry the centrality and significance of models to
the scientific enterprise is manifest, and that chemistry
is a clear, useful, and interesting context in which to
consider general philosophical questions about the na-
ture and role of models in science.

In Chap. 41, Alisa Bokulich and Naomi Oreskes
discuss models in geomorphology and the earth sci-
ences, very probably introducing many readers to this



841

topic for the first time. Their contribution sheds light
on the nature of modeling and idealization in sciences
that have been as unduly neglected by the philosophi-
cal community at large. The geosciences, in particular,
deal with issues related to environment, climate and,
more generally, a number of complex features deter-
mined by physical, chemical, and biological processes
that operate at the surface of the earth. As such, they are
obviously of the utmost relevance, if only because they
promise to provide understanding, and perhaps better
control, of the very milieu in which we live.

In Chap. 42, Elisabeth Lloyd looks at models in the
biological sciences. In particular, starting from the in-
sight that much of evolutionary theory today relies on
mathematical models, Lloyd discusses in detail various
ways to describe the models that make up evolution-
ary theory. Special focus is put on the representation
of genetic states and changes in a population, which is
a crucial part of population genetics theory.

In Chap. 43, Massimo Marraffa and Alfredo Pa-
ternoster study the role of models and mechanisms
in cognitive science. The authors give a very well-
informed presentation and discussion of the use of
models in the cognitive sciences, with special focus
on computational models. Their suggestion is that – in

spite of undeniable difficulties in their integration with
dynamical aspects – computational models are still to
be regarded as fundamental for the study of the mind,
in particular in virtue of their clear explanatory signifi-
cance.

Finally, in Chap. 44, Federica Russo discusses the
role of model-based reasoning in the social sciences.
This chapter provides an overview of various forms of
model-based reasoning in social research and discusses
the use of experiments and simulations in the study
of social contexts. Russo also investigates the links
between model-based reasoning and other key philo-
sophical notions, such as explanation, causality, truth,
and validity.

While this brief overview cannot do justice to the
wealth of novel ideas that are to be found in this part, we
hope that it suffices to signal to the readers the extreme
importance of taking into account the role of models
in those sciences that may supervene on physics, but
are not straightforwardly reducible to it. Thus, in ex-
pressing our gratitude to the authors for accepting our
invitation and for their hard work on their chapters, we
close this introduction here and leave the rest of this
part of the Springer Handbook of Model-Based Science
to our readers.
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38. Comparing Symmetries in Models and Simulations

Giuseppe Longo, Maël Montévil

Computer simulations brought remarkable novel-
ties to knowledge construction. In this chapter, we
first distinguish between mathematical model-
ing, computer implementations of these models
and purely computational approaches. In all
three cases, different answers are provided to the
questions the observer may have concerning the
processes under investigation. These differences
will be highlighted by looking at the different the-
oretical symmetries of each frame. In the latter
case, the peculiarities of agent-based or object
oriented languages allow to discuss the role of
phase spaces in mathematical analyses of physi-
cal versus biological dynamics. Symmetry breaking
and randomness are finally correlated in the vari-
ous contexts where they may be observed.
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Mathematical and computational modeling has become
crucial in the natural sciences, as well as in archi-
tecture, economics, humanities and more. Sometimes
the two modeling techniques are conflated into, or
identified with natural processes, typically over contin-
uous or discrete structures, by considering nature either
intrinsically continuous or discrete, according to the
preferences of the modeler.

Here, we analyze the major differences that exist
between continuous (mostly equational) and compu-
tational (mostly discrete and algorithmic) modeling,
often referred to as computer simulations.We claim that
these different approaches to modeling propose differ-
ent insights into the intended processes: they actually
organize nature (or the object of study) in deeply dif-
ferent ways. This may be understood by an analysis of
symmetries and symmetry breakings, which are often
implicit but strongly enforced by the use of mathemati-
cal structures.

We organize the world by symmetries. They consti-
tute a fundamental principle of (conceptual) construc-
tion [38.1], from Greek geometry to twentieth century
physics and mathematics. All axioms by Euclid may

be understood as “maximizing the symmetries of the
construction” [38.2]. Euclid’s definitions and proofs
proceed by rotations and translations, which are sym-
metries of space.

Symmetries govern the search for invariants and
their preserving transformations that shaped mathemat-
ics from Descartes spaces to Grothendieck toposes and
all twentieth century mathematics [38.3]. Theoretical
physics has been constructed by sharing with mathe-
matics the same principle of (conceptual) construction.
Amongst them are symmetries, which describe in-
variance, and order, which is needed for optimality.
Symmetries and order play a key role in theoretical
physics, from Galileo’s inertia to the geodetic principle
and to Noether’s theorems [38.4–6]. The fundamental
passage from Galileo’s symmetry group, which de-
scribes the transformation from an inertial frame to
another while preserving the theoretical invariants, to
Lorentz–Poincaré group characterizes the move from
classical to relativistic physics. The geodetic principle
is an extremizing principle and a consequence of con-
servation principles, that is, of symmetries in equations
(Noether).
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Well beyond mathematics and modern physics, the
choice of symmetries as organizing principle is rooted
in our search for invariants of action, in space and time,
as moving and adaptive animals. We adjust to changing
environments by trying to detect stabilities or by forcing
them into the environment. Our bilateral symmetry is an
example of this evolutionary adjustment between our
biological structure and movement: its symmetry plane
is given by the vertical axis of gravitation and the hori-
zontal one of movement. The Burgess fauna, some 520
million years ago [38.7] seems to present many cases

of asymmetric beasts among these early multicellular
organisms, later negatively selected. In this perspec-
tive, the role we give to symmetries in mathematics
and physics is grounded in prehuman relations to the
physical world, well before becoming a fundamental
component of our scientific knowledge construction.

By this, we claim that an analysis in theorizing and
modeling of the intended symmetries and symmetry
breakings is an essential part of an investigation of their
reasonable effectiveness and at the core of any compar-
ative analysis.

38.1 Approximation

Before getting into our main theme, let’s first clarify
an obvious issue that is not so obvious to many: dis-
crete mathematical structures are not an approximation
of continous ones. They simply provide different in-
sights. Thus, in no way will we stress the superiority
of one technique over the other. We will just try to un-
derstand continuous versus discrete frames in terms of
different symmetries.

It should be clear that, on the one hand, we do
not share the view of many, beautifully expressed by
Réné Thom, on the intrinsically continuous nature of
the World, where the discrete is just given by singu-
larities in continua. On the other hand, many mythical
descriptions of a computational world, or just of the
perfection of computational modeling, seem to ignore
the limits of discrete approximation as well as some
more basic facts in numerical analysis (the first author’s
first teaching job), which have always been well known.
When the mathematical description yields some sensi-
tivity to initial or border conditions, there is no way
to approximate that are long enough continuous non-
linear dynamics by an algorithm on discrete data types.
Given any digital approximation, the discrete and the
continuous trajectories quickly diverge by the combi-
nation of the round-off and the sensitivity. However, in
some cases (some hyperbolic dynamics), the discrete
trajectory may be indefinitely approximated by a con-
tinuous one, but not conversely. The result is proved by
difficult “shadowing theorems” [38.8]. Note that this is
the opposite of the discrete approximating the contin-
uum, which is taken for granted by many.

Here, we are hinting at a comparison between math-
ematical techniques that provably differ. These thech-
niques say nothing about the actual physical process,
as these are not continuous nor discrete, per se, in our
mathematical sense, they are what they are. Yet, it is
very easy to check an algorithmic description of a dou-
ble pendulum against the actual physical device (on sale

for 50 euros on the web): very soon the computational
imitation has nothing to do with the actual dynamics.
The point is that there is no way to have a physical
double pendulum to iterate exactly on the same initial
conditions (i. e., when started on the same interval of the
best possible measurement), as this device is sensitive
to minor fluctuations (thermal, for example), well below
the unavoidable interval of measurement. By principle
and in practice, instead, discrete data types allow exact
iteration of the computational dynamics starting on ex-
actly the same initial data. Again, this is a difference in
symmetries and their breaking.

In conclusion a mathematical analysis of the equa-
tions allows to display sensitivity properties, from mix-
ing, a weak form of chaos, to high dependence on minor
variations of the initial conditions. These are mathe-
matical properties of deterministic chaos. We stress by
this that deterministic chaos and its various degrees are
a property of the mathematical model: by a reasonable
abuse one may then say that the modeled physical pro-
cess is chaotic, if one believes that the mathematical
model is a good/faithful/correct representation of the
intended process. But this is an abuse: the dice or a dou-
ble pendulum knows very well where it will go: along
a unique physical geodetics, extremizing a Lagrangian
action, according to the Hamilton principle. It is our
problem if we are not able to predict it due to the non-
linearity of the model, which amplifies fluctuations, and
due to our approximated measurements.

As it happens, the interval of measurement (the un-
avoidable approximated interface between us and the
world) is better understood by continua than over dis-
crete data types (we will go back to this) and, thus,
physicists usually deal with equations within continu-
ous frames.

However, the power of discrete computations allows
to compute, even forever. By this, an implemented com-
putation gives fantastic images of deterministic chaos.
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As a matter of fact, this was mathematically described
and perfectly understood by Poincaré in 1892, yet it
came to the limelight only after Lorentz’s computa-
tional discovery of “strange attractors” (and Ruelle’s
work [38.9]). As deterministic chaos is an asymptotic
notion, there is no frame where one can better see
chaotic dynamics, strange attractor, or alike than on
a computer. Yet, just push the restart button and the
most chaotic dynamics will iterate exactly, as we ob-
serve and further argue below, far away from any actual
physical possibility. And this is not a minor point: it

is correctness of programs, a major scientific issue in
computer science. Of course, one can artificially break
the symmetry, by asking a friend to change the 16th
decimal in the initial condition. Then, the chaotic dy-
namics will follow a very different trajectory on the
screen, an interesting information, per se. However, our
analysis here is centered on symmetry breaking intrin-
sic to a theory, that is, on changes which have a physical
meaning. This control, which is available in computer
simulations, is thus an artifact from a physical perspec-
tive.

38.2 What Do Equations and Computations Do?

38.2.1 Equations

In physics, equations depend on symmetries, either
in equilibrium systems, where equations are mostly
derived from conservation properties (which are sym-
metry properties), or in far from equilibrium systems,
where equations describe flows, at least in the stationary
cases – very little is known in nonstationary cases. This
is the physical meaning of most equational descriptions.

One computes from equations and, in principle, de-
rives knowledge on physical processes. This is possible
by obtaining and discussing solutions – or the lack of
solutions: a proof of nonanalyticity such as Poincaré’s
Three Body Theorem for example, may be very in-
formative. But these derivations are not just formal:
they are mostly based on proofs of relevant theorems.
The job of mathematical deductions, in physics in par-
ticular, is to develop the consequences of meaningful
writings.Mathematics is not a formal game of signs, but
a construction grounded on meaning and handled both
by formal “principles of proofs” and by semantically
rich “principles of constructions” [38.1]. Typically, ar-
guments are given by symmetry reasons or are based
on order properties (including well-ordering). More-
over, a mathematical proof may use the genericity of the
intended mathematical object or generalized forms of
induction that logicians analyze by very large cardinals,
an extension of the order of integer numbers obtained
by alternating limits and successor operations [38.10].
Once more, theoretical symmetries and meaning step
in while proving theorems and solving/discussing equa-
tions; also the progress from Laplace’s predictability of
deterministic process to Poincaré’s proof of determinis-
tic though unpredictable processes is a breaking of the
observable symmetries (see below for more).

As a matter of fact, we invented very original math-
ematical structures, from Galois’ groups to differential
geometry, in order to solve equations or discuss their

solvability. The use of enriched construction principles
that are often based on or yielding new mathematical
meaning has constantly been stimulated by the analy-
sis of equations. This is part of the common practice
of mathematical reasoning. However, well beyond the
extraordinary diagonal trick by Gödel, it is very hard to
prove thatmeaningful procedures are unavoidable in ac-
tual proofs, that is to show that meaning is essential to
proofs. An analysis of a recent concrete incompleteness
result is in [38.11]: this means that geometric meaning
inevitably steps in proofs even of combinatorial theo-
rems (of arithmetic!), where meaning takes the form of
well-ordering which is a geometric judgement. Or very
large infinite cardinals may be shown to be essential to
proofs [38.12]. In this precise sense, formal deductions
as computations, with their finitistic principles of proof,
are provably incomplete.

In particular, physicomathematical deductions, used
to discuss and solve equations, are not just formal
computations, i. e., meaningless manipulations of signs.
They transfer symmetries in equations to further sym-
metries, or prove symmetry changes or breaking (non-
analyticity, typically). In category theory, equations are
analyzed by drawing diagrams and inspecting their
symmetries.

38.2.2 From Equations to Computations

The mathematical frame of modern computers was pro-
posed within an analysis of formal deductions. In fact
Gödel, Kleene, Church, Turing . . . invented computable
functions in the 1930s in order to disprove the largely
believed completeness hypothesis of formal/axiomatic
systems and their formally provable consistency. It is
not by chance that an immense mathematical physi-
cist, H. Weyl, was one of the few who claimed that the
formalist/computational project was trivializing math-
ematics and conjectured incompleteness, already in
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1918 [38.13] (see also [38.1]). Turing, in particu-
lar, imagined the logical computing machine imitating
a man in the least action of sign manipulation accord-
ing to formal instructions (write or erase 0 and 1, move
left or right of one square in a child’s notebook), and
invented by this the modern split between software and
hardware. He then wrote an equation that easily defines
an incomputable arithmetic function. Turing’s remark-
able work for this negative result produced the modern
notion of program and digital computer, a discrete state
machine working on discrete data types. As we said,
computing machinery was invented as an implementa-
tion of formal proofs and is provably incomplete even
in an arithmetic, let alone proper extension of it, based
on principles richer than arithmetic induction (well-
ordering, symmetries, infinite ordinals . . . ).

Thus, beyond the limits set by the impossibility of
approximation mentioned above, there is also a concep-
tual gap between proving over equations and computing
solutions by algorithms on discrete data. The first deals
with the physical meaning of equations and their sym-
metries and their breaking, it transfers this meaning to
consequences by human reasoning grounded on ges-
tures (such as drawing a diagram) and common under-
standing. It is based on the invention, if needed, of new
mathematical structures, possibly infinitary ones from
Galois’ groups to Hilbert spaces to the modern fine
analysis of infinitary proofs [38.14]. These may even
be proved to be unavoidable in some cases, such as for
well-ordering or the large infinite cardinals mentioned
above, well beyond computations and formalisms (see
the reference above). Do algorithms transfer “physi-
cal meaning” along the computation? Do they preserve
symmetries? Are those broken in the same way we un-
derstand they are in the natural process under scrutiny?

Our claim is that algorithmic approaches (with the
notable exception of interactive automated formal cal-
culus, within its limits) involve a modification of the
theoretical symmetries used to describe and understand
phenomena in physics, in particular by continua. This
means that algorithmic approaches usually convey less
or a different physical meaning than the original equa-
tional approaches. In other words, the modification of
the equations needed for a completely finitary and dis-
crete approach to the determination of a phenomenon
leads to losses of meaningful aspects of the mathema-
tization and to the introduction of arbitrary or new
features.

As far as losses are concerned, the most preeminent
ones probably stem from the departure from the con-
tinuum, an invention resulting from measurement from
Pythagoras’ theorem to the role of intervals in physi-
cal measurement. As we already hinted, deterministic
unpredictability does not make sense in the computing

world. A program determines and computes on exact
data: when those are known, exactly (which is always
possible), the program iterates exactly, thus allowing
a perfect prediction as the program itself yields the pre-
diction. The point is that deterministic unpredictability
is due to the nonlinearity, typically, of the determination
(the equations) and triggered by nonobservable fluc-
tuations or perturbations below the (best) interval of
measurement. Now, approximation in mathematics is
handled by topologies of open intervals over continua,
the so-called natural topology over the real numbers.

With regards to this, note that a key assumption
bridging mathematics of continua and classical physics
is that any sequence of measurements of increasing, ar-
bitrary precision converge to a well-defined state. This
is mathematically a Cauchy condition of completeness,
which implies that the rational numbers are not suffi-
cient to understand the situation. Cantor’s real numbers
have been invented exactly to handle these kinds of
problems (among other reasons, such as the need to
mathematize rigorously the phenomenal continuum in
its broadest sense, say the continuum of movement).

Also, the fundamental relation between symmetries
and conservation properties exhibited by Noether’s the-
orems depend on the continuum (e.g., continuous time
translations), so these results can no longer be derived
on a discretized background. In short, these theorems
rely on the theoretical ability to transform states con-
tinuously along continuous symmetries in equations (of
movement, for example) since the intended conserved
quantity cannot change during such a transformation.
With a discrete transformation the observed quantities
can be altered (usually the case in simulations) because
there is no continuity to enforce their conservation.

Reciprocally, the changes due to the discretization
introduce features that are arbitrary from a physi-
cal perspective. For example, a basic discretization of
time introduces an arbitrary fundamental time-scale.
In numerical analysis, the methodology is to have the
(differential) equations as the locus of objectivity and
to design algorithms that can be shown to asymptoti-
cally converge (in a pertinent mathematical sense, and
hopefully rapidly in practice) towards the mathemati-
cal solutions of the physically meaningful equations. In
these frames, the theoretical meaning of the numerical
(or algorithmic) approaches is entirely derivative: such
numerical approaches are sound only with respect to,
and inasmuch as there are mathematical results show-
ing a proximity with the original equations and the
trajectories determined by them. The mathematical re-
sults (convergence theorems) define the nature of this
proximity and are usually limited to specific cases so
that entire research communities develop around the
topic of the simulation of a specific family of equations
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(Navier–Stokes or alike for turbulence, Schrödinger in
quantum physics, . . . ). As a result, the methods to ap-
proach different (nonlinear) equations by computing
rely on specific discretizations and their close, often ad
hoc, analysis.

38.2.3 Computations

As we said, we are just singling-out some method-
ological differences or gaps between different modeling
techniques. On the side of algorithms, the main issue
we want to stress here is that equational approaches
force uniform phase spaces. That is, the list of perti-
nent observables and parameters, including space and/
or time, of course, must be given a priori. Since the
work by Boltzmann and Poincaré, physicists usually
consider the phase space, which is made out of posi-
tion and momentum or energy and time, as sufficient
for writing the equational determination. By generaliz-
ing the philosopher’s (Kant) remark on Newton’s work,
the (phase) space is the very condition of possibility for
the mathematical intelligibility of physics. Or, to put it
as H. Weyl, the main epistemological teaching of rel-
ativity theory is that physical knowledge begins when
one fixes the reference system (that is to say, the way
to describe the phase space) and the metrics on it. Then
Einstein’s invariant theorie allows to inspect the rele-
vant invariants and transformations, on the grounds of
Lorentz–Poincaré symmetry groups, typically, within
a pregiven list of observables and parameters.

Now, there exists a rich practice of computational
modeling which does not need to pass through equa-
tions, it skips this a priori structure. Varenne nicely
describes the dynamic mixture of different computa-
tional contexts as a simulat, a neologism which recalls
agrégat (an aggregate) [38.15]. This novelty has been
introduced, in particular, by the peculiar features of
object oriented programming (OOP), but other agent
oriented systems exist.

As a matter of fact, procedural languages require
all values to share the same representation – this is
how computer scientists name observables and param-
eters (Technically, an existential quantifier is opened at
the beginning of the program and then everyone shares
all private information). Objects instead may interact
even with completely different representations as long
as their interfaces are compatible (The existentials are
opened only at the point of performing the operation).
Thus, objects behave autonomously and do not require
knowledge of the private (encapsulated) details of those
they are interacting with. As a consequence, only the
interface is important for external reactions [38.16, 17].

In biological modeling, aggregating different tech-
niques with no common a priori phase space is a ma-

jor contribution to knowledge construction. Organisms,
niches, ecosystems may be better understood by struc-
turing them in different levels of organization, each
with a proper structure of determination, that is, phase
space and description of the dynamics. For example,
networks of cells are better described by tools from
statistical physics, while morphogenesis, for example
organ formation, is currently and mostly modeled by
differential equations in continua. Each of these ap-
proaches requires pregiven phase spaces, which may
radically differ (and the communities of researchers in
the two fields hardly talk to each other). In a computer,
thanks to its high parallelism one may mix these dif-
ferent techniques in spite of their differences with some
more or less acceptable approximations. Even more so,
ad hoc algorithms may describe specific interactions
independently of a unified equational description that
may be impossible. Then objects may interact only on
the grounds of the actual interface, both within a level of
organization and between different levels, without ref-
erence to the proper or internal (to the object, to the
level) causal structure.

In other words, OOP allows independent objects dy-
namics, reminiscent of individual cell dynamics. Then,
proliferation with variation and motility, which is the
default state of life [38.18], may be added to the mod-
els of morphogenesis that usually consider cells as
inertial bullets, which they are not; that is, their prolifer-
ation, changes, and motility are not entailed by physical
forces that contribute to shape organs (in particular,
when organs function for the exchange of energy and
matter). By the computational power of modern com-
puters, agent or object based programming styles (such
as OOP) may implement autonomous agency for each
cell, have them simultaneously interact within a mor-
phogenetic field shaping the dynamics or a network
ruled by statistical laws.

In summary, in computer simulation one may put
together all these techniques, design very complex sim-
ulat as aggregation of algorithms including stochastic
equations, probabilities distributions and alike. In par-
ticular, OOP allows the simulation of discrete dynamics
of individual cells in an organism or of organisms in
an ecosystem. And this with no need to write global
first equations: one directly goes to algorithms in their
changing environment.

However, let the process or images on a computer
run . . . then push the restart button. Since access to dis-
crete data is exact, as we said and keep stressing, the
computer will iterate on the same initial conditions ex-
actly, with the same discrete algorithms. Thus, it will
go exactly along the same computation and produce
exactly the same trajectories, images, and genesis of
forms. This has no physical meaning as an unstable
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or chaotic system would never iterate identically. It is
even less biologically plausible, as biology is, at least,
the “never identical iteration of a morphogenetic pro-
cess” [38.18]. Now observe that exact iteration is a form
of (time-shift/process-identity) symmetry; while non-
identical iteration is a symmetry breaking (see below
for more on randomness versus symmetry breaking).

Noise, of course, may be introduced artificially, but this
makes a deep conceptual difference at the core of our
analysis.

Note, finally, that stochastic equations, probability
values and their formal or algorithmic descriptions are
expressions and measurement of randomness, they do
not implement randomness. And this is a key issue.

38.3 Randomness in Biology

Theoretical physics proposes at least two forms of ran-
domness: classical and quantum. They are separated
by different probability theories and underlying logic:
entanglement modifies the probability correlations be-
tween quantum events [38.19]. Even the outcome of
the measurement of generic states is contextual which
means that this outcome depends on the other mea-
surements performed and cannot be assumed to be
predefined [38.20, 21] – this situation is different from
classical ones which are not contextual. A new form
of randomness seems to be emerging from computer
networks or, so far at least, it is treated by yet a dif-
ferent kind of mathematics [38.22]. In particular, some
analyses of randomness are carried out without using
probabilities.

In the same way that we said the world is nei-
ther intrinsically continuous nor discrete, randomness
is not in the world: it is in the interface between our
theoretical descriptions and reality as accessed by mea-
surement. Randomness is unpredictability with respect
to the intended theory and measurement. Both classical
and quantum randomness, though different, originate in
measurement.

The classical one is present in dynamics sensitive
to initial or border conditions: a fluctuation or pertur-
bation below measurement, which cannot be exact by
physical principles (it is an interval, as we said) is am-
plified by the dynamics, becomes measurable and “[. . . ]
we have a random phenomenon” [38.23]. This amplifi-
cation is mathematically described by the nonlinearity
of the intended equations or evolution function with
a subtle difference though. If a solution of the nonlinear
system exists, then the analysis of the Lyapounov expo-
nents, possibly, yields some information on the speed
of divergence of trajectories, initially indistinguishable
by measurement: a nonmeasurable fluctuation is am-
plified and produces an unpredictable and measurable
event, yet the amplification is computable. In the case
of nonexistence or nonanalyticity of solutions of the
given differential equations, one may have bifurcations
or unstable homoclinic trajectories (i. e., trajectories at
the intersection of stable and unstable manifolds). The

choice at bifurcation, thus the physical trajectory is
then highly unpredictable, thus random, and may be
also physically ascribed to fluctuations or perturbations
below measurement. In this case, however, one gener-
ally does not have a criterion of divergence, such as
Lyapounov exponents. The fluctuation or perturbation
causes the unpredictable event, thus Curie’s principle is
preserved: a physical effect cannot have a dissymmetry
absent from its efficient cause – a symmetry conserva-
tion principle, or “symmetries cannot decrease”. Yet, at
the level of measured observables one witnesses a sym-
metry breaking, as the causing dissymmetry cannot be
observed.

Quantum randomness is grounded in noncommu-
tativity of the measurement of conjugated variables
(position and momentum or energy and time), given
by a lower bound – Planck’s h. It is represented by
Schrödinger’s equation that defines the trajectory of
a probability amplitude (or law) in a very abstract
mathematical space (a Hilbert space). As hinted above,
measurement of entangled particles gives probabilities
that are different from the classical contexts (Bell in-
equalities are not respected [38.24]).

In quantum physics, though, there is another funda-
mental difference: in classical and relativistic mechan-
ics, from Aristotle to Galileo and Einstein, it is assumed
that every event has a cause. As mentioned above in
reference to Curie’s principle, the unpredictable but
measurable classical event is caused by the (initial
or border) undetectable fluctuation. Instead, in current
interpretations of quantum mechanics (QM), random
events may be acausal – the spin up/spin down of an
electron, say, is pure contingency, it does not need to
have a cause. This radically changes the conceptual
frame – and many still do not accept it and keep look-
ing in vain for hidden variables (hidden causes) along
the classical paradigm.

Surprisingly enough, a quantum event at the molec-
ular level may have a phenotypic effect in biology. This
is the result of recent empirical evidence, summarized
and discussed in [38.25]. Thus, a phenotype that is
a structural property of an organism, possibly a new or-
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ganism, may result from an acausal event happening at
a completely different level of organization (molecular
versus organs or organisms). This microevent may be
amplified by classical dynamics of molecules including
their enthalpic oscillations and their Brownian motion.
Brownian motion is omnipresent in cells’ proteome,
where macromolecules are very sticky and their chem-
ical interactions are largely stochastic – though canal-
ized by strong chemical affinities and cell compartmen-
talization. So, quantum and classical randomness may
superpose in a highly constrained environment. More-
over, it is increasingly recognized that gene expression
is mostly stochastic [38.26, 27].

This leads to the fully general fact thatmacromolec-
ular interactions and dynamics are stochastic, they
must be described in terms of probabilities and these
probabilities depend on the context.

This context includes the global proteomic com-
position, the torsion and pressure on the chro-
matin [38.28], the cell activity in a tissue [38.29, 30],
the hormonal cascades etc. up to the ecosystem. The
up and down interactions between different levels of
organization yield a proper form of biological random-
ness, a resonance between levels called bioresonance
in [38.25]. Bioresonance destabilizes and stabilizes or-
ganisms; it both yields and follows from variability, as
correlated variations contribute also to the changing
structural stability of organisms. Note that variability
produces adaptation and diversity at the core of bio-
logical dynamical stability: an organism, a population,
or a species is biologically stable, while changing and

adapting because it is diverse as well. Both stability
and diversity are also the result of randomness. Also,
as we said randomness is highly canalized in biology
by cellular compartments of molecules, tissues tenseg-
rity, organismal control (hormones, immune and neural
systems etc.) and the ecosystem may downward influ-
ence these constraints (methylation and demethylation,
which may regulate gene expression, can be induced by
the environment) [38.31]. Variability and diversity are
constrained by history as well: phenotypes are the result
of an evolutionary history that canalizes but does not
determine (at least in view of quantum events) further
evolution. For example, as for historical canalization
there are good reasons to believe that we, the verte-
brates, will never get out of the valley of tetrapodes –
at most we may lose, as some of us have, podia and
keep just traces of them.

In conclusion, randomness has a constitutive role in
biology as variability and diversity contribute to struc-
tural stability, beginning with gene expression. Above,
we developed a comparative analysis in terms of sym-
metries of physical processes with respect to their
equational and computational modeling. We hinted at
the different ways randomness is understood in vari-
ous physical and biological frames. In biology, this later
issue becomes particularly relevant in view of the or-
ganizing role of randomness, also in the case of small
numbers (a population of a few thousands individuals is
biologically more stable when diverse). Further on, we
will propose a general thesis relating randomness and
symmetry breaking.

38.4 Symmetries and Information in Physics and Biology

38.4.1 Turing, Discrete State Machines
and Continuous Dynamics

We already stressed the key role of invariants and invari-
ant preserving transformations in the construction of
mathematical and physical knowledge. The sharing of
construction principles in these two disciplines, among
which symmetry principles and order principles, are the
reason of the reasonable, though limited, effectiveness
of mathematics for physics: these disciplines have been
actually co-constituted on the grounds of these com-
mon construction principles [38.1]. However, since so
few physical processes can be actually predicted – fric-
tions and many-body interactions, i. e. nonlinearity, are
everywhere – the effectiveness of mathematics is based
mostly on the reasonable intelligibility we have of a few
phenomena when we can organize them in terms of in-

variants and their transformations, thus of symmetries
well beyond predictability.

In the account above, changing fundamental sym-
metries produced the change from one theoretical frame
to another, such as from classical to relativistic physics.
Further useful examples may be given by thermody-
namics and hydrodynamics. The irreversibility of time,
a symmetry breaking, steps in the first by the proposal
of a new observable, entropy; hydrodynamics assumes
incompressibility and fluidity in continua, two prop-
erties that are irreducible to the quantum mechanical
ones, so far.

There is a common fashion in projecting the sci-
ences of information onto biological and even physical
processes. The deoxyribonucleic acid (DNA), the brain,
even the universe would be (possibly huge) programs or
Turing machines sometimes set up in networks – note
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that the reference to networks is newer, it followed ac-
tual network computing by many years later.

We do not discuss here the universe nor the brain.
It may suffice to quote the inventor of computing by
discrete state machines, Turing [38.32, p. 440]:

“[. . . ] given the initial state of the machine and
the input signal it is always possible to predict
all future states. This is reminiscent of Laplace’s
view that from the complete state of the universe
at one moment of time, as described by the po-
sitions and velocities of all particles, it should be
possible to predict all future states. The prediction
which we are considering is, however, rather nearer
to practicability than that considered by Laplace.
The system of the universe as a whole is such
that quite small errors in the initial conditions can
have an overwhelming effect at a later time. The
displacement of a single electron by a billionth of
a centimeter at one moment might make the differ-
ence between a man being killed by an avalanche
a year later, or escaping. It is an essential property of
the mechanical systems which we have called ‘dis-
crete state machines’ that this phenomenon does not
occur. Even when we consider the actual physical
machines instead of the idealized machines, reason-
ably accurate knowledge of the state at one moment
yields reasonably accurate knowledge any number
of steps later.”

Note that in popular references to unstable or
chaotic dynamics, instead of quoting the famous
Lorentz’s butterfly effect proposed in 1972 on the
grounds of Lorentz’ work of 1961, one should better
refer to the Turing’s electron effect, published in 1952.

As for the brain, Turing continues [38.32, p. 451]:

“The nervous system is certainly not a discrete-state
machine. A small error in the information about the
size of a nervous impulse impinging on a neuron,
may make a large difference to the size of the out-
going impulse.”

As a matter of fact, the notions of spontaneous
symmetry breaking, catastrophic instability, and ran-
dom fluctuations are at the core of Turing’s analysis of
continuous morphogenesis [38.33], far remote from his
own invention of the elaboration of information by the
discrete state machine (DSM, his renaming in 1950 of
his logical computing machine of 1936).

It is worth stressing here the breadth and originality
of Turing’s work. He first invented the split hardware/
software and the DSM in logic. Then, when moving to
biophysics, he invented a continuous model for mor-

phogenesis viewed just as physical matter (hardware)
that undergoes continuous deformations, triggered by
(continuous) symmetry breaking of an homogeneous
field in a chemical reaction-diffusion system. The
model is given by nonlinear equations: a linear so-
lution is proposed, the nonlinear case is discussed at
length.

A key property of Turing’s continuous model is that
it is “a falsification” (his words [38.33, p. 37]) of the
need for a (coded) design. This becomes clear from
the further comments on the role of genes, mentioned
below. In discussions reported by Hodges [38.34], Tur-
ing turns out to be against Huxley’s “new synthesis”,
which focused on chromosomes as fully determin-
ing ontogenesis and phylogenesis [38.35]. He never
refers to the already very famous 1944 booklet by
Schrödinger [38.36], where Schrödinger proposes to
understand the chromosomes as loci of a coding, lead-
ing to a Laplacian determination of embryogenesis as
he says explicitly (“once their structure will be fully de-
coded, we will be in the position of Laplace’s daemon”
says Schrödinger [38.36, Chap. 2]). As a matter of fact,
in his 1952 paper Turing quotes only Child, D’Arcy
Thompson and Waddington as biologists, all working
on dynamics of forms, at most constrained (Wadding-
ton) but not determined nor predesigned by chromo-
somes. Indeed, Turing discusses the role of genes in
chromosomes, which differ from his morphogenes as
generators of forms by a chemical action/reaction sys-
tem. He sees the function of chromosomal genes as
purely catalytic and, says [38.33, p. 38]:

“Genes may be said to influence the anatomical
form of the organism by determining the rates of
those reactions that they catalyze [. . . ] if a com-
parison of organisms is not in question, the genes
themselves may be eliminated from the discus-
sion.”

This proposal is remarkable as for the very fuzzy,
ever changing notion of gene [38.37]. No predefined de-
sign, no coded or programmed Aristotelian homunculus
in the chromosomes (the myth of the chromosomes
as a program) are needed for Turing, the man who
invented coding and programming. This is science:
an explicit proposal of a (possibly new) perspective
on nature, not the transfer of familiar tools (the ones
he invented, in this case!) on top of a different phe-
nomenology.

Note finally that when comparing his DSM to
a woman’s brain in [38.32], Turing describes an imita-
tion game while he talks of a model as for morphogen-
esis. This beautiful distinction, computational imitation
versus continuousmodel, is closely analyzed in [38.38].
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38.4.2 Classifying Information

Let’s further analyze the extensive use of information in
biology – molecular biology in particular. Information
branches in at least two theories:

� Elaboration of information (Turing, Church, Kleene
and many others, later consistently extended
to algorithmic information theory: Martin-Loef,
Chaitin, Calude, see [38.39]).� Transmission of information (Shannon, Brillouin,
see [38.40]).

In [38.41] we stressed the key differences between
these two theories that are mixed up in molecular biol-
ogy with unintelligible consequences in the description
of the relationship of information to entropy and com-
plexity. The two latter notions are relevant to biology,
see [38.42], where Turing–Kolmogorov’s elaboration
theory is quoted as well as Shannon’s theory. The au-
thor initially considers the second as more pertinent for
biology. Later in the paper a notion of complexity as
amount of information is given. This notion is actually
based on the first theory and it is described as covariant
to entropy. Finally, Shannon’s theory pops up again in
the paper – the more pertinent theory, according to the
author, where complexity is contravariant to entropy –
it is negentropy.

As scientific constructions, both information theo-
ries are grounded on fundamental invariants. So it has
been since at least Morse’s practical invention, with no
theory of information transmission. Information is inde-
pendent of the specific coding and the material support.
We can transmit and encode information as bip-bip, by
short and long hits, as flashes, shouts, smoke clouds
etc. by bumping on wood or metal, by electricity in
cables – we can do this in a binary, ternary, or other
code etc. Information is the invariant with respect to
the transformation of these coding and material sup-
ports: this is its fundamental symmetry. It is also the
case in Turing’s fundamental invention: the distinction
between software and hardware. So, a richer theory of
programming was born that was largely based on logic,
typed, and typed-free languages, term rewriting sys-
tems etc. entirely independent of the specific encoding,
implementation, and hardware. The computer’s soul is
so detached from its physical realization that Descartes
dualism is a pale predecessor of this radical and most
fruitful split. And when the hardware of your computer
is dying, you may transfer the entire software, includ-
ing the operating system, compilers and interpreters, to
another computer. This symmetry by transfer is called
metempsychosis, we think. Now, it does not apply any-
where in biology.

The DNA is not a code carrying information. There
is no way to detach soft content from it and transfer
it to another material structure: it cannot be replaced
by metal bullets or bumps on a piece of wood. What
gets transferred to ribonucleic acid (RNA) and then to
proteins is a chemical and physical structure, a most
relevant one, as the DNA is an extraordinary chemical
trace of a history. And it transmits to other chemicals
an entirely contingent physicochemical conformation.
If a stone bumps against other stones in a river and
de-forms them (in-forms them, Aristotle would say),
talking of a transmission of information in the scien-
tific invariant sense above has no meaning unless in
reference to the Aristotelian sense. No informational
invariants can be extracted but the ones proper to the
physicochemical processes relative to stone bumping.
Life is radically contingent and material: no software/
hardware split. The prescientific reference to informa-
tion, sometimes called metaphorical, has had a major
misleading role. First, it did not help to find the right
invariants. The physicochemical structure of cellular
receptors, for example, has some sort of generality
which yields some stereospecificity [38.43]. Yet, this
is still strictly related to common chemistry that has
nothing to do with an impossible abstract informa-
tion theoretic description. The proposal of an invariant
that was too abstract and matter-independent did not
help in finding the right scientific level of invariance.
Or more severely so, it forced exact stereospecifity of
macromolecular interaction as a consequence of the in-
formation theoretic bias.

Monod, one of the main theoreticians of molecular
biology, claims that the molecular processes are based
on the oriented transmission of information [. . . ] (in
the sense of Brillouin). In [38.44], he derives from this
that the “necessarily stereospecific molecular interac-
tions explain the structure of the code [. . . ] a boolean
algebra, like in computers” and that “genes define
completely the tridimensional folding of proteins, the
epigenetic environment only excludes the other pos-
sible foldings”. Indeed, biomolecular activities “are
a Cartesian mechanism, autonomous, exact, indepen-
dent from external influences”. Thus, the analysis based
on the search for how information could be transmit-
ted forced an understanding inspired by the Cartesian
exactness proper to computers. It also conveyed the
Laplacian causal structure, Turing would say, proper
to information theories. It induced the invention of
exact stereospecificity which is necessary to explain
the boolean coding! That is, stereospecificity was logi-
cally, not empirically, derived. Indeed, robust evidence
had already shown the stochasticity of gene expression
(see [38.27, 45, 46] and [38.47] for a recent synthesis)
since 1957 [38.48].
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We now know that the protein folding is not de-
termined by the coding (yet, Monod did consider
this possibility). Macromolecular interactions, includ-
ing gene expression, are largely random: they must
at least be given in probabilities, as we said, and
these probabilities would then depend on the context.
No hardware-independent boolean algebra governs the
chemical cascades from DNA to RNA to proteins, also
because, as we already recalled these cascades depend
on the pressure and tensions on the chromatin, the pro-
teome activities, the intracellular spatial organization,
the cellular environment, and many other forms of or-
ganismal regulations, see for example [38.28, 49].

In summary, the informational bias introduced
a reasoning based on Laplacian symmetries, far away
from the largely turbulent structure of the proteome,
empowered also by chaotic enthalpic oscillations of
macromolecules. This bias was far from neutral in
guiding experiments, research projects, and concep-
tual frames. For example, it passed by the role of
endocrine disruptors of the more than 80 000 molecules
we synthesized and used in the twentieth century, an
increasingly evident cause of major pathologies, in-
cluding cancer [38.50–52]. These molecules were not
supposed to interfere with the exact molecular cascades
of key-lock correspondences, a form of stereospeci-
ficity. The bias guided the work on genetically modified
organisms (GMO), which have been conceived on the
grounds of the “central dogma of molecular biology”
and of Monod’s approach above: genetic modifications
would completely guide phenotypic changes and their
ecosystemic interactions [38.53].

One final point: Information theories are code in-
dependent, or they analyze code in order to develop
general results and transmission stability as code in-
sensitive (of course cryptography goes otherwise: but
secrecy and code breaking are different purposes, not
exactly relevant for organisms). Information on discrete
data is also dimension independent: by a polynomial
translation one may encode discrete spaces of any fi-
nite dimension into one dimension. This is crucial to
computing since it is needed to define Turing’s univer-
sal machine, thus operating systems and compilers.

Biology instead is embedded in a physical world
where the space dimension is crucial. In physics, heat

propagation and many other phenomena, typically field
theories, strictly depend on space dimension. By mean
field theories one can show that life, as we know it,
is only possible in three dimensions [38.1]. Organisms
are highly geometric in the sense that geometric im-
plies sensitivity to coding and dimensions. In this sense,
continuous models more consistently propose some in-
telligibility: in natural topologies over continua, that is
when the topology derives from the interval of physical
measurement, dimension is a topological invariant. It is
a fundamental invariant in physics to be preserved in
biology, unless the reader believes that he/she can live
encoded in one dimension, just exchanging information
like on the tape of a Turing machine. A rather flat uni-
verse . . . yet, with no loss of information. But where one
has only information, not life.

Missing the right level of invariance and, thus, the
explanatory symmetries, is a major scientific mistake.
Sometimes, it may seem just a matter of language,
as if language mattered little, or a matter of informal
metaphors, as if metaphors were not carrying meaning,
forcing insight and guiding experiments. They actu-
ally transfer the conceptual structure or the intended
symmetries of the theory they originate from, in an im-
plicit thus more dangerous and unscientific way. Just
focusing on language, consider the terminology used
when referring to DNA/RNA as the universal code for
life since all forms of life are based on it. This syn-
chronic perspective on life – all organisms yield these
molecules and the basic chemical structure of their in-
teractions, thus there is a universal code – misses the
historical contingency of life. There is no universality
in the informational sense of an invariant code with re-
spect to an independent hardware. Life is the historical
result of contingent events, the formation somewhere
and somehow of DNA or RNA or both, sufficiently
isolated in a membrane, which occurred over that hard-
ware only. Then, the resulting cell reproduced with
variation and diversified to today’s biological diver-
sity. Life history has one contingent material origin,
then there was a diversification of that matter, of that
specific hardware and no other. Invariance, symmetries
and their breaking are different from those proper to
information, in this strictly material, evolutionary per-
spective.

38.5 Theoretical Symmetries and Randomness

In this section, we would like to elaborate on a thesis,
already hinted at in [38.6]. In physical theories, where
the specific trajectory of an object is determined by
its theoretical symmetries, we propose that randomness
appears when there is a change in some of these symme-

tries along a trajectory and, reciprocally, that changes of
symmetries are associated to randomness.

Intuitively, theoretical symmetries allow to under-
stand a wide set of phenomenal situations as equivalent.
At the end of the day, the trajectory that a physi-



Comparing Symmetries in Models and Simulations 38.5 Theoretical Symmetries and Randomness 853
Part

H
|38.5

cal object will follow, according to a theory, is the
only trajectory which is compatible with the theoreti-
cal symmetries of a given system. Symmetries, in this
context, enable to understand conservation properties,
the uniqueness of the entailed trajectory, and ultimately
the associated prediction, if any.

Now what happens when, over time or with respect
to a pertinent parameter, a symmetry of the system is
broken? A symmetry corresponds to a situation where
the state or the set of possible states and the determina-
tion of a system does not change according to specific
transformations (the symmetries). After the symmetry
breaking, the state(s) becomes no longer invariant by
these transformations; typically, the trajectory goes to
one of the formerly symmetric states and not to the
others (a ball on top of a mathematical hill falls along
one of the equivalent sides). Since the initial situation
is exactly symmetric (by hypothesis), all the different
symmetric states are equivalent and there is no way to
single out any of them. Then, in view of the symme-
try breaking, the physical phenomena will nevertheless
single out one of them. As a result, we are confronted
with a nonentailed change: it is a random change.

This explanation provides a physicomathematical
meaning to the philosophical notion of contingency
as non-necessity: this description of randomness as
symmetry breaking captures contingency as a lack of
entailment or of necessity in an intended theory. Note
that usually the equivalent states may not be com-
pletely symmetric as they may be associated to different
probabilities, nevertheless they have the same status as
possible states.

For now,we discussed the situation at the level of the
theoretical determination alone, but the same reasoning
applies mutadis mutandis to prediction. Indeed, we ac-
cess a phenomenon by measurement, but measurement
may be associated to different possible states, not distin-
guishable individually. Thus, these states are symmetric
with respect to the measurement, but the determination
may be such that these (nonmeasurably different) states
lead to completely different measurable consequences.
This reasoning is completely valid only when the situ-
ation is such for all allowed measurements, so that ran-
domness cannot be associated to the possible crudeness
of an arbitrary specific measurement.

Reciprocally, when we consider a random event, it
means that we are confronted with a change that cannot
be entailed from a previous observation (and the asso-
ciated determination). When the possible observations
can be determined (known phase space), this means
that the different possibilities have a symmetric status
before the random event (precisely because they are
all predefined possibilities) but that one (or several of
them) is singled out by the random event in the sense

that it becomes the actual state. We recognize in this
statement the description of a symmetry that is broken
during the random event.

Let us now review the main physical cases of ran-
domness:

� Spontaneous symmetry breaking in quantum field
theories and theories of phase transitions (from
a macroscopic viewpoint) are the most straightfor-
ward examples of the conjecture we describe. In
these cases, the theoretical determination (Hamilto-
nian) is symmetric and the change of a parameter
leads the systems equilibrium to shift from a sym-
metric state to an asymmetric one (for example
isotropy of a liquid shifting to a crystal with a spe-
cific orientation). Randomness then just stems from
the choice of a specific orientation, triggered by
fluctuations in statistical mechanics.� Classical mechanics can, in spite of its deterministic
nature, lead to unpredictability as a consequence of
the symmetrizing effect of measurement on one side
(there are always different states which are not dis-
tinguished by a measurement), and a determination
that leads those states to diverge (which breaks the
above symmetry). This reasoning applies to chaotic
dynamics but also to phase transitions where, from
a strictly classical viewpoint, fluctuations below the
observation determine the orientation of the sym-
metry changes.� In classical probabilities applied to naive cases such
as throwing a dice or to more sophisticated frame-
works such as statistical mechanics, our reasoning
also applies. When forgetting about the underlying
classical mechanics the probabilistic framework is
a strict equivalence between different possibilities,
except for their expected frequencies which may
differ: those are given by the associated probabil-
ities. In order to theoretically define these prob-
abilities, some underlying theoretical symmetries
are required. In our examples, the symmetries are
the symmetry between the sides of a dice and for
statistical mechanics, the symmetry between states
with the same energy for the microcanonical en-
semble. From a strictly classical viewpoint, these
symmetries are assumed to be established on aver-
age by the properties of the considered dynamics.
In the case of dice, it is the rotation, associated
with the dependence on many parameters which
leads to a sufficient mixing, generating the symme-
try between the different sides of the dice. In the
case of statistical mechanics, it is the property of
topological mixing of chaotic dynamics (a property
met by these systems by definition). This prop-
erty is assumed in order to justify the validity of
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statistical mechanics from the point of view of clas-
sical mechanics. In both cases, a specific state or
outcome corresponds to a breaking of the relevant
symmetry.� In quantum mechanics, the usual determination of
the trajectory of a state is deterministic, randomness
pops out during measurement. The operator corre-
sponding to the measurement performed establishes
a symmetry between its different eigen vectors,
which also correspond to the different outcomes
corresponding to the eigen values. This symmetry
is partially broken by the state of the system which
provides different weights (probabilities) to these
possibilities. The measurement singles out one of
the eigen vectors which becomes the state of the
system and this breaks the former symmetry.

We can conclude from this analysis and these ex-
amples that randomness and symmetry breaking are
tightly associated. We can put this relationship into one
sentence: A symmetry breaking means that equivalent
directions become no longer equivalent and precisely
because the different directions were initially equiva-
lent (symmetric) the outcome cannot be predicted. As
discussed elsewhere [38.6, 54], we assume that theo-
retical symmetries in biology are unstable. It follows
that randomness, understood as associated to symmetry
breaking, should be expected to be ubiquitous; however,
this approach also leads to propose a further form of
randomness. In order to show that randomness can be
seen as a symmetry breaking, we needed to assume that
the set of possibilities was determined before the event.
In biology, the instability of the theoretical symmetries
does not allow such an assumption in general. On the

opposite, a new form of randomness appears through
the changes of phase spaces and this randomness does
not take the form of a symmetry breaking stricto sensu
inasmuch as it does not operate on a predefined set. In
other words, these changes cannot be entailed but they
cannot even be understood as the singling out of one
possibility among others – the list of possibilities (the
phase space) is not pregiven.

In brief, theoretical symmetries in physics enable to
single-out a specific trajectory in a phase space, formed
by a combination of observables. Thus, a symmetry
breaking corresponds to the need of one or several sup-
plementary quantities to further specify a system on
the basis of already defined quantities (which were for-
merly symmetric and thus not useful to specify the
situation). In biology, instead, the dynamic introduces
new observable quantities which get integrated with
the determination of the object as the latter is associ-
ated with the intended quantities and symmetries. This
dynamic of the very phase space may be analyzed
a posteriori as a symmetry breaking. Thus, randomness
moves from within a phase space to the very construc-
tion of a phase space, a major mathematical challenge.
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39. Experimentation on Analogue Models

Susan G. Sterrett

Analogue models are actual physical setups used
to model something else. They are especially use-
ful when what we wish to investigate is difficult
to observe or experiment upon due to size or dis-
tance in space or time; for example, if the thing
we wish to investigate is too large, too far away,
takes place on a time scale that is too long, does
not yet exist or has ceased to exist. The range
and variety of analogue models is too extensive to
attempt a survey. In this chapter, I describe and
discuss several different analogue model exper-
iments, the results of those model experiments,
and the basis for constructing them and interpret-
ing their results. Examples of analogue models for
surface waves in lakes, for earthquakes and volca-
noes in geophysics, and for black holes in general
relativity, are described, with a focus on examin-
ing the bases for claims that these analogues are
appropriate analogues of what they are used to
investigate. A table showing three different kinds
of bases for reasoning using analogue models is
provided. Finally, it is shown how the examples
in this chapter counter three common misconcep-
tions about the use of analogue models in physics.
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The array of analogue models used in science is ex-
tensive; an attempt to comprehend their range, in size
and kind, would have to be abandoned sooner or later.
The imagination, intellectual ingenuity, and technical
expertise that have been expended in conceiving, con-
structing, and using these various disparate models,
each requiring a methodology of construction and de-
ployment appropriate to its nature and use, are dizzying.

Analogue models have been devised and used in
physics for quite some time: one of the most com-
mon analogies in physics, the analogy between sound
and light, was invoked in the mid-nineteenth century to
build a sonic analogue of the Doppler effect for light,
which was then used to investigate and establish re-
sults for both sound and light [39.1–3]. The analogy
was later invoked in the twentieth century to explain
Vavilov–Cerenkov radiation, also known as Cerenkov

radiation [39.3, 4]. Cerenkov radiation is the electro-
magnetic radiation emitted when an electron travels
in a medium faster than the speed that light travels
in that medium. In his Nobel lecture, Cerenkov ex-
plained [39.4]:

“This radiation has an analogy in acoustics in the
form of the so-called shock waves produced by
a projectile or an aeroplane travelling at an ultra-
sonic velocity (Mach waves). A surface analogy is
the generally known bow wave.”

More recently, in the twenty-first century, physicists
have developed, loosely speaking, analogue space-time
and analogue gravity [39.5–7]. Although the initial pro-
posals for analogue models for space-time were based
on an analogy between light and sound, once the idea
of exploring analogue models of gravity began attract-
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ing more interest, a variety of analogue models based
on different analogies were proposed [39.8]. Thus the
idea of an analogue based on the analogy between light
and soundwas expanded to many different kinds of ana-
logues. Faccio points out a commonality that can be
seen across all of them, though: All of them can be “re-
connected to some form of flowing medium” [39.8, p.
v]. Visser elaborates further [39.9]:

“In all the analogue spacetimes, the key idea is to
take some sort of excitation travelling on some sort
of background, and analyze its propagation in terms
of the tools and methods of differential geometry.”

Arising in part from the interest generated by the
work on these analogue models, physicists (Carusotto
and Rousseaux) have formulated the notion of a “gen-
eralized Cerenkov emission” process [39.10].

Another analogy commonly drawn in physics is the
analogy between electrical circuits and mechanical sys-
tems. The analogies date from the nineteenth century;
it appears they were first invoked to make mechanical
models of electrical circuits, the models being seen as
a way of using knowledge about mechanical systems
to provide a better understanding of electrical behavior
and concepts [39.11, 12]. However, the use of electri-
cal circuits specifically designed to model mechanical
systems later became standard:

1. Measurements of the flow of current in an appro-
priately constructed circuit were used to accurately
compute quantities used in the mechanical analysis
of the corresponding structure.

2. Varying elements in the circuit corresponded to
varying parameters in the mechanical system, so the
effect of differences in a design or a system’s initial
conditions could be explored.

More generally, electronic circuits were used as ana-
logues of anything that could be formalized as a solu-
tion of certain classes of differential equations, and ever
more sophisticated machines were developed to deal
with ever larger classes of differential equations and

problems ([39.13, 14] and [39.15, p. 222ff]). Other ex-
amples of analogues used for computation are mechan-
ical analogues such as the geared devices built in the
seventeenth century [39.16], the soap bubble analogue
computers invoking minimization principles that were
used to efficiently solve difficult mathematical problems
in the twentieth century [39.17] and biological analogue
computers of the twenty-first century such as amoeba-
based computing (ABC) analogue models [39.18].

Other analoguemodels used experimentally to carry
out serious research could be named in astrophysics,
cosmology, statistics, economics, geophysics, electro-
magnetism, fluid mechanics, fluid dynamics, solid me-
chanics, solid dynamics, structural engineering, coastal
engineering, the behavior of volcanoes, and many other
fields.

To be clear, these are actual, physical objects or
setups, usually human made, designed to be used as
analogue models. The modeling process for employ-
ing a physical object or setup as an analogue model
includes the identification of a mapping that allows
one to correlate something observed or measured in
the analog model with something else (its correlative,
such as a corresponding quantity) in the thing mod-
eled. The modeling process also includes a justification
of the mapping of some sort, usually invoking a prin-
ciple or equation to establish the mapping. What is
modeled is usually another physical object, process, or
phenomenon. The model’s limitations in representing
certain phenomena in the thing modeled, and any cor-
rections that need to be made due to such limitations,
are usually discussed when the analogue model is used
for a particular problem. Such qualifications are not
meant to undermine or recommend against using the
model; they are part of the model and modeling process.

While numerical models implemented on electronic
digital computers may have supplanted some of these
specific uses, analogue models continue to be used in
most of these fields today, and new analogue models
and methods of using them continue to be invented and
further developed.

39.1 Analogue Models: Terminology and Role

39.1.1 Analogue Models and Scale Models

It will be helpful to clarify the terminology of analogue
model and scale model as used in this chapter.

Analogue Models
The word analogue has two connotations relevant in
discussions on models: (i) analogous or parallel to; and
(ii) continuous, as contrasted with digital. It sometimes

happens that a model is analogue according to both
meanings. In this chapter, we will use analogue to mean
analogous or parallel to. Thus experimentation on an
analogue model is used to mean experimentation on
something analogous to the thing modeled. It is im-
portant to be clear about what is meant in saying that
a model is analogous to the thing modeled.

To say one thing is analogous to another is always to
say it is so with respect to a particular analogy, whether
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or not this is made explicit; there may be many different
possible analogies one could draw between two physi-
cal things or processes. Thus, just as it does not make
sense to ask whether or not one thing is analogous to an-
other without specifying the analogy between them one
means to be inquiring about, so it does not make sense
to say that one thing is an analogue model of another
thing without specifying the analogous relation that is
the basis for the correspondences being drawn between
the model and what is modeled. Thus, it is implicit
in the notion of an analogue model that there is some
definite analogous relationship that one means to be re-
ferring to, between the model and the thing modeled.

Scale Models
A scale model (in the sense that engineers and scientific
researchers use the term scale model) can be considered
a special case of an analogue model. (Or, conversely, an
analogue model can be considered a generalization of
the notion of a scale model.) One way of understand-
ing the relationship between analogue and scale models
is by considering how the methodology of physically
similar systems applies to each of them.

Using the method of physically similar systems,
similarity of two systems is established by showing that
each member of a certain (nonunique) set of dimen-
sionless parameters that characterizes the behavior of
the two systems has the same value in the model as
in the thing modeled; in practice exact similarity is of-
ten not achievable (Chap. 18). Instead, certain of the
dimensionless parameters are prioritized, or one aims
for the dimensionless parameters to be only approxi-
mately equal. That is, it is said that a system S and
a system S0 are similar with respect to a behaviorB (e.g.,
kinematically similar, dynamically similar, similar with
respect to buckling behavior, similar with respect to
electrical flows, and so on) when a set of dimension-
less parameters (ratios) that characterizes that behavior
has the same values in S as in S0. Despite the fact that,
in practice, it is often possible to meet this criterion
only partially or approximately, the concept of physi-
cally similar systems whose similarity is established by
dimensional analysis (via establishing equality of the
relevant dimensionless parameters), which was origi-
nally developed to provide a basis for making use of
scale model experiments, still forms the foundation for
the use of analogue models and has the virtue that it
does not, as most other methods do, require complete
knowledge of the equations and conditions that deter-
mine the behavior B of interest [39.19].

Now, to see the point that a scale model is a special
case of an analogue model: each dimensionless param-
eter is a ratio, so it is only the value of a quantity in
relation to other quantities that determines the value

of the dimensionless parameters used to establish sim-
ilarity between two systems S and S0. To use a simple
example, it is Mach number (the ratio of the velocity of
a flow or a moving object to the velocity of sound in the
medium at the fluid conditions that obtain at a certain
time), and not the value of a quantity such as a ve-
locity itself that indicates whether flow is supersonic
or subsonic. The Reynolds number (density � velocity
� length, divided by viscosity) is generally indicative
of the flow regime (laminar, transitional, or fully devel-
oped (turbulent) flow). People often use the term scale
model when thinking about scaling linear dimensions
in particular, and thus are thinking in terms of ratios
of lengths rather than some other (dimensionless) ratio;
then, the point about sameness of ratios becomes a point
about sameness of ratios of lengths, and hence about the
significance of geometrical similarity to the occurrence
of some phenomenon. That is, for two systems S and S0,
if all we are interested in is a feature or behavior that
depends solely on ratios of linear dimensions, then ge-
ometrical similarity between model and thing modeled
suffices for an object to serve as an analogue model of
the thing modeled. This is a special case of a physically
similar system in which the relevant dimensionless pa-
rameter is a ratio of lengths [39.20]. A scale model
used in architectural layout is a paradigm example of
this kind of similarity, and can be considered a special
case, even a degenerate case, of a physically similar sys-
tem.

Unfortunately, the architectural model as a pa-
radigm of a scale model has become so closely asso-
ciated with the very idea of a scale model that it can
interfere with understanding how broadly the concept
of scale model applies. The concept of scale model is
not limited to scaling of a linear dimension alone; other
quantities can be scaled too [39.20]. Despite this, the
term scale model is often used in the more restricted
sense of scaling the linear dimension of the situation.

Even when restricting the meaning of scale model to
the scaling of linear dimensions, it is certainly not nec-
essary that a scale model be smaller in size than what
it models, nor even that a scale model have the same
geometrical proportions as what it models. Scale mod-
els of very small things have been built which are larger
than what they model, so as to permit ease in manip-
ulation and observation (e.g., a scale model of a cell);
and full-size scale models used for prototype testing are
common as well (e.g., to test airflow patterns around, or
heat convection associated with, a certain shape). Even
in full-size scale model testing, the method of physical
similarity is applicable in designing the experimental
conditions to be applied, and in interpreting the results
of the experiment [39.20, 21]. The use of distorted scale
models calls for some explanation.



Part
H
|39.1

860 Part H Models in Physics, Chemistry and Life Sciences

Distorted Scale Models
Distorted scale models, which are scale models that fail
to be geometrically similar to the situation modeled (by
design, and in a certain very specific way) [39.21], have
been used in scale modeling for over a century; an ex-
ample may illustrate the nature of, and reason for using,
such models.

One example of a distorted scale model is a phys-
ical model of Lake Superior [39.22] that was “built to
satisfy the Froude number and Rossby number require-
ments of dynamic similitude.” (The Froude number is
indicative of the ratio of inertial forces to the gravity
forces of flow, and is important in studies where surface
waves are important; the Rossby number is indicative
of the ratio of inertial forces to the Coriolis force.) The
model was used to generate quantitative results: the
coriolis force (in the actual Lake Superior) was mod-
eled by rotating the laboratory model about a vertical
axis, and the lake bottom in the model was warped so as
to provide the correct scaled depth while the model was
rotating [39.22, p. 25]. The wind flow over the lake was
modeled in the laboratory model using a blower with
an air distributor. The researchers’ experimentation on
this analogue model of Lake Superior involved blowing
wind over it in different directions; they recorded the
results in the analogue model by “photographing alu-
minum particles spread on the water surface” [39.22].

The plan view and side view of the model are shown
in Figs. 39.1 and 39.2, respectively. The model is a scale
model, yet it is not geometrically similar to Lake Supe-
rior; the researchers explain: “Because of the large ratio
of horizontal to vertical distances in Lake Superior, the
model was [intentionally made so as to be] vertically
distorted” [39.22]. The fact that the vertical linear di-
mensions of the model are scaled differently than the
horizontal linear dimensions are scaled is, of course,
taken into account when the corresponding quantities
to be associated with the actual Lake Superior are cal-
culated from the values of the quantities observed in the
model. The ratio of time in the laboratory model to time
in the actual Lake Superior is 1=9480, so that “1 day
in the prototype is equivalent to 9:1 s in the laboratory
model,” for instance.

Such distortion of the vertical dimension in model-
ing ship performance at sea or fluid behavior in canals
is common, but they are not the only use of distorted
models. One particularly complex hydraulic model that
used distortion was constructed and used to study the
impact that large woody debris in a stream had in recon-
figuring the creek bed itself [39.23]. More recently, the
use of distorted laboratory models in investigating the
structural response of (flexural) plates has been evalu-
ated analytically and judged to provide a reliable means
of laboratory investigation [39.24].

Wind supply (blower and air distributor)

Rails

Model
rotation

Motor
driven
carriage

Lake
superior
model

0.63 cm thick
plexiglas cover 2.24 kW

variable speed
motor

2.44 m diameter
rotating steel
plate

30:1 speed reducer

Fig. 39.1 Plan view of Lake Superior distorted model; the
ratio of horizontal distance in the laboratory model to hor-
izontal distance in the actual Lake Superior is 1=300 000
(after [39.22])

39.1.2 The Role of Analogue Models
in Philosophy of Science

The wide variety of analogue models currently used in
serious scientific research mentioned in the beginning
of this chapter is not, however, reflected in the dis-
cussions of analogue models one finds in the history
and philosophy of science literature. When analogue
models are mentioned in philosophy of science, they
are usually seen as curiosities suitable for illustrative,
entertainment or pedagogical purposes, rather than as
a serious research methodology. When, on occasion,
their role in serious scientific research is recognized, it
is usually for a role played in the science of a past era,
and often for a qualitative or heuristic purpose at that.

An indication of the extent of confusion and igno-
rance about analogue models and scale models that ex-
ists in mainstream philosophy of science is found in the
account in the entry entitled Models in Science found
in one of the most prominent encyclopedias of philoso-
phy, coauthored by two leading philosophers of science,
Roman Frigg and Stephan Hartmann. Scale models are
not included under analogical models in that chapter,
and it is claimed that “[t]ypical examples [of scale mod-
els] are wooden cars or model bridges” [39.25]. There
is no recognition in the article of the notion of physi-
cally similar systems or any other methodology of scale
models, in spite of the fact that methods of dimensional
analysis applied to scale models are the topic of count-



Experimentation on Analogue Models 39.1 Analogue Models: Terminology and Role 861
Part

H
|39.1

Support
frame

Air
distributor

Rails Camera
Motor driven carriage

Foam support
for model

0.63 cm thick plexiglas cover

1.25 cm thick, 2.44 m
diameter, rotating steel plate

1.22 m diameter rotating
table

Bearing
surface

30:1
speed reducer

7.6 cm
belt

Base

Lake superior model

30 cm pulley

Fig. 39.2 Side view of Lake Superior
distorted model, “Because of the
large ratio of horizontal to vertical
distances in Lake Superior, the model
was vertically distorted.” The ratio
of vertical distance in the laboratory
model to vertical distance in the
actual Lake Superior is 1=1000
(after [39.22])

less books and papers in a wide variety of journals
in physics and other scientific disciplines. Instead, the
topic of the methodology of scale models is dismissed
with the misguided reasoning that [39.25]

“Scale models seem to be a special case of a broader
category of representations that Peirce dubbed
icons: representations that stand for something else
because they closely resemble it.”

and that “no theory of iconicity for models has
been formulated yet.” Likewise, the philosopherRonald
Giere, widely recognized in philosophy of science for
championing the recognition of the role of models in
science, uses examples such as “Watson’s original tin
and cardboard model of DNA” and “Rutherford’s solar
system model of the atom” as examples of scale models
and analogue models, respectively ([39.26] and [39.27,
p. 747]). Two well-known discussions in philosophi-
cal venues that specifically address experimentation on
laboratory water tank analogue models [39.28, 29] do
not discuss the foundations of the approach used by re-
searchers who actually employ those models, that is,
dimensional analysis and the method of physically sim-
ilar systems.

Hence there is little help to have from the main-
stream philosophical literature as far as understanding
bases for the scientific reasoning involved in actual ex-
perimentation on analogue models by researchers. To
be fair, there are a few works that do make some philo-
sophical points about the methodology, the assumptions
and the limitations of various bases for experimental
methodologies employing analogue models, but they
seem unconnected, in that the mainstream discussions
in philosophy of science that ought to take note of them
seldom do so (Chap. 18 and [39.30–37]). The emphasis

in this chapter will be on the methodologies employed
by the researchers who have effectively used laboratory
experimentation on analogue models: our interest here
is especially in the basis for the inferences drawn using
these analogue models.

39.1.3 Analogue Models in History
of Science

Geophysics
Analogue Models in Geophysics: An Historical Nar-
rative. An example typical of narratives that view
analogue models in terms of their role in the past is
historian Naomi Oreskes’ From Scaling to Simulation:
Changing Meanings and Ambitions of Models in Geol-
ogy [39.38]. According to her narrative, physical scale
models were used in the nineteenth and early twentieth
century, but in the latter part of the twentieth cen-
tury [39.38, p. 93]:

“The word model took on a different meaning:
a computer simulation. For earth scientists, this is
the dominant meaning it holds today.”

The main storyline in her narrative has to do with
the cause of shifts in epistemic goals of geologists in
the late twentieth century. Our interest in this chapter is
simply in the methodology of the analogue models em-
ployed. As Oreskes indicates, the method of physically
similar systems was applied to the question of how to
scale experimental analogue models for the behaviors
of interest in studying geologic structure in the 1930s
byHubbert, in Theory of Scale Models as Applied to the
Study of Geologic Structures [39.39]. It is a means of
obtaining quantitative results about something by tak-
ing measurements on an analogue physical model of it.
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Hubbert cites Galileo’s Two New Sciences, then
works by Newton, Stokes, Helmholtz, and Reynolds
[39.39, pp. 1516–1517]. Hubbert also describes work
done by Koenigsberger and Morath applying physical
similarity to geology [39.39, p. 1518]. Prior to that,
many people had built small tabletop models to inves-
tigate geological processes, but there was good reason
to be skeptical about the validity of these small models;
there was a need, Hubbert said, for [39.39, p. 1463]:

“an objective criterion to enable one to determine
what the correct properties of a model should be for
the best similarity, when the properties of the origi-
nal are known, or whether it is even possible to build
a correct model from available materials.”

Koeningsberger and Morath did “the earliest ex-
plicit application of the method of dimensional analysis
to tectonic structures” that was in 1913 [39.39, p. 1518].
So, Hubbert stresses, what he is advocating is not new.
Hubbert did not use the more mathematically concise
and elegant method of physically similar systems that
Buckingham presented in 1914 and which is described
elsewhere in this volume (Chap. 18), but he did use the
theory of dimensional analysis, systematically develop-
ing and carefully elaborating the dimensionless ratios
associated with providing geometrical, kinematical, and
geometrical similarity between the model and what is
modeled by it. Finding the requirement of dynamic sim-
ilarity too strict to be practical in many cases, he then
goes on to discuss the kinds of approximations that are
appropriate in special cases. He considers special cases
in which inertial forces are very small, ones in which
gravitative forces are negligible, and ones in which re-
sistive forces are negligible, explaining which criterion
can be violated without affecting the results too much
in each case.

As have so many others who have seen themselves
as advocates of the method, that is, as urging the use of
the method of physical similarity to handle previously
unsolved problems in their profession, Hubbert sounds
almost evangelical in his advocacy [39.39, p. 1519]:

“[. . . ] the evidence is in that in remote parts of the
world the geological professional is already awak-
ing to the importance of so powerful a tool as that
afforded by the method of dimensional analysis
and correctly made scale models, for the solving
of problems that have not yielded satisfactorily to
methods of attack previously employed.”

The reasons geophysics needed to use scale models
were very much the same as the reasons scale models
were being used in other areas such as mechanics and
hydrodynamics: the phenomena “are so complicated as

a whole as to render complete mathematical analysis
difficult or impossible” [39.39, p. 1460]. Then:

“where mathematical analysis is inadequate, and
where for one reason or another direct experimen-
tation is precluded, the best remaining alternative is
to construct and study a scale model.”

Writing in 1937, he cites the fields of aerodynamic,
hydraulic, mechanical, and electrical engineering for
their success, then notes that [39.39, p. 1461]:

“The geological problems of mountain making and
of diastrophism in general are peculiarly of the type
that do not lend themselves readily to analysis, and
the size of the elements involved place them beyond
the range of direct experimentation. In this case also
there remains the alternative of studying such phe-
nomena by means of experiments performed upon
properly built small scale models.”

In the preface to a later paper The Strength of the
Earth, in which he resolved an apparent paradox in
geophysics by appealing to physical similarity,Hubbert
explained the value of the approach [39.40]:

“By means of the principles of physical similarity, it
is possible to translate geological phenomenawhose
length and time scales are outside the domain of
our direct sensory perception into physically simi-
lar systems within that domain.”

He shows the value of developing the character-
istics of the materials that would be needed to make
a physically similar laboratory model, and shows that
even the knowledge of what the physically similar lab-
oratory model would be like is informative. For the
purpose of resolving the apparent paradox, understand-
ing scaling relations for the case of the earth is all that
is needed [39.40, p. 1653]:

“We learn that the resemblance of the behavior of
rocks on a length scale of thousands of miles and
a time scale of millions of years is not to that of
rocks with which we are familiar but rather to that
of the viscous liquids and weaker plastics of our per-
sonal experience.”

However, the fact that such qualitative lessons can
be drawn does not obviate the need for building the
models to learn about tectonics in many cases, and even
in the same paper in which Hubbert makes the general
observation just quoted, he reviews various experimen-
tal scale laboratory models that had been built using the
method of physical similarity [39.40, p. 1653].

Translating geological phenomena occurring out-
side the domain of our direct sensory perception into
that domain is of course extremely significant in the
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field of geophysics, due to the large sizes and long time
scales involved. Given that philosophy has so seldom
included this method of experimentation among seri-
ous scientific reasoning, the attention Oreskes gives to
Hubbert’s work on applying physical similarity to geo-
physics, though not her main point, is a valuable rarity
in the literature of history and philosophy of science.

Analogue Models in Geophysics: The Case of Vol-
canology. One area of geophysics where physical
similarity has been employed is volcanology. There are
different kinds of volcanoes; volcanoes can differ in
configuration and in the mechanisms by which they
were formed, for instance. Further, the configurations
are seldom static: a given volcano’s configuration can
change during the process that is of research interest
(e.g., eruption, spreading). Some processes take place
over time periods that are very short, involving very
high velocities, and others take place over long time
periods, for example, slow changes between eruptions.
Concurrent processes are often studied separately in or-
der to understand the mechanisms involved. Sometimes
the study focuses on the peculiarities of a specific vol-
cano, and sometimes the subject of the investigation is
about general processes and not specific to any volcano.
Thus no single example of an analogue model from vol-
canology is likely to be representative. An example of
the use of physical similarity that illustrates how its ap-
plication can involve very different analogue models of
the same volcano is the use of various scaled experi-
ments of different mechanisms involved in the ongoing
evolution of Mt Etna in Italy, especially volcano spread-
ing and dike propagation.

To investigate the process of volcanic spreading,
cones of sand on layers of sand and silicone were
used [39.41]. Volcanic spreading is a long-term process
and it involves more than one factor, but the effect of
the weight of the volcano on the substratum is one of
them. Identifying what the model does not do is part of
explaining the model, and the researchers state up front
that

“Our experiments do not model the effect of the
intrusive complexes; they cannot be used as ex-
act scale analogs of volcanoes where the intrusive
complexes give the dominant contribution to defor-
mation [. . . ]”

citing other experiments that do so. They add: “[. . . ]
our experiments do not model the effect of subsidence
due to crustal flexure under the load of volcanic edi-
fices” and note that effect is in fact important for some
specific volcanoes and kinds of volcanoes. Their model
considers the volcano already cooled, so they are not
modeling thermal effects in the experiment, either. Nor,

they add, do they take into account “any contribution of
magma forces to the destabilization process” [39.41].

Their explanation of the value of an analogue model
of volcano spreading that neglects so many mechanisms
is that it can show a relation between the mechanism
they wish to model and an effect that can be observed
in both the model and the thing modeled. Figures 39.3
and 39.4 show the schematic and photographic views
of the experiment. Drawing on previous results by oth-
ers, they use dry sand in the small laboratory model as
an analog of brittle rocks in the actual Mt Etna vol-
cano [39.41, p. 13808]. The spreading in the model
(analogue volcano) experiment takes less than a day;
a record of the experiment is made using overhead time
lapse photography of the surface of the spreading sand
cone [39.41, p. 13807].

The model is constructed by taking the approach of
preserving the dimensionless ratios important to the be-
havior of spreading, as best they can, and prioritizing
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Fig. 39.3a–c Schematic of experiment of spreading vol-
cano, from initial state of laboratory model to 10 h from
initial state. (a) Initial stage (cross section); (b) state after
deformation (cross section); (c) state after deformation (top
view) (after [39.41])
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a)

b)

Fig. 39.4a,b Analogue volcano made of sand, from initial
state (a) to end of spreading experiment 10 h later (b). From
Merle and Borgia [39.41], who find the pattern in the end
state above remarkably similar to pattern in actual volcano
shown in Fig. 39.5

some ratios over others. The choice of dimensionless
parameters and ratios here is not done from scratch
by analysis of the specific problem they are investigat-
ing, but draws on Hubbert’s analysis of these kinds of
problems in geophysics. One interesting aspect of this
experiment is that some of the ratios change signifi-
cantly during the experiment itself. Table 39.1 shows
the dimensionless variables used. (A note about the no-
tation in the chart in Table 39.1: Although the Greek
letter˘ is used to denote dimensionless variables there,
not all dimensionless variables indicated in Table 39.1
have the same role as a dimensionless˘ -group or a di-
mensionless parameter as that term is commonly used
in dimensional analysis (Chap. 18 and [39.33, 34]).

Table 39.1 Average dimensionless numbers for experiments in actual volcano (Field) and in laboratory analogue volcano
(Experiment) (after [39.41]). Because the configuration changes dramatically during the volcano spreading experiment,
some of these ratios change in value during the experiment. Each experiment is characterized in terms of the values these
dimensionless variables take on for that experiment

Dimensionless variable Definition Value
Field Experiment

˘1 Height/radius of volcano 0:15�0:2 0:58 ! 0:18
˘2 Brittle substratum/height of volcano 0�1:5 0:1 ! 0:22
˘3 Brittle/weak substratum 0�15 1 ! 2
˘4 Volcano/substratum density 1�1:4 1
˘5 Gravitational/viscous forces 790 1200
˘6 Frictional/viscous forces 82�327 160
˘7 Inertial/viscous forces 10�20 10�12

1 km

Fig. 39.5 Summit of Mt. Etna volcano as a digital ele-
vation model (after [39.41], courtesy of Macedonio and
Pareschi, University of Pisa)

The analogue spreading volcano experiment is run
using different substratum layers (brittle layer only,
brittle layer and ductile layer, ductile layer only) and
a buffering solid boundary that buttresses the cone. The
experiments are characterized in terms of the values of
the dimensionless variables [39.41, p. 13809]. The au-
thors remark on the ability of such simple experiments
to model features of the natural volcano that had not
been modeled before.

More recently, a completely different mechanism
suspected to be occurring in the same volcano (although
this samevolcano,MtEtna, had erupted in themeantime,
including flank (side) eruptions) was modeled by an ex-
periment that modeled a very different kind of mecha-
nism: magma emplacement in the volcano [39.42]. In
this model, a viscous material was injected into a cone
of granular material. An aerial view ofMt Etna is shown
in Fig. 39.6. The experimental apparatus for the labora-
tory analogue model used to study the consequences of
magma emplacement is shown in Fig. 39.7.
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The experimental apparatus and methods used pro-
duce measurements of high precision. The size of
the model, the materials used in the model, and the
scaling of quantities of interest are developed using
dimensional analysis, again citing the work of Hub-
bert [39.42, Section 3.2].

The research into the mechanisms at work in the
Mt Etna volcano using analogue volcanoes is of more
than theoretical interest, as thousands of deaths have al-
ready resulted from Mt Etna’s eruptions. Predicting the
future is certainly of interest in the employment of this
analogue model; the safety of many could depend upon
an understanding of how this specific volcano behaves.
The authors note that the use of an analogue model to
precisely model the displacements of a specific volcano
quantitatively, as was done in their study, is a new use
of analogue models in volcanology, and that this work
could lead to an advanced generation of analog models
that could be compared with those of the actual volcano,
and could aid simulation studies [39.42, pp. 18–19].

Analogue Models in Geophysics: The Lessons
of History. Oreskes’ narrative, though a welcome rar-
ity in mentioning the historical role of physical simi-
larity, contains a statement about the role of analogue
models that could mislead readers into thinking that
(or reinforce existing prejudices that) physical analogue
models are dispensable in geophysics. As this is a rather
commonmisconception in philosophy of science today,
it is useful to confront it here. Oreskes writes [39.38,
p. 113]:

“If one could calculate the required properties of
materials in a scale model, then there was actually
no need to build the model itself. One could simply
calculate the property of interest.”

It is not clear what is the basis of such a claim could
be; building and running experiments with analogue
models have been shown to be important in many cases
in geophysics from Hubbert’s day all the way up to the
present. Oreskes continues: “In principle, a computer
simulation can be used in precisely the same manner as
a mimetic physical model to demonstrate circumstances
capable of producing known effects” [39.38, p. 113].
This statement gives pride of place to computer sim-
ulation in geophysics, which is not deserved. The “in
principle” qualification, which is actually an extremely
significant qualification, needs to be given sufficient
weight.

First, it needs to be emphasized that experimenta-
tion on analogue models has not been supplanted by
computer simulations; it is surprising how often the
misconception that they have been is voiced. Granting
that sophisticated computing methods implemented on
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Fig. 39.6 Mount Etna volcano, aerial view. The green area is un-
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Fig. 39.7 Experimental apparatus used to model magma
emplacement by the injection of silicone putty or vegetable
oil into an analog volcano (after [39.42])

digital computers are now used for many of the tasks
for which analogue models were at one time used, this
still does not mean that analoguemodel experiments are
now dispensable. In many cases – perhaps even in most
cases – a great deal more knowledge would be needed
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in order to construct a computer simulation than would
be needed to construct and use an analogue model ex-
perimentally in order to yield new knowledge. This is
clearly the case in geophysics. Computer simulation
is often preferred for reasons of cost and adaptabil-
ity, but it cannot be considered a satisfactory substitute
for experimental analogue models in general. Analogue
models can be extremely expensive, due to the labora-
tory personnel and facilities involved in constructing,
instrumenting, and carrying out experiments on models
with a high degree of precision. Yet, even costly ana-
logue models are still used to this day, as they often
reveal phenomena that a computer simulation built us-
ing current knowledge does not. This has been as true
in other areas such as aeronautics as it has been in geo-
physics and physical earth sciences: the demise of the
wind tunnel has been predicted quite a few times over
the last century, but, in spite of such predictions, wind
tunnels are still considered indispensable today. So, too,
are the analogue models – some quite costly – used in
geophysics today.

Second, it needs to be emphasized that most com-
puter simulations rely upon information gained by ob-
servation and experimentation, especially experimen-
tation on analogue models. The current practice, in
geophysics as in so many other fields, is to use both
kinds of models in conjunction; over the long term, each
methodology can help inform and improve the other
([39.42] and [39.43, p. 1317]). But there is an asymme-
try: while analoguemodel experiments can be and in the
past were performed without benefit of computer sim-
ulations, most computer simulations relied heavily on
knowledge gained from analogue model experiments –
whether today’s users of such sophisticated computer
packages realize it or not. One practical benefit of com-
puter simulations that accounts for their popularity and
widespread use is the ease with which a model can
be modified. The advantage of cost and adaptability
of computer simulations led to their adoption in cases
where the mechanisms were well understood, and this
was followed by over-reaching claims about what com-
puter simulations were capable of replacing. That these
claims were over-reaching is seen in retrospect; we can
now see that, in geophysics as in many other fields,
experimentation on analogue models has not only not
been replaced, but still holds an irreplaceable role in
investigation.

Role of Analogue Models vis a vis Numerical Com-
puter Simulation. These points about the role of
analogue models – that is, their use in conjunction with,
rather than their displacement by, numerical simula-
tion computer methods in the post-computer era – is
readily seen by looking at actual examples of recent re-

search using analogue models. Many examples would
serve for this; here we shall look at the details of an
example from a recently published (2014) investigation
carried out by researchers at Caltech and the University
of California and published in a major venue (Journal
of Geophysical Research: Solid Earth): the experimen-
tal investigation of strong ground motion due to thrust
fault earthquakes [39.43].

In this investigation, the topic is not the geome-
try of the changes caused by the earthquakes, but the
rupture velocity. Previously, there had been a ques-
tion of whether the rupture proceeds below or above
the velocity at which the seismic shear wave propa-
gates; though observations that supershear ruptures had
occurred in natural earthquakes began piling up, their
existence went against well-established belief. Accord-
ing to Gabuchian et al. [39.43], the role of analogue
laboratory models in the discovery and acceptance of
the occurrence of a high-speed “rupture velocity” that
does exceed this critical velocity was profound: they
write that [39.43, p. 1317]:

“it was the experimental discovery of supershear
ruptures occurring repeatedly and reproducibly un-
der highly instrumented and controlled laboratory
conditions [. . . ] that stimulated the recent flurry of
theoretical activities on the subject.”

They report that the theoretical activities were them-
selves changed in important ways as a result of the
laboratory results; [39.43]

“it motivated seismologists to remove [certain speed
restrictions], to revisit a number of historic earth-
quake events, and to reexamine irregular field ob-
servations in search for such a phenomenon.”

Gabuchian et al. argue that analogue experiments
are crucial in developing and validating numerical
models [39.43], and that, even more importantly, they
are [39.43, p. 1317]:

“the only way to provide fresh observations of pre-
viously unknown phenomenon (discovery) that can
then be investigated in numerical models and in
seismological data. Indeed, many of the effects of
dip-slip faults [. . . ] were predicted by the analog
foam rubber models of Brune [39.44]. Thus, labo-
ratory experiments, numerical models, and seismic
observations can be used together and iteratively to
more fully investigate the physics of faulting.”

Gabuchian et al.’s earthquake investigation [39.43]
uses an analog material called homalite, which is
a high-density photoelastic polymer material. The ma-
terial is prepared and the setup instrumented in such
a way that it provides a high-precision model of lab-
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oratory earthquakes, with respect to the quantities mea-
sured. The results are also visually accessible. Many
analogue models in geophysics use materials more
like the material modeled, as in the volcanic spread-
ing example. The use of a photoelastic polymer such
as homalite in which shocks are caused thermally or
electrically – rather than being mechanically induced –
reflects both the recent development of new laboratory
techniques and the recognition that fundamentally dif-

ferent processes may need to be studied now in order
to understand the consequences of the phenomena of
dynamic fracture. Experimental reproducibility is ad-
dressed in their studies, too [39.43, Section 4.3]. The
interest here is definitely not limited to explaining the
past, but in using analogue models to understand the
future as well as the past.

A sketch of the experimental specimen used in
Gabuchian et al. experiments is shown in Fig. 39.8.



Part
H
|39.2

868 Part H Models in Physics, Chemistry and Life Sciences

As indicated in Fig. 39.8, one of the surfaces of
the specimen serves as a simulated earth’s surface.
The design and sizing of the specimen involved some
mathematical analysis; avoiding reflected waves and
buckling were two requirements that had to be met.
The photoelastic images revealing the difference be-
tween the experimental results in the subcritical and
supercritical cases are very striking and shown in
Fig. 39.9. We shall not go into the details of the re-
sults here, except to point out the Mach cone in the

supercritical case (on the right-hand side of Fig. 39.9),
and that one can visually compare the photoelastic
image of the supercritical case to that of the pho-
toelastic image of the subcritical case (left side of
Fig. 39.9).

The significance of this research for our purposes is
that, as described above, this research using analogue
volcanoes shows a significant feature, or phenomenon,
that was not uncoverable using existing methods of an-
alyzing earthquakes [39.43].

39.2 Analogue Models in Physics

Analogue models are “a constant presence in the world
of physics and an invaluable instrument in the progress
of our knowledge of the world that surrounds us,” in
the words of the editors of a recent (2013) collection
on the use of analogue models in contemporary the-
oretical physics [39.8], though, as they point out, it
“would be impossible to give a comprehensive list of
these analogue models” [39.8, p. v]. One especially
interesting example in theoretical physics is the use
of analogue models of space-time briefly mentioned
in the opening of this chapter. A variety of such ana-
logue models have been proposed, including analogues
that employ surface waves, Bose–Einstein condensates,
graphene sheets, optical fibers, optical glass, and laser
pulse analogues. Some of these have so far only been
used in probing questions about gravity and space-time
theoretically, but some have also been used to actually
construct analogue models in the laboratory [39.8].

39.2.1 Lessons from the Nineteenth Century

The use of analogue models in investigating cosmology,
for example, analogue space-times, or analogue gravity,
may seem quite distant from the more familiar analogue
models in geophysics and nineteenth century mechan-
ics, but, conceptually, it actually looks like a most nat-
ural outgrowth of them. In the late nineteenth century,
while engineers were developing similarity methods to
improve their designs of and predictions about ships and
structures, physicists explicitly employed analogies to
help them think through theory and come up with ex-
periments about light, heat, sound, electricity, and mag-
netism. One of the most well known of these was the
analogy between light and sound that was based on the
fact that both were waves; another was the analogy be-
tween fluid, heat, and electrical currents that was based
on the fact that the partial differential equations describ-
ing all three such flows were of the same form.

39.2.2 Sound as an Analogue of Light:
The Power of Experimentation
on Analogues

The analogy between light and sound was especially
fruitful in the development of the correct understanding
of the Doppler effect. (The Doppler effect is the change
in frequency observed due to relative motion between
the source of a wave and an observer. If the relative mo-
tion between source and observer is toward each other,
the observed frequency increases; if the relative motion
between source and observer is away from each other,
then the observed frequency decreases.) To put it more
precisely, the relevant factor is the ratio of the veloc-
ity of the relative motion between observer and source
to the velocity c, where c is the velocity of sound for
a change in pitch, or the velocity of light for colour
shift. Because the velocity of light is so high, the veloc-
ity of motion required to create an observable change
in pitch is much, much less than that required to create
an observable change in colour [39.3, p. 18]. Mach de-
vised and carried out laboratory experiments in which
changing the relative motion between the observer and
the sound source resulted in changes in observed fre-
quency [39.2], concluding in 1860 that “the fluctuation
in the pitch is dependent on no other circumstance than
the direction and speed [of the source] with respect to
the observer” ([39.1] and [39.3, p. 18]).

Could the laboratory experiments using sound be
considered an analogue for light in a serious scien-
tific sense? Eventually, Mach became convinced that
they could be; in 1878 he published an article on it,
no longer hesitant about extending the Doppler prin-
ciple from his experiments on sound to the realm of
optics. The Doppler effect for light, he argues, follows
from the characteristics of light that are common to
both sound and light waves. He does not need to as-
sume that light is a mechanical wave in order to extend
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his results from sound to light. The characteristics that
light and sound have in common that are relevant to
applying the Doppler principle are things such as be-
ing propagated in time with a finite velocity, having
spatial and temporal periodicity, and being able to be
algebraically summed. This characterization does not
assume the existence of a medium for light. Mach con-
siders the experiments on sound to be confirmatory for
light, and argues that on the basis of them he can con-
clude with confidence that the Doppler principle applies
to light [39.1, 3].

To lay out the reasoning that Mach eventually uses
in claiming that his experiments on the Doppler ef-
fect for sound waves in the laboratory are confirmatory
of the Doppler effect for light propagation in astron-
omy: His theory is that it is the relative motion of wave
(or signal) source and observer that is responsible for
the Doppler effect. Mach identifies the characteristics
common not only to light and sound, but also to all os-
cillatory motion, that he believes are sufficient for the
occurrence of the Doppler effect. He shows that any os-
cillatory motion having these characteristics will give
rise to the Doppler effect, according to his line of rea-
soning. The mechanism does not matter; he is explicit
about this point, in part because he wishes to empha-
size that the existence of the Doppler effect for sound
does not depend on features of the medium of trans-
mission. Mach then experimentally confirms that, as his
reasoning predicts, the Doppler effect arises for sound
in a laboratory setup that allows him to manipulate the
relative motion of signal source and observer. Based
upon the fact that light has in common with sound those
characteristics he has shown are responsible for giving
rise to the Doppler effect according to his line of reason-
ing, he concludes that the experimental confirmation of
his experiments for sound in the laboratory applies to
light in astronomical observations [39.3]. As we shall
see, this kind of approach using analoguemodels is very
much like approaches still in use in physics today.

39.2.3 Water as an Analogue of Electricity:
Limitations of Generalizing
from Analogues

The nature and limits of analogical reasoning, includ-
ing reasoning about experiments on analogues, was also
a concern of nineteenth century physics. In a paper enti-
tled On Discontinuous Movements Of Fluids (which is
discussed in more detail in Chap. 18, in this volume),
Helmholtz points out both the invaluable role that ana-
logue models can fulfill, and the limitations they may
display.

As for the limitation of analogical reasoning on
the basis that two things instantiate the same equation,

Helmholtz notes that “the partial differential equations
for the interior of an incompressible fluid that is not
subject to friction and whose particles have no motion
of rotation” are precisely the same as the partial dif-
ferential equations for “stationary currents of electricity
or heat in conductors of uniform conductivity” [39.45].
Yet, he notes, even for the same configurations and
boundary conditions, the behavior of these different
kinds of currents can differ [39.45, p. 58]. The expla-
nation he gives is that in some situations, “the liquid
is torn asunder,” whereas electricity and heat flows are
not. Based upon observations, the difference in behav-
ior between fluid currents on the one hand and electrical
and heat currents on the other is due to “a surface of
separation” that exists or arises in the case of the fluid.

Helmholtz identifies another method [39.46, p. 68]:

“In this state of affairs [the insolubility of the hy-
drodynamic equations for many cases of interest] I
desire to call attention to an application of the hy-
drodynamic equations that allows one to transfer
the results of observations made upon any fluid and
with an apparatus of given dimensions and veloc-
ity over to a geometrically similar mass of another
fluid and to apparatus of other magnitudes and to
other velocities of motion.”

The method Helmholtz is referring to, which he pre-
sented in this now-classic paper (originally published
in German in 1873), thus differs from deducing predic-
tions from theory. The method he presents there does
make use of the fact that the same equation applies to
both situations to provide a basis for using one situa-
tion as an analogue for another. However, Helmholtz
derives the dimensionless parameters that must be made
the same between analogue model and what is modeled.
The topic is discussed in more detail in Chap. 18. What
Helmholtz describes is a special case of a scale model,
for he specifies that the bodies are to be geometrically
similar, and involve fluids to which the hydrodynamic
equations apply. This is a use of an analogue model
in which the basis for drawing the analogy, although
it makes use of the fact that there is an equation in-
stantiated by analogue and thing modeled, does not rely
on that fact alone: there are dimensionless parameters
that must be held the same between analogue and thing
modeled.

This kind of concern about basing the use of an
analogue model on the fact that the analogue model
and what it models both instantiate the same equation
is reflected in critiques of their use in physics today.
The concern Helmholtz raised in the nineteenth century
(about the surfaces of separation that arise in fluid flow)
regarding the limitations of analogues between differ-
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ent kinds of flow (heat, electrical, hydrodynamic) arises
today not only when there is a difference in material or
what is flowing, but also when the scales between lab-
oratory model and what is modeled are so different that
one cannot assume that the same forces or mechanisms
are at work in analogue model and what is modeled.

Whether the physicists using analogue approaches
in twenty-first century physics realize it or not, the new
methods they are developing and the concerns they are
raising about them have precursors in the nineteenth
century.

39.2.4 Some Recent Results Using
Analogue Models

The use of analogue models of space-time in the
twenty-first century involves drawing analogies be-
tween flows of various sorts, too. However, the interest
does not seem to be historically continuous with the
nineteenth century efforts.

Unruh’s 1981 Experimental Black-Hole
Evaporation?

The current interest in analog models of gravity is usu-
ally traced to a paper by William Unruh published in
1981. In that very short paper,Unruh addressed what he
called “one of the most surprising discoveries of the past
ten years”: black hole evaporation.He noted that [39.47]

“experimental investigation of the phenomenon
would seem to be virtually impossible, and would
depend on the highly unlikely discovery of a small
black hole (a relic of the initial stages in the life of
the universe perhaps) of the earth.”

However, he said, “a physical system exists which
has all the properties of a black hole as far as thermal
radiation is concerned, but in which the physics is com-
pletely understood” [39.47].

The physical system he referred to was a soundwave
propagated in supersonic flow. He restricted consider-
ation to cases of “the background fluid smoothly ex-
ceeding the velocity of sound” which, he notes, can be
assured by the use of “a suitably shaped nozzle” [39.47,
p. 1352, n. 7]. Indeed, such a “suitably shaped” noz-
zle exists; the DeLaval nozzle (Fig. 39.10) was invented

Throat Exhaust
x

Entry

Fig. 39.10 DeLaval nozzle (after [39.48, p. 380])

in the nineteenth century for steam applications, and is
used in rocket design andmany other applications today.

This insightful invention can be used to create con-
ditions for smooth supersonic flow (i. e., a region in
which flow is supersonic but a shock wave does not oc-
cur) [39.48, p. 380].

Normally, in a pipe or convergent (decreasing cross-
sectional area) nozzle, once flow reaches the critical
flow, or choked conditions, the velocity of the flow
at the throat of the nozzle does not increase, even if
the pressure upstream increases. However, if the con-
vergent nozzle has an appropriately designed divergent
nozzle attached to its outlet, it is possible for the veloc-
ity of the flow to increase in the divergent (increasing
area) portion of the nozzle, after passing through the
throat (minimum area) of the nozzle. The striking thing
about this situation (as many engineers are aware) is
that changes in the downstream pressure do not affect
the rate of flow in the nozzle. Considering the phe-
nomenon in terms of pressure signals, one way to think
of this is that the information that the pressure down-
stream has changed (i. e., a pressure signal or pressure
pulse) cannot travel back upstream to the throat of the
nozzle [39.49]. This feature of flow in a DeLaval nozzle
is depicted in Fig. 39.11.

This physical situation is an analoguemodel, in that,
as Unruh put it: “The model of the behavior of a quan-
tum field in a classical gravitational field is the motion
of sound waves in convergent fluid flow” which, he
added [39.47, p. 1353]:

“forms an excellent theoretical laboratory where
many of the unknown effects that quantum grav-
ity could exert on black hole evaporation can be
modeled [. . . ] the phonons emitted are quantum
fluctuations of the fluid flow and thus affect their
own propagation in exactly the same way that gravi-
ton emission affects the space-time on which the
various relativistic fields propagate.”

He had some doubts about how detectable the emis-
sion would be in that physical system, though.

υ> c supersonic

Sound waves cannot
travel upstream

H
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Flow

Fig. 39.11 Scheme of a DeLaval nozzle showing important
features of flow behavior (after [39.49, p. 89])



Experimentation on Analogue Models 39.2 Analogue Models in Physics 871
Part

H
|39.2

Reasoning About Analogues of Gravity Before
and After 1981

Visser notes that, actually, notions of analogues of grav-
ity “have, to some extent, been quietly in circulation
almost since the inception of general relativity itself”
citing Walther Gordon’s introduction of “a notion of ef-
fective metric to describe the effect of a refractive index
on the propagation of light” and “notions developed in
optics to represent gravitational fields in terms of an
equivalent refractive index” [39.6]. Max Born’s sonic
analogue of the kinematics of special relativity might
be cited as another example of sorts [39.50, p. 251],
also quoted and discussed in [39.3]:

“[. . . ] if we use sound signals to regulate the clocks,
Einstein’s kinematics can be applied in its entirety
to ships that move through motionless air. The sym-
bol c would then denote the velocity of sound in
all formulae. Every moving ship would have its
own units of length and time according to its ve-
locity, and the Lorentz transformations would hold
between the systems of measurement of the various
ships. We should have before us a consistent Ein-
steinian world on a small scale.”

Nonetheless, Unruh’s short 1981 paper is regarded
as marking a new era in the revival of analogue notions
of gravity, although the thinking concerning the ana-
logue involved in it has progressed since then. Whereas,
in the 1981 paper, Unruh had proposed an analogue
involving sound traveling in a fluid flowing through
a nozzle, by 2002, Schutzhold and Unruh [39.51] pro-
posed “gravity waves of a flowing fluid in a shallow
basin” as an analogue to study black holes in a curved
space-time. The surface wave setup permitted manip-
ulations not available in the earlier proposal, due to
being able to alter the depth of the water. The reason-
ing Schutzhold and Unruh use here appeals to “similar
equations”, that is, that the behavior of interest in the
analog and the behavior of interest in what the ana-
logue models are described by equations of the same
form [39.51, emphasis added]:

“Analogs, which obey similar equations of motion
to fields around a black hole raise the possibility of
demonstrating some of the most unusual properties
of black holes in the laboratory. This is the basic
idea of the black and white hole analogs [. . . ] origi-
nally proposed by Unruh [in 1981] [. . . ]. The sonic
analogs established there are based on the observa-
tion that sound waves in flowing fluids are (under
appropriate conditions) governed by the same wave
equation as a scalar field in a curved space-time.
The acoustic horizon, which occurs if the velocity
of the fluid exceeds the speed of sound within the

liquid, acts on sound waves exactly as a black hole
horizon does on, for example, scalar waves.”

However, there is also reasoning about aspects of
the analogue model (surface waves in fluid) that is not
part of the analogy, in a way that aims to show how
the fuller knowledge we have about the analogue model
might be drawn upon [39.52, p. 2908]:

“In the case of a fluid, one knows that the fluid equa-
tion of motion is inapplicable at high frequencies
and short wavelengths. At wavelengths shorter than
the interatomic spacing, sound waves do not exist
and thus the naive derivation of the temperature of
[sonic analogues of black] holes will fail. But un-
like for black holes, for [sonic analogues of black]
holes, the theory of physics at short wavelengths,
the atomic theory of matter, is well established. For
black holes, a quantum theory of gravity is still
a dream. Thus, if one could show that for [sonic ana-
logues of black] holes the existence of the changes
in the theory at short wavelengths did not destroy
the existence of thermal radiation from a [sonic ana-
logue of a black] hole, one would have far more
faith that whatever changes in the theory quantum
gravity created, whatever nonlinearities quantum
gravity introduced into the theory, the prediction of
the thermal radiation from black holes was robust.”

This is basically an attempt to identify the relevant
characteristics of a system of which the thermal radi-
ation is a consequence. The approach is reminiscent of
Mach’s approach in investigating the Doppler effect: if
features other than the relative motion of source and
observer did not make a difference to the existence of
the Doppler effect, that would increase confidence (or
show to those who were sceptical) that the Doppler ef-
fect depended only on the relative motion of source and
observer. In this case (sonic analogues of black holes),
if features other than those related to instantiating the
equation that the black hole and the sonic analogue for
it had in common seemed not to make a difference to
the existence of a certain effect, then one’s confidence
that the effect followed in virtue of a system instantiat-
ing the equation would be strengthened. But it could go
the other way, too [39.52, p. 2908]:

“On the other hand, if the introduction of the atom-
icity of matter invariably destroyed the thermal
radiation for [sonic analogues of black] holes, one
would strongly suspect that the thermal nature of
black holes would not survive the complications in-
troduced by quantum gravity.”

Unruh had shown concern from the start that Hawk-
ing’s derivation of black hole evaporation relied upon
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assumptions he describes as absurd. There was thus
value in being able to sort out which features or char-
acteristics of the situation are actually responsible for
the Hawking effect. Visser had argued [39.53] that
Hawking radiation is a kinematic effect independent of
dynamics; In Schutzhold and Unruh’s 2002 paper, they
remark on what this means for the value of analogue
models of gravity [39.51]:

“Although the kinematics of the waves propagating
within the black and white hole analogs are gov-
erned by the same equation as those in a curved
space-time, the dynamics of the effective metric it-
self are not described by the same laws as gravity
(i. e., the Einstein equations) in general.
In this way the analogs allow one to separate the
dynamical effects of gravity (following from the
Einstein equations) from more general (kinematic)
phenomena.”

Our interest here is in the methodologies that are
used to underwrite the use of analogue models to serve
as models of what they are used to model. However, it
is worth noting that this use of analogue models – that
is, using them to help sort out what the phenomenon of
interest is dependent upon for its existence – is a valu-
able help that analogue models can provide when there
is dispute about the dependency. It is not a new kind of
reasoning, of course, for we saw that Mach used it in
his experiments on the Doppler effect, especially to ar-
gue against a view held by others (e.g., Petzval) that
the phenomenon arose from features of the medium
of transmission. Nor does reasoning about sorting out
dependencies necessarily require the use of analogue
models or experimentation; mathematicians often show
that a result can be proven with fewer assumptions than
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Fig. 39.12 Experimental apparatus in Weinfurtner et al.: Analogue
model of Hawking emission (after [39.54]): (1) holding reservoir,
(2) pump and pump valve, (3) intake reservoir, (4) flume, (5) obsta-
cle, (6) wave generator, (7) adjustable weir

currently known proofs, without resorting to laboratory
experiments to do so.

Sorting out Dependencies: Measurements of Stim-
ulated Hawking Emission in an Analogue System.
When Hawking radiation was finally measured in an
analogue model of a black hole, it was for exactly
this benefit – sorting out dependencies – that it was
especially valued, and the interest was in observing
the existence of the phenomenon. Unruh argued for
his view that the result of the experiment counted as
a genuine measurement of Hawking radiation in 2010;
there are also comprehensive reports on the experiment
by the experimental team headed by Silke Weinfurt-
ner et al. [39.54, 55]. The laboratory setup is shown
in Fig. 39.12 [39.54, Figure 8.2]: a region of high-
velocity flow, including (surface wave) horizons, is
created by placing a streamlined obstacle in the water
flume [39.54, Figure 8.4], as seen in Fig. 39.13.

Against this flow, long waves are propagated, which
become blocked and converted into short waves, thus
creating a laboratory analogue of the behavior of inter-
est [39.55, p. 120312–2]:

“It is this blocking of the ingoing waves that creates
the analogy with the white hole horizon in general
relativity. That is, there is a region that the shallow
water waves cannot access, just as light cannot enter
a white hole horizon. Note that while our experiment
is on white hole horizon analogs, they are equivalent
to the time inverse of black hole analogues.”

Rousseaux illustrates the effect occurring in na-
ture: Fig. 39.14 below, of a white hole formed where
a river enters the sea, is one such example from his
work [39.56]. Other examples are fluid being poured
into a sink, and a whale’s fluke-print [39.56, p. 99]:

“As a whale swims or dives, it releases a vortex ring
behind its fluke at each oscillation. The flow induced
on the free surface is directed radially and forms an
oval patch that gravity waves cannot enter [. . . ].”

In the 2011 paper by Weinfurtner et al., Measure-
ment of Stimulated Hawking Emission in an Analogue

3
21b1a

Fig. 39.13 Obstacle in Weinfurtner et al. experiments (af-
ter [39.54]): (1a) and (1b) curved parts motivated by
airplane wing; (2) flat aluminum plate to further reduce
flow separation; and (3) flat top aluminum plate to reduce
wave tunneling effects
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Fig. 39.14 White holes in nature. Where a river enters the
sea, the sea waves may be blocked (after [39.56])

System, the authors note that they already had numer-
ical studies indicating that “the [Hawking] effect is
independent of short-wavelength physics” [39.55]. The
motivation for experimentation on the analogue model
is that, were they to be able to show that there was
thermal emission in their physical setup, this would
“indicate the generic nature of the Hawking thermal
process.” This is because the water tank/flume physical
system “exhibits turbulence, viscosity, and nonlineari-
ties”; their argument seems to be that the existence of
thermal emission in spite of these would show that the
process is a feature that follows from the wave kinemat-
ics of the physical setup, not forces arising due to these
other features of the setup. And, if that were true, the
result would be a very general one, applying to waves
of any sort.

The measurement result is not as simple as provid-
ing the value of a quantity; the researchers identified
a certain dimensionless parameter having to do with
the ratio of the amplitudes of the waves that were ab-
sorbed to those that were emitted, which is important in

describing thermal (Hawking) emission, and they inves-
tigated how it scaled with frequency. This was a check
that what they were observing did have the character
of the theorized emission, that is, this ratio scaled with
frequency in just the way one would expect thermal
(Hawking) emission to.

The role of the results from the analogue model
do not have their significance as stand-alone results; as
Weinfurtner et al. point out, there are certainly other,
theoretical reasons for suspecting the thermal emission
to be independent of quantum gravity or Planck-scale
physics. There are other reasons for departing from the
view Hawking had when he first discovered it, that
is, for abandoning the view that thermal emission was
“a feature peculiar to black holes” [39.54, p. 179],
notably Visser’s work in 1998 mentioned above, in
which he argued that Hawking radiation is a “purely
kinematic effect” that is “generic to Lorentzian ge-
ometries containing event horizons” [39.53, 57]. The
experimentation on an analogue model demonstrated
how to create and measure such thermal emission
in a laboratory setup with classical waves, lending
support to the theoretical conclusions that the phe-
nomenon is a far more general feature of waves in
systems of a certain sort. Weinfurtner et al. close
the paper in which they report their results with an
indication of even more valuable work that experi-
mentation on analogue models of black holes might
do [39.55]:

“It would still be exciting to measure the sponta-
neous emission from a black hole. While finding
small black holes to test the prediction directly
is beyond experimental reach, such measurements
might be achievable in other analogue models,
like Bose–Einstein condensates, or optical fibre
systems. [citing such models being developed by
others.]”

39.3 Comparing Fundamental Bases for Physical Analogue Models

Analogue models are often described in terms of an
equation that both a physical model and what it mod-
els have in common; on such an account, an analogue
model is described as one of two physical setups in-
stantiating a certain equation. Common examples are
a hydraulic system and an electrical system (each of
which can serve as an analog model of the other), or an
oscillating electric circuit modeling an oscillating me-
chanical device. This is certainly one kind of basis for
an analogue model. However, as the discussions in this
chapter drawing on actual scientific practice indicate,

instantiating the same equation is not always the ba-
sis used to develop, justify, and reason using analogue
models. The actual logic involved is often far more so-
phisticated, and sometimes does not require as much
knowledge about the phenomenon one wished to bring
about as the approach of exhibiting an equation that
is instantiated by both the model and the thing mod-
eled does. Gathering together the insights above, along
with points made in the sources cited, three kinds of
bases for analogue models can be identified. These are
depicted in Table 39.2. Besides the account just men-
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Table 39.2 Three bases for experimentation on a physical analogue model

Basis for analogy between physical analogue model
and thing modeled

Knowledge relied upon

1. Equation in common
The equation governing a quantity or phenomenon in the
model is the same equation governing the corresponding
quantity or phenomenon in what is modeled, although
the quantities in the equation refer to different physical
things, processes, or systems when used to describe the
model and what is modeled.
Experimentation on the analog model (e.g., flow currents
in a fluid body) is used to inform the researcher about
what will happen in the analogous setup modeled (e.g.,
electrical currents in an electrically conducting body), or
vice versa.

In the example of a fluid body as an analogue of an electri-
cally conducting body, the knowledge relied upon includes
the partial differential equation for fluid flows govern-
ing the behavior of flow currents in the analog model,
the analogous equation for electrical current in the elec-
trically conducting body, and that they can be put in the
same form so as to permit drawing correspondences be-
tween the fluid quantities (e.g., flow velocity, pressure)
and electrical quantities (e.g., current, voltage).
Note: Behavior of analogue model and thing modeled can
diverge.
Key example: Helmholtz’s On Discontinuous Movements
Of Fluids [39.45] in which a surface of separation arises in
the case of fluids, but not in the case of electrical flows –
even though the partial differential equation takes the
same form for both flows. Nevertheless, there are cases for
which this discontinuity is known not to arise (the pressure
does not become negative in the case of interest). Which
cases are which is one piece of knowledge relied upon in
using this kind of basis for the analogue model.

2. Relevant characteristics in common
Characteristics essential to behavior of interest are the
same in the model as in the thing or systems modeled.
Sometimes the features are derived from equations and/or
analyses of mechanisms.

Relies upon knowledge as to which characteristics are
essential to the behavior of interest.
Examples:
(a) E. Mach identified characteristics essential a wave
that did not depend upon the existence of a medium of
transmission and showed the Doppler effect due to rela-
tive motion of source and observer was a consequence of
these features, then verified by experiments on analogue
model [39.1–3]
(b) S. Weinfurtner et al. identified classical features of
Hawking process that did not depend upon quantum
gravity or Planck-scale physics (e.g., wave pair forma-
tion), showed Hawking radiation a consequence of these
features of waves, and then subsequently verified the phe-
nomenon by experiment on the analogue model [39.54,
55]

3. Physically similar systems
A (nonunique) set of dimensionless parameters that
characterize the system with respect to a certain kind of
behavior is identified; similarity of system behavior be-
tween S and S0 is established when these parameters have
the same value in S as in S0 (see Chap. 18, this volume)

Relies upon knowledge as to which quantities (e.g., vis-
cosity, density) are relevant to the behavior of interest.
(Generally this is less information than required in 1.
above)
(Note: There is also reliance on the basic assumption
that the behavior is rule-governed, in that it is assumed
that there is a relation (possibly unknown) between the
quantities relevant to the behavior of interest, and that the
relation(s) can be expressed by a physical equation.)
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tioned, which is listed below as equation in common,
there are two others: characteristics essential to the be-
havior of interest are the same in the model as in the
thing or system modeled; and physically similar sys-
tems.

39.3.1 Three Kinds of Bases
for Physical Analogue Models

These three kinds of bases are listed below and the
points made about them are organized in Table 39.2.

Equation in Common
When the basis for the analogy between the analogue
model and what is modeled is an appeal to the fact that
an equation governing a quantity or phenomenon in the
model is the same equation governing the correspond-
ing quantity or phenomenon in the thing modeled, we
will say the basis is having an equation in common.
The equation may refer to different physical things, pro-
cesses, or systems in the analogue model than in what
is modeled.

To illustrate with an example using a hydraulic
circuit as an analogue of an electrical circuit, experi-
mentation on the analogue model (e.g., hydraulic setup)
is used to inform the researcher about what will happen
in the analogous setup modeled (e.g., the electrical cir-
cuit). The knowledge relied upon in constructing and
using the model is the partial differential equation of
fluid flow governing the hydraulic flow behavior in the
analogue model, the analogous equation for electrical
current in the electrical circuit, and that they can be put
in the same form so as to permit drawing correspon-
dences between the fluid quantities (e.g., flow velocity,
pressure) and electrical quantities (e.g., current, volt-
age).

This kind of basis has a potential vulnerability: the
behavior of analogue model and thing modeled can di-
verge. A key example of this is due to Helmholtz’ On
Discontinuous Movements of Fluids (1868) in which
a ”surface of separation” [39.45, p. 59] arises in the
case of fluids, but not in the case of electrical flows –
even though the partial differential equation takes the
same form for both flows [39.45]. Nevertheless, there
are cases for which the discontinuity Helmholtz cites is
known not to arise (i. e., the pressure does not become
negative in the case of interest). Which cases are which
is one piece of knowledge relied upon (or, sometimes,
explored) when using this kind of basis for the analogue
model.

Relevant Characteristics in Common
When the basis for the analogy between the analogue
model and what is modeled is the fact that the charac-

teristics essential to the behavior of interest are the same
in the model as in the thing or system modeled, we will
call it a case of relevant characteristics in common.

Sometimes the relevant characteristics are derived
from equations and/or analyses of mechanisms, so
the knowledge relied upon may involve some of the
same information that is relied upon in the equation in
common approach; it depends upon the reasoning the
researcher uses to decide which characteristics of the
situation are relevant. Sometimes a researcher may em-
ploy an approach based on partial knowledge (i. e., less
knowledge than that needed to solve the problem) –
but the partial knowledge may be enough to identify
what the characteristics relevant to producing the be-
havior of interest are. Or, the partial knowledge may
be enough to show that an analogue model and what
it models will display the same behavior of interest, so
that experimenting on the analogue is informative about
how what it models will behave. Some of the scaling
arguments used in developing the analogies underwrit-
ing models of analogue gravity are examples of this, as
in Rousseaux’s discussions of the differences between
shallow and deep water tank analogue models [39.56].
Rousseaux’s scaling arguments are based upon dimen-
sional analysis, though he does not lay out and solve the
problem as one of physically similar systems.

Other examples of this sort are Ernst Mach’s work
on the Doppler effect and work by Weinfurtner et al.
on identifying the classical features of the Hawking
process: E. Mach identified characteristics essential to
being a wave that did not depend upon the existence
of a medium of transmission (spatial and temporal pe-
riodicity, finite velocity, can be algebraically summed)
and showed the Doppler effect due to relative motion
of source and observer was a consequence of these
features, which he then verified by experiments on
an analogue model [39.1, 3]. Weinfurtner et al. iden-
tified classical features of the Hawking process that
did not depend upon quantum gravity or Planck-scale
physics (e.g., wave pair formation), then showed Hawk-
ing radiation a consequence of these features of waves,
and subsequently verified by experiment that the ana-
logue of Hawking radiation occurred on the analogue
model [39.54, 55].

Physically Similar Systems
When employing the method known as physically sim-
ilar systems, a (nonunique) set of dimensionless pa-
rameters that characterizes the system with respect to
a certain kind of behavior is identified using the method
of dimensional analysis; similarity of system behavior
between S and S0 is established when these parameters
have the same value in S as in S0 (see Chap. 18, this
volume). The knowledge relied upon for this method
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is the knowledge as to which quantities are relevant to
the behavior of interest. Generally this is less informa-
tion than is required in the equation in commonmethod.
In a much more fundamental sense of reliance, the re-
searcher is also relying on a basic assumption made

implicitly in much of scientific research: that the be-
havior is rule-governed, in that it is assumed that there
is a relation (possibly unknown) between the quantities
relevant to the behavior of interest, and that the relation
can be expressed by a physical equation.

39.4 Conclusion

The discussion presented here, of a few selected exam-
ples of analogue models and the investigation of the
different bases for their use, should help put to rest
three common misconceptions about the use of ana-
logue models in physics today.

First, the misconception that analogue models are
a thing of the past: As the examples discussed above
indicate, analogue models are not a thing of the past. In
fact, there are new areas of application and new kinds
of analoguemodels being developed; the recent surge in
development of analogue models in general relativity is
one striking example [39.5, 57]. Yet, the use of some
of these models in the twenty-first century does have
precursors in the nineteenth century.

Second, the misconception that analogue mod-
els serve merely illustrative or pedagogical purposes.
Many of the examples described above are cases of
serious investigative research. This is so even when
the main benefit of the model is gaining a better
qualitative understanding of the mechanisms at work.
Rousseaux remarks that the investigation of analogue
gravity “through the prism of water waves theory has
broadened our definition of a horizon” [39.56, p. 106].
In geophysics, experimentation on analogue models has
sometimes brought about an appreciation of mecha-
nisms that might be at work and ought to be investi-
gated, which is a kind of discovery [39.43].

Third, the misconception that numerical methods
along with high-speed digital computers can always
provide whatever an analogue model could provide.
This is the most pernicious and deep-seated of the
three misconceptions. It betrays a fundamental misun-
derstanding of the logic behind analogue models. Such
statements are probably based on assuming that the
basis for analogue models is having an equation in com-
mon. As Table 39.2 indicates, there are other bases for
using analogue models than having an equation, and
it is not the case that an analogue model can in prin-
ciple always be replaced by an equation: the method
of dimensional analysis and physically similar systems
often requires less information than the method of find-
ing an equation that is instantiated by both the analog
model and what it models does. (That is why similarity
methods are sometimes called partial informationmeth-

ods [39.58].) More importantly, even when one does
have such an equation, and cites it as the basis for the
analogy between analogue model and what is modeled,
the role of the equation is to establish a correspondence
between items in the analogue model and what it mod-
els. Even if one has the means to solve that equation
numerically on a digital computer, there is no guarantee
that the numerical solution of the equation will reveal
every phenomenon that might be observed in the ana-
logue model. It has been the case many times that the
use of an analogue model shows a phenomenon that the
numerical solution of the equation had not, no matter
how many colorful visuals and graphics the computer
program is capable of producing. Analogue models do
need to be examined to determine when they are and
are not appropriate for a certain investigation, but so,
of course, do equations and numerical simulations. The
fact that the use of analoguemodels in various fields has
been revived (after supposedly being eliminated from
those fields), often for new applications and employing
new technologies, reflects something that is becoming
increasingly clear: sometimes analogue models really
are irreplaceable.
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this paper, was presented at the Philosophy of Science
Association Biennual meeting in late 2014. As that pre-
sentation by Dardashti (and the subsequent publication
of a related paper by Dardashti et al. Confirmation via
Analogue Simulation: What Dumb Holes can tell us

About Gravity (2015)) occurred more than 2 years after
I submitted and presented Experimentation on Ana-
logues at PSX3 in October 2012, the talk on which my
article for this volume is based, their commentary on
those experiments is not discussed here.
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40. Models of Chemical Structure

William Goodwin

Models of chemical structure play dual crucial roles
in organic chemistry. First, they allow for the dis-
covery and application of laws to the complex
phenomena that chemists hope to understand.
Second, they are a source of novel concepts that
allow for the continuing development of structure
theory and theoretical organic chemistry. In chem-
istry, therefore, the centrality and significance of
models to the scientific enterprise is manifest and
furthermore chemistry is a relatively clear, useful,
and interesting context in which to consider more
general philosophical questions about the nature
and role of models in science.
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One of the most important and influential trends in
the philosophy of science over the last 50 years has
been the increase in both the attention paid to the con-
cept of a model and the employment of this concept in
philosophical reflection on the nature and dynamics of
science. This trend has been usefully described and an-
alyzed by many philosophers (see for instance: [40.1–
3]). Without trying to be exhaustive, in this paper I plan
to identify a few of the most significant philosophical
insights that have emerged out of this increased interest
in scientific models and then to reflect on these insights
in the context of chemistry, which has been relatively
neglected in the philosophical literature. I hope to show
both that in chemistry the centrality and significance of
models to the scientific enterprise is manifest, and that
chemistry is a relatively clear, useful, and interesting
context in which to consider more general philosoph-
ical questions about the nature and role of models in
science.

Models have been characterized in many different
ways in the philosophical literature, but for the pur-
poses of this paper it will suffice to think of them as
instruments for representation that are not primarily lin-
guistic. The important contrast is with the linguistic
statements of a theory (in the logical sense). So the dou-
ble helix model of DNA represents DNA molecules not
because it is a statement in a language that describes
this molecule, but because it is a physical object with

certain similarities to the objects that it is intended to
represent. Likewise, the billiard ball model of a gas is
an image of an interacting system (or the abstract idea
of such a system) along with, perhaps, a narrative about
how to understand this image, which can be used to rep-
resent a gas for certain purposes. Many types of objects,
other than statements, have been thought of as mod-
els (including mathematical structures, abstract objects,
and fictional objects). Given the diversity of things that
models might be, it seems best to summarize the central
insight behind the relatively recent philosophical inter-
est in models as follows: Representational instruments
that are not primarily linguistic are crucial to under-
standing the nature and development of science.

This central insight has been developed in a va-
riety of ways, but I want to focus on two of them.
First, models are crucial to the dynamics of science –
how scientific representations, theories, experiments
and concepts change over time in response to feedback
from the world. And second, models are crucial to sci-
ence’s capacity to confront complexity – its ability to
have useful things to say about real world and/or com-
plex systems. Models, being nonlinguistic entities, help
philosophers to get a grip on these aspects of science
at least in part because they are representationally rich,
that is, they are not limited in their representational ca-
pacities (as purely linguistic representations would be)
by the arbitrary associations between their component



Part
H
|40

880 Part H Models in Physics, Chemistry and Life Sciences

symbols and aspects of the world. In the case of the dy-
namics of science, the rich representational capacities
of models both supply (or allow for) new features that
can be exploited in the models’ representational role
and thereby act as an incubator for novel concepts. Sim-
ilarly, models can act as intermediaries between theory
and complex real world phenomena because their richer
resources allow for representation of the more concrete
and local features crucial to understanding such phe-
nomena.

Chemistry, like any large and diverse field of scien-
tific inquiry, is replete with models of many different
sorts. Much of the modeling in chemistry is of the
standard sort discussed in the philosophical literature –
that is, a response to the problem of getting abstract
mathematical theories to apply to complex real world
phenomena. There has been interesting philosophical
work on the form that this sort of modeling takes in
chemical contexts [40.4–6] and [40.7] for example;
however in this paper I want to focus on what is, I
think, a distinctively central and important role for mod-
eling in chemistry. Chemistry, at least large parts of it,
is concerned with representing the structures of the sub-
stances it studies. For the most part, chemists do not use
linguistic resources to represent structure; instead, they
build models. Sometimes, like Watson and Crick and
most students of organic chemistry, they build physi-
cal models, but most frequently they use diagrammatic
representations like structural formulas. While there are
often linguistic components to such formulas (letters for
the atoms, for example), the representational resources
of these diagrams are not limited to the arbitrary re-
lations between their component signs and predicates
or terms in the current language of the theory. Further-
more, much of importance of these models for both the
dynamic development of chemistry and for facilitating
the application of chemical theories to concrete, real
world cases derives from these extra linguistic repre-
sentational resources.

Structural formulas (Fig. 40.1), which were initially
developed over the course of the nineteenth century,
are the centerpiece of a research program that has been
immensely successful ([40.8] for a summary of the de-
velopment of structural formulas). The guiding strategy
of this research program, articulated by Aleksandr But-
lerov in 1861, was to have one structural formula for

O

O

NN

N N

CH3
H3C

CH3

Fig. 40.1 A structural formula for caffeine

each chemical compound, and then to explain the chem-
ical properties of these compounds by determining, “the
general laws governing the dependence of chemical
properties on chemical structure” [40.9, p. 256]. Struc-
tural explanations of chemical properties (and some
physical properties as well) have been central to chem-
istry – particularly organic chemistry, on which I shall
focus – ever since. A structural explanation of a chem-
ical property proceeds by identifying the structural
features of a compound that are responsible for some
(usually contrastive) chemical fact. These structural
features are typically general features of the compound
as represented in its models, i. e., in its structural for-
mula, which might also be realized by other structural
formulas or models as well. In other words, structural
patterns identifiable in the models are correlated with
chemically significant facts (usually, these days, dif-
ferences in energy or stability). It is these structural
correlations that have ended up playing the role of the
laws that Butlerov imagined. Thus the laws of struc-
tural chemistry are formulated in terms of something
like chemically significant patterns in the models; in
this sense, then, in structural chemistry the laws pig-
gyback on the models. The models don’t just interpret
or concretize the laws, they make them possible in the
first place. Understanding the complex chemical facts
of organic chemistry depends, at the most basic level,
on building structural models of chemical compounds.

Structural chemistry has not been a static research
program. Over the course of its 160 year development,
there have been immense changes in chemists’ un-
derstanding of structure. And not surprisingly, these
changes have been reflected in the models used to rep-
resent that structure. In the course of this continuous
refinement – the back and forth between conceptions of
structure and representations of it – models of structure
have played a crucial role as a source of new general
structural features. In other words, features of the mod-
els not originally used in their representational role are
reinterpreted as representationally significant in order
to explain or account for new theories or experimental
facts. Additionally, even after a new aspect of chemi-
cal structure has been recognized and represented in the
models, there still remains the daunting task of making
that structural feature experimentally and synthetically
relevant (making it useful) and models have also sup-
plied some of the very local structural concepts that
allow for the experimental and theoretical development
of whole new subfields. Thus, just as models are cru-
cial for structural chemistry to discover and apply laws
to the complex phenomena it studies, so too are these
models crucial as a source of the novel concepts neces-
sary for the continued development of structure theory
and theoretical organic chemistry.
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Structural formulas are the central representational tool
used in the explanations and predictions of the the-
ory of organic chemistry. These formulas play many
representational roles in organic chemistry, including
the role of denoting expressions for chemical kinds.
In this role, they serve as descriptive names for these
kinds, individuating them according to their compo-
sition, bond connectivity and (aspects of their) stere-
ochemistry. Because they can be put (roughly) into
one-to-one correspondence with the kinds that they pur-
port to denote, they are also able to act as stand-ins
for these chemical compounds ([40.10–12] for more
on the roles of structural formulas as both names and
models in organic chemistry.). When acting as stand-ins
for chemical kinds, structural formulas can be manip-
ulated to teach us things about themselves, and the
things learned about these models can, in many cases,
“be transferred to the theory or to the world which the
model represents” [40.2, p. 33] ([40.13] for examples
of howmodels acted as paper tools in the early develop-
ment of organic chemistry.). That is to say that chemists
can learn from their models by exploring the implica-
tions of (or for) abstract theory in the concrete contexts
of particular chemical kinds and often this exploration
takes the form of the manipulation of structural mod-
els. To bring out some of the interconnections between
models of structure, theory, and the explanations in
structural chemistry I am going to briefly consider the
theory of resonance, which is a modification of struc-
ture theory developed in the first half of the twentieth
century that is still central to organic chemistry today.

Though it was developed prior to any generally
accepted account of the nature of chemical bonding,
structure theory has had to evolve in the face of chang-
ing theoretical accounts of the nature of the chemical
bond. This is to be expected given Butlerov’s aspira-
tion for structural formulas; namely, that they explain
the chemical and physical properties of the compounds
that they depict. As the theoretical understanding of
what a bond was changed, so to did the depictions of
chemical bonds in structural formulas, and this was cru-
cial to leveraging the revised understandings of bonding
into new structural explanations of chemical or physical
properties. The theory of resonance is one important
way (and was historically the first broadly accepted
way) that the quantum mechanical character of chem-
ical bonding is recognized and applied within structural
organic chemistry.

Even before the development of quantum mechan-
ics, in response to the explanatory demands placed on
chemical structures, several modifications of structure
theory were suggested that [40.14, p. 2]:

“considered it possible for the true state of
a molecule to be not identical with that represented
by a single classical valence-bond structure, but to
be intermediate between those represented by two
or more different valence-bond structures. ”

These suggested modifications where motivated by
cases where a chemical compound did not behave as it
would have been expected to behave given its represen-
tation using a single structural formula but where, by
thinking about the compound as a mixture intermediate
between two or more such formulas, the behavior could
again be accounted for in structural terms. Pauling,
in his seminal Nature of the Chemical Bond [40.15],
laid out the theory of resonance by employing quan-
tummechanics to rationalize and systematize (but not to
deduce), the use of multiple structures to represent indi-
vidual chemical kinds and then went on to demonstrate
the broad usefulness of this theory in organic chemistry.

The theory of resonance is interesting, from the
point of view of the role of structural models in chem-
istry, for two related reasons. First, it was the manipu-
lation of valence bond structures (which are structural
formulas that explicitly depict the bonding electrons
of the constituent atoms) that first revealed the possi-
bility of explaining recalcitrant chemical and physical
phenomena by thinking of chemical kinds as appropri-
ately represented by a combination of distinct structural
formulas. Facts in the world of the model – that mul-
tiple different valence bond structures where plausible
for a given chemical kind – were used to suggest mod-
ifications designed to improve the explanatory power
of structure theory. Furthermore, these facts about the
structural models (multiple possible valence bond struc-
tures for a given kind) were systematized and rational-
ized using the theory of quantum mechanics so that
the delocalization of bonding electrons (which is the
central implication of quantum mechanics for chemical
bonding) could be recognized and exploited in organic
chemistry. Manipulations of the model supplied the ve-
hicle for making quantum mechanics first applicable
to structural organic chemistry. In this sense, then, the
structural models mediated between the theory (quan-
tum mechanics) and the world. Secondly, and similarly,
it is the actual exploration of the range of available va-
lence bond structures that often proves crucial to the
use of the theory of resonance in generating the struc-
tural explanations that are useful in organic chemistry.
In a typical case of an explanation invoking resonance,
none of the individual structural formulas making up
a resonance hybrid allows for the explanation of all
of the chemical or physical properties of interest. In-
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stead, more standard structural analysis is applied to
some of the individual component formulas of the res-
onance hybrid, and then the behavior of the chemical
kind as a whole is understood as some proportional
mixture of the structural prediction based on its com-
ponent structures. In other words, without the more
complex depiction of a chemical kind allowed by res-
onance theory, it would not be possible to successfully
supply structural explanations of its chemical or phys-
ical behavior. Getting the structural laws to apply to
some chemical kinds requires a more complex model of
their structure – their depiction as a resonance hybrid.
Explorations in the world of the model uncovering po-
tential significant resonance structures mediate between
the theory (structure theory) and the world by allowing
for the successful application of this theory to complex
cases to which it would otherwise not be useful.

In order to see how the theory of resonance allows
structural formulas to mediate between more general
structure theory and experimental facts, it will be useful
to consider some of Pauling’s work on the structure of
proteins. Proteins are polymers of amino acids formed
when the carboxyl group of one amino acid reacts with
the amino group of another forming an amide linkage
called a peptide bond. As a result, there is a recurring
structural pattern in proteins: tetrahedral carbon atoms
(bonded to the R-groups of the amino acids) joined by
amide groups (-NH-CO-). Amide groups are therefore
a fundamental structural component of proteins; how-
ever, in order to predict the behavior of these groups,
and thus to outline the basic structural features of pro-
teins, it is not sufficient to consider only one of the
structural formulas that can be used to represent them.
Instead amide groups, at least in Pauling’s treatment,
were thought of as a resonance hybrid of two compo-
nent structural formulas, and their structural behavior
was anticipated to be a sort of weighted average of the
behavior predicted by the structure theory for these in-
dividual structural formulas.

The most important feature of the amide linkage
from the point of view of predicting the structure of
proteins is that the carbon and nitrogen of the amide
linkage lie in a single plane with the two tetrahedral car-
bons that they connect. Pauling regarded the planarity
of the amide group as, “a sound structural principle”
concluding that a “structure in which the atoms of the
amide group are not approximately coplanar should be
regarded with skepticism” [40.16, p.19]. Though he
provided substantial experimental confirmation of the
planarity of the peptide bond, it was the theoretical ar-
guments for this principle that invoked the theory of
resonance. An amide linkage is typically represented
by a structural formula in which there is a single bond
between the nitrogen and the carbonyl carbon, which

is itself double bonded to oxygen. However, another
possible structural formula for the amide linkage has
a double bond between the carbon and the nitrogen
while there are three unshared electron pairs around
the oxygen (resulting in a net formal charge of �1 on
the oxygen) and no unshared pairs around the nitrogen
(resulting in a formal charge ofC1). The theory of reso-
nance indicates that the first, and more typical, structure
should be the most significant contributor to the overall
structure of the amide linkage, but that the second struc-
ture might also be important to consider (Fig. 40.2).

The most salient difference between these two
structures is where the double bond is located, either
between carbon and oxygen or between carbon and
nitrogen. Pauling argued based on experimental mea-
surements of the bond lengths in some simple peptides
(by x-ray crystallography), that in the actual peptide
linkage (on average) the relative contribution of these
two structures was 60% for the typical structure and
40% for the secondary structure. These numbers were
based on the fact that the measured C-O bond length
in the peptide bonds was longer than typical double
bonds between carbon and oxygen (in cases where no
alternative resonance structures were available) but also
shorter than typical single bonds between C and O.
Similarly, the measured C-N bond length was shorter
than typical single bonds, but longer than typical dou-
ble bonds between these atoms. If he supposed that
the relative contributions of the two structures were
60% and 40% respectively, and thus that the C-O bond
was 60% double and 40% single, while the C-N bond
was 40% double and 60% single, then the predicted
length of the bonds closely matched the measured
values.

Once Pauling had argued that the second resonance
structure with a double bond between carbon and nitro-
gen was an important contributor to the overall structure
of the linkage, it followed from standard structural the-
ory that the peptide linkage should be essentially planar.
Double bonds do not allow free rotation; that is, you
have to break the bond (costing a lot of energy) in or-
der to rotate around the axis of the bond. The energetic
cost of rotation around the double bond is the reason
that double bonds lead to stereoisomerism (there are
distinct chemical compounds, with different structural
formulas, that reflect different arrangements of sub-
stituents around a double bond). Since the C-N bond in

O

Cα CαN

H

O–

Cα CαN+

H

Fig. 40.2 Resonance structures of the peptide bond
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the peptide linkage was 40% of a double bond, Pauling
was able to estimate that the energetic cost of rotat-
ing around this bond would be about 40% of the bond
energy of a typical double bond between these atoms.
Furthermore, he was able to estimate the strain energy
of deviations from planarity, concluding: “we can cal-
culate strain energies of about 0:9 kcal=mole for 10ı

distortion of the amide group” [40.16, p. 14]. This ef-
fectively meant that large deviations from planarity in
peptide linkages would be very energetically expensive
and would therefore constitute a “highly unusual steric
relationship” [40.16, p. 16].

Pauling’s analysis of the structure of peptide link-
ages shows both what structural accounts of chemical
phenomena look like, and how resonance theory al-
lowed structural analysis to be applied to a broader
range of chemical facts. The measured bond lengths
of the amide linkages in peptides do not correspond
to the average bond length that one would expect
based on the typical representation of the amide link-
age using structural formulas (with typical CO double
bonds and typical CN single bonds). In order to pro-
vide a structural explanation for this deviation from
expected values, Pauling needed to find some recur-
ring structural feature of the amide linkage that could
explain it. What he found, by manipulation of the for-
mulas, is that such amide linkages could be represented
by another structural formula, one obtained by redis-
tributing the valence electrons (and thus moving around
the bonds). According to the principles of resonance

theory, this alternative structure was energetically plau-
sible and should be regarded as a potential contributor
to the overall structure of the amide linkage. However,
a structural analysis of this second structure by itself
would also not explain the experimental bond lengths.
Instead, only by regarding the actual structure as in-
termediate between the two resonance structures, did
an explanation of the observed bond lengths became
possible. Exploration in the world of the model, then,
was crucial to providing a structural account of the ob-
served bond distances. Furthermore, the success of this
explanation gave Pauling confidence that his resonance
structures provided a reasonable representation of the
peptide bond, and thus that he could apply a structural
analysis to this representation in order to make a signif-
icant structural prediction about all proteins. Again this
prediction (the planarity of the peptide bond) was based
on giving a weighted analysis of the the various acces-
sible resonance structures. Without the detour through
the range of plausible resonance structures, explored by
the chemist through manipulations of structural formu-
las, neither the original explanation, nor the extremely
significant prediction that Pauling made about the struc-
ture of proteins would have been possible. (Now there
are other ways of taking into account the implications
of quantum mechanics on chemical bonding, and these
can also presumably support the same explanations and
predictions; but the historical fact is that Pauling, who
basically initiated the study of protein structure, used
resonance theory.)

40.2 Structures in the Applications of Chemistry

In addition to their role supporting the explanations
and predictions of structural organic chemistry, struc-
tural formulas and/or models also play a crucial role in
applying the theory of organic chemistry to the solu-
tion of synthesis problems. Synthesis problems are the
guiding application of the theory of organic chemistry.
Of course not all organic chemists are working to syn-
thesize compounds, but this is the characteristic goal
around which the field developed, and it is possible to
understand the theoretical structure of the field as re-
flecting this goal. That is, an important reason that the
explanations of organic chemistry take the form that
they do – looking for structural accounts of chemical
phenomena, for example – is because this approach fa-
cilitates the solution of synthesis problems [40.17, 18].
Synthesis problems have a common form, and the in-
tellectual challenges that they present derive from this
form. By understanding the basic form of synthesis
problems, and the basic strategies developed for solving

these problems, it is possible to appreciate the central
importance of the sorts of structural analysis undertaken
in the typical explanations and predictions of organic
chemistry. As seen in the last section, explorations in
the world of the model, and thus the role of struc-
tural formulas as models, can be crucial to providing
the structural analyses of organic chemistry. However,
the role of structural formulas and models in solv-
ing synthesis problems is not limited to their support
of structural explanations or predictions. Instead they
play additional roles in delimiting the array of possible
synthetic approaches and evaluating the plausibility of
those approaches.

A synthesis problem begins with a target molecule.
The chemist’s goal is to come up with a method for
making this target molecule by a sequence of chemi-
cal reactions that begins with compounds that chemists
already know how to make. Often, no chemist has ever
synthesized the target molecule before, though it may



Part
H
|40.2

884 Part H Models in Physics, Chemistry and Life Sciences

be a natural product that is synthesized by some biolog-
ical systems. The first step in solving such a problem
is to get a clear idea about the structure of the target
molecule. Since organic molecules are individuated by
their structures, this amounts to insisting that the syn-
thesis problem is well defined – it has a clear goal.
Once the structure of the target is settled, the syn-
thetic chemist must come up with some way to leverage
knowledge about the outcomes of lots of chemical re-
actions run on different (typically simpler) compounds
into a strategy for making the target compound, which,
presumably, no chemist has ever experimented with be-
fore. It is crucial, therefore, for the synthetic chemist to
exploit some notion of structural similarity. Structural
patterns identified in the target indicate which known
reactions might be plausibly employed in its synthesis.
Furthermore, because the structural patterns identified
in the target are in a novel context, the chemist must
have some way of accounting for, or anticipating, the
way that the structural context influences the behav-
ior of known reactions (characterized and understood in
simpler structural contexts). This is what the structural
accounts (explanations and predictions) of theoretical
organic chemistry do.

One way to think about the process of coming
up with a synthesis for a target compound is through
the process of retrosynthetic analysis [40.19]. Ret-
rosynthetic analysis works backwards from the target
molecule, systematically investigating all of the ways
that one might produce the target molecule by a known
chemical reaction (these are characterized by the struc-
tural patterns on which they operate, for instance, by
the functional groups that they begin with and that they
produce). All of the reactants that might produce the
target molecule by one of these know reactions are then
subjected to the same process, generating their own
lists of possible second-order reactants. This process is
repeated until it generates a path terminating in com-
pounds that can already be synthesized. Given that there
are thousands of known reactions, many of which might
apply to a complex target molecule, the branching ar-
ray of possibilities generated by such a process – the
retrosynthetic tree – is immense and must be system-
atically pruned into a plausible synthetic plan. (I have
described this process in significantly more detail, with
concrete examples, in [40.20, 21].)

The pruning of the retrosynthetic tree, following
Corey’s conception, takes place in stages. In the first
stage, strategic pruning, the synthetic chemist analyzes
the target compound in order to identify the sources of
synthetic complexity in it. By identifying these sources
of complexity, the chemist can focus on paths in the
retrosynthetic tree that reduce synthetic complexity and
that, therefore, are more likely to terminate in com-

pounds that have already been synthesized or are easy
to make. Assessing the sources of synthetic complex-
ity in a target molecule amounts to using a set of
heuristic principles, grounded in both the collective ex-
perience of synthetic chemists and the theory of organic
chemistry, to identify particular bonds or atoms whose
structural environment will make them particularly dif-
ficult to create. The relative difficulty of dealing with
these sources of complexity can also often be estimated,
giving the synthetic chemist, in the end, a clear focus
on branches of the retrosynthetic tree that eliminate the
largest source of complexity. Though this can result
in a drastic narrowing of the possible synthetic paths
that need to be explored, strategic pruning must be fol-
lowed up by plausibility assessment, where the possible
paths removing the largest source of complexity are
evaluated for their relative structural plausibility. As I
characterized the retrosynthetic tree, the possible reac-
tions that might produce a structure were characterized
based on the presence of some structural feature in the
target. Any reactions that might produce that product
were part of the tree. However, not all of these reac-
tions are actually plausible because, for example, the
target has other structural features that would interfere
with the success of that particular reaction. And even
among those that are plausible, the synthetic chemists
will want to decide which path or paths are most likely
to work and to generate the fewest complications down-
stream. These assessments again depend on analyzing
how a reaction, understood and characterized in some
other, simpler structural context, would perform in the
complex local circumstances of the target molecule.
After plausibility assessment comes the final stage of
synthetic design, which is optimization, where precise
ordering of synthetic steps is worked through and con-
trol steps are added. These control steps are added in
order to eliminate complicating factors identified by
a careful structural analysis of the synthetic route. They
work by adding chemical groups to synthetic interme-
diates in the proposed path that either eliminate the
influence of complicating structural factors or promote
the formation of desired products. These control groups
can then be removed after they have done their job.
Often the precise ordering of the synthetic path can
influence which control groups are needed, and vice-
versa, so the overall optimization of the synthetic route
must involve both of these considerations.

This brief sketch of the process of designing
a chemical synthesis has made it clear, I hope, that
close structural analysis of the both the target molecule
and the potential intermediates is crucial to the process.
The possible reactions resulting in the target molecule
(or some intermediate) guided by structural similarity
to the products of known reactions is what generates
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the array of potential precursors at each stage in the
generation of the retrosynthetic tree. This exploration
of possible reactants and reactions, and the array that
it generates, all take place in the world of the model –
in fact, the molecules depicted by these structural for-
mulas may never have existed. The possible reactants
must be deduced based on the reaction being consid-
ered, and this can be done by exploring what reacting
structures would, upon application of the considered
reaction, result in the target molecule; the reactions
must be worked through backwards in the world of the
model to generate potential precursors. Similarly, the
strategic pruning of the array of possible reactions de-
pends on investigating the detailed local environments
of particular atoms or bonds in the model of the target
molecule. Rules of thumb about the relative difficul-
ties of producing these atomic arrangements or bonds
(based in part on what the reactant structures would
have to be if they were generated by certain procedures)
guide the synthetic chemist to particular routes in the
retrosynthetic tree. Recurring structural features identi-
fied in the local environment of the model of the target
molecule provide the basis for the application of these
rules of thumb, and thus for the large-scale decisions

about synthetic strategy. Both plausibility analysis and
optimization depend on determining how generically
characterized reactions would be likely to perform in
the complex local environment of the target molecule
or intermediates. Often the typical explanations (and/or
predictions) of organic chemistry can be used to figure
out how individual structural features would affect the
reaction. But in complex environments there are often
multiple relevant, and potentially competing, structural
features at play. To make sensible choices about strat-
egy in these cases, synthetic chemists can either attempt
to theoretically discriminate the plausibility of potential
pathways, or to modify the structure to make its be-
havior more predictable using control steps. All of this
takes place in the world of the model, using whatever
theoretical principles are applicable in that local envi-
ronment, to analyze and make sensible decisions about
what synthetic pathways might work in the lab. Syn-
thetic design is thus a process that, from beginning to
end, involves manipulating, exploring, deducing possi-
ble precursors and analyzing structural models. Theory
can be brought to bear on the problem only through its
application to, and analysis in the context of, particular
structural models.

40.3 The Dynamics of Structure

In this last section, I want to describe two ways that
structural models have contributed to the development
of the research program of structural chemistry by sup-
plying new structural concepts. In the first case, models
of structure had features that were not initially rec-
ognized to be representationally significant but which,
when interpreted as significant, could be used to ex-
plain anomalous results. Chemists did not abandon
the structural research program when they encountered
unexpected experimental results; instead, they modi-
fied their models of structure, taking features readily
available in the model and attributing new represen-
tational significance to them. General features carried
around in the models were appropriated in order to
modify the conception of chemical structure in the
face of new experimental results. In the second case,
particular structures supplied foothold concepts that al-
lowed for experimental results to be brought to bear
on these newly representationally significant features of
structural formulas. Particular structures are cognitively
richer than general types of models or abstract theories;
they have all sorts of features that might turn out to sup-
port important inferences about the target system. In
this example, chemists isolated particular cases where
the significance of this new structural element was clear,

used very local concepts to explain and predict in those
cases, and then generalized from there. Thus features
identified in particular structures were appropriated to
develop and articulate the experimental consequences
of this new aspect of chemical structure. Models of
structure do play an important role in the dynamics of
science by supplying concepts or features that can be
appropriated to modify or develop a research program.
Visual representations of structure, and models of struc-
ture more generally, act as incubators for the concepts
essential to modifying and teasing out the experimental
consequences of chemical structure.

One of the most dramatic changes in chemists’ con-
ception of structure occurred during the middle third of
the twentieth century with the gradual realization that
the conformations of molecules, and not just their bond
connectivity, had a crucial role to play in understanding
their physical and chemical behavior. A conformation
is, roughly, any of the three-dimensional arrangements
of atoms in space resulting from rotations around sin-
gle bonds in a molecule. The development of the theory
of conformations (typically called conformational anal-
ysis) occurred when features of structural formulas that
had originally not been thought to have any represen-
tational significance, the 3-D arrangement of bonds or
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its 2-D depiction, was recognized to represent some-
thing about the compounds that the formulas denote.
With these new features available, new concepts were
crafted to organize the phenomena and then articu-
lated throughout the domain. Though it is somewhat
artificial, in order to relate the development of confor-
mational analysis to the themes of this paper, it can be
understood to have occurred in two phases. First, the
prior understanding of structural formulas had to be
found to be insufficient, and the three-dimensional ar-
rangement of bonds recognized to accommodate those
insufficiencies. Second, once the three-dimensional ori-
entation of bonds had been seen to be significant, the
consequences of the newly enhanced conception of
structure had to be developed and articulated.

40.3.1 Recognizing the Importance
of Conformations

At the end of the nineteenth century, structural formu-
las (roughly) allowed for the generation of one distinct
formula for each known, distinguishable chemical com-
pound. The formulas used at this time included not just
single bonds between adjacent atoms, but also occa-
sional double bonds. Double bonds allow for geomet-
rical isomers in which the same groups are connected
to the four available positions in a double bond in
two different ways. Similarly, there are two distinct
ways of orienting four distinct groups around a carbon.
As a result, given the number of asymmetric double
bonds and the number of centers of asymmetry one
could compute, using a formula due to Van’t Hoff,
the number of stereoisomers to be expected. This for-
mula worked because: “It was based on the concept
of restricted rotation about double bonds and of free
rotation about single bonds” [40.22, p. 299]. Rotation
around single bonds had to be free because otherwise
one would have expected many more distinguishable
isomers. In order for structural formulas to accurately
map onto the results of isomer counting experiments,
certain features of the models of organic molecules had
to be regarded as representationally significant. For ex-
ample, structural formulas had to distinguish the two
distinct ways that groups can be oriented about a dou-
ble bond because these represented two distinguishable
compounds. At the same time, however, the experimen-
tal facts demanded that other features of the formulas
not be taken to be representationally significant. The
fact that there were lots of ways to produce formu-
las with the same bonding and orientation (differing by
what we would now think of as rotations around single
bonds) was explicitly not taken to be significant in the
resulting structural formulas. When it came to individu-
ating chemical compounds, the various physical models

or structural formulas that could be generated by ro-
tations about single bonds were distinct without being
different. The possibility of rotational variants was an
incidental feature of the symbol system that needed to
be ignored when deducing the experimental facts from
the models. They were not taken to reflect significant
features of the target system.

Chemical structures are not frozen in time, however,
and chemists aspired to add to the array of chemi-
cal and physical features that could be explained in
terms of them. Chemists knew (or thought they did)
that the many distinct models producible by rotations
about single bonds weren’t important for the individ-
uation of chemical compounds, and thus for isomer
counting experiments, but that left it open whether these
differences might be employed to explain other sorts
of experimental results. In fact, given the rich array
of distinctions available in the models as yet uncorre-
lated with differences in the compounds they depicted,
these distinctions would seem to have been ripe for
exploration should new experimental results force mod-
ifications of the models.

Eventually, new experimental results did force such
modifications. There are at least two distinct sorts of
evidence that put pressure on the idea of free rotation
about single bonds. First were failed isomer count-
ing experiments, beginning in 1922, in which chemists
were able to distinguish optically active forms of (un-
usual) compounds where, if all rotation about single
bonds had been free, there should not be any such
forms. More precisely, so long as all rotational variants
around single bonds were regarded as indistinguishable,
structural formulas did not predict the existence of dis-
tinct optically active forms, but optically distinct forms
there were. The second sort of evidence came from dis-
crepancies between the observed and measured entropy
of ethane. These discrepancies “could only be explained
by a barrier to free rotation about the two methyl
groups” [40.22, p. 299]. These new experimental re-
sults were accommodated, eventually, by changing the
representational significance of the models. Most fun-
damentally, the fact that a model has lots of rotational
variants was now regarded as an explanatorily signif-
icant fact. Many of those differences between models
of structure that had been irrelevant became differences
that could correspond to differences in the energy or
stability of the represented compound. For example, the
distances between the atoms in the model (or suggested
by the structural formula) became a feature used to con-
nect differences in structure to differences in the energy
or stability of the represented compound. It is because
of differences in the distance relationships between the
depicted atoms that rotational variants have different
energies.
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By imagining the atoms of a molecular model or
structural formula to be interacting (either by attrac-
tion or repulsion) in a manner that varied according to
the distance between them, the chemists looking to re-
vise earlier interpretations of chemical structure could
explain both why the rotations of ethane would be re-
stricted and why there might be optically distinct forms
of some strategically bulky organic molecules. This re-
quired the idea of nonbonding interactions between the
atoms in the compound and the addition of this idea was
nontrivial, depending for its plausibility on the dawning
awareness of the nature of the chemical bond. But once
this idea was in place, not only could the new exper-
imental results be explained, but the success of Van’t
Hoff’s formula could be preserved as approximately
true. Most of the time, the newly postulated nonbonding
interactions would be insufficient to allow for distinct
forms of chemical compounds to be isolated. Some-
times, however, such distinctions would show up in
physical properties that Van’t Hoff hadn’t been con-
cerned to explain (like the entropy of ethane). And
occasionally, in structurally rationalizable exceptional
cases, these distinctions would result in failed isomer
counting experiments. Instead of there being free rota-
tion about single bonds, now the rotation about single
bonds was just substantially freer than rotation about
double bonds, except in certain special circumstances.

The significance of nonbonded interactions in
ethane and in dramatically rotation-restricted organic
molecules suggested that such interactions would also
be significant to the physical properties of organic
molecules in general. Thinking in terms of such non-
bonding interactions required interpreting chemists’
representations of structure, including structural formu-
las, to be significant in new ways. However, perhaps
because “there was no technique available to demon-
strate the phenomenon experimentally” [40.22, p. 299]
this more general significance was not systematically
explored until after the Second World War. Still, by this
point, the rotational variants of structural formulas or
physical models had demonstrated their usefulness by
explaining several different sorts of novel experimental
results (entropy measurements and failed isomer count-
ing experiments) and had therefore earned their place
as representationally significant.

40.3.2 Using Conformations
in Organic Chemistry

Though this newly significant feature of chemists’
structural models had been used to explain unexpected
experimental results, it had not yet been integrated into
the mainstream practice of organic chemists and used to
generate results of its own. This began to change when

Odd Hassel published his systematic investigations of
the conformations of cyclohexane and its derivatives.
Cyclohexane is an ideal experimental system for inves-
tigating the significance of conformations because, as
investigation of a model will quickly show, there are
only three conformations of this system (what are now
called the chair, boat, and twist-boat), out of the in-
finite number that are theoretically possible, that have
no angle strain (Fig. 40.3). In an earlier application
of structural formulas as models ([40.10, 20], for a de-
scription of this work), chemists had shown that angle
strain (or deviations from the standard tetrahedral bond-
ing angles) was an important factor in the stability of
rings. This meant that when trying to understand the
behavior of cyclohexane, it was principally these three
conformations that needed to be considered because
all others would be energetically unfavorable. Hassel
not only showed that the chair conformation was the
most stable, but was also able to establish that the rel-
evant nonbonded interactions were repulsive, because
the chair form maximizes the distances between atoms
in the ring.

Exploring a careful drawing of a chair conforma-
tion, or better yet a physical model of it, quickly reveals
that there are two distinct types of bonds emanating
from the carbon ring. In an obvious case of using mod-
els to introduce new conceptual distinctions, these are
now called axial and equatorial bonds, according to
whether they are parallel to the axis of symmetry of the
molecule or in an equatorial belt around it. Furthermore,
it is also clear that substituents attached axially are
closer to the other atoms in cyclohexane than are sub-
stituents attached equatorially. As a result, substituted
cyclohexanes generally prefer to have their substituents
equatorial since this minimizes the nonbonding re-
pulsive interactions. Hassel’s work showed how the
conformational preferences of cyclohexane derivatives
could be rationalized using repulsive nonbonding inter-
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actions in a way that had strong experimental support.
Furthermore, he not only isolated a structural type in
which the energetic implications of conformational dif-
ferences were clear, but he also provided structural
concepts (axial versus equatorial positions on the ring)
useful in explaining the relative energies of structures
of this type.

It was Barton who established the importance
of conformational analysis in explaining and predict-
ing the chemical behavior of synthetically important
organic molecules. He did this by recognizing that
steroids are instances of the structural type carefully
studied by Hassel. The steroid nucleus consists of three
cyclohexane rings fused to a five-membered ring. Be-
cause “the ring fusions of the steroid nucleus fix the
conformation of the whole molecule” [40.22, p. 302]
there are basically two different significant conforma-
tions of the steroid nucleus. In both of these confor-
mations, all three of the cyclohexane rings are fixed
in the chair form. So just as with cyclohexane itself,
the significance of conformations for the behavior of
steroids can be understood by considering just a few of
the infinitely many possible conformations. Better still,
following Hassel, the axial and equatorial substituents
in the steroid nucleus can be distinguished and their
relative stability rationalized in terms of repulsive non-
bonded interactions.

Barton next showed how differences in the rela-
tive stability of steroids based on the conformational
location of their substituents could be used to explain
the chemical behavior of these molecules. Most simply,
in a chemical reaction known for mechanistic reasons
to result in the most stable product, one can often
predict which of several candidate steroids will be pre-
ferred. Similarly, if one knows something about either
the steric requirements or the geometry of the tran-
sition state, then one can often deduce which steroid
will react more quickly or which product will be pre-
ferred in a reaction under kinetic control. What Barton
did (originally in [40.23]) was to show that “an enor-
mous literature of stereochemical fact” [40.22, p. 302]
about steroids could be systematically and consistently
interpreted using the conformational analysis of the
steroid nucleus. He went through a variety of differ-
ent results previously reported in the steroid literature
and showed that the differences in rates or product dis-
tribution were what would be expected based on the
conformational analysis of the steroid nucleus. This es-
tablished by a sort of conscilience of inductions that,
at least in the case of steroid chemistry, conformations
had an important role to play in understanding chemical
behavior.

Between Hassel and Barton, not only had confor-
mations proved themselves to be useful in explaining

significant chemical behavior, but also a set of struc-
tural circumstances (and concepts) had been articulated
that allowed chemists to clearly discern the implica-
tions of conformation. With these resources in place,
chemists were able to begin to apply these concepts in
synthesis and experimental design. For example, once
chemists understood why certain substitution patterns
of the steroid nucleus were more stable then others,
they could begin to exploit this knowledge in designing
synthetic reactions. Barton describes how the tendency
for adjacent diaxial substituents to rearrange into the
more stable diequatorial form led to “a convenient route
for shifting an oxygen function from one carbon atom
to the adjacent carbon” [40.22, p. 304]. Similarly, be-
cause the conformation of the steroid nucleus was well
known and restricted, it could be used to investigate the
mechanisms of chemical reactions by effectively lock-
ing the substrate in a reaction into a particular geometry.
For example, steroids were useful in establishing that
“the phenomenon of neighboring group participation
demands a conformational interpretation (diaxial par-
ticipation)” [40.22, p. 304]. These, and other cases of
application, depend on being able to recognize a set of
structural circumstances in which conformational anal-
ysis is straightforward because it can be directly related
back to cases that have already been successfully ana-
lyzed.

Of course, chemists were not content to apply con-
formational analysis just to cyclohexane and steroids.
Instead, conformational analysis was articulated, from
this base, along several different avenues. In the first
place, it was applied to other molecules containing cy-
clohexane subunits, such as triterpenoids and oleanolic
acid [40.22, p. 305]. Quantitative approaches were de-
veloped and this allowed for precise predictions of en-
ergy differences between conformations in these sorts
of systems. Eventually, the structural limits of this ap-
proach were probed by identifying situations in which
molecules with cyclohexane subunits did not behave
as expected. New concepts, such as conformational
transmission were then introduced to account for these
deviations from expectation. These were refinements in
the application of conformational analysis to the same
basic type of system in which its clear consequences
were originally discerned. Additionally, attempts were
made to extrapolate the same basic approach used in an-
alyzing cyclohexane to unsaturated six-membered rings
and heterocyclic compounds. This is a case of pushing
the approach into new territory. It required adapting the
concepts used in the cyclohexane case to these struc-
turally similar but importantly different new cases. New
issues had to be confronted, such as how to account for
the conformational implications of electron pairs. Even-
tually, conformations became one of the central tools
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used to understand the behavior of biologically relevant
molecules.

Once the rotational variants of structural models
were recognized to be significant, chemists still faced
the daunting task of organizing and sorting these infi-
nite structural variations into categories that could be
inferentially connected with experimental results, and
eventually lead to new experiments. This was not done
in a top-down way, by somehow deducing the impli-
cations of nonbonded interactions and conformations
for chemical reactions. Instead, successfully doing this
depended on finding a particular case where the confor-
mational implications were clear and then generalizing
and articulating from there. The concepts used to con-
nect conformations with experiment came, initially,
from considering cyclohexane. Models of cyclohexane
played a crucial role in both the recognition of these
concepts and their connection to experiment.

Cyclohexane was focused on because chemists al-
ready knew, from manipulation of models, that it had
just a small number of strain-free conformations. This
feature of cyclohexane is not shared with most other
organic compounds, but it was crucial to its role in
revealing the power of conformational analysis. Exam-
ination of these conformations showed that the chair

form maximized interatomic distances, which led to
the conclusion that the relevant nonbonded interac-
tions were repulsive. Additionally, inspection of the
chair form led to the important distinction between
axial and equatorial positions about the ring, which
was subsequently linked with important energy dif-
ferences between structural variants of cyclohexane
(including, ultimately, steroids). These conformational
features of cyclohexane are also not features shared by
most molecules. The concept of an axial or an equato-
rial substituent simply doesn’t apply in most molecules,
but this concept turned out to be crucial is deduc-
ing the chemical consequences of conformations. The
distinctions between conformations that were actually
used in order to connect this new aspect of chemi-
cal structure with experiment were available only in
concrete representations of a particular structure. Mod-
els of cyclohexane are rich with discernible differences
not previously identified as significant in chemical ex-
planations. These previously neutral features supplied
the concepts that eventually got connected with exper-
imental results. It was then by generalizing, adapting,
and articulating these foothold concepts that the broad
applicability and novel applications of conformations
were developed.

40.4 Conclusion
I hope to have established that models of structure, typ-
ically in the form of structural formulas, are essential
tools for chemists. They mediate between theory and
phenomena, providing the platform on which theoret-
ical principles are both recognized and applied. They
also facilitate application, as seen in the use of the
theory of organic chemistry in solving synthesis prob-
lems by – in addition to its role in explanation and
prediction – providing for the possible reaction path-
ways, strategic evaluations, plausibility assessments,

and optimization that are crucial to synthetic design.
Furthermore, structural models have also played impor-
tant roles as sources of the concepts that chemists use to
adapt their models to both theoretical and experimental
developments. In sum, structural models are the key-
stone of the success of structural chemistry, not only
because they are crucial to its theoretical content and
application at any particular time, but also because of
their contribution to its continued viability as a research
program.
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41. Models in Geosciences

Alisa Bokulich, Naomi Oreskes

The geosciences include a wide spectrum of dis-
ciplines ranging from paleontology to climate
science, and involve studies of a vast range of
spatial and temporal scales, from the deep-time
history of microbial life to the future of a sys-
tem no less immense and complex than the entire
Earth. Modeling is thus a central and indispens-
able tool across the geosciences. Here, we review
both the history and current state of model-based
inquiry in the geosciences. Research in these fields
makes use of a wide variety of models, such
as conceptual, physical, and numerical models,
and more specifically cellular automata, artificial
neural networks, agent-based models, coupled
models, and hierarchical models. We note the in-
creasing demands to incorporate biological and
social systems into geoscience modeling, chal-
lenging the traditional boundaries of these fields.
Understanding and articulating the many different
sources of scientific uncertainty – and finding tools
and methods to address them – has been at the
forefront of most research in geoscience modeling.
We discuss not only structural model uncertainties,
parameter uncertainties, and solution uncertain-
ties, but also the diverse sources of uncertainty
arising from the complex nature of geoscience
systems themselves. Without an examination of
the geosciences, our philosophies of science and
our understanding of the nature of model-based
science are incomplete.
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41.1 What Are Geosciences?

The geosciences (sometimes also referred to as the Earth
sciences) cover a very broad spectrum of disciplines
including geology, paleontology, hydrology (the distri-
bution and movement of water, on the surface and un-
derground), glaciology (the study of ice and glaciers),
climate science, oceanography, geophysics (the inter-
nal structure of the Earth, its gravitational and magnetic
fields, plate tectonics, and volcanology), and geomor-
phology (how surface landscapes change over time).
There is significant overlap between these different sub-

fields because the various subsystems of the Earth are
not isolated from one another and are often interact-
ing in complex ways. Usually, the geosciences are un-
derstood as ending where biological systems begin, but
given, for example, the great relevance of plants for
the hydrological cycle (e.g., ecohydrology) and erosion
phenomena (e.g., biogeomorphology), as well as the
great relevance of human activity in altering the climate,
landscapes, and oceans, this division is becoming in-
creasingly difficult to maintain [41.1].
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Although the geosciences have traditionally focused
on the Earth, the conceptual and disciplinary divides be-
tween studies of the Earth and studies of other planets
are also breaking down. For example, the wealth of new
information coming from the space program (e.g., the
Mars Rovers, HiRise images from the Mars Reconnais-
sance Orbiter, and images of various planets and moons
from the Cassini-Huygens spacecraft and the NewHori-
zons Pluto mission) has helped to generate the field
of planetary geomorphology in addition to terrestrial
(Earth) geomorphology. Planetary geomorphology in-
cludes the study of landscapes on not only planets, but
also on moons (such as Saturn’s moon Titan, which has
the largest dune field in our Solar System) and other
large celestial bodies (such as the Comet 67P which was
determined by the Rosetta-Philae lander module to have
water).

The phenomena that geoscientists investigate are
extremely complex and can span a vast range of spa-
tial and temporal scales. Hence, idealized models play
a central role in all of the geosciences. These models are
used for a variety of purposes, including both predic-
tion and explanation. They are used not only for basic
scientific research (theoretical tools for advancing in-
sight and understanding) but also for planning purposes,
policy, and hazard mitigation. Models are used to fore-

cast a wide range of phenomena of human interest, such
as earthquakes, volcanic eruptions, landslides, flooding,
the movement of groundwater and spread of contami-
nants, and coastal erosion.

The geosciences are one of the most rapidly grow-
ing areas of interest in scientific modeling. This is led,
in large part, by the tremendous amount of attention and
resources that have been invested recently in climate
modeling. Climate science is not unique, however, and
many of the methodological issues found there are in
fact widespread among the Earth sciences. Although,
traditionally, philosophers of science have largely ne-
glected the geosciences, leaving it a philosophical terra
incognita [41.2], it is increasingly being recognized that
our picture of the nature of science is inadequate if we
do not take this research in the geosciences into ac-
count.

A complete review of all the relevant work in the
diverse domains of the geosciences – and all the con-
ceptual and methodological issues in modeling that
arise within these different fields – is not possible in
a single chapter. We provide here an overview of philo-
sophical perspectives on this research that we hope will
encourage more scholars to explore these topics further.
The sections are organized primarily by the relevant
conceptual and methodological issues.

41.2 Conceptual Models in the Geosciences

Conceptual models are the first step one takes before
creating a more formal model (i. e., either a physi-
cal or numerical model). It is conceptualization of the
key processes operating in the system of interest and
the interactions between the components in the system.
A conceptual model can simply take a narrative form or
it can be an elaborate diagram. Typically, however, con-
ceptual models can yield only qualitative predictions.

Some of the earliest models in geomorphologywere
conceptual models. Two historically important exam-
ples of conceptual models are Grove Karl Gilbert’s
(1843–1918) balance of forces conceptual model and
William Morris Davis’s (1850–1934) cycle of erosion
conceptual model. In 1877, Gilbert introduced a con-
ceptual model of a stream that appealed to physical
concepts such as equilibrium, balance of forces, and
work to explain the tendency of a stream to produce
a uniform-grade bed. Gilbert describes his conceptual
model as follows [41.3, p. 112]:

“Let us suppose that a stream endowed with a con-
stant volume of water is at some point continuously
supplied with as great a load as it is capable of car-

rying. For so great a distance as its velocity remains
the same, it will neither corrade (downward) nor de-
posit, but will leave the grade of its bed unchanged.
But if in its progress it reaches a place where a less
declivity of bed gives a diminished velocity, its ca-
pacity for transportation will become less than the
load and part of the load will be deposited. Or if in
its progress it reaches a place where a greater decliv-
ity of bed gives an increased velocity, the capacity
for transportation will become greater than the load
and there will be corrasion of the bed. In this way
a stream which has a supply of débris equal to its
capacity, tends to build up the gentler slopes of its
bed and cut away the steeper. It tends to establish
a single, uniform grade.”

As Grant et al. note [41.4, p. 9]:

“Gilbert’s greatest and most enduring contribution
to conceptual models in geomorphology [. . . ] was
the application of basic principles of energy and
thermodynamics to the behavior of rivers. He did so
with clarity of expression and an absence of math-
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ematics that appeals directly to intuition, logic, and
analog reasoning.”

Note that Gilbert’s model provides the conceptual foun-
dation on which a numerical model, giving an equation
to describe the balance of these forces, could be con-
structed, though he himself does not take this further
step.

Another seminal conceptual model in the history
of geomorphology is Davis’s cycle of erosion [41.5].
Davis was a professor of geology at Harvard Univer-
sity; in an 1899 article entitled The geographical cycle,
he established a framework for thinking about modeling
in geomorphology [41.6, p. 481]:

“All the varied forms of the lands are dependent
upon – or, as the mathematician would say, are func-
tions of – three variable quantities, which may be
called structure, process, and time.”

The evolution of a landscape may be understood as a cy-
cle, which begins with a peneplain (a low relief plain)
near a base (e.g., sea) level, is followed by rapid up-
lift leading to a youthful stage of rugged topograph, in

which streams become established, and then a mature
stage of tectonic stability in which those streams widen
and gradually erode the landscape back down toward
the base level. Finally, there will be an old age stage,
involving low-relief landscapes with hills where moun-
tains used to be. This then becomes eroded back to the
peneplain stage until tectonic activity resumes and the
cycle begins again. He used this idea to explain, for ex-
ample, the features of the Appalachian mountains. It
was a qualitative and explanatory conceptual model: it
sought to explain and provide qualitative predictions for
various features of a landscape.

For Davis, the conceptual model was the end point
of his research; in recent years, most geoscientists have
sought to quantify these sorts of processes. Thus, con-
ceptual models can be seen as either the final product
(an end it itself), or as a preliminary step in the pro-
cess of creating a physical or mathematical model. In
the case of mathematical models, there are two lev-
els of modeling at which questions can be raised:
Is the fundamental conceptual model adequate? And
has that conceptual model been adequately represented
or captured by that particular choice of mathematical
equations?

41.3 Physical Models in the Geosciences

Until the mid-twentieth century, most conceptual mod-
els in the geosciences were realized as physical models.
Physical models, also sometimes referred to as hard-
ware or table top models, are a (usually, but not always)
scaled-down version of the physical system of inter-
est. In the geosciences, the systems of interest are
typically large-scale, complex, open systems that are
not amenable to experimental manipulation. A physi-
cal model allows a geoscientist to bring a version of
the landscape into the laboratory, manipulate various
variables in a controlled way, and explore hypothetical
scenarios.

One of the central questions for geologists in the
late nineteenth century was the origin of mountains
(a subject known as orogenesis, from the Greek word
oros meaning mountain). A popular orogenic theory
in the nineteenth century was that mountains resulted
from an overall contraction of the Earth, which was
thought to be a consequence of the nebular hypothesis,
first proposed by Immanuel Kant [41.7] and Pièrre-
Simone Laplace [41.8]. To explore this hypothesis,
the Swiss geologist Alphonse Favre (1815–1890) built
a physical model involving layers of clay on a piece
of stretched rubber, which was then released and the
resulting structures were observed. The ability of this

model to successfully reproduce some of the features
of mountains led Favre to conclude that it supported the
plausibility of the hypothesis [41.9, p. 96]. It was, what
we would today call, a “how-possibly model explana-
tion” (see Chap. 4, Sect. 4.4).

One of the great challenges for physical model-
ing in the geosciences, however, is that the relevant
pressures, temperatures, durations, etc., of geological
processes are largely beyond our reach. This limita-
tion was recognized in the nineteenth century by the
French geologist and director of the École Nationale
des Mines, Auguste Daubrée (1814–1896), who notes
(Daubrée [41.10, p. 5], [41.11] quoted inOreskes [41.9,
p. 99]),

“[T]he equipment and forces that we can set to work
are always circumscribed, and they can only imitate
geological phenomena at the scale [. . . ] of our own
actions. ”

In order to make further advances in physical model-
ing in the geosciences, it was realized that the relevant
forces and processes would have to be appropriately
scaled in the model. The quantitative mathematical the-
ory by which such scaling could be achieved, however,
would not be developed until the work of M. King Hub-
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bert (1903–1989), an American oil company geologist,
in the late 1930s and 1940s.

Hubbert’s work provided [41.9, p. 110]:

“the first fully quantitative treatment of the question
how to choose the physical properties of materials
in a model to account for the much smaller scale
and time frame as compared with nature.”

Hubbert’s 1945 paper begins by noting the paradox
that has long perplexed the geologic sciences: How
could an Earth whose surface is composed of hard,
rigid rock have undergone repeated deformations as if
it were composed of a plastic material, as field obser-
vations of mountains and strata suggest? He notes that
this paradox is a result of failing to adequately consider
the concept of physical similarity, which like geometric
similarity in a map, requires that all the relevant phys-
ical quantities (not just lengths, but densities, forces,
stresses, strengths, viscosities, etc.) bear constant ratios
to one another [41.12, p. 1638]. He notes that when the
strengths are appropriately scaled, the resulting strength
of the rock on a human scale is “comparable with that
of very soft mud or pancake batter” [41.12, p. 1651].
So, for example, since the elastic properties of solids
depend on the strain rate, scale models that operate or-
ders of magnitude faster than terrestrial processes need
to use materials that are orders of magnitude weaker
than terrestrial rocks [41.9, p. 113]. Hubbert’s work on
scaling not only helped explain the puzzling field ob-
servations, but also provided the key to more adequate
physical modeling.

Physical models can be classified by how they do or
do not scale down. At one extreme there are life size (1 W
1) replica models of the system of interest. Sometimes
such 1 W 1 physical models are a localized study of a par-
ticular process, such as Bagnold’s [41.13] use of a wind
tunnel to study how grains of sand saltate form ripples.
However, a full-scale physical model can also be an en-
tire complex system, such as the Outdoor Streamlab at
the University of Minnesota. In this full-scale model
of a river segment, water and sediment flow down an
artificial river system where the sediment is collected,
measured, and recirculated to a sediment feeder. Al-
though such replica models are able to avoid some of
the problems arising from scaling issues (discussed be-
low), they still involve simplifications and laboratory
effects that can affect the reliability of the conclusions
drawn for their real-world counterparts. More generally,
however, many of the systems that geoscientists are in-
terested in (e.g., mountain ranges and coastlines) are
simply too large to be recreated on a 1 W 1 scale; hence,
this type of physical model is typically not feasible.

Scale models are physical models that have been
shrunk down according to some scale ratio (scale mod-

els can in principle be enlarged versions of their real-
world counterparts, though this is not typical in the
geosciences). For example, a 500m-wide real river may
be represented by a 5m-wide scaled physical model,
in which case the scale is 1 W 100. As Hubbert real-
ized, simply shrinking a system down by some factor,
however, will rarely preserve the necessary dynamical
relations [41.14, p. 4]:

“A true scaled model requires perfect geometric,
kinematic, and dynamic similitude, something that
cannot be achieved when using the same fluid as in
the real world system due to equivalent gravitational
and fluid motion forces.”

Further complicating accurate scale modeling is the fact
that different hydrodynamic processes are occurring at
different spatial scales, and different physical effects
can become dominant at those different scales too. For
example, when scaling down one might substitute a fine
sand for a pebbly gravel, but then cohesive forces can
become dominant in the model when they are negligi-
ble in the target. These are examples of what are known
as scale effects, when the force ratios are incompara-
ble between the model and target. In such cases, one
might need to substitute a liquid with a different vis-
cosity or a different bed material into the model to try
to overcome these scaling limitations – an example of
how modelers sometimes deliberately get things more
wrong in the model in order to get the conclusions to
come out more right.

More often, the physical models are distorted scale
models, where not all factors are scaled by the same ra-
tio. The San Francisco Bay model, which is a table-top
working hydraulic model of the San Francisco bay and
Sacramento–San Joaquin River Delta system built by
the US Army Corps of engineers, is an example of a ge-
ometrically distorted scale model, with the horizontal
scale ratio being 1 W 1000, while the vertical scale ratio
is only 1 W 100, and the time scale being 15min to one
day (for a philosophical discussion of this model see
Weisberg [41.15]). Relaxing scale requirements further
get what are sometimes referred to as analog physical
models, where one reproduces certain features of a tar-
get system without satisfying the scale requirements.
These are typically seen as physical systems to be in-
vestigated in their own right for what they can teach us
about certain physical processes, rather than miniature
versions of some specific real system [41.14, p. 5].

Physical models have their own strengths and weak-
nesses. The strengths, as mentioned, involve bringing
a version of the system of interest into the laboratory
as a closed system that is amenable to experimental
manipulation and control. One does not need to have
a mathematical representation of the system in order
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to explore its behavior. The weaknesses, or limita-
tions, of physical models predominantly fall into two
classes: laboratory effects and scale effects. Laboratory
effects are those that occur in the laboratory system
but not in the real-world counterpart. These can be re-
lated to model boundary conditions (sometimes literally
the wall or edge of the table) where the behavior can
drastically change, unrealistic forcing conditions, or the
omission of causally relevant factors in the model. Scale
effects refer to problems in maintaining the correct re-

lations between variables when they are scaled down.
This can lead to certain forces (e.g., cohesive forces)
becoming dominant in the model that are not dominant
in nature. More generally, these laboratory and scale ef-
fects are yet another example of the problem of external
validity: Does the model accurately reflect the behavior
of the system in the real world? This problem is per-
vasive among the sciences, and physical models are no
more immune to it, despite dealing with the same phys-
ical stuff as their target.

41.4 Numerical Models in the Geosciences

Numerical models are mathematical models that rep-
resent natural systems and their interactions by means
of a system of equations. These equations are typically
so complex that they cannot be solved analytically, and
so they have to be solved by numerical methods (such
as finite difference or finite volume methods) that pro-
vide an approximate solution, or the equations need to
be substituted with alternative algorithms, such as cel-
lular automaton models. Numerical models are often
implemented on a computer in a simulation that shows
how the model will behave over an extended period of
time, with some sort of graphical output to visualize
that behavior (for a review of some of the philosophical
issues in computer simulations see Winsberg [41.16]).
This has enabled geoscientists to do something that they
were generally unable (and often unwilling) to do in the
past: to expand the goals of the geosciences to include
forecasting and prediction as well as explanation.

In the context of the geosciences, there are many
different kinds of numerical models, which can be cate-
gorized in different ways. The British geomorphologist
Kirkby et al. [41.17], for example, distinguish the fol-
lowing four broad types of numerical models:

1. Black-box models
2. Process models
3. Mass–energy balance models
4. Stochastic models.

As Kirkby et al. explain, black-box models are models
where “the system is treated as a single unit without any
attempt to unravel its internal structure” [41.17, p. 16].
Tucker [41.18] gives as an example of a black-box
model what is known as Horton’s laws of river net-
work topology. The law predicts the average number of
branching stream segments of a certain order (roughly
size or width). It was discovered by Robert Horton in
1945 from purely empirical analyses of stream basins,
but gives no insight into why this so-called law would

hold (it is not a law in the traditional sense, in that it
does not hold universally). Black-box models are phe-
nomenological models that involve a brute fitting to the
empirical data. Although such models give no insight
or understanding of the internal processes, they can be
useful for making predictions.

At the other extreme of numerical modeling are
process models, which try to describe the internal mech-
anisms giving rise to the empirical relations. Tucker
explains, while [41.18, p. 687]:

“a black-box model of soil erosion would be based
on regression equations obtained directly from data
[. . . ] a process model would attempt to represent
the mechanics of overland flow and particle detach-
ment.”

In between these two extremes are what Kirkby
et al. [41.17] have called grey-box models, where some
mechanisms may be known and included, but the rest is
filled by empirical relations.

An important class of process models are land-
scape evolution models (LEMs). LEMs are numerical
models in which the evolution of the landscape is re-
lated to the key underlying physical processes. These
include, for example, the physical and chemical pro-
cesses of rock weathering leading to rock disintegration
and regolith production (regolith is a generic term re-
ferring to loose rock material, such as dust, soil, and
broken rock, that covers solid rock), gravity-driven
mass movement/landsliding, and water flow/run off
processes (e.g., represented by the St. Venant shallow-
water equations, which are a vertically integrated form
of the Navier–Stokes equations). Each of these pro-
cesses is represented mathematically by a geomorphic
transport function (GTF), which get linked together
to form the LEM. LEMs are often constructed as
a software framework within which a variety of differ-
ent component processes (represented by a particular
choice of GTFs or equations), arranged in a partic-
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ular configuration, can be implemented. Examples of
such LEMs include the channel-hillslope integrated
landscape development (CHILD) model, developed by
Tucker et al. [41.19], and the cellular automaton evo-
lutionary slope and river (CAESAR) model developed
by Coulthard et al. [41.20]. These LEMs can simulate
the evolution of landscapes on scales ranging from 1 to
500 km2 and temporal scales ranging from days to mil-
lennia.

Often a component of LEMs, but sometimes pre-
sented as a model on their own, are mass-balance mod-
els (or energy-balance models). Mass-balance models
use the fact that mass–energy is conserved to develop
a continuity equation to describe the movement of mass
(or energy) between different stores. A store could be
anything ranging from water in lake, the population of
a species in ecosystem, the energy stored as latent heat
in an atmospheric column, the carbon mass in a tree, to
the depth of soil at a point on a hillslope [41.18, p. 688].
An example of a mass-balance numerical model is
a glacier model that describes the relation between ice
accumulation and ablation (by melting and sublima-
tion) at a given point of time under certain climate
conditions [41.21]. Similarly, an energy-balance model
in glaciology would be one that calculates the energy
(heat) fluxes at the surface of the glacier that control
melting and affect mass balance.

Climate science is a field of the geosciences in
which both energy-balance and process numerical mod-
els have been developed to a high level of sophisti-
cation. Energy-balance models represent the climate
of the Earth as a whole, without detailed information
about processes or geographical variation. General cir-
culation models (GCM) go a step further in explicitly
representing atmospheric and oceanic processes. The
most recent generation of climate models are Earth
system models (ESM), which additionally include in-
formation about the carbon cycle and relevant bio-
geochemical processes. More specifically, ESMs are
a composite of a large number of coupled models
or modules, including an atmospheric general circu-
lation model, an oceanic general circulation model,
an ice dynamics model, biogeochemistry modules for
land and ocean (e.g., for tracking the carbon cycle),
and a software architecture or framework in which all
these modules are integrated and able to communi-
cate with each other. Developing and running GCMs
and ESMs require a large number of collaborating
scientists (scores to hundreds), significant supercom-
puting time, and millions of dollars. Because of the
resource-intensive nature of such modeling projects,
there are currently only a few dozen of them, and their
outputs are periodically compared in intercomparison
projects (e.g., coupled model intercomparison project

(CMIP5) [41.22]). (For more on coupled models and in-
termodel comparison projects, see Sect. 41.9 below.) At
present, GCMs and ESMs typically have a spatial reso-
lution of 100�300 km; to fill this gap at the finer level of
resolution, regional climate models (RCMs) have been
developed for various locations.

While the trend in climate modeling has been to-
ward increasing the complexity of these models with
ever more process modules being added, there has
recently been an interesting debate about whether a fun-
damentally new approach to climate modeling is re-
quired (for an excellent review and assessment of the
leading proposals see Katzav and Parker [41.23]). More
generally the trend toward ever more complex models
in the geosciences has led to what Naomi Oreskes calls
the model-complexity paradox [41.24, p. 13]:

“The attempt to make models capture the complex-
ities of natural systems leads to a paradox: the more
we strive for realism by incorporating as many as
possible of the different processes and parameters
that we believe to be operating in the system, the
more difficult it is for us to know if our tests of the
model are meaningful.”

In opposition to this trend, many geoscience model-
ers have started developing what are known as reduced
complexity models, which are motivated by the idea that
complex phenomena do not always need complex mod-
els, and simpler models may be easier to understand
and test. A simpler model may also be run more of-
ten, and with more different parameters, making it more
amenable to sensitivity analysis (see Sect. 41.6.3 be-
low).

In the context of geomorphology, reduced complex-
ity modeling is often defined in contrast with what is
termed simulationmodeling (simulation here refers not
to models that are run as a computer simulation, but
rather models that try to simulate or mimic all the de-
tails of nature as closely as possible). While simulation
models try to remain grounded in the fundamental laws
of classical mechanics and try to represent as many of
the processes operating, and in as much detail, as is
computationally feasible, reduced complexity models
represent a complex system with just a few simple rules
formulated at a higher level of description. As phys-
ical geographers Nicholas and Quine note, emphasis
added [41.25, p. 319]:

“In one sense, the classification of a model as
a reduced complexity approach appears unnecessary
since, by definition, all models represent simplifica-
tions of reality. However, in the context of fluvial
geomorphology, such terminology says much about
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both the central position of classical mechanics
within theoretical and numerical modeling, and the
role of the individual modeler in defining what con-
stitutes an acceptable representation of the natural
environment.”

One of the first successful reduced complexity mod-
els in geomorphology was a cellular automata-type
model of a braided river (i. e., a river with a number
of interwoven channels that shift over time) that used
just two key rules [41.26]. This model was heralded
as a paradigm shift in geomorphic modeling [41.27,

p. 194]. As Brad Murray, one of the proponents of
this approach, argues, knowing how the many small-
scale processes give rise to the large-scale variables
in the phenomenon of interest is a separate scientific
endeavor from modeling that large-scale phenomenon
(Murray [41.28]; see also Werner [41.29]). Although
reduced complexity models may seem like caricatures
of their target systems, they can be surprisingly suc-
cessful in generating realistic behaviors and providing
explanatory insight (for further philosophical discus-
sion of reduced complexity models and this case, see
Bokulich [41.30] andMurray [41.31]).

41.5 Bringing the Social Sciences Into Geoscience Modeling

The geosciences are considered a branch of the phys-
ical sciences, being concerned with the chemistry and
physics of the Earth, its history, and (more recently) its
future. As such, the geosciences are typically thought
of as excluding the domains of both the biological sci-
ences and social sciences. Maintaining these artificial
divisions, however, has increasingly become difficult.
As Oreskes argues [41.1, p. 247]:

“Many, perhaps, most, significant topics in Earth
science research today address matters that involve
not only the functioning of physical systems, but
the interaction of physical and social systems. In-
formation and assumptions about human behavior,
human institutions, and infrastructures, and human
reactions and responses are now built into vari-
ous domains of Earth scientific research, including
hydrology, climate research, seismology and vol-
canology.”

For example, hydrological models that attempt to pre-
dict groundwater levels on the basis of physical consid-
erations alone, can be inadequate for failing to include
possible changes in human groundwater pumping activ-
ity, an external forcing function that can have dramatic
effects on the physical system.

Climate science is another domain of the geo-
sciences in which the need to incorporate the social
sciences (specifically patterns and projections of human
behavior involving, e.g., emission scenarios and defor-
estation practices) is evident. The Intergovernmental
Panel on Climate Change (IPCC) has attempted to in-
corporate these social factors by three separate working
groups, the first on the physical basis and the others
on the social and policy dimensions, each issuing sepa-
rate reports, released at different times. But, as Oreskes
notes, the social variables are not just relevant to the

social–policy questions, but to “the work that provides
the (allegedly) physical science basis as well” [41.1,
p. 253].

Increasingly geoscientists are being called upon to
not only use their models to predict geoscience phe-
nomena, but also to perform risk assessments and to
communicate those risks to the public. Given that geo-
scientists are typically not trained in risk assessment,
risk policy, or public communication, the results can
be troubling. Oreskes recounts the high-profile case of
the 2009 earthquake in central Italy that killed 309 peo-
ple, and for which six geophysicists were sentenced to
six years in prison for involuntary manslaughter in con-
nection with those deaths. Although the international
scientific community expressed outrage that these seis-
mologists were being charged with failing to predict
the unpredictable, the prosecutor, as reported in Nature
painted a different picture (Hall [41.32, p. 266]; quoted
in Oreskes [41.1, p. 257]):

“‘I’m not crazy’, Picuti says. ‘I know they can’t pre-
dict earthquakes. The basis of the charges is not that
they didn’t predict the earthquake. As functionar-
ies of the state, they had certain duties imposed by
law: to evaluate and characterize the risks that were
present in L’Aquila.’ Part of that risk assessment, he
says, should have included the density of the urban
population and the known fragility of many ancient
buildings in the city centre. ‘They were obligated to
evaluate the degree of risk given all these factors’,
he says, and they did not.”

Oreskes concludes from this case [41.1, p. 257]:

“[s]eismology in the twenty-first century, it would
seem, is not just a matter of learning about earth-
quakes, it is also about adequately communicating
what we have (and have not) learned.”



Part
H
|41.6

898 Part H Models in Physics, Chemistry and Life Sciences

Whether it is communicating the risks revealed by
geoscience models or incorporating social variables di-
rectly into geoscience models, geoscientists are under
increasing pressure to find ways to model these hybrid
geosocial systems.

In some areas, such as geomorphology, agent-based
models (ABMs) (which are common in fields such as
economics) are starting to be used. ABMs consist of
a set of agents with certain characteristics, following
certain rules of self-directed behavior, a set of rela-
tionships describing how agents can interact with each
other, and an environment both within which, and on
which, the agents can act. As Wainwright and Milling-
ton note [41.33, p. 842]:

“Despite an increasing recognition that human ac-
tivity is currently the dominant force modifying
landscapes, and that this activity has been increas-
ing through the Holocene, there has been little in-
tegrative work to evaluate human interactions with
geomorphic processes. We argue that ABMs are
a useful tool for overcoming limitations of existing
[. . . ] approaches.”

These ABMmodels, with their simplistic representation
of human behavior, however, face many challenges, in-
cluding not only difficulties in integrating the different
disciplinary perspectives required to model these hybrid
geosocial systems, but also issues of model evaluation.

41.6 Testing Models: From Calibration to Validation

41.6.1 Data and Models

Empirical data was long assumed to be the objective
and unimpeachable ground against which theories or
theoretical models are judged; when theory and data
clashed, it was the theory or model that was expected to
bend. Beginning in the early 1960s, however, philoso-
phers of science including Kuhn [41.34, pp. 133–134],
Suppes [41.35], and Lakatos [41.36, pp. 128–130] be-
gan to realize that this is not always the case: sometimes
it is reasonable to view the theory as correct and use it
to interpret data as either reliable or faulty. In a 1962 pa-
per called Models of Data, Suppes argued that theories
or theoretical models are not compared with raw em-
pirical data, but rather with models of the data, which
are a cleaned up, organized, and processed version of
the data of experience. The production of a data model
can involve, among other things, data reduction (any
data points that are due to error or noise, or what are
otherwise artifacts of the experimental conditions are
eliminated from consideration) and curve fitting (a deci-
sion about which of several possible curves compatible
with the data will be drawn).

This same insight has been recognized by scientists
as well. The ecological modeler Rykiel, for example,
writes, “Data are not an infallible standard for judg-
ing model performance. Rather the model and data are
two moving targets that we try to overlay one upon
the other” [41.37, p. 235]. Similarly Wainwright and
Mulligan argue that the data of measurements are an ab-
straction from reality depending on timing, technique,
spatial distribution, scale, and density of sampling.
They continue [41.33, p. 13]:

“If a model under-performs in terms of predictive
or explanatory power, this can be the result of inap-

propriate sampling for parametrization or validation
as much as model performance itself. It is often as-
sumed implicitly that data represents reality better
than a model does (or indeed that data is reality).
Both are models and it is important to be critical of
both.”

A similar point has been made by the historian Paul
Edwards [41.38] in his book on the development of
climate modeling. There he traces in detail the chang-
ing meaning of data in meteorology and atmospheric
science, noting how the existing incomplete, inconsis-
tent, and heterogeneous data had to be transformed
into a complete and coherent global dataset, with large
numbers of missing gridpoint values interpolated from
computer models in a process known as “objective
analysis” [41.38, p. 252]. Edwards further argues that
even the data obtained from measuring instruments
is model-laden. He notes, for example, that [41.38,
pp. 282-283]:

“meteorology’s arsenal of instrumentation grew to
include devices, from Doppler radar to satellites,
whose raw signals could not be understood as me-
teorological information. Until converted – through
modeling – into quantities such as temperature,
pressure, and precipitation, these signals did not
count as data at all.”

The importance of recognizing this model-
ladenness of data is vividly illustrated in Elizabeth
Lloyd’s [41.39] recounting of the high-profile case in
which it was claimed in a US congressional hearing that
data from satellites and weather balloons contradicted
climate model evidence that greenhouse warming was
occurring. In the end, the climate models were vindi-
cated as more reliable than the data. Lloyd concludes
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from this case that we need to move towards a more
complex empiricist understanding of the nature of data.

The data from measurements can, for example, be
skewed by the fact that measurements are local, and
yet the model might require a more global value (espe-
cially when there is significant heterogeneity), or more
generally that measurements can only be made at one
scale, and yet have to be extrapolated to another scale.
Hence, when using data to parameterize, calibrate, or
validate a model (see below) it is important to be aware
of the limitations of the data model as well, and pay
attention to any biases or errors that may have been in-
troduced during the collection and processing of that
data.

In some areas of the geosciences, such as paleon-
tology, models have even been used to correct biases
in available data. For example, one aim of paleontol-
ogy is to gather information about the deep-time history
of biodiversity (ranging from the Cambrian explosion
to the various mass extinctions) on the basis of the
observed fossil record. The conditions under which fos-
sils are formed, preserved, and revealed are not only
rare, but highly contingent and uneven with respect
to space, time, and type of organism. Hence, there is
arguably a strong detection (or sampling) bias in the
observations. While some have taken the paleodiver-
sity curves constructed from these fossil observations as
a literal description of ancient biodiversity, others have
argued that observed paleodiversity is a composite pat-
tern, representing a biological signal that is overprinted
by variation in sampling effort and geological drivers
that have created a nonuniform fossil record [41.40, 41].
Before any evolutionary theories can be tested against
the data of the fossil record, these data need to be
corrected to extract the relevant biological signal from
other confounding factors. Thus, for example, “many
vertebrate paleodiversity studies have relied on model-
ing approaches (e.g., multivariate regression models) to
‘correct’ data for uneven sampling” [41.40, p. 127]. Of
course, how the data are to be properly corrected, in-
cluding which models of possible drivers and sources
of bias are included in the multivariate analysis yield-
ing the corrected data, involves substantial theoretical
assumptions.As Kuhn noted years ago, observations are
not “given of experience”, but are “collected with diffi-
culty” [41.34, p. 126].

The model-ladenness of data has led philosophers
such as Giere to claim that “it is models almost all
the way down” [41.42, p. 55] – a conclusion Ed-
wards [41.38] argues is strongly supported by his his-
torical analysis of the nature of data in meteorology and
atmospheric science. Others, such as Norton and Suppe,
have taken this conclusion even further, arguing that it
is models all the way down. They write [41.43, p. 73]:

“Whether physically or computationally realized,
all data collection from instruments involves mod-
eling. Thus raw data also are models of data.
Therefore, there is no important epistemological
difference between raw and reduced data. The dis-
tinction is relative.”

However, saying that all data is model-laden to some
degree does not imply that there is no epistemolog-
ical difference, nor that all models are epistemically
on par [41.44, pp. 103–104]. One of the most under-
developed issues in this literature on data models is an
analysis of what makes some data models better than
others, and under what sorts of conditions data models
should – or should not – be taken as more reliable than
more theoretical models.

41.6.2 Parametrization, Calibration,
and Validation

In mathematical modeling, one can distinguish vari-
ables, which are quantities that can vary and are to be
calculated as part of the modeling solution, and param-
eters, which are quantities used to represent intrinsic
characteristics of the system and are specified external
to the model by the modeler. Also specified external to
the model are the boundary conditions and the initial
conditions (the latter describe the values of the variables
at the beginning of a model run). Whether something is
a variable or parameter depends on how it is treated in
a particular model. Parameters need not be constant and
can also vary across space, for example, but how they
vary is specified external to the model. One can further
distinguish two general types of parameters: those re-
lated to characteristics of the dynamics of a process and
those related to the characteristics of a specific system
or location where the model is being applied [41.45,
p. 7].

Sometimes parameters can be universal constants
(e.g., gravitational acceleration or the latent heat of wa-
ter), in which case specifying their values is relatively
unproblematic (though the process by which the val-
ues of constants are initially determined is nontrivial,
and as Chang [41.46] cogently argues, challenges arise
even in so-called basic measurements, such as temper-
ature). More typically in the geosciences, however, the
value of a parameter has to be determined on the basis
of complex measurements, and even an idealization or
averaging of those measurements (such as in the case
of the parameter for bed roughness of a stream bed).
The process by which input parameters are initially cho-
sen has not been well studied, and is greatly in need of
a better understanding. What has been the subject of
considerable attention is the problem of calibration: the
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adjustment of model parameters in response to inade-
quate model performance.

In an ideal world, modelers would build a model
based on physical principles and the equations that
represent them, and then, with the use of appropri-
ate input parameters for physical variables (like tem-
perature, pressure, permeability, equilibrium constants,
etc.), build a numerical simulation that accurately re-
flects the system under analysis. But most models do
not do this: for a variety of reasons the match between
the model output and available empirical information is
often quite poor [41.47]. Therefore, modelers calibrate
their models: they adjust the input parameters until the
fit of the model to available information is improved to
a level that they consider acceptable.

There are several concerns that can be raised about
this process. One is that parameterized models are
nonunique, and there is no way to know which particu-
lar set of parameterizations (if any) is the so-called right
one; many different parameterizations may produce
a given output. (This may be understood as a variation
on the theme of underdetermination, discussed further
below.) As hydrologist Beven notes [41.45, p. 7]:

“parameters are usually calibrated on the basis of
very limited measurements, by extrapolation from
applications at other sites, or by inference from
a comparison of model outputs and observed re-
sponses at the site of interest.”

Moreover, because of the variability and uniqueness of
many complex systems, parameter values extrapolated
from one site may not be appropriate for another. Even
if one restricts oneself to a given site, a model cali-
brated for one purpose (e.g., predicting peak runoff)
may be predictively useless for another purpose (e.g.,
predicting total runoff) [41.33, p. 15]. Indeed, if the
chosen parameterization is not an accurate representa-
tion of the physical system under consideration, it is
likely that the model will not perform reliably when
used for other purposes. This helps to explain the obser-
vation that many calibrated models fail, not only when
used for purposes other than that for which they were
calibrated, but sometimes even when used for their in-
tended purposes [41.48].

Once a model has been built and calibrated, many
modelers engage in an activity they call model valida-
tion, by which they normally mean the testing of the
model against available data to determine whether the
model is adequate for the purpose in question. Many
geoscientists acknowledge that the use of the term val-
idation should not be taken to imply that the model
is true or correct, but rather only that “a model is ac-
ceptable for its intended use because it meets specified

performance requirements” [41.37, p. 229]. Rykiel thus
argues that before validation can be undertaken, the fol-
lowing must be specified:

a) The purpose of the model
b) The performance criteria
c) The context of the model.

However, many so-called validated models have failed
even in their intended use. For example, in a 2001
study, Oreskes and Belitz showed that many hydrologi-
cal models fail because of unanticipated changes in the
forcing functions of the systems they represent. More
broadly, validated models may fail for the following
reasons [41.9, p. 119]:

1. Systems may have emergent properties not evident
on smaller scales.

2. Small errors that do not impact the fit of the model
with the observed data may nonetheless accumulate
over time and space to compromise the fit of the
model in the long run.

3. Models that predict long-term behavior may not an-
ticipate changes in boundary conditions or forcing
functions that can radically alter the system’s be-
havior.

The idea that a model can be validated has been
critiqued on both semantic and epistemic grounds.
Semantically, Oreskes et al. have noted that the termi-
nology of validation implies that the model is valid –
and thus serves as a claim about the legitimacy or accu-
racy – a claim that, as already suggested above, cannot
be sustained philosophically and is often disproved in
practice [41.47, 49]. Hence, a better term than model
validation might be model evaluation. Even with this
change in terminology, however, epistemological chal-
lenges remain. In many cases, the available empirical
data (e.g., historic temperature records) have already
been used to build the model, and therefore cannot
also be used to test it without invoking circular reason-
ing. Some modelers attempt to avoid this circularity by
calibrating and validating the model against different
historical time periods, with respect to different vari-
ables, or even different entities and organisms.

Paleontologists, for example, use biomechanical
models to try to answer functional questions about ex-
tinct animals based on the structures found in the fossil
record (which is a subtle and difficult process, see e.g.,
[41.50]). These biomechanical models, which are used
to make predictions about paleospecies, are validated
or tested against data for present-day species. More
specifically, Hutchinson et al. have used such models
to determine how fast large theropod dinosaurs, such
as Tyrannosaurus rex, could run. They write [41.51,
p. 1018]:
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“The model’s predictions are validated for living al-
ligators and chickens [. . . ]. [m]odels show that in
order to run quickly, an adult Tyrannosaurus would
have needed an unreasonably large mass of extensor
muscle.”

Such an approach may work in cases where very large
amounts of data are available, or where there are clearly
distinct domains that may be enlisted. In many areas of
the geosciences, however, data is scant and all available
data need to be used in the initial construction of the
model.

41.6.3 Sensitivity Analysis
and Other Model Tests

Irrespective of the difficulties of model construction
and calibration, models can be highly effective in
helping to identify the relative importance of vari-
ables, through techniques such as sensitivity analy-
ses. Sensitivity analysis – also known (inversely) as
robustness analysis – is the process of determining
how changes in model input parameters affect the
magnitude of changes in the output (for philosophi-
cal discussions of robustness analyses see, e.g., Weis-
berg [41.52] or Calcott [41.53]; for a comprehensive,
technical introduction to sensitivity analysis in a vari-
ety of domains see Saltelli et al. [41.54]). For example,
in the context of the paleontology research on mod-
els of Tyrannosaurus rex introduced above, Hutchinson
writes [41.55, p. 116]:

“Because any model incorporates assumptions
about unknown parameters, those assumptions need
to be explicitly stated and their influences on model
predictions need to be quantified by sensitivity anal-
ysis [. . . ]. In manymodels this can be determined by
varying one parameter at a time between minimal
and maximal values (e.g., crouched and columnar
limb poses) and evaluating the changes in model
output (e.g., the required leg muscle mass).”

Varying one parameter at a time is known as a local
sensitivity analysis. However, for some sorts of sys-
tems (especially systems in which nonlinearities and
thresholds operate), a complicating factor is that model
sensitivity to a parameter can also depend on the val-
ues of the other model parameters [41.56, p. 141] and
[41.33, p. 18]. Hence, in these latter cases, one needs
to perform what is known as a global sensitivity analy-
sis, where all the parameters are varied simultaneously
to assess how their interactions might affect model out-
put [41.57].

Sensitivity analysis is used in nearly all domains
of modeling, and it can be an important guide to data

collection: alerting the scientific community to where
additional or better empirical information is most likely
to make a difference. That is to say, sensitivity analy-
ses can reveal which parameters are most important in
a model (and hence should be targeted for additional
data collection) and which parameters are relatively
unimportant or even negligible. It may thus suggest pa-
rameters that should be omitted, which can save on
computational time. Sensitivity analyses can also help
determine whether a model might be overparameter-
ized, which involves a kind of overfitting to the data
that occurs when too many parameters are included and
fixed.

Model testing can involve a wide spectrum of
different techniques, ranging from subjective ex-
pert judgments to sophisticated statistical techniques.
Rykiel [41.37] has assembled a list of 13 different
procedures, which he calls validation procedures. How-
ever, given the concerns raised above about the term
validation and the heterogeneity of the procedures col-
lected in his list, the broader rubric of model tests
is arguably more appropriate. Rykiel’s list is as fol-
lows [41.37, pp. 235–237]:

1. Face validity, where experts are asked if the model
and its behavior are reasonable.

2. Turing-test validity, where experts assess whether
they can distinguish between system and model out-
puts.

3. Visual validation, where visual outputs of model are
(subjectively) assessed for visual goodness of fit.

4. Inter-model comparisons.
5. Internal validity of model.
6. Qualitative validation: the ability to produce proper

relationships among model variables and their dy-
namic behavior (not quantitative values).

7. Historical data validation, where a part of the his-
torical data is used to build the model and a part is
used to validate it.

8. Extreme conditions tests, where model behavior is
checked for unlikely conditions.

9. Traces: the behavior of certain variables is traced
through the model to see if it remains reasonable at
intermediate stages.

10. Sensitivity analyses: the parameters to which the
model is sensitive are assessed against the param-
eters to which the system is or is not sensitive.

11. Multistage validation: validation at certain critical
stages throughout the model-building process.

12. Predictive validation: model predictions are com-
pared to system behavior.

13. Statistical validation: statistical properties of model
output are evaluated and errors are statistically ana-
lyzed.
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Although, as noted before, the term validation is inap-
propriate and this heterogeneous list could be usefully
organized into different categories, it nonetheless pro-
vides a good sense of the broad spectrum of techniques

thatmodelers deploy in testing and evaluating theirmod-
els. Each of the procedure on this list can play an impor-
tant role in the modeling process and is arguably worthy
of further philosophical and methodological reflection.

41.7 Inverse Problem Modeling

One of the central tasks of geophysics is to determine
the properties of the interior structure of the Earth on
the basis of measurements made at the surface. The
primary method by which this is done is known as
inverse problem modeling. Most broadly, an inverse
problem is defined as that of reconstructing the pa-
rameters of a system or model based on the data it
produces; in other words, one starts with a set of ob-
servational data and then tries to reason back to the
causal structure that might have produced it. The in-
verse problem is contrasted with the forward problem,
which involves starting with a known model and then
calculating what observations or data that model struc-
ture will produce. Inverse problems are found across
the sciences, such as in finding the quantum potential in
the Schrödinger equation on the basis of scattering ex-
periments, diagnostic imaging in medicine using X-ray
computer assisted tomography, or, most relevantly here,
determining information about the interior structure of
the Earth on the basis of travel-time data of waves
(e.g., earthquakes). Indeed, the first methods for solv-
ing inverse problems were developed in the context of
seismology by a German mathematical physicist Gus-
tav Herglotz (1881–1953) and the geophysicist Emil
Wiechert (1861–1928).

A fundamental challenge for inverse modeling
methods is the problem of underdetermination [41.58,
p. 120]:

“[T]he model one aims to determine is a contin-
uous function of the space variables. This means
the model has infinitely many degrees of freedom.
However, in a realistic experiment the amount of
data that can be used for the determination of the
model is usually finite. A simple count of variables
shows that the data cannot carry sufficient informa-
tion to determine the model uniquely.”

In other words, the solution to the inverse problem is
not unique: there are many different models that can ac-
count for any given set of data equally well. This is true
for both linear and nonlinear inverse problems [41.59].

One method for trying to constrain this underde-
termination is known as the model-based inversion

approach, which involves introducing a second, inter-
mediary model known as the estimated or assumed
model [41.60, p. 626]. The estimated model is used in
the forward direction to generate synthetic data, which
is then compared with the observational data. On the
basis of the discrepancy between the two datasets, the
estimated model is modified and the synthetic data
it produces is again compared in an iterative opti-
mization process. As Snieder and Trampert note, how-
ever [41.58, p. 121]:

“There are two reasons why the estimated model
differs from the true model. The first reason is the
nonuniqueness of the inverse problem that causes
several (usually infinitely many) models to fit the
data [. . . ] The second reason is that real data [. . . ]
are always contaminated with errors and the esti-
mated model is therefore affected by these errors as
well.”

In other words, one must also be aware of errors aris-
ing from the data model (as discussed earlier). Different
modeling approaches for dealing with inverse prob-
lems in geophysics have been developed, such as the
use of artificial neural network (ANN) models (see,
e.g., Sandham and Hamilton [41.61] for a brief re-
view).

Recently, a number of philosophers of science have
highlighted the philosophical implications of the un-
derdetermination one finds in geophysical inverse prob-
lems. Belot [41.62], for example, argues that this “down
to earth underdetermination” shifts the burden of proof
in the realism–antirealism debate by showing that a rad-
ical underdetermination of theory by (all possible) data
is not just possible, but actual, and likely widespread
in the geosciences (and elsewhere). Miyake similarly
calls attention to the problem of underdetermination in
these Earth models and notes that there are additional
sources of uncertainty that are not even considered in
the setting up of the inverse problem [41.63]. He argues
that thinking of these Earth models as a case of what
philosophers [41.64] call model-based measurement is
important for understanding the epistemology of seis-
mology.
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41.8 Uncertainty in Geoscience Modeling

Geoscientists have paid considerable attention to the
problem of model uncertainty and sources of error, but
many (if not all) of the sources of uncertainty they
identify are not unique to the geosciences. There are
different ways in which one can construct a taxonomy
of the sources of uncertainty in modeling. One can,
for example, organize the sources of uncertainty by the
relevant stage in the modeling process. Here, one can
group the various uncertainties into the following three
categories:

1. Structural model uncertainties
2. Parameter uncertainties
3. Solution uncertainties.

Alternatively, one can also organize the sources of
uncertainty in modeling on the basis of various com-
plexities that arise for the sort of systems one is trying
to model. This latter approach is taken by geomor-
phologist Stanley Schumm [41.65], who organizes the
sources of uncertainty into the following three cate-
gories:

1. Problems of scale and place
2. Problems of cause and process
3. Problems of system response.

Each of these ways of thinking about sources of uncer-
tainty in modeling serves to highlight a different set of
philosophical and methodological issues.

Uncertainties can be identified at each step of the
modeling process. During the construction phase of the
model there are a number of uncertainties that can be
grouped together under the broad rubric of structural
model uncertainties. In this category, there are what are
termed closure uncertainties, which involve uncertain-
ties about which processes are to be included or not
included in the model [41.66, p. 291]. There can be un-
certainties regarding both which processes are in fact
operating in the target system (some processes might
be unknown) and which of the processes known to be
operating are in fact important to include (we may know
that a process is operating, but not think it is relevant).
Sometimes whether a process is important, however,
depends on what other processes are included in the
model, as well as on other factors, such as the relevant
spatiotemporal scale over which the model will be ap-
plied. As an example of this type of structural model
(closure) uncertainty, O’Reilly et al. [41.67] discuss the
case of early attempts to model stratospheric ozone de-
pletion (that resulted in the unexpected ozone hole in
the Antarctic, which was discovered in 1985). They
write [41.67, p. 731]:

“[B]efore the ozone hole discovery led scientists
to rethink their conceptual models, ozone assess-
ments had not considered such multiphase reactions
[i. e., heterogeneous chemical reactions] to be im-
portant. At the time, gas-phase atmospheric chem-
istry was much better understood than multiphase
chemistry, and heterogeneous reactions were seen
as arcane and generally unimportant in atmospheric
processes.”

Because these chemical processes were not well un-
derstood scientifically and were not recognized as im-
portant to this phenomenon, they were left out of the
model, leading to a drastic underprediction of the rate
at which ozone depletion would take place. More gen-
erally, asOreskes and Belitz have noted, when modelers
lack reliable information about known or suspected
processes, they may simply leave out those processes
entirely, which effectively amounts to assigning them
a value of zero [41.48, 67]. Such closure uncertainties
in modeling can thus lead to significant errors.

Second, there are process uncertainties, which are
concerned with how those processes should be rep-
resented mathematically in the model. For many pro-
cesses in the geosciences, there is no consensus on the
right way to represent a given process mathematically,
and different representations may be more or less ap-
propriate for different applications. For example, there
are different ways that turbulence can be represented in
models of river flow, from the greatly simplified to the
highly complex [41.66, p. 291].

Third, there are what are more narrowly called
structural uncertainties; these are uncertainties in the
various ways the processes can be linked together and
represented in the model. Included in this category are
uncertainties associated with whether a component is
taken to be active (allowed to evolve as dictated by the
model) or passive (e.g., treated as a fixed boundary con-
dition). Lane [41.66, p. 291] gives the example of the
different ways the ocean can be treated in global climate
models: because of water’s high specific heat capac-
ity, the ocean responds slowly to atmospheric changes;
hence, if used on short enough time scales, the modeler
can represent the ocean as a passive contributor to atmo-
spheric processes (as a source of heat and moisture, but
not one that in turn responds to atmospheric processes).
Parker [41.68] also discusses structural uncertainty in
climate modeling, with regard to the choice of model
equations.

Structural model uncertainties can give rise to struc-
tural model error, which Frigg et al. [41.69] define
broadly as a discrepancy between the model dynamics
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and target system dynamics. They demonstrate that in
a nonlinear model, even a small structural model er-
ror can lead to divergent outcomes more drastic than
those due to the sensitive dependence on initial con-
ditions characteristic of chaotic systems. In analogy
with the well-known butterfly effect, they (following
Thompson [41.70]) call this the hawkmoth effect. They
conclude that the structural model error in a nonlin-
ear model “is a poison pill . . . operational probability
forecasts are therefore unreliable as a guide to rational
action if interpreted as providing the probability of var-
ious outcomes” [41.69, p. 57]. Nonetheless, they note
that such models may still be useful for generating in-
sight and understanding.

In addition to these three types of structural model
uncertainty (closure, process, and structure uncertain-
ties), another significant source of uncertainty is param-
eter uncertainty. As discussed earlier, models contain
both variables (whose values are determined by the
model itself) and parameters (whose values must be
specified externally by the modeler). In the global cir-
culation or ESMs of climate science, parameters are
used, for example, in representations of unresolved pro-
cesses (such as cloud systems or ocean eddies) that are
on a finer-grained scale than that on which the model
operates. Ideally, the value of a parameter is deter-
mined directly by field measurements, but often this
is not possible. In many cases, the parameter is ei-
ther prohibitively difficult to measure or has no simple
field equivalent. The parameters then need to be esti-
mated or calculated on the basis of other models (e.g.,
as detailed by Edwards [41.38] in his discussion of
parameters in meteorology and atmospheric science).
Beven [41.45, p. 8] gives the example of the parameter
representing soil hydraulic conductivity in hydrology.
Measurements of soil hydraulic conductivity are typ-
ically made on soil samples in a small area, but are
known to exhibit order of magnitude variability over
even short distances. Often, however, the model will
require a value of hydraulic conductivity over a much
larger spatial scale (e.g., the whole catchment area).
Hence, substantial uncertainties can arise as one tries
to determine an effective value for the parameter.

Parameters can also take on different values than
their real-world counterparts during the process of cal-
ibration or optimization. An example is the bed rough-
ness parameter, which is used to represent the grain size
of a river bed affecting the friction and turbulence of the
flow. As Odoni and Lane note [41.71, p. 169]:

“it is common to have to increase this quite sig-
nificantly at tributary junctions, to values much
greater than might be suggested by [. . . ] the bed
grain size. In this case there is a good justifica-

tion for it, as one-dimensional models represent not
only bed roughness effects but also two- and three-
dimensional flow processes and turbulence.”

In other words, the bed roughness parameter in the
model is used to capture not just the bed roughness,
but other effects that act like bed roughness on the be-
havior of the flow. This is another example of what
was earlier called getting things more wrong in order
to get them more right. More generally, parameter val-
ues determined for one model may be calibrated for
that particular model structure, and hence not be in-
dependent of that model structure or even different
discretizations or numerical algorithms of that model
structure, and therefore are not transferable to other
models without additional error [41.45, p. 8]. Hence,
one must be aware of the problem of parameter incom-
mensurability, where parameters that share the same
namemight in fact “mean” different things [41.45, p. 8].

Although they are not strictly speaking parameters,
one can also include under this umbrella category un-
certainties in the initial conditions and the boundary
conditions, which also need to be specified externally
by the modeler in order to operate the model. Examples
include [41.71, p. 169]:

“the geometry of the problem (e.g., the morphology
of the river and floodplain system that is being used
to drive the model) or boundary conditions (e.g.,
the flux of nutrients to a lake in a eutrophication
model).”

In order to integrate a model forward in time, one
needs to first input the current state of the system as
initial conditions. Not only can there be uncertainties
in the current state of the system, but also some chaotic
models will be very sensitive to such errors in the initial
conditions.

The final category of model uncertainties is solu-
tion uncertainties. Once the model equations are set
up, the parameters fixed, and the initial and bound-
ary conditions are specified, the next step is to solve
or run the model. Often in geoscience modeling, the
governing equations are nonlinear partial differential
equations that do not have general analytic solutions.
In such cases, one must resort to various discretiza-
tion or numerical approximation algorithms (e.g., finite
difference methods, finite element methods, bound-
ary element methods, etc.) to obtain solutions, which
will not be exact (though they can often be bench-
marked against analytic solutions). There can also be
uncertainties introduced by the way the algorithm is im-
plemented on a computer for a simulation model. Beven
notes [41.45, p. 6]:
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“[D]ifferent implementations will, of course, give
different predictions depending on the coding and
degree of approximation. [The] computer code [. . . ]
represents a further level of approximation to the
processes of the real system.”

In implementing a model on a computer, decisions must
be made about the appropriate choice of time steps and
spatial discretizations, and these and other solution un-
certainties can lead to further sources of error.

In his book To interpret the Earth: Ten ways to be
wrong, Schumm identifies 10 sources of uncertainty,
which he organizes into the three categories of prob-
lems of scale and place, problems of cause and process,
and problems of system response [41.65]. The first
source of uncertainty concerns time. Compared to the
long-time history over which Earth’s landscapes evolve,
the time scale of human observation is extremely short.
There can be short-term patterns in geoscience phenom-
ena that are very different from the long-term pattern
one is trying to predict or explain; hence, extrapola-
tions from short-term observations may not be reliable
(e.g., the short-term wind direction you observe may
not be indicative of the prevailing long-term wind di-
rection that predominantly shapes the landscape). Also,
different features of a landscape (and the correspond-
ing different processes) can become salient as different
time scales are considered. The processes that are most
relevant on a short-time scale (such as storm events)
may be insignificant on a long-time scale, as well as
the reverse (e.g., uplift phenomena are negligible over
the short term, but are such stuff as the Himalayas are
made of over the long term). Hence, inadequate atten-
tion to these issues of time, both in the construction and
application of the model, can be a significant source of
uncertainty. The second source of uncertainty, space,
is analogous to these problems of time. For example,
to understand how water moves through the ground on
a small spatial scale, the type of soil or rock (e.g., its
porousness) might be most relevant to model, while on
a large scale, the overall topology of the landscape (e.g.,
whether it is on a steep slope) and whether it has large-
scale rills (cracks or channels) might be more relevant.
The third source of uncertainty Schumm calls location,
which relates to the uniqueness of geomorphic systems
(e.g., there is a sense in which no two rivers are exactly
the same, and hence models developed for one location,
might not be applicable to other locations).

In the next cluster, Schumm identifies convergence
as a fourth source of uncertainty. Convergence is the
idea that different processes or causes can produce sim-
ilar effects. For example, sinuous rills on the Moon
look like dried river beds formed by flowing water, but
were later concluded to be the result of collapsed lava

tubes [41.65, p. 59]. Hence, one needs to be careful
in inferring cause from effect, and in drawing an anal-
ogy from the causes of an effect at one location to the
causes of a very similar effect at another location. The
fifth source of uncertainty, divergence, is the opposite of
convergence: the same cause can produce different ef-
fects. Schumm gives the example of glacio-eustasy, or
the change of sea levels due to the melting of glaciers
and ice sheets. He explains [41.65, p. 64]:

“With the melting of the Pleistocene continental ice
sheets the assumption is that a global sea-level rise
will submerge all coastlines. However, the results
are quite variable [. . . ] [a]s a result of isostatic uplift
following melting of the continental ice sheets.”

Isostatic uplift refers to the rebounding or rise of land
masses that were depressed under the massive weight
of the ice sheets (this rebound is still ongoing and aver-
ages at the rate of a centimeter per year: see, e.g., Sella
et al. [41.72]). In other words, the melting of glaciers
and icesheets can cause sea levels both to rise and to
fall (depending on the location): one cause, two differ-
ent (and opposite) effects.

The sixth source of uncertainty Schumm identifies
is what he calls efficiency, which he identifies with the
assumption that the more energy expended, the greater
the response or work done. He notes that this will not
generally be the case [41.65, p. 66]:

“When more than one variable is acting or when
a change of the independent variable, such as pre-
cipitation, has two different effects, for example,
increased runoff and increased vegetation density,
there may be a peak of efficiency at an intermediate
condition.”

He gives as an example the rate of abrasion of a rock by
blown sand, which has a maximum abrasion efficiency
at relatively low rates of sand feed (presumably due to
an interference of rebounding particles with incoming
particles).

The seventh source of uncertainty he identifies is
multiplicity, which is the idea that there are often
multiple causes operating in coordination to produce
a phenomenon, and hence one should adopt a multiple
explanation approach. This concept originated in the
work of the American geologist Thomas C. Chamber-
lin (1843–1928), specifically in his method of multiple
working hypotheses, a method which he urged was
beneficial not only to scientific investigation, but also
to education and citizenship. In his 1890 article in-
troducing this method he considers the example of
explaining the origin of the Great Lake Basins. Cham-
berlin writes [41.73, p. 94]:
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“It is practically demonstrable that these basins
were river-valleys antecedent to the glacial incur-
sion, and that they owe their origin in part to the
pre-existence of those valleys and to the blocking-
up of their outlets [. . . ]. So, again, it is demonstrable
that they were occupied by great lobes of ice, which
excavated them to a marked degree, and therefore
the theory of glacial excavation finds support [. . . ]. I
think it is furthermore demonstrable that the earth’s
crust beneath these basins was flexed downward,
and that they owe [. . . ] their origin to crustal de-
formation.”

What might initially appear to be a scientific contro-
versy involving rival hypotheses or competing expla-
nations, in fact turns out to be a case where each
hypothesis correctly has part of the story. Chamber-
lin concludes that one benefit of considering diverse
explanations for observed phenomena is that it forces
the geologist to move beyond hasty or simplistic ex-
planations, and instead to consider the possibility that
more than one relevant process has been involved. (For
a philosophical discussion of the method of multiple
hypotheses in the case of plate tectonics, see Rachel
Laudan [41.74].)

An example of this from paleontology is the long-
standing debate about the cause of the Cretaceous
(K–T) mass extinction (in which 70% of all species,
including all the (nonavian) dinosaurs, went extinct).
The favored explanation of this extinction event is the
impact hypothesis: that the extinction was caused by
a large comet or asteroid that hit Earth near present-day
Chicxulub, Mexico. While the fact that this impact oc-
curred is not in doubt, some scientists question whether
the impact hypothesis can explain the gradual and step-
wise extinction pattern that is observed in the fossil
record. They favor instead an explanation that appeals
to massive volcanism and climate change, which was
already underway. While often viewed as rivals, these
two explanations might be complementary [41.75].
Schumm concludes, “if there is more than one cause
of a phenomenon, unless all are comprehended, extrap-
olation will be weak and composite explanations are
needed” [41.65, pp. 74–75]. (For a more general philo-
sophical discussion of explanation in the Earth sciences,
including a discussion of the explanation of the K–T ex-
tinction, see Cleland [41.76].)

The final three sources of uncertainty Schumm
identifies are singularity, the idea that landforms,
though also having many commonalities, have features
that make them unique, and hence respond to changes in
slightly different ways or at different rates; sensitivity,
the idea that small perturbations to a system can have
significant effects, especially when a system involves

either internal or external thresholds; and the complex-
ity of geomorphic systems, which means they have
numerous interconnected parts interacting in typically
nonlinear ways. An example of an important threshold
in the geosciences is the velocity at which a sediment
particle of a given size is set in motion by a particu-
lar fluid (e.g., water or wind). This is an example of
an extrinsic threshold involving changes in an external
variable. There can, however, also be intrinsic thresh-
olds in which there is an abrupt change in a system
without there being a corresponding change in an exter-
nal variable. For example, under constant weathering
conditions the strength of materials can be weakened
until there is an abrupt adjustment of the system (such
as a landslide). Another example of an intrinsic thresh-
old is when a bend or loop in a meandering river will
suddenly be cut off by the formation of a new channel.
More generally, geomorphic systems often exhibit what
are called autogenic behaviors, in which there can be
a sudden and pronounced change in the system’s behav-
ior or characteristics, not due to an external cause, but
rather due to internal feedbacks in the system, in which
gradual changes can result in sudden, threshold-like re-
sponses (for a discussion see Murray et al. [41.77]; for
an example of an autogenic behavior discovered in the
St. Anthony’s Falls physical model discussed earlier,
see Paola et al. [41.78]). Schumm concludes [41.65,
p. 84]:

“The recognition of sensitive threshold conditions
appears to be essential in order that reasonable
explanations and extrapolations can be made in
geomorphology, soil science, sedimentology and
stratigraphy, and many environmental and ecosys-
tem areas.”

So far we have reviewed five sources of uncer-
tainty arising during stages of the modeling process
and 10 sources of uncertainty arising from the com-
plexity of geoscience systems. A further complication
arises from the fact that even models with these sorts
of errors can generate predictions that agree reason-
ably well with observations – a case of getting the
right answer for the wrong reason. Hence, on pain of
committing the fallacy of affirming the consequent, one
cannot deductively conclude that one’s model is right,
just because it produces predictions that match obser-
vations. More generally, this is related to the fact that
more than one model or theory can account for a given
set of observations: the data underdetermine the model
or theory choice. In the philosophical literature this is
known as the problem of underdetermination (e.g., see
Duhem [41.79], or for contemporary discussion, see
Stanford [41.80]; for a philosophical discussion of un-
derdetermination in the Earth sciences see Kleinhans
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et al. [41.2]). In the geoscience literature the prob-
lem of underdetermination is sometimes referred to as
the problem of nonuniqueness, or equifinality [41.81].
Beven and Freer write [41.82, p. 11]:

“It may be endemic to mechanistic modeling of
complex environmental systems that there are many
different model structures and many different pa-
rameter sets within a chosen model structure that
may be [. . . ] acceptable in reproducing the observed
behavior of that system. This has been called the
equifinality concept.”

In other words, the data are not sufficient to uniquely
pick out a model structure or parameter set. (A simi-
lar sort of equifinality was seen in the nonuniqueness
of inverse problems discussed earlier.) Moreover, the
acceptable parameter sets may be scattered throughout
parameter space (i. e., not localized around some opti-
mum parameter set). This problem of equifinality is not

just hypothesized, but has been demonstrated in com-
puter simulations, which are now cheap and efficient
enough to allow explorations of the parameter space of
models of a variety of geoscience systems.

The problem of equifinality has led Beven et al. to
develop a method to deal with uncertainty that they
call the generalized likelihood uncertainty estimation
(GLUE) methodology [41.83]. GLUE involves a kind
of Monte Carlo method with a random sampling of the
space of possible model–parameter combinations, in
which each possible set of parameters is assigned a like-
lihood function (assessing the fit between model predic-
tions and observations). The idea is not to pick one best
model–parameter set, but rather to take into account
the predictions of all acceptable models (models not
ruled out by current data or knowledge), weighted by
their relative likelihood or acceptability, in something
like a Bayesian averaging of models and predictions.
(For a recent review and discussion of objections to the
GLUE methodology see Beven and Binley [41.84].)

41.9 Multimodel Approaches in Geosciences

The GLUE methodology is just one of several different
approaches that try to use multiple models in concert to
reduce uncertainty. The GLUE methodology requires
a large number of runs to adequately explore the pa-
rameter space. However, this is not typically feasible
in computationally intensive models. An alternative ap-
proach that can be used with more complex models
is the metamodel approach (for a review see Kleij-
nen [41.85]). A metamodel is a simplified surrogate
model that is abstracted from the primary model and
used to aid in the exploration of the primary model and
its parameter space. While metamodels have long been
used in engineering research, they have only recently
started to be applied to models in the geosciences.

Odoni [41.86], for example, has applied the meta-
model approach to the study of a landscape evo-
lution model (LEM) developed by Slingerland and
Tucker [41.87] known as GOLEM (where GO stands
for geomorphic-orogenic). GOLEM has been used,
for example, to model the evolution of a catchment
landscape of the Oregon Coast Range around the head-
waters of the Smith River over a period of 100 000
years. In order to understand how equifinality mani-
fests itself in GOLEM, Odoni selected 10 parameters
(related to mass movement, channel formation, fluvial
erosion, and weathering processes) to vary over a range
of values that was determined to be consistent with the
location based on published data and calibration. The
model outputs used to describe the landscape at 100 000

years include sediment yield, drainage density, sedi-
ment delivery ratio, and a topographic metric. Rather
than trying to solve the full GOLEM model for the
immense number of possible parameter value combina-
tions, Odoni derived a metamodel, or set of regression
equations, that described each model output as a func-
tion of the GOLEM parameters. As he explains, “The
parameter space is then sampled rapidly and densely
(>> 1�106 times), using each metamodel to predict
GOLEM’s output at each sample point” [41.86, p. i].
In this way metamodels yield a clearer picture of what
drives model output (leading to a possible further sim-
plification of the model) and an understanding of where
equifinality may be lurking. It is important to note that
this equifinality is not just an abstract cooked-up pos-
sibility, but a genuine, wide-spread practical problem,
making it yet another example of what Belot termed
down-to-earth underdetermination.

More common than both the GLUE and metamodel
approaches are classic intermodel comparison projects.
The most well known here are the large-scale, multi-
phase intercomparison projects used by the IPCC in
their assessments. The most recent coupled model in-
tercomparison project (CMIP5), for example, compares
the predictions of dozens of climate models running the
same set of scenarios. The aim of such multimodel en-
sembles is to “sample uncertainties in emission scenar-
ios, model uncertainty and initial condition uncertainty,
and provide a basis to estimate projection uncertain-
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ties” [41.88, p. 369]. Lloyd has emphasized the strength
of such multimodel approaches, arguing that it is “a ver-
sion of reasoning from variety of evidence, enabling this
robustness to be a confirmatory virtue” [41.89, p. 971].

The proper assessment of such intermodel compari-
sions for robustness and uncertainty reduction involves
some subtleties, however (see, e.g., Parker [41.90, 91];
Lenhard and Winsberg [41.92]). Models can, for ex-
ample, agree because they share some common model
structure, rather than indicating model accuracy. As
Masson and Knutti explain [41.93, p. 1]:

“All models of course contain common elements
(e.g., the equations of motion) because they de-
scribe the same system, and they produce similar
results. But if they make the same simplifications in
parameterizing unresolved process, use numerical
schemes with similar problems, or even share com-
ponents or parts thereof (e.g., a land surface model),

then their deviations from the true system or other
models will be similar.”

In such cases an agreement among climate models does
not indicate that modelers are on the right track. It re-
mains unclear how best to conceptualize and assess
model independence [41.23, p. 485]. More generally,
the spread of an ensemble of models is often taken to
approximate the uncertainty in our predictions; how-
ever, as Knutti et al. [41.94] have argued, these are
ensembles of opportunity, not systematic explorations
of model or parameter space. They suggest a number
of ways forward, including having a larger diversity
of models to help find constraints valid across struc-
turally different models, and developing new statisti-
cal methods for incorporating structural model uncer-
tainty [41.94, p. 2755]. There are many other multi-
model approaches used in the geosciences, including
coupled models and hierarchical modeling.

41.10 Conclusions
The geosciences provide a rich and fruitful context in
which to explore methodological issues in scientific
modeling. The problem of understanding and articulat-
ing scientific uncertainty has particularly come to the
fore in these fields. The complex and multiscale na-
ture of geological and geophysical phenomena require
that a wide variety of kinds of models be deployed
and a broad spectrum of sources of uncertainty be con-
fronted. Most modelers do not expect their models to
give specific, quantitative predictions of the detailed be-
havior of the systems under investigation. Rather, they
are understood as providing a tool by which scientists
can test hypotheses (including causal ones), evaluate
the relative importance of different elements of the
system, develop model-based explanations [41.95, 96],
and generate qualitatively accurate projections of fu-
ture conditions. Indeed, it is precisely by grappling with

these many sources of uncertainty that geoscientists
gain insight and understanding into the various pro-
cesses that shape the Earth, their relative importance
and patterns of dependence, and the emergent structures
that they produce.

The geosciences, as we have seen, constitute
a significant portion of scientific research today. Our
philosophies of science and our understanding of the
nature of model-based inquiry are inadequate if we do
not take this research into account. As we hope this re-
view has made clear [41.44, p. 100]:

“the earth sciences are profoundly important, not
only because they challenge conventional philo-
sophical portraits of how scientific knowledge is
produced, tested, and stabilized, but also because
they matter for the future of the world.”
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42. Models in the Biological Sciences

Elisabeth A. Lloyd

Evolutionary theory may be understood as a set of
overlapping model types, the most prominent of
which is the natural selection model, introduced
by Charles Darwin and Alfred Russel Wallace. Many
of the most prominent models today are repre-
sented throughmathematical population genetics,
in which genetical representations of populations
evolve over time to produce evolutionary change.
I review the variety of evolutionary models – from
genic to group to species selection models – and
how they are confirmed through evidence today.
I discuss both applications to cases where we do
not know the genetics, and to animal behavior
and evolution.
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42.1 Evolutionary Theory

Charles Darwin proposed a general type of natural se-
lection model that could explain a variety of particular
cases of adaptation to local environments, once details
of organismic traits and selection pressure were in-
serted. Much of evolutionary theory today, though not
all, is represented through mathematical models, espe-
cially through the models of population genetics, of the
evolution of states of a given system, both in isolation
and interaction through time. This chapter discusses in
detail various ways to describe the evolutionary mod-
els that make up evolutionary theory. The main items
needed for this description are the model types of nat-
ural selection, drift, and so forth, most often described
through the definition of a state space, state variables,
parameters, and a set of laws of succession and co-
existence for the system. Choosing a state space (and
thereby, a set of state variables) for the representation
of genetic states and changes in a population is a crucial
part of population genetics theory. Claims about evo-

lutionary models may be confirmed in three different
ways:

1. Through fit of the outcome of the model to a natural
system

2. Through independent testing of assumptions of the
model, including parameters and parameter ranges

3. Through a range of instances of fit over a variety
of the natural systems to be accounted for by the
model, through a variety of assumptions tested, and
including both instances of fit and some indepen-
dent support for aspects of the model.

42.1.1 The Structure
of Darwinian Evolutionary Models

The basic structure of Darwinian evolutionary models
is deceptively simple and elegant; such simplicity can
yield powerful change over the proposed time spans
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encountered by the biological systems involved. For
evolution by natural selection, for example, we start
with a basic very general model structure that in-
cludes a set of assumptions or components [42.1, 2].
Van Fraassen has defined model type as the description
of a structure in which certain parameters are left un-
specified, like this [42.3, p. 44].

Definition 42.1 Model Type
Model type D a structure in which certain parameters
are left unspecified [42.3, p. 44].

The classic selection model type concerns a population
of varied organisms, and these variations are assumed
to be at least partially inheritable. In this population’s
environment (which is always defined relative to the
organism’s needs and sensitivities), there are demands
and stresses affecting some variants more than others,
resulting in differential reproduction. Thus, the basic
natural selection model type leads to the change in
the population variants’ composition and structure over
evolutionary time. (For discussion about multilevel se-
lection model types, see Lloyd [42.4]).

In 1859, Charles Darwin, in On the Origin of
Species, proposed his basic abstract selection model
type, and other evolutionary model types, and also filled
in their details in various cases in various ways in the
book and his correspondence; in this manner, he illus-
trated how to use and apply the models.

Definition 42.2 Natural Selection Model Type

Population__(with details filled in)

Traits 

Genetic basis

Correlation with fitness

Selection pressure, environment

More specifically, each of the model types serve as for-
mats for explanation; the particular terms or factors in
a model type vary in each application, depending on
the outcome of the model and various assumed con-
ditions [42.1, 2]. For example, in the Origin, Darwin
needed evidence for his assumption that wild organisms
spontaneously developed heritable variations some of
which would be advantageous to their survival and re-
production. Such a general assumption of the existence
of useful variations was necessary for a variable in
the natural selection model type, which would then be
instantiated in specific models by individual cases of
variation. Darwin found empirical evidence for this as-
sumption in the animal breeders’ information, as he

presents in the Origin. (Darwin kept up an avid and
long-term correspondence with a number of pigeon
breeders, from which he learned detailed information
about the vast variety of feather form, pattern, and
color, as well as behaviors, which spontaneously arose
in their pigeons.) Elsewhere in his correspondence,
Darwin also offers evidence to support an empirical
assumption of a specific model constructed using the
selection model type. In looking at wingless insects
that appear on oceanic islands at a higher concentra-
tion than elsewhere, Darwin proposed to explain their
frequency by a selection pressure of high winds blow-
ing them off the islands, thus favoring insects without
wings. He tested this model assumption by compar-
ing an even smaller island to the other islands he
was examining earlier: he found, as he predicted, even
a higher percentage of wingless insects. His earlier as-
sumption of a selection pressure was thus indirectly
confirmed in his proposed model [42.1, pp. 121–122],
[42.5, p. 401], [42.6, pp. 226–227]. See Sect. 42.2
for more detailed discussion about the confirmation
of evolutionary models. Note that the evolutionary
selection models can range from the very abstract, gen-
eral, model structure with its high level assumptions,
through ever more specified models as we identify
and fill in the necessary assumptions of selection pres-
sures, types of variation, and evidence for heritability.
Ultimately, our ever more detailed specifications of
the assumptions result in a fully specified selection
model, which anchors the most concrete end of the
model-continuum, from most abstract model type to
most concrete model [42.7], [42.2, pp. 106–107], [42.1,
pp. 118–119].

42.1.2 The Structure of Population Genetic
Evolutionary Models

While Darwin’s evolutionary models and explanations
were nonquantitative, much of evolutionary theory at
the beginning of the twenty-first century is represented
through mathematical models or equations, especially
through the models of population genetics, of the evo-
lution of states of a given system, both in isolation and
interaction, through time. This is done by conceiving
of the evolutionary model as capable of a certain set
of states – these states are represented by elements of
a certain mathematical space, the state space [42.5, 6,
8, 9].

Definition 42.3 (State Space)
A state space is a mathematical space specified by vari-
ables capable of a certain set of states; the collection of
all possible configurations or states of these variables.
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Definition 42.4 (Data Models)
Data models are simplified structures representing the
natural world made up of measurements, observations,
or the results of experiments, that is, numbers or values
extracted from the real world, many of which are ar-
ranged in relations suggested by the theoretical models.

Generally speaking, models and systems always re-
fer to ideal systems, described theoretically. When the
actual biological systems are being discussed, they are
called empirical or natural systems. The variables used
in each model represent distinct measurable or poten-
tially quantifiable, physical, or biological magnitudes.
Classically, any particular configuration of values for
these variables is a state of the system, the state space
being the collection of all possible configurations of the
variables.

The theory itself represents the behavior of the sys-
tem in terms of its states: the rules or laws of the theory
(i. e., laws of coexistence, succession, or interaction)
can delineate various configurations and trajectories on
the state space. A description of the structure of the the-
ory itself therefore only involves the description of the
set of models, which make up the theory. In an appli-
cation of the theory or models to the real world, we
consider both data models and the idealized models de-
scribing idealized systems and their resemblance. Data
models are simplified structures representing the natu-
ral world made up of measurements, observations, or
the results of experiments, that is, numbers or values ex-
tracted from the real world, many of which are arranged
in relations suggested by the theoretical models [42.10].

The ideal systems are usually gradually specified, as
described in Sect. 42.1.1, to show a good match or simi-
larity with the data models, to which they are compared
during an application of the theory or model type [42.3,
11]. Construction of a model within the theory involves
assignment of a location in the state space of the theory
to a system of the kind defined by the theory. Poten-
tially, there are many kinds of systems that a given
theory can be used to describe – limitations come from
the dynamical sufficiency (whether it can be used to de-
scribe the system accurately and completely) and the
accuracy and effectiveness of the laws used to describe
the system and its changes.

Definition 42.5 (Dynamical Sufficiency)
The concept of dynamical sufficiency concerns what
state space and variables are sufficient to describe the
evolution of a system given the parameters being used
in the specific system.

Thus, there are two main aspects to defining a model.
First, the state space must be defined – this involves

x

zy

Fig. 42.1 A three-dimensional Cartesian coordinate sys-
tem, with axes x, y, and z (after [42.12])

choosing the variables and parameters with which the
system will be described, e.g. in Fig. 42.1; second,
coexistence laws, which describe the structure of the
system, and laws of succession, which describe changes
in its structure, must be defined.

Definition 42.6 (Coexistence Laws)
Laws representing compatible states of the state vari-
ables.

Definition 42.7 (Laws of Succession)
Laws representing progressive changes of states of
a system.

Definition 42.8 (Parameters)
Values that are not themselves a function of the state of
the system. Unvarying values.

Defining the state space involves defining the set of
all the states the system could possibly exhibit. Certain
mathematical entities – in the case of many evolution-
ary models, these are vectors – are chosen to represent
these states. The collection of all the possible values for
each variable assigned a place in the vector is the state
space of the system. The system and its states can have
a geometrical interpretation: the variables used in the
state description (i. e., state variables) can be conceived
as the axes of a Cartesian space.

The state of the system at any time may be repre-
sented as a point in that space, located by projection
on the various axes. The family of measurable phys-
ical magnitudes, in terms of which a given system is
defined, also includes a set of parameters. Parameters
are values that are not themselves a function of the state
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aa

AaAA

Fig. 42.2 Genotype space with genotypic coordinates AA,
Aa, and aa (after [42.13])

of the system. Thus, a parameter can be understood as
a fixed value of a variable in the state space – topo-
logically, setting a parameter amounts to limiting the
number of possible structures in the state space by re-
ducing the dimensionality of the model.

Laws, used to describe the behavior of the system
in question, must also be defined in a description of
a model or set of models. Laws have various forms: in
general, coexistence laws describe the possible states of
the system, while laws of succession describe changes
in the state of the system.

Let us discuss in, more detail, the description of the
evolutionary models that make up current evolutionary
theory. The main items needed for this description are
the definition of a state space, state variables, parame-
ters, and a set of laws of succession and coexistence for
the system. Choosing a state space (and thereby, a set of
state variables) for the representation of genetic states
and changes in a population is a crucial part of popu-
lation genetics theory. (Population genetics models are
a most technical, but not necessarily a core, part of evo-
lutionary theory itself (but see Thompson [42.6]).

Paul Thompson suggests that the state space for
population genetics would include the physically possi-
ble states of populations in terms of genotype frequen-
cies. The state space would be “a Cartesian n-space
where n is a function of the number of possible pairs
of alleles in the population” [42.6, p. 223]. We can pic-
ture this geometrically as n axes, the values of which
are frequencies of the genotype, as in Fig. 42.2.

The state variables are the frequencies for each
genotype. Note that this is a one-locus system, that is,
we take only a single gene locus and determine the di-
mensionality of the model as a function of the number
of alleles at that single locus.

Another type of single locus system, used less com-
monly than the one described by Thompson, involves
using single gene frequencies, rather than genotype fre-
quencies, as state variables. Some of the debates about
genic selectionism center around the descriptive, dy-
namical, and parametric adequacy of this state space
and its parameters for representing evolutionary phe-
nomena (Dawkins [42.14], Lloyd et al. [42.15], see later
discussion of genic selection and dynamical insuffi-
ciency).

With both genotype and gene frequency state
spaces, treating the genetic system of an organism as
being able to be isolated into single loci involves a num-
ber of assumptions about the system as a whole. For
instance, if the relative fitnesses of the genotypes at
a locus are dependent on other loci, then the frequen-
cies of a single locus observed in isolation will not
be sufficient to determine the actual genotype frequen-
cies. Assumptions about the structure of the system as
a whole can thus be incorporated into the state space
in order to reduce its dimensionality. Lewontin [42.16]
offers a detailed analysis of the quantitative effects of
dimensionality of various assumptions about the bio-
logical systems being modeled. Interactions between
genotypes, and between one locus and another cannot
be represented in a single locus model (with the excep-
tion of frequency-dependent selection), for the simple
reason that they involve more than one locus [42.16,
pp. 273–81].

As far as the structure of the theory goes, al-
though all single locus models should, in some sense,
be grouped together, they are not all exactly the same
model – each particular model has a different number of
state variables, depending upon the number of alleles at
that locus. Because a model type is simply an abstrac-
tion of a model, constructed by abstracting one or more
of the models parameters or variables, a single model
can be an instance of more than one model type. This is
an extremely important aspect of the flexibility of this
approach to theory structure.

Along similar lines, we may say that each model
type be associated with a distinctive state space type.
In the preceding example, the single locus model is to
be taken as an instance of a general state space type
for all single locus models, i. e., the different single lo-
cus model types are conceived as utilizing the same
state space type. Alternatives, such as two-locus mod-
els, must be taken as instances of a different state space
type.

Parameters are the values that appear in the suc-
cession and coexistence laws of a system that are the
same for all possible states of the defined system. For
instance, in the modification of the Hardy–Weinberg
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equation that predicts the frequencies of the genotypes
after selection, the selection coefficient, s, or multiplier,
appears as a parameter in the formula p2 AAC2 pqAaC
.1� s/ q2 aaD 1� sq2 [42.17, p. 102], [42.18, p. 81].

There are a variety of methods of establishing the
value at which a parameter should be fixed or set in
the construction of models for a given real system, for
example, simulation techniques can be used to obtain
estimates of biologically important parameters. In some
contexts, maximum likelihood estimations may be pos-
sible. Parameters can also be set arbitrarily or ignored.
This is equivalent to incorporating certain assumptions
into the model for purposes of simplification [42.19,
pp. 8,89].

One expects the values of parameters to have an
impact on the system being represented; but varia-
tions in parameter values can make a larger or smaller
amount of difference to the system. For instance, take
a deterministic model that incorporates a parameter for
mutation, �. The rates of change of this model can be
virtually insensitive to realistic variations in the value
of the mutation parameter, �, because they are several
orders of magnitude smaller. (However, mutation rates
do sometimes play important roles with significant con-
sequences, for example, in Kimura and Ohta [42.20]
(nearly neutral theory), and in Kondrashov’s hatchet (in
the evolution of sex, [42.21]).

Going back to Hardy–Weinberg models, the selec-
tion parameters play a crucial role in these models.
A very small amount of selection in favor of an allele
will have a cumulative effect strong enough to replace
other alleles [42.16, p. 267].

Population size is another case in which the value
assigned to the parameter has a large impact on the
model results. The parameter for the effective popula-
tion size, N, can play a crucial role in some models,
because selection results can be quite different with
a restricted gene pool size [42.22, pp. 48–50]. In many
of the stochastic models involved in calculating rates
of evolutionary change, the resulting distributions and
their moments can depend completely on the ratio of the
mean deterministic force to the variance arising from
random processes [42.16, p. 268]. This variance is usu-
ally proportional to 1=N and is related to the finiteness
of population size. Thus, change in the value of the
single parameter, N, can completely alter the structure
represented by the theory.

The choice of parameters can also make a major
difference to the model outcome. Theoreticians have
choices about how to express certain aspects of the sys-
tem or environment. The choice of parameters used to
represent the various aspects can have a profound ef-
fect on the structure, even to the point of rendering the
model useless for representing the real world system

in question. Group selection models provide a case in
which choice of parameters not only alters the results
of the models, but also can lead to the near disappear-
ance of the phenomenon being modeled [42.23, 24].

Some authors, when discussing genetic changes in
populations, speak of the system in terms of a type of
state space involving phenotypes. This makes sense, be-
cause the phenotype determines the breeding system
and the action of natural selection, the results of which
are reflected in the genetic changes in the population;
quantitative genetics is the set of models that concen-
trate on phenotypic state spaces. In his analysis of the
present structure of population genetics theory, Lewon-
tin traces a single calculation of a change in genetic
state through both genotypic and phenotypic descrip-
tions of the population [42.16].

But in addition, mating patterns, and probabilities
of survival and reproduction, although influenced by
genes, are a consequence of developmental events that
are contingent on the environment of the developing
organism, and involve more than any simple pheno-
type. In the most general case, environment includes
influences of the phenotypes of previous generations
by means of cytoplasmic inheritance through the egg.
A complete general representation of genetic evolution-
ary processes then requires not two, as is usually done,
but six spaces with sequential transitions within them
and mappings from one to the other [42.15]. Haploid
spaces represent only the single chromosome or set of
one sex’s genes, while (sexually reproducing) diploid
state spaces represent both sets. The complete set of six
spaces, S, is thus:

S1 A diploid phenotypic space
S2 A diploid genotypic space
S3 A diploid pair phenotypic space
S4 A diploid pair genotypic space
S5 A haploid phenotypic space and
S6 A haploid genic space.

(Assuming that organisms reproduce in discrete
generations, with no overlap between generations.)
While it is true that the system’s transition from one
generation to the next may be represented in any one of
the six spaces, we need to know the entire loop – and all
the parameter values in each of the model stages in that
loop – in order to obtain a fully accurate representation
of any chosen state space in the next generation, i. e.,
to get the state transformation equation between gener-
ations within any one of the spaces (e.g., if we want to
move from (S6) to (S6 in the new generation)). For in-
stance, for the transition in allelic space, we must move
out of that space, into genotypic space to define the fit-
ness parameters, and back into allelic space in order to
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characterize the next generation [42.15, pp. 143–144].
This case illustrates the issue of the representational ad-
equacy of models, to which we shall now turn.

42.1.3 Representational Adequacy
of Models

The most common approach to comparing population
genetic models has emphasized prediction of allele fre-
quency changes: If two models both predict the same
changes in allele frequencies, it is thought, then the
models are equivalent. But this is an inadequate ap-
proach to understanding and confirming models. We
advance the notion of representational adequacy, which
we define as parametric and dynamical sufficiency.
Why introduce representational adequacy? What is
wrong with straightforwardly checking whether the
model fits the allele frequency data? There are a vari-
ety of ways that models can be tested against data, and
fitting the outcome or prediction of the model – in these
cases, the predicted allelic or genotypic frequencies – is
only one of them [42.25].

Other significant components of the empirical eval-
uation of any mathematical model include: testing
the values of its parameters against the system inde-
pendently (e.g., measuring or estimating the mutation
parameter value in the model); evaluating the appro-
priateness of the state space and parameters used; and
testing the model against a range of values in the vari-
ety of systems to which it is supposed to apply (variety
of fit) (Sect. 42.2). In addition, a model is taken to
be better confirmed when it has more of its parameter
values – that is, a variety of them – estimated or con-
firmed independently [42.9, pp. 145–159]. Our notion
of representational adequacy combines the traditional
standards of predictive accuracy and goodness of fit
with the broader requirements of confirming that the
state space, parameters, and laws being used in the mod-
els are appropriate and sufficient to the task [42.26–28].
We take it as foundational to any notion of adequate
representation that the standards of parametric suffi-
ciency in model building be weighed in judging overall
model adequacy. Parametric sufficiency is dependent
upon choice of space and parameter set, in any particu-
lar case.

The concept of dynamical sufficiency is precisely
defined in terms of a set of objects and their frequen-
cies, and another set of objects and their frequencies.
Dynamical and parametric sufficiency together provide
a much more adequate measure of a model’s empirical
worth than the vague notion of empirical adequacy, or
the overly simplistic idea that if a model’s prediction of
allelic or genotypic frequency is correct, then the model
is empirically substantiated.

Parametric Sufficiency
Parameters are properties of objects, and may be prop-
erties of more than one object at a time. (Parameters are
represented in the models as values that are not vari-
ables.) Two models may look as though they should be
dynamically equivalent because of the similar appear-
ance and names of their parameters, such as fitness,
but real differences in their parameter measures may
result in dynamics that are not equivalent. Two mod-
els should be considered parametrically equivalent if
the parameters that apply in one model have a natural
representation in the parameters that apply in another.
One case in which similar-looking parameters yield
very different dynamics concerns allelic and genotypic
fitnesses, which has led to much confusion in current
controversies.

Dynamical Sufficiency
The concept of dynamical sufficiency concerns what
state space and variables are sufficient to describe the
evolution of a system given the parameters being used
in the specific system. What happens to the frequency
of the variable over time? In a simple allelic model, this
question becomes: Can we describe the changes in the
frequency of allele A over time, with the information
that we have, which includes the state space (variables)
and the parameters (fitnesses, population size, etc.)?

Problematic Claims. One widely repeated set of
claims has revolved around [42.29] assessment of
the mathematical equivalence of a wide variety of
population genetic models [42.30, p. 577], [42.31,
p. 57,pp. 98–99], [42.32, pp. 168–169,p. 172], [42.33,
p. 479,p. 508], [42.34, p. 312]

Dugatkin and Reeve’s Formulation of Allelic
Equivalence. Dugatkin and Reeve claim [42.29,
p. 108]:

“A number of theoretical investigations [42.35–
43] have shown that the mathematics of the gene-,
individual-, kin-, and new group-selection ap-
proaches are equivalent [. . . ] We will show [. . . ]
that this must be the case.”

They do this with a pair of inequalities [42.29,
p. 109]. Dugatkin and Reeve claim that their inequality
(2) “encompasses both broad-sense individual selection
and any form of trait-group selection that one may care
to envision.” Moreover, they conclude, “If broad-sense
individual selection, genic selection, and trait-group se-
lection all can be represented by a single condition
based only on allele frequencies, then they cannot fun-
damentally differ from one another” [42.29, p. 109].
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But there are serious problems here. The first is that
their inequalities (1) and (2) hide completely the causes
of why the numbers of alleles change, is misleading and
illustrates the importance of both dynamic and paramet-
ric sufficiency.

For a true haploid dynamic, we would usually write
for one locus, but this also necessarily involves geno-
typic parameters for the fitnesses, as well as the allelic
frequencies. In other words, the apparently purely-
allelic parameters depend crucially on genotypic fit-
nesses – but these values are usually completely hidden.
The assumption ofMendelian transmission is also made
in deriving (3) (see also [42.44]). For this two-allele
diploid case, if meiotic drives were introduced, one
more parameter, k, giving the probability that A is pro-
duced by Aa heterozygotes, would be necessary. Thus,
we note that in describing the algebra, many discussions
of allelic models and their algebra obscure the origins of
that algebra and all the information it contains and rep-
resents. A common move is to infer that the genic state
space, and its basic entity, the allele, have a metaphys-
ically fundamental and autonomous character [42.30].
This is both biologically and mathematically problem-
atic. Biologically, the changes represented are depen-
dent on all changes in the entire generational cycle
reviewed above, represented in the variety of spaces
and parameters. Mathematically, because genic space
is dynamically insufficient for representing many sys-
tem changes, and because in diploids there are no allelic
transition laws within allelic space with allelic param-
eters, there is nothing autonomous about it; thus, it
cannot support the metaphysical inferences based on its
supposed autonomy [42.15, 45]. But there is another ac-
count available which might be thought to avoid some
of the above problems.

In this crucial case, from Dugatkin and Reeve, the
allele frequencies G in the allelic state space are dy-
namically sufficient to study the evolution of genotype
frequencies k. These equivalences depend, however, on
the parameters, w11, w12, w22, that could only be deter-
mined in the genotypic space.

Increasing attention has recently been paid to the
phenomenon of epigenetics, which includes a variety of
biological processes that act on genes and may be trans-
mitted between generations, but not according to any of
the rules of genetic inheritance. Formal models for the
evolution of epigenetic objects or properties (Feldman
and Cavalli-Sforza [42.45, 46]; see also Jablonka and
Lamb [42.47]) utilize an additional state space S7, the
phenogenotype, in which changes may occur during or-
ganismal development.

Now consider a few particular aspects and forms
of the laws used in population genetic models. Coex-
istence laws describe the possible states of the system

in terms of the state space. In the case of evolutionary
theory, these laws would consist of conditions delin-
eating a subset of the state space that contains only
the biologically possible states. Laws of succession de-
scribe changes in the state of the system. In the case
of evolutionary theory, dynamic laws concern changes
in the genetic composition of populations. The laws of
succession select the biologically possible trajectories
in the state space, with states at particular times being
represented by points in the state space. The law of suc-
cession is the equation of which the biologically possi-
ble trajectories are the solutions. The Hardy–Weinberg
equation is the fundamental law of both coexistence and
succession in population genetics theory. Even the dy-
namic laws of the theory are usually used to assess the
properties of the equilibrium states and steady state dis-
tributions. The Hardy–Weinberg law is a very simple,
deterministic succession law that is used in a very sim-
ple state space. As parameters are added to the equation,
we get different laws, technically speaking. For exam-
ple, compare the laws used to calculate the frequency
p0 of the A allele in the next generation. Plugging only
the selection coefficient against a recessive into the ba-
sic Hardy–Weinberg law, we get the recursion for the
dominant allele frequency as p0 D p=.1� sq2).

Addition of parameters for the mutation rates yields
a completely different law, p00 D 1��p0C �q0, where
� is the rate of mutation away from the dominant al-
lele, and where � is the rate of mutation toward it.
We could consider these laws to be of a single type –
variations on the basic Hardy–Weinberg law – that are
usually used in a certain state space type. The actual
state space used in each instance depends on the genetic
characteristics of the natural system, and not usually on
the parameters. For instance, the succession of a sys-
tem at Hardy–Weinberg equilibrium and one that is not
at equilibrium but is under selection pressure, could
both be modeled in the same state space, using different
laws.

A theory can have either deterministic or statisti-
cal laws for its state transitions. Furthermore, the states
themselves can be either statistical or nonstatistical.

Definition 42.9 Statistical Laws
Statistical laws are constructed by specifying a prob-
ability measure on the state space. For example, we
could assign probabilities (frequencies) to each distinct
possible value of gene frequency. Thus, the probabil-
ity measure is constructed by taking a certain value for
the gene frequency, obtaining the joint distribution (for
example, through simulation) and making a new state
space of probabilities on the old state space of gene fre-
quencies.
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In population genetics models, gene frequencies of-
ten appear in the set of state variables, thus the states
themselves are statistical entities. In general, a law is
deterministic if, when all of the parameters and vari-
ables are specified, the succeeding states are uniquely
determined. In population genetics, this means that the
initial population and parameters are all that is needed
to get an exact prediction of the new population state.

In sum, the structure of evolutionary theory can
be understood by examining the families of models it
presents. In the case of population genetics theory, the
set of model types – stochastic and deterministic, single
locus or multilocus – can be understood as related fam-
ilies of models. The question then becomes defining the
exact nature of the relationships among them, and how
they relate to the rest of the evolutionary models, such
as phenotypic or evolutionary developmental models.

42.1.4 Expansions and Alternative Views
of the Structure of Evolutionary
Theory

In philosophy of science, the above analysis instantiates
an approach to theory structure known as the semantic
view, that focuses on models [42.3, 10, 11, 48–50].

Definition 42.10
The semantic view states that scientific theories are un-
derstood as being interpretable as families of models
(viewed in terms of set theory, not necessarily alge-
braicly). More recently it has gone under the name,
the model-based approach. The syntactic or received
view comes from the logical positivist tradition, where
scientific theories are viewed as axiomatizable sets of
sentences. The axioms are the universal laws of the the-
ory, and all that can be derived from those axioms are
the regularities of the theory. Evolutionary theory had
been criticized for not being easily formulated in terms
of the received view.

Some authors have misrepresented the semantic ap-
proach, while some also support what they tend to call
a model-based approach, whose differences from the
semantic view are unclear [42.51, 52]. For instance,
Downes [42.51, p. 143], Godfrey Smith [42.52, p. 731],
and Love [42.53, p. 7] all claim that the semantic
view is committed to “mathematized theories,” which
is not useful for some biological contexts. But both
Beatty [42.5] and Lloyd [42.1] analyzed Darwin’s (non-
mathematical) selection theory and models as their first
presentations of the semantic view of evolutionary the-
ory. So clearly the semantic view can be used to analyze
nonmathematized theories and biological contexts. Es-
pecially in the hands of Suppes, the semantic view

can be used to analyze any structures into set theoretic
terms, and thus into mathematical terms (mathemat-
ics concerns structures, and all structures can be seen
as mathematical objects); but the whole purpose is to
represent the system in the most accurate, most use-
ful, or most beneficial, etc. way. This does not mean
that the analyzed structures are themselves represented
mathematically before the analysis, and also does not
mean that they are represented in equations after the
analysis. Some authors also neglect the various hierar-
chies of evolutionary models offered using the semantic
view, as outlined in Sect. 42.1.1, with misleading results
(e.g., Godfrey Smith [42.52, pp. 732–739], Lloyd [42.1,
pp. 118–119]).

In contrast, biologist Samuel Scheiner has recently
offered an expanded account of the structure of evo-
lutionary theory that takes the semantic view as its
touchstone, and goes on to include other areas of bi-
ology [42.54]. Alan Love has also provided a very
interesting expansion of the analysis of evolutionary
theory through the inclusion of developmental biology
models and model types. The analysis of the struc-
ture of the theory offered above for population genetics
can thus be advanced and expanded (using a variety
of detailed methods of describing models, if needed),
to incorporate developmental biology, by extending the
linkages and overlaps of the model families under-
stood to make up evolutionary theory. Love’s overall
approach is extremely useful, as it focuses on which
research problems in evolutionary biology subfields
compose the theory as a whole [42.54, p. 428], [42.55,
56]. Just as on the earlier analysis of Darwinian mod-
els in Sect. 42.1.1, on Love’s view, the entire hierarchy
of models is explored, from the very abstract or gen-
eral, to the extremely concrete. He emphasizes that
different researchers use mid-level models in differ-
ent ways and toward different ends; the resulting fully
filled-out and concrete models can even be incom-
patible with one another. Love offers lists of model
constraints from cellular and developmental biology
that add additional model structure that may be needed
to complement evolutionary models in order to fulfill
the requirements of an extended evolutionary synthe-
sis [42.53, p. 8]. By combining different empirical
generalizations, some developmental biologists create
mechanisms for the evolution of form that can then be
tested. (The component principles of these generaliza-
tions are not, themselves, best considered mechanistic
models, according to Love [42.53, p. 8]). The relevant
causal mechanisms operate on the level of individual
ontogeny of organisms, not on population-level mech-
anisms such as natural selection or genetic drift. Thus,
we get the concrete-level models just mentioned. Hav-
ing a flexible and robust view of theory structure that
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Fig. 42.3 The semantic view structure of evolutionary the-
ory, with overlapping substructures in an n-dimensional
space. Each oval represents a subtheory in evolutionary
theory, such as genotypic selection or species selection

can account for this wide range of models is impera-
tive, for Love. He contrasts the complex and flexible
view he derives from Griesemer’s [42.58] semantic
view account, as seen in Fig. 42.3, with that of biolo-
gists Pigliucci andMüller [42.57].

Pigliucci and Müller discuss the possibility of an
expanded evolutionary synthesis, which is intended to
incorporate evolutionary developmental biology (evo-
devo) in significant and integrated ways. They see the
need for such an expansion, based on new concepts and
findings in evo-devo that cannot be forced into their
view of the traditional evolutionary synthesis from the
1930s and 1940s [42.57].

Pigliucci and Müller offer an onion-type diagram to
show the structure of evolutionary theory: They place

Genomic evolution

     Mendelian
inheritance

Population
      genetics

Speciation
        and trends

Natural
    selectionContingency

Variation

Inheritance

Gene mutation

Evo-devo theory

Plasticity and
      accommodation

Epigenetic
      inheritance

Replicator theory

Evolvability

Multilevel selection

Niche construction

Fig. 42.4 The new, updated structure
of expanded evolutionary theory, with
its core and surrounding elements of
theories (after [42.57])

Darwinism as a circle at the very center of the onion,
which includes only natural selection, inheritance, and
variation.

In the next outer ring, they place themodern synthe-
sis, which includes things like mendelian inheritance,
speciation and trends, population genetics, and gene
mutation. In the last, outermost ring, which they call the
extended evolutionary synthesis, Pigliucci and Müller
place evo-devo theory, niche construction, multilevel
selection, and genomic phenomena, etc., as shown in
Fig. 42.4.

One apparent problem with this proposed structure,
is: how does evo-devo theory interact with natural selec-
tion, when they are layers away in the onion? It seems
that they have no integration, on this picture. Alan
Love also complains that this model assumes a core
of evolutionary population genetics, which is always in
operation, even thoughmany have no wish to make such
an assumption, and may explicitly reject it [42.53, p. 6],
[42.9, p. 8]. The general problem with the onion picture
is thus the lack of integration and relations among its
parts, which is available under analyses that approach
the structure as hierarchical and intertwined families
of models, which include the new evo-devo, detailed,
models.

A valuable alternative approach to the structure of
current evolutionary biology as well as its history is pre-
sented by Telmo Piavani, who offers a reconstruction
inspired by philosopher Imre Lakatos [42.59]. Piavani’s
updated Lakatosian approach dispenses with some
weaknesses in the original Lakatosian approaches, in-
cluding any strong falsificationism, and analyzes con-
temporary evolutionary theory into a flexible structure
that delineates the theory’s explanatory core and its pro-
tective belt. The traditional explanatory core includes
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such things as: evolution as a fact, the tree of life, com-
mon descent, and natural and sexual selection. The ex-
planatory core of evolutionary theory serves as the basic
theoretical and assumptive background when building
evolutionary explanations, and can be combined with
other explanatory and theoretical tools from the pro-
tective belt, which has expanded and contracted over
time, depending on our state of biological knowledge.
Currently, Piavani argues that the evolutionary core in-
cludes two hierarchies, one a genealogical hierarchy,
namely of nested levels of transmission of genetic ma-
terials, organisms, demes, species, and monophyletic
taxa. The other hierarchy is ecological, made up of,
for example, organisms, populations like avatars, local
ecosystems, and regional ecosystems, the key issue be-
ing the transfers of energy.

Using these two hierarchies in the explanatory core,
Piavani then describes a “pluralistic protective belt,”
that is, a set of models and assumptions, in addition

to the “explanatory core,” that may be appealed to by
an evolutionary biologist when constructing an explana-
tion [42.60, pp. 12–13]. This set of models and assump-
tions includes evo-devo, or evolutionary-developmental
biology, which is now being appealed to in some appli-
cations of evolutionary theory. Piavani emphasizes that
the theoretical changes that evolutionary theory has un-
dergone since the modern synthesis in the 1930s and
1940s has been a progressive one, and now the theory
is very healthy. The current dual core of the theory,
and its various models and features of the protective
belt demonstrate the growth of evolutionary knowledge
since the modern synthesis (although they do have the
disadvantage, according to someone like Love, of privi-
leging some models as the core of evolutionary theory).
Piavani also emphasizes that much of the theory is ca-
pable of falsification, but has not been falsified, which
concerns the testability and confirmation of the theory,
the topic of Sect. 42.2.

42.2 Confirmation in Evolutionary Biology

42.2.1 Confirming and Testing Models

In general, one evaluates a model by comparing the out-
come of the model with empirical observations, and
by independently testing the assumed conditions, in-
cluding observations not available at the time of model
construction [42.1, pp. 116–117]. In population genet-
ics, the most obvious way to support a claim of the
form this natural system is described by this model,
is to demonstrate the simple matching of some part of
the model with some part of the natural system being
described. (Throughout this discussion, let us assume
that each match of model to a natural system in the
real world involves a specification of the model, by
filling in variable and parameter values (on the model
side), plus a determination from the real world of a data
model into a similar format (on the real-world side).
We will skip these specifications in our discussion,
henceforth, and for simplicity, simply say that a model
matches or describes the natural world.) In a popula-
tion genetics model, the solution of an equation might
yield a single genotype frequency value. The geno-
type frequency is a state variable in the model. Given
a certain set of input variables (e.g., the initial geno-
type frequency value, in this case), the output values
of variables can be calculated using the rules or laws
of the model. The output set of variables (i. e., the so-
lution of the model equation given the input values of
the variables) is the outcome of the model. Determin-
ing the fit between model and natural system involves
testing how well the genotype frequency trajectory cal-

culated from the model (the outcome of the model)
matches that measured in the relevant natural (or experi-
mental) populations. It can be evaluated by determining
the fit of one curve (the model trajectory or coexis-
tence conditions) to another (taken from the natural
system); ordinary statistical techniques of evaluating
curve-fitting are used.

Also, numerous assumptions are made in the con-
struction of any model, and testing a model sometimes
involves confirming some or all of these assumptions
independently. These include assumptions about which
factors influence the changes in the system, what the
ranges for the parameters are, and what the mathe-
matical form of the laws is. On the basis of these
assumptions, the models take on certain features. Many
of these assumptions thus have potential empirical con-
tent. That is, although they are assumptions made about
certain mathematical entities and processes during the
construction of the theoretical model, when empirical
claims are then made about this model, the assumptions
may have empirical significance.

For instance, the assumption might be made during
the construction of a model that the population is pan-
mictic, that is, all genotypes interbreed at random with
each other.

Definition 42.11 Panmictic, Panmixia
All genotypes interbreed at random with each other.

The model outcome, in this case, is still a genotype fre-
quency trajectory, for which ordinary curve-fitting tests
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can be performed on the natural population to which
the model is applied. But the model can have additional
empirical significance, given the empirical claim that
a natural system is a system of the kind described in the
model. The assumption of panmixia, as a description of
the population structure of the system under question,
must be considered part of the system description that is
being evaluated empirically. Evidence to the effect that
certain genotypes in the population breed exclusively
with each other (i. e., evidence that the population is not,
in fact, panmictic) would undermine empirical claims
about the model as a whole, other things being equal,
and even if genotype frequencies (that is, the model out-
come) provide good instances of fit. In other words, the
assumption that genotypes are randomly redistributed
in each generation is intrinsic to many population genet-
ics model types. Hence, although the assumption that
the population is panmictic often is taken for granted in
the actual definition of the model type – that is, in the
law formula – it is interpreted empirically and plays an
important role in determining the empirical adequacy of
the claim.

By the same token, evidence that the assumptions
of the model hold for the natural system being consid-
ered will increase the credibility of the claim that the
model accurately describes the natural system. Techni-
cally, we can describe this situation as follows. From
the point of view of empirical claims made about it,
the model has three parts: state variables, empirically
interpreted background assumptions, and those aspects
and assumptions of the model that are not directly em-
pirically interpreted. Because the possible outcomes of
the model (along with the inputs) are actually values
of the state variables, we can understand the input and
outcome of the model as a sort of minimal empirical
description of the natural system.

Definition 42.12 Three Parts of the Models
State variables: such as genotypes. Empirically in-
terpreted background assumptions: such as selection
parameters, mutation parameters, relations between
model parts. And those aspects and assumptions of the
model that are not directly empirically interpreted.

If a model is claimed to describe accurately a natural
system, at the very least, this means that the variables in
which the natural system is described change according
to the laws presented in the theoretical model. Under
many circumstances, such models, in which only the
state variables are empirically interpreted, are under-
stood to bemere calculating devices, because the match
with the (data model extracted from the) natural system
is so limited.

Various aspects of the model – for instance, the
form of its laws, or the values of its parameters – rely
on assumptions made during model construction that
can be interpreted empirically. The assumption of pan-
mixia, discussed earlier, is an empirically interpreted
background assumption of many population genetics
models. Because it is empirically interpreted, the pres-
ence or absence of panmixia in the natural population in
question makes a difference to the empirical adequacy
of the model.

Finally, there may be aspects of the model that are
not interpreted empirically at all. For instance, some
parameters appearing in the laws might be theoret-
ically determined and might have no counterpart in
the natural system against which the model is com-
pared.

Given that there can be aspects of the model struc-
ture that are not directly tested by examining the fit of
the state variable curve, direct testing of these other as-
pects would give additional reason to accept (or reject)
the model as a whole. In other words, it is taken that
direct testing provides a stronger test than indirect test-
ing, hence there is a higher degree of confirmation if the
test is supported by empirical evidence. Direct empiri-
cal evidence for certain empirically interpreted aspects
of the model that are not included in the state variables
(and thus are confirmed only indirectly by goodness-of-
fit tests), therefore provides additional support for the
application of the model.

The above sort of testing of assumptions involves
making sure that the empirical conditions for applica-
tion of various parts of the model description actually
do hold. In other words, in order to accept an explana-
tion constructed by applying the model, the conditions
for application must be verified. The specific values in-
serted as the parameters or fixed values of the model
are another important aspect of empirical claims that
can be tested. In some models, mutation rates, etc. ap-
pear in the equation – part of the task of confirming
the application of the model involves making sure that
the values inserted for the parameters are appropriate
for the natural system being described. Finally, there is
more abstract form of independent support available, in
which some general aspect of the model, for instance,
the interrelation between the two variables, or the sig-
nificance of a particular parameter or variable, can be
supported through evidence outside the application of
the model itself. For example, a migration parameter
can be measured independently of the application of the
model by counting the numbers of organisms that move
between designated populations.

Variety of evidence, of which there are at least three
kinds, is an important factor in the evaluation of em-
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pirical claims. Three kinds of variety of evidence are
discussed here:

1. Variety of instances of fit
2. Variety of independently supported model assump-

tions
3. Variety of types of support, which include fit and

independent support of aspects of the model. In ad-
dition, we must consider the virtue of robustness of
models.

First, let us consider variety of fit, that is, variety
of instances in which the model outcome matches the
value obtained from the natural system. Traditionally,
variety of evidence has meant variety of fit. There are
two issues that must be distinguished when considering
the variety of fit. One involves the range of applica-
tion of a model or model type, while the other involves
the degree of empirical support provided for a single
application. Both of these issues involve the notion of
independence, which needs to be clarified before con-
tinuing.

One point of any claim to variety of evidence is to
show that there is evidence for the hypothesis in ques-
tion from different or independent sources. The notion
of independence here is not the sort of independence
that is found in the frequency interpretation of prob-
ability theory, where the independence depends only
on accepting a particular reference class. Rather, in the
context of scientific theories, independence is relative
to whatever theories have already been accepted.

Significantly, in evolutionary theory, independence
is usually relative to some assumption about natural
kinds. Empirical claims are often made to the effect that
a model is applicable over a certain range of natural sys-
tems. Inherent in these claims is the assumption that all
of the natural systems in the range participate in some
key feature or features that make it possible and/or de-
sirable to describe them all with the same model type.
Thus, there is some assumption of a natural kind (char-
acterized by the key feature or features) whenever range
of applications arises. The scientist, in making a claim
that the model type is applicable to such and such
systems, is making an empirical assumption about the
existence of the key feature or features in the range of
natural systems under question. Hence, for evolutionary
models, testing for variety of fit depends on accept-
ing an assumption about what constitutes different or
independent instances of fit; this in turn, amounts to ac-
cepting a particular view of natural kinds. Part of what
variety of evidence does, in a bootstrapping effect, is
to confirm this original assumption about natural kinds.
More technically, variety of evidence confirms the suf-
ficiency of the parameters and state space.

Take the case in which a model type is claimed to
be applicable over a more extended range than that ac-
tually covered by available evidence. This extrapolation
of the range of a model can be performed by simply ac-
cepting or assuming the applicability of the model to
the entire range in question. A more convincing way to
extend applicability is to offer evidence of fit between
the model and the data in the new part of the range.
Provision of a variety of fit can thus provide additional
reason for accepting the empirical claim regarding the
range of applicability of the model.

For instance, a theory confirmed by 10 instances
of fit involving populations of size 1000 (where pop-
ulation size is a relevant parameter) is in a different
situation with regard to confirmation than a theory
confirmed by one instance of each of ten different
population sizes ranging from 1�1 000 000. If the em-
pirical claims made about these two models asserted
the same broad range of applicability, the latter model
is confirmed by a greater variety of instances of fit.
That is, the empirical claim about the latter model is
better confirmed, through successful application (fits)
over a larger section of the relevant range than the
first model. Variety of fit can therefore provide addi-
tional reason for accepting an empirical claim about the
range of applicability of a model. Variety of fit can also
provide additional reason for accepting a particular em-
pirical claim, that is, one of the form, this natural system
is accurately described by that model. That is, variety of
evidence can serve to increase confidence in the accu-
racy of any particular description of a natural system by
a model.

Variety of fit is only one kind of variety of evidence.
An increase in the number and kind of assumptions
tested independently, that is, greater variety of assump-
tions tested, would also provide additional reason for
accepting an empirical claim about a model. The fi-
nal sort of variety of evidence involves the mixture of
instances of fit and instances of independently tested as-
pects of the model. In this case, the variety of types of
evidence offered for an empirical claim about a model
is an aspect of confirmation. This kind of variety is
not only related to robustness, which appears when nu-
merous models all converge on the same result, but
also is especially significant when the same model-
type with a particular causal core is used to converge
on the same result using a variety of assumptions,
a condition that I call model robustness, and which
warrants the conclusion that the core cause in the
model-type has been confirmed by this configuration of
evidence [42.61].

According to the view of confirmation sketched
above, claims about evolutionary models may be con-
firmed in four different ways:
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1. Through fit of the outcome of the model to a natural
system

2. Through independent testing of assumptions of the
model, including parameters and parameter ranges

3. Through a range of instances of fit over a vari-
ety of the natural systems to be accounted for by
the model, through a variety of assumptions tested,

and including both instances of fit and some in-
dependent support for aspects of the evolutionary
model

4. Through model robustness, wherein the core of
a model type is confirmed through robust outcomes
and empirical support for the assumptions of the
models.

42.3 Models in Behavioral Evolution and Ecology

42.3.1 The Phenotypic Gambit

The basic assumption underlying much behavioral biol-
ogy and evolutionary theory is that the organisms under
study are well adapted. This assumption amounts to
the claim that many features of the organism are them-
selves adaptations, shaped by natural selection for their
present uses. There are also many features of the or-
ganism that are byproducts of present adaptations, char-
acteristics that Stephen Jay Gould and Elisabeth Vrba
dubbed exaptations, or traits that may be useful, but
were not adapted by natural selection for their present
uses. We will continue to focus on the adaptations, for
the present. We can ask, about any feature of an organ-
ism, does this trait have a function? And if the answer
seems to be yes, then we can search for the specific,
detailed function that it serves. Assuming that there is
a genetic underpinning for a selected phenotypic trait,
and that it does not matter what that genetic under-
pinning is called the phenotypic gambit. In researching
traits in the population, the researcher delineates dis-
tinct strategies or behavioral characteristics, and then
assigns fitnesses or reproductive success to those strate-
gies. The phenotypic gambit [42.62, Ch. 3,p. 64]:

“Is to examine the evolutionary basis of a character
as if the very simplest genetic system controlled it:
as if there were a haploid locus at which each dis-
tinct strategy was represented by a distinct allele, as
if the payoff rule gave the number of offspring for
each allele, and as if enough mutation occurred to
allow each strategy the chance to invade.”

Technically, the Gambit is almost always false, as
few species studied by animal behaviorists are hap-
loid, having only one set of chromosomes. But the
soundness of behavioral ecology, whose “main aim is
to undercover the selective forces that shape the char-
acter,” depends on ignoring population genetics, and
hoping that their situations and traits do not violate their
assumptions, especially the phenotypic gambit [42.62,
Chap. 3, p. 64].

42.3.2 Evolutionary Stable Strategies,
Animal Signalling

Using the phenotypic gambit, evolutionary models at
the phenotypic level, usually game theoretic models,
are created by animal behaviorists and behavioral ecol-
ogists to explore the evolutionary dynamics of animal
behavior. W.D. Hamilton offered the rubric of his rule:
if the degree of relatedness, r, times the benefit of a be-
havior, minus the cost of that behavior, would be greater
than zero, then the behavior would evolve in the popula-
tion. The benefits and costs are always counted in terms
of numbers of offspring, not any other currency.

In the context of the phenotypic gambit, strategies
in models borrowed from economics, in which stable
equilibria are reached using simple strategies assigned
to the phenotypes, are dubbed Evolutionary Stable
Strategies. Such strategies are explored through opti-
mal foraging theory, in models that represent searches
for food and consumption and handling of that food in
either simple or complex environments. Optimal strate-
gies make the best use of the organisms’ net rate of
energy intake and time, which are therefore optimized
in the economic models adapted for animal behavior.
Sometimes these optimality models are compared with
experimental evidence regarding their assumptions, to
good effect. For example, there is experimental evi-
dence showing a connection between cognitive search-
ing, a memory type of task, and the type of spatial
searching done in optimal foraging theory, that are
found to be evolutionary stable strategies in the mod-
els [42.63].

While Lewontin first suggested using game theo-
retical models in evolutionary biology [42.64], it was
Smith who really established the use of such models
in the field [42.55]. His analysis of adaptations us-
ing optimality models is now widely used. Parker and
Smith [42.65] distinguish between general models and
specific models, which are parts of a continuum. Gen-
eral models are used heuristically, to guide insights
into the biological problem. Specific models are meant
to be applied quantitatively to particular species, and
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include measurable parameters. In creating an optimal-
ity model, an adaptation is assumed, and a range of
strategies relating to the adaptive problem is defined,
specificing the plausible alternatives. In the case of sex
ratios, for example, the strategies would go from all
males to half males and half females to all females.
An assumption is made that Darwinian fitness is being
maximized, usually the lifetime number of surviving
offspring, or sometimes Hamilton’s inclusive fitness,
for each strategy. Assumptions are then made about
the fitness consequences or payoffs of each strategy or
behavior, which may require constructing mathemati-
cal models. For example, R.A. Fisher assumed, in his
sex-ratio theory that all parents have equal resources to
spend on sons and daughters, so more sons would be
less daughters, etc.

The relationship between the fitness function and
the strategy can sometimes be determined empirically,
although this is often problematic. David Lack fa-
mously argued about optimal clutch size in birds, say-
ing that bigger the clutch size, the more chicks that
could be hatched. But the more chicks there are, the
lower the chance that a given chick would survive, be-
cause the parent birds can only supply a limited amount
of food to the fledglings. The cost to the parents can be
manipulated experimentally by subtracting eggs from
the nest as they are laid, to determine what the payoffs
are. Ultimately, if the models do not fit, then we have
misidentified the strategy set, the optimization criterion,
or the payoffs, or possibly, the behavior identified is no
longer adaptive. The assumptions of the model need to
be revised and retested.

In an evolutionary stable strategy, individual strate-
gies are optimized, which may not maximize fitness
in a population sense. A strategy that might maximize
population fitness may not be a competitive optimum or
ESS (evolutionary stable strategy) because it is invad-
able by another strategy. Many optimality models have
globally stable equilibrium solutions toward which se-
lection is expected to converge. Thus, ESS models, as
well as optimization models, may have multiple equi-
libria [42.65, 66].

42.3.3 Physiological/Evolution Models,
Cognitive Ethology

Philosopher and cognitive scientist Colin Allen wrote in
2014 [42.67, pp. 82–83]:

“Cognitive scientists build many different kinds
of models. There are various ways of classifying
these models. They could, for instance, be clas-
sified according to the kinds of building blocks
that they use: nodes and links for network models,

symbols and rules for computational models, proba-
bility distributions over hypotheses and conditional
probabilities between hypotheses and evidence for
Bayesian models, time-based differential equations
for dynamical models [42.68], etc. They can also
be classified according to the intended application
of the model – some models seek only to cap-
ture overt behavior, while others are targeted at the
mechanisms or processes underlying the behavior.
Mathematical models (which, as the case of quan-
tum mechanics shows, may also involve concepts
from probability theory) use mathematical struc-
tures to provide theoretical insight and to generate
empirical predictions that go beyond statistical in-
terpolations or extrapolations of existing results.”

We see this in optimal foraging models. Optimal
foraging theory involves optimality modeling of food
search behavior in animals. Marmosets and tamarinds,
two distinct species of monkeys, show different sets of
behavior in their willingness to persist staying at a food
source, in terms of maximizing returns, or patience.
This makes sense in terms of the their ecology, because
one eats insects, the other sap. The insects can easily
be renewed, whereas when the sap is gone, it is gone.
Thus, the cost to moving to a new resource versus stay-
ing at an exhausted resource is clear in each case. This
is a model that involves cognitive, ecological, and evo-
lutionary elements, thus is an example of evolutionary
cognitive ethology.

Yet Fred Dyer notes that many optimal foraging
models do not have any representation of the agents’
own representation of their own environment, but they
already know where things are in their environment.
He does comparative work between species of bees
to understand interactions between rewards. Bumble-
bees, which are diploid in their genetic systems, are
individual foragers, while honeybees, which are hap-
lodiploid, and share more of their genes with their
hive-mates, are collective foragers, and are more in-
clined to hang around established sources to distribute
the food [42.63].

Similarly, Hills finds physiological bases for op-
timal foraging and evolution, through connecting the
rewards of foraging to the dopaminergic–glutamate axis
in the brain [42.69]. Tracing the evolution of rewards
for tasks through the brain rewards systems has en-
abled cognitive evolutionary ethologists to tie a variety
of behaviors together. The ethologists talk about search-
ing our memory, and offer models of that search as
sharing mechanisms with a search in a spatial envi-
ronment [42.70]. There is experimental evidence sup-
porting the notion that there is a connection between
cognitive searches and spatial searches [42.71].
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42.3.4 Optimality Models
Including Agent Models

Continuing the theme of the increased precision of the
modeling of behavior, flocking and swarming behavior
in birds and fish have been explained by the following

of very simple rules, and not bigger plans, by Craig
Reynolds’ boids simulations [42.72, 73]. Explain both
swarming and predator–prey behavior by simple rules
as well. The movement in modeling is toward more psy-
chological modeling looking at agent behavior, rather
than just strategies.
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43. Models and Mechanisms in Cognitive Science

Massimo Marraffa, Alfredo Paternoster

In this chapter, we present and discuss models in
the context of cognitive sciences, that is, the sci-
ences of the mind. We will focus on computational
models, which are the most popular models used
in the disciplines of the mind.

The chapter has three sections. In the first sec-
tion, we explain what is a computational model,
give a pair of examples of it, illustrate some crucial
concepts related to this kind ofmodels (simulation,
computational explanation, functional explana-
tion, and mechanicism) and introduce a class of
partially alternative models: dynamical models. In
the second section, we discuss a pair of difficulties
faced by computational explanation and modeling
in cognitive sciences: the problem raised by the
constraint of modularity, and the problem of the
allegedly required integration between dynamical
and computational models. Finally, in the third
section, we provide a short recap.
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43.1 What is a Model in Cognitive Science?

Cognitive science is the project of interdisciplinary
study of natural and artificial intelligence that begins its
maturation in the late 1950s and reaches a stable intel-
lectual and institutional set-up in the early 1980s [43.1].
One point is worth emphasizing. Cognitive science (as
a general framework) is the study of the mind as an
information processing system, that is, a system behav-
ing on the basis of detected and properly elaborated
(in a variety of ways) information; yet research in
cognitive science is typically about a specific type of
information processor – for example, cognitive neuro-
science investigates the biological processor, whereas
artificial intelligence explores the artificial one. There-
fore, cognitive science is better to be conceived of not
as a discipline, but rather as a doctrine that has ori-
ented inquiries in a number of disciplines (see [43.2,
p. 521] and [43.3, p. 18]), some descriptive and empir-
ical (e.g., cognitive psychology, linguistics and, more
recently, neuroscience), some speculative and founda-

tional (e.g., philosophy), and some both speculative and
applied (e.g., artificial intelligence) [43.4].

Although cognitive scientists are in agreement in
considering the mind as an information processing sys-
tem, their different disciplinary backgrounds lead them
to make use of a large variety of approaches, methods,
research styles and, for what we are concerned here,
models. It suffices to mention symbolic systems, arti-
ficial neural networks, dynamical systems, robot-style
artifacts, and so on.

43.1.1 Computational Models

Yet, if we categorize models according to a sufficiently
general (and arguably more useful) criterion, models in
cognitive science are essentially of two kinds: mathe-
matical and computational. (It seems reasonable to say
that computational models are a subclass of mathemat-
ical models. However, it is a so relevant subclass that
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it does make sense to assess them separately [43.5, p.
20]). In this chapter, we will mainly be concerned with
computational models. We focus on these models for
three reasons. First, we take computationalmodels to be
the best representative of the research in the discipline.
This is confirmed by the fact that over 80% of articles
in theoretical cognitive science focus on computational
modeling [43.6]. Indeed, it could be argued (with some
caution that will be justified later, see mainly Sect. 43.2)
that the development of computational models is a def-
initional factor of the discipline [43.7]. Second, the
class of computational models is large enough to cover
many, arguably most, of the cases. Third, many among
the most discussed foundational problems in cognitive
science arise exactly from the role ascribed to com-
putation. In other words, the future of the discipline
depends crucially on the possibility of extending the
use of computational models to a variety of further
cognitive capacities and processes, and defending the
computational approach from criticisms addressed by
the supporters of the so-called radical embodied cog-
nition [43.8] (see Sect. 43.2.1, The Massive Modularity
Hypothesis).

The notion of computation – or algorithm – for-
malized by Turing [43.9], Church [43.10] and others,
consists in an effective procedure to solve a given prob-
lem, that is, a finite sequence of elementary and totally
explicit (D well defined and not ambiguous) instruc-
tions. In order to give a simple and concrete idea of what
computations are, it is usual to mention cooking recipes
for dummies: instead of saying, for example, brown the
onions, the recipe specifies every possible elementary
constitutive step of this action (take a pan, put inside
a pair of spoons of oil, put the pan on slow fire, add
the onions, . . . , etc.). Clearly, however, the paradigm
cases of computation are computer programs. The lead-
ing idea in computational modeling is indeed that there
is an interesting sense in which mental processes (such
as perception, language understanding, reasoning, etc.)
can be described as computer programs. In other words,
some relevant aspects of mental processes are captured
by certain features of computations.

As the reference to computer programs suggests, the
notion of computation is closely related to the notion of
information processing system; and this is indeed the
main reason for the success of computational model-
ing and explanation in cognitive science: the notion of
computation provides the natural way to develop the
core idea of cognitive science, namely, that agents or
their minds are regarded as information processing sys-
tems. Shortly put, taking seriously (quite literally) the
idea that mental processes are computations is tanta-
mount to saying that minds are information processing
systems.

Weisberg [43.5, p. 7] defines computational mod-
els as sets of procedures that can potentially stand in
relation to a computational description of the behavior
of a system. The procedures constitutive of the model
“take a starting state as an input and specify how this
state changes, ultimately yielding an output” [43.5, p.
30]. Two points are to be highlighted in this definition.
First, models are sets of procedures. It is mandatory,
therefore, that the model is constituted of algorithms.
However, to say that computational models are simply
sets of procedures is arguably too strong. Models usu-
ally include some theoretical hypotheses that are not
necessarily specified as parts of the algorithms. Weis-
berg seems to acknowledge this point when he says
that “the procedure itself is the core component of the
model, the structure in virtue of which parts of a target
can be explained” [43.5, p. 30]. Therefore, procedures
are components of the model, rather than being the
model itself. Second, the model is in relation to a com-
putational description. This means that a computational
model is appropriate just in case the modeled system
has a computational nature. What is usually intended
by this claim is that the execution of one or more com-
putations is causally responsible of the behavior of the
system (see Sect. 43.1.1, Computational Models and
Computational Explanations).

Simulation
An execution of the model-computation (i. e., of the
procedures constituting the model) is a simulation, an
epistemologically crucial notion. Indeed, the results of
simulation allow scientists to check whether a certain
hypothesis embedded in the model concerning a cogni-
tive ability or process is confirmed or falsified.

Vivid instances of the simulative method are robotic
artifacts. For example, Grasso et al. [43.11] have stud-
ied the behavior of lobsters and developed a computa-
tional model to check the prediction that lobsters are
able to locate sources of food through a very simple,
rough mechanism to track turbulent odor plumes to
their source (chemotaxis): the more a chemoreceptor
is stimulated, the more is directly triggered the speed
of the contralateral locomotive organ. Scientists con-
structed a biomimetic robot (RoboLobster) that works
this way by implementing two algorithms:

1. Move forward when the gradient is below a minimal
threshold; turn toward the side of the sensor detect-
ing higher chemical concentration.

2. The same as algorithm 1 with one additional rule:
back up when both sensors detect the lack of chem-
ical substance.

Then RoboLobster was immersed in a stream of
water to which a turbulent plume was added to check
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whether it was able, in a variety of conditions, to reach
the appropriate location. It turned out, however, that the
robot failed in most trials. In trials running algorithm 1,
it consistently failed to hit the source regardless of
whether it began its trial 60 or 100 cm downstream from
the source or ran in the normal or reverse sensor con-
figuration; on average the robot approached the source
much more when it started 60 cm from the source
compared to the other conditions. In trials running al-
gorithm 2, the robot never hit the source with reversed
sensors; better results were obtained at the 60 cm, but
not at the 100 cm starting distance, with sensors in the
forward connectivity configuration. This allowed scien-
tists to conclude that the hypothesized mechanism was
not appropriate, too rough.

This case effectively shows that simulation is a very
important empirical method in cognitive science. It is
indeed part and parcel of cognitive science the idea that
a good empirical practice for studying a phenomenon
is trying to reproduce it. If the behavior, or certain be-
havioral abilities, of an organism are reproduced by an
artifact or by a computer program, we have a reason
to believe that the computational model is an expla-
nation of the behavior of that system. Of course, this
claim should be taken with much prudence. The legiti-
macy of regarding simulation as a kind of explanation
is a crucial epistemological issue, and the simulative
methodology calls undoubtedly for some methods of
validation or evaluation [43.12, 13]. Nevertheless, it is
hard to deny that the simulative approach has already
demonstrated to be useful.

Computational Models
and Computational Explanations

Before providing another, more complex example of
computational model, let us still spend some words
on the distinction between computational models and
computational explanations (or computational theo-
ries). This is important in order to assess properly the
role of computational models.

According to Piccinini [43.14, 15], we have a com-
putational explanationwhen the best way of accounting
for the behavior of a certain system is to say that it
performs a certain computation, that is, it is in virtue
of the fact that the system computes a certain function
that the system behaves the way behaves (as Piccinini
puts it, the behavior of the system is causally explained
by the computations it performs). For instance, it can
hardly be denied that the behavior of a pocket calcu-
lator is explained by the fact that it computes certain
(mathematical) functions; or that the behavior of a robot
mounting a wheel on a car’s body causally depends
on computing the appropriate trajectory from the lo-
cation of the stack of wheels to the hub (note that in

this case, as well as in many others, the behavior it-
self is a computational process, rather than being the
result of a computation). Of course, it is not always so
apparent that the behavior of a system is determined
by a computation. In the most interesting cases, human
and animal cognition among them, it has to be argued
that describing the behavior of a system as the result
of a computational process has an explanatory pay-off
(more on this below).

In computational modeling, instead, a computation
C is used to describe the behavior of another system
S under certain conditions. C allows to generate sub-
sequent descriptions of S, but the explanation of S0s
behavior is based on S0s properties, not on features of
C. As Piccinini points out [43.14, p. 96]:

“the situation is fully analogous to other cases of
modeling: just as a system may be modeled by
a diagram or equation without being a diagram or
equation in any interesting sense, a system may
be modeled by a computing system without being
a computing system in any interesting sense.”

In light of these definitions, neither computational
explanation implies computational modeling nor com-
putational modeling of (the behavior of) a certain sys-
tem implies a computational explanation of it, even
if, generally speaking, given a computational expla-
nation it is possible to derive a computational model
from it. This characterization of computational models,
however, is scarcely interesting for our goals. In fact,
when we say, as cognitive scientists, that the mind is
a collection of information processing systems, we are
committed to the most theoretically interesting sense
of this claim, that is, that the appeal to computation
explains intelligent behavior. We suggest, therefore,
modifying the definition of computational modeling,
in such a way that computational models in cogni-
tive science are intended to be descriptions of genuine
computational systems, in the above-specified sense.
Accordingly, one reasonable definition could be the
following: a system S� is a computational model of
a computational system S when there is at least partial
isomorphism between the behavior of S� and the behav-
ior of S (or vice-versa), so that (the behavior of) one of
the two systems can be said to represent (the behavior
of) the other. The idea is that a computational system (D
the model) is used to reproduce some relevant aspects of
the behavior of another (alleged computational) system.
In other words, computational modeling presupposes
computational explanation insofar as, when one builds
a computational model, he is assuming from the start
that the modeled system or phenomenon admits a com-
putational explanation (at a certain level of description).
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Of course, this leaves aside the aforementioned dif-
ficult problem of establishing whether a certain system
admits a computational explanation – whether the sys-
tem is genuinely computational, to put it shortly. One
should not be misled by this latter formulation: the is-
sue is epistemological, not metaphysics. As said earlier,
the point is whether there is an explanatory pay-off;
there is no question of discovering an objective fact of
the matter establishing that the behavior of an organ-
ism is determined by computations. Yet, this does not
mean that everything (every phenomenon, even every
thing on earth!) could be described as a computation,
as John Searle famously claims, making in this way
the notion of computation completely vacuous. We do
not want to say that, for instance, a rock, or a gas,
are computational systems just because their dynamics
could be modeled by computations. In order to escape
this consequence, different constraints have been pro-
posed on what counts as a computational system. Just to
mention two of them, there is the semantic constraint,
according to which something is a computational sys-
tem only if it manipulates representations; and there is
the mechanistic constraint, according to which some-
thing is a computational system only if it is a functional
mechanism of a special kind, that is, (roughly), it has
a complex, multilayered organization apt to cause its
behavior (cf. [43.15]; the notion of mechanism is pre-
sented in Sect. 43.1.4). Both the constraints play an
important role in the discussion on computational ex-
planation (see Sects. 43.1.4 and 43.2), yet from now
on we shall take for granted that only some phenom-
ena, amongwhich at least some cognitive capacities and
processes, admit a computational explanation, without
addressing the problem of what are the appropriate
constraints that a system must satisfy in order to be
regarded as computational in a nonvacuous sense –
i. e., without making all phenomena computational (for
convincing replies to Searle, see, for example, [43.14–
16], [43.17, Chap. 3]). In the second section, we shall
discuss some difficulties faced by the claim that minds
are computational systems.

43.1.2 An Example of Computational Model

Computational models in cognitive science include
at least classical symbolic models, that is, sequen-
tial algorithms working on data structures specified in
some linguistic code, (artificial) neural networks, and
artifacts-based models (robots). In order to give a con-
crete idea of computational modeling, here we present
a classical symbolic model: Marr’s computational vi-
sion [43.18, 19]. Actually, what we are going to present
is better to be called a computational theory, rather than
a computational model; however, especially in light of

what we said in the previous section, the distinction
is not much relevant. Indeed, Marr’s theory includes,
as we shall see, a computational model. Our choice
of Marr’s theory as an exemplar is motivated by three
reasons. First, it has a formal, elegant definition and is
extremely clear. Second, it is a paradigm case of (classi-
cal) cognitive science and third it provides an excellent
starting point for the discussion in the following sec-
tions.

The target cognitive capacity of Marr’s theory is
animal vision, more specifically a kind of vision typi-
cal of human beings and other superior animals. Vision
is defined as a very complex computational system
whose goal is to transform the pattern of light imping-
ing retinas (the input) into a symbolic description of the
observed scene (the output) – the collection of objects
and properties present in the visual field of the observer.

Of course, this is an extremely complex task. For
this reason, the task has to be decomposed in sub-
tasks (each decomposable, in turn, in simpler tasks),
so that we could say that each subtask is realized by
a computational subsystem or mechanism (for the no-
tion of mechanism, see Sect. 43.1.4). In particular, Marr
identified three main subtasks: edge processing, sur-
face processing, and object processing. Edge processing
consists in the detection of strong variations of lumi-
nance. Luminance is the intensity of light in a retinal
point. Therefore, a retinal image can be described as
a function that associates to every point (x, y) of the
retina its value of luminance. Surface processing con-
sists in the determination, for each outgoing direction
from the observation point, of the distance and orien-
tation of the surface reflecting light in that particular
direction. Object processing consists in the recognition
of the (geometrical) shape of the objects present in the
viewed scene. To put it simply, the first two processing
stages or levels have the function of localizing an ob-
ject, seen from a particular, egocentric, point of view
(the observer’s perspective); the last stage has the goal
of recognizing the object as an object possessing a cer-
tain shape. The shape is defined in an object-centered
system of coordinates, that is, independently of the
point of view. Each processing level produces an out-
put, that is, a data structure containing the information
relevant to the goal or function proper to that level. The
output of the first stage is called primal sketch; the out-
put of the second stage is called 2 1

2 -D sketch; the output
of the third stage (and of the whole system as well)
contains one or more three-dimensional (3-D) models.
As said earlier, each subtask admits further decomposi-
tion, not necessarily in serial tasks. Surface processing,
for example, admits several parallel processing stages,
each based on a different kind of information: shading,
texture, movement etc. (Fig. 43.1).
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Fig. 43.1 The paths of information
up to the 2 1

2 -D sketch in Marr’s
architecture of the human visual
system (after [43.20])

The first stage of processing occurs in the retina
and the superior colliculus of human beings and other
mammals. Its first product is the raw primal sketch,
a description of the intensity changes in an image that
is constructed using a primitive language of edge seg-
ments, bars, blobs, and terminations. From this, the full
primal sketch is computed, namely a representation of
the two-dimensional geometry of the field of view. The
primal sketches of the visual fields of the two eyes are
combined by the process of binocular fusion. The next
stage in this process is the computation of the 2 1

2 -D
sketch, which represents the geometry of the surfaces
visible to the observer – including their contours, depth,
and orientation. Finally, the 2 1

2 -D sketch is input to
processes that construct the 3-D object-centered shape
representation that is vision’s goal (Fig. 43.1).

What best qualifies Marr’s model is another decom-
position, vertical rather than horizontal. It is the idea
that each task or subtask admits three different levels
of description, all necessary in order to give an ex-
planatorily adequate account of a given task or subtask:
from the top, the computational level, the algorithmic
level, and the implementation level. As we shall see,
the articulation in a vertical collection of layers (the
stack) is also a crucial characteristic of mechanistic ex-
planations, which have indeed much in common with
computational explanation (although they are not one
and the same thing, see Sect. 43.1.4).

The computational level describes in the most gen-
eral terms the function or cognitive task (or capacity)
of the system to be modeled (and of its subsystems as
well). This means providing a description of what the
system does and what are the input and the output of
the system. We already gave this specification for the
entire system (the whole visual system) and for its im-
mediate subsystems. Note that the individuation of the
function is by no means easy, even at the highest level:

it cannot be taken for granted that the goal of vision –
what the visual system does – is to individuate the (ge-
ometrical) shape of objects. Indeed many critics have
pointed out that the function of the visual system, its ba-
sic goal, is allowing the agent to move effectively in the
environment. Another important point concerns the vo-
cabulary of the computational level. We could say that it
is a macro-psychological, intentional vocabulary, in the
sense that describes the mental capacities as relations
between the agent and certain environmental proper-
ties (such as the surfaces present in the environment,
or the shape of the object), and does not make use of
any mathematical or (neuro)biological notions. At this
level, the focus is on a certain capacity of an agent to do
something in its environment.

The algorithmic level is what makes Marr’s model
specifically computational (despite his deserving the
term computational to the upper level: Other, arguably
better, labels for Marr’s computational level have been
proposed, such as task level, project level, intentional
systems level.) Indeed, it is at this level that the pro-
grams that compute or realize functions postulated at
the upper level are specified. For instance, the algo-
rithm that processes edges (as we saw earlier, this is the
first processing stage) is the Laplacian operator of the
Gaussian function (r2G). Without entering in technical
details, the idea is, intuitively, that a filter (the Gaus-
sian one) is applied to the luminance function which
describes the retinal image, and then the zero-points of
the second derivative of the obtained image are calcu-
lated, since they correspond to the highest differences in
luminance, namely to edges. For this reason, the algo-
rithm is called zero-crossing. The role of the Gaussian
filter is to clean the image, making more apparent the
strongest bright/dark discontinuities.

Importantly, at the algorithmic level representations
are also specified, that is, the input and the output of the
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subsystemmust be coded in a certain way in order to be
manipulated by the algorithm. Other representations are
also involved, since algorithms need further informa-
tion to work successfully. Actually they embody certain
assumptions on how the world is, which work as con-
straints restricting the space of the available solutions to
the problem addressed by the algorithm. For instance,
the visual system assumes that light comes always from
above (although this could turn out to be false in a few
cases).

Finally, the implementation (or hardware) level is
constituted by the specification of the neural structures
charged to execute the procedures specified at the al-
gorithmic level. At the time Marr proposed his model
(between 1976 and 1980), neuroscientific knowledge
was not so developed, and the appeal to cerebral data in
a model of a cognitive capacity was quite rare. Yet Marr
proposed that the r2G function is realized by off- and
on-centred X-cells in the retina and lateral geniculate
body, whereas some simple cells in striate cortex detect
and represent zero-crossing segments [43.21, 22].

Thus, Marr was a pioneer of the current system-
atic attempt to integrate computational models with the
specification of their neural implementation. Note that
even though, strictly speaking, neural implementation
is not part of the computational model, yet it is part
of a mechanism that, taken as a whole, is computa-
tional (cf. Sect. 43.1.4). In other words, it is correct
to say that the brain is a computational system, even if
spelling out the computations performed by the brain is
not something that can be done in a neurophysiological
vocabulary.

Today, not only integrating computational models
with brain data has become customary, but, often, brain
data (neuropsychological and especially neuroimaging
evidence) are even the starting point of the devel-
opment of a computational model. We have here in
mind what Zawidzki and Bechtel [43.23] call interac-
tive view of explanation in cognitive neuroscience. On
one hand, the functional knowledge obtained through
psychological research allows us to identify the neu-
ral mechanisms, on the other hand the knowledge of
structure is a heuristic guide to the development of
more sophisticated psychological models [43.24]. In
this context, computational neuroscience can be viewed
as a bridge discipline between psychology and neu-
roscience which, on the one hand, puts bottom-up
constraints on computational modeling, while on the
other hand extends some principles of computational
modeling to neuroscientific research, thus promoting
the integration of neuroscientific theoretical constructs
into computational psychology [43.25].

In the specific case of vision, a great impulse to the
development of a neurophysiologically grounded com-

putational theory was the empirical discovery of two
visual paths in the brain [43.26, 27], the dorsal one,
which projects from the primary visual cortex (V1) to
the parietal posterior cortex, and the ventral one, going
from V1 to the infero-temporal cortex. This neurophysi-
ological distinction grounds a corresponding functional
distinction: the dorsal stream is associated with the vi-
sual control of action, having a pragmatic function,
whereas the ventral stream realizes the identification of
objects (epistemic function).

Based on this finding, Jacob and Jeannerod [43.28]
put forward a dual computational model, one for each
visual subsystem: the computational model of our ca-
pacity to identify objects, which is roughly based
on a Marr’s style architecture, and the computational
model of our capacity to act effectively in the world,
and specifically grasp objects, which is based on a sort
of anticipatory scheme. The idea is that the dorsal
stream codes (represents) only the pragmatically rel-
evant features of the object, what J.J. Gibson called
its affordances (i. e., the object’s presenting itself as
something that can be grasped, or can be filled, etc.),
and processes this information so to produce, as out-
put, a procedure that triggers the appropriate movement.
The position of the object, which is crucial information
in order to accomplish the task, is coded in a system of
egocentric coordinates, namely relative to the axe of the
body.

This should be enough to give an idea of what
a computational model is. Now, in order to set the stage
for the discussion of Sect. 43.1.4, concerning mechanis-
tic explanation, it is worth to point out that, as Marr’s
example admirably shows, two important notions are
closely related to computational models: the concept of
function (as well as the related concept of functional
explanation) and the concept of module. We address the
former here in the following section and the latter will
be introduced in the section that follows next.

43.1.3 Function and Functional Explanation

We saw that a certain cognitive ability is individuated
in terms of its function (D the goal, what is for), and
functions can be characterized as computations. Vision
has (or is) the function of recognizing the shape of ob-
jects present in the visual field and in order to do that
the visual system performs a certain I/O transformation:
given as input retinal images in a certain description, it
produces as output a symbolic description of the shapes
present in the environment. In this sense, we could say
that the notion of function involved in cognitive sci-
ence is at the same time biological (more specifically,
psychological) and mathematical (more specifically,
computational).We have already explained what a com-
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putation is; let us focus now on the biological notion of
function and its importance for cognitive science.

In light of the analysis of the notion of cause pre-
dominant in the second half of the twentieth century,
causally explaining a natural phenomenon amounts to
subsuming it under laws (the so-called nomological-
deductive model). In this epistemic perspective, causal-
ity is nothing over and above nomological regularity.
However, philosophers of science see increasingly the
nomological approach as inappropriate for special sci-
ences like biology and psychology.

In most cases, the biologists’ explanatory practices
rest not on the concept of law, but rather on the notion of
function. Mayr [43.29] has argued, however, that there
are at least two ways of making biology – functional
biology and evolutionary biology – which are very dif-
ferent from each other but co-exist and use different
concepts and methods. In evolutionary biology, func-
tions are conceived of in etiological terms, that is, they
are characterized in terms of their history of natural
selection (the why or how come question). Functional
attributions are intended to account for the existence or
maintenance of a trait in a given population, and func-
tions are the effects of those traits that, by increasing
fitness, have been favored by natural selection [43.30,
31]. In contrast, in anatomy and physiology the word
function refers usually to the activities that an organ-
ism can perform, for instance, flying, digesting, finding
viruses in one’s own tissues, etc. Therefore, functional
biology explains how organisms are able to do all that
by means of what Cummins [43.32] termed functional
analysis, where a certain capacity C is decomposed in
a collection of (simpler) subcapacities S1, S2, . . . , Sn,
in such a way that C emerges as a programmed mani-
festation of the exercise of S1, . . . , Sn. In this context,
the function of a trait is seen as the contribution that it
makes to a given capacity of the system incorporating
it. Such a contribution is termed causal role function.
A causal role function is nonhistorical, that is, it ignores
evolutionary history. The heart’s function is pumping
blood not by virtue of its history of natural selection,
but because it is a part of a larger system, the circula-
tory system, in which it plays a crucial causal role. It is
to be noticed, however, that in this case the causal-role
function of a trait coincides with its etiological func-
tion – the heart pumps blood, and that is what it was
selected to do. In other cases, the two kinds of functions
diverge: it is very likely that birds’ feathers evolved as
a mechanism for regulating body temperature but their
causal-role function is what they make for their owner
in the present and in the future, namely to make flight
possible [43.33, p. 223].

The distinction between causal role and etiological
functions is also relevant for the philosophy of cognitive

science, since it may impart a different trajectory, inter-
nalist or externalist, to a functionalist theory of mind.
Functionalism is indeed a very influential philosophical
theory (or family of theories) concerning the nature of
mental phenomena. At least in one of its versions, it is
closely linked to computational explanation.

Functionalism is first and foremost a metaphys-
ical theory, which characterizes psychological states
according to the causal roles they play in a system (i. e.,
an agent’s inner life), independently of how such roles
are physically realized; or equivalently, the identity of
a certain type of psychological state is established by
the causal relations it entertains with stimulus input
and behavioral outputs, as well as with other psycho-
logical (i. e., functional) and nonpsychological internal
states of the system [43.34]. Putnam’s [43.35, papers
16–21] formalization of functionalism via the theory of
effective computability gave rise to an early version of
computational functionalism, known as machine func-
tionalism.

Machine functionalism was challenged on several
fronts. For one thing, “it still conceived psychological
explanation in the logical positivists’ terms of sub-
suming observed data under wider and wider universal
laws” [43.36, pp. 53–54)]. However, Fodor [43.37],
Dennett [43.38], and Cummins [43.39] noticed that
psychology, like biology, does not traffic with nomolog-
ical explanations, which are predictive tools based on
laws; rather, psychological explanations are functional
analyses in Cummins’ sense [43.40, 41]. This explana-
tory practice has also been defined by decomposition,
by identifying homunculi, by reverse engineering, by
taking the design stance, by describing the articu-
lation of parts, and by discovering mechanisms. As
Craver [43.42, p. 107] suggests, these definitions can
all be seen as contributions to a theory of mechanistic
explanation (see Sect. 43.1.4 Mechanisms and Mecha-
nistic Explanation).

In the homuncular version of functional analy-
sis [43.38, 43, 44], behavioral data are manifestations
of the complex cognitive capacities of an agent (vi-
sion, memory, face recognition, etc.); and those capac-
ities are to be explained by assuming that an agent
is a system of interconnected, hierarchically organized
components. Every component (or module) is a ho-
munculus, that is, an intelligent mechanism that is
individuated by means of the function it performs;
and swarms of homunculi cooperate with each other
in such a way as to produce the overall activity of
the system. The homunculi are in turn seen as teams
of simpler homunculi, whose functions and interac-
tions are similarly used to explain the capacities of the
subsystems that they compose; and so on, recursively,
until the sub-sub-. . . components turn out to be simple
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neuroanatomical structures [43.45, p. 320].Marr’s com-
putational theory of vision is an exemplar of functional
analysis in cognitive science.

Another flaw in machine functionalism lies in its
conception of the functional realization (the relation
between an organism and the abstract program that it
is supposed to instantiate) as a simple one-to-one cor-
relation between the organism’s repertoire of physical
stimuli, inner states and behavioral responses, on the
one hand, and the inputs, states and outputs specified
by a machine table on the other. This criterion of real-
ization, though, is too cheap: since virtually anything
bears a one-to-one correlation of some sort to virtually
anything else, realization in the sense of one-to-one cor-
respondence is far too easily come by [43.46, Chap. 4].
To put this defect right, Lycan [43.43, 44] and Mil-
likan [43.31] have imposed a teleological constraint on
realization: a physical state of an organism will count
as realizing a certain functional description only if the
organism has genuine organic integrity and the state
properly plays its functional role for the organism. The
state must do what it does because this is its biologi-
cal purpose. In this perspective, psychological functions
are biological functions in the etiological sense, that is,
effects that are promoted by natural selection.

The etiological notion of function implies envi-
ronmental constraints. Here it can be useful to draw
a distinction between narrow andwide function [43.47].
Narrow functional analysis only looks at the sys-
tem as such. The function boils down to the causal
role that a property plays in the internal economy of
some system, which consequently is insulated from the
extra-cranial environment where it is situated [43.48].
Famously, Fodor [43.49] has argued that narrow func-
tional analysis is the only admissible form of functional
analysis. According to the Fodorean methodological
solipsism, psychological explanations should be re-
stricted to quantifying over the formal, intrinsic proper-
ties of mental states, unlike the naturalistic psychology
(exemplified by James’ naturalism, learning theory, and
Gibson’s ecological optics), in which generalizations
are defined by the relations between mental repre-
sentations and their environmental, extrinsic causes –
a research strategy, Fodor warns, that will hardly turn
out to be fruitful.

In contrast, wide functional analysis refers to the
extra-cranial environments in which an organism is
situated, and it involves teleological functional consid-
erations about the relationship between the organism
and its environment. Pace Fodor, Harman thinks that
“only a wide psychological functionalism can motivate
appropriate distinctions between aspects of a system,
irrelevant side effects and misfunctions” [43.50, p. 20].
This teleological notion of functional analysis leads us

to look beyond the mental apparatus as such to the way
it deals with its environment.

Despite the fact that the first generation of research
in cognitive science has largely adopted (at least im-
plicitly) narrow functional analysis during last three
decades, cognitive scientists have shown growing im-
patience against the idea that the scientific study of an
individual’s psychological states is required to abstract
from all the environmental, extrinsic variables, to take
into consideration only the intra-cranial, intrinsic prop-
erties of those states. Various factors contributed to this
change of climate, including the rising success of Put-
nam’s and Burge’s semantic externalism, Searle’s and
Dreyfus’ classical criticism of symbolic artificial in-
telligence, the consolidation of Gibson’s influence in
cognitive psychology. In this framework, research pro-
grams very different from each other – for example, the
sensorimotor (or enactivist) approach to perceptual ex-
perience, situated robotics, and dynamic approach to
cognition – have endorsed an externalist conception
of explanation according to which biological cognition
cannot be understood without taking into consideration
its embodied and situated nature (see Sect. 43.2.2Active
Externalism).

43.1.4 Computational Models
and Mechanistic Explanations

Mechanisms and Mechanistic Explanation
Another serious shortcoming of machine functionalism
is the extreme biological implausibility of its two-level
view of human psychobiology. As Lycan [43.44, Chap.
4]; [43.45, p. 320] has incisively argued, neither living
things nor even computers can be split into a purely
structural level of neurobiological/physiochemical (in
the case of computers: electronic) description and
an abstract level of cognitive-algorithmic description.
Rather, organisms and computers are hierarchically
organized at many levels, where each level is ab-
stract with respect to those beneath it but structural
or concrete as it realizes those levels above it. The
functional/structural or software/hardware distinction is
entirely relative to one’s chosen level of organization. In
brief, Lycan concludes, “nature is functions all the way
down” [43.44, p. 48].

This emphasis on the hierarchical organiza-
tion of functional levels has been worked out by
Craver [43.42], which represents a synthesis between
Cummins’ theory of causal-role functions and the thriv-
ing literature on mechanisms and mechanistic explana-
tion.

The mechanistic explanation of a phenomenon con-
sists in the specification of the mechanisms that pro-
duced it. But what is a mechanism, exactly? Accord-
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ing to Machamer et al. mechanisms are “entities and
activities organized such that they are productive of
regular changes from start or set-up to finish or termi-
nation conditions” [43.51, p. 3]. These systems have
a spatiotemporal organization that explains the way
they realize their activities. One example, taken from
Craver [43.52, 53], is the mechanism of the action po-
tential. Here the entities are the axonal membrane, the
NaC and KC ions, and two types of voltage-dependent
ionic channels that allow NaC or KC ions, respectively,
to spread through the membrane. Membrane, ions, and
ionic channels regularly act and interact to produce
the action potential. These activities essentially depend
on the spatial organization of the mechanism’s com-
ponents (e.g., ionic channels span the membrane, thus
producing ion fluxes across it); but still more crucial is
temporal organization: the shape of the action potential
is explained by the relative orders and durations of the
activation and inactivation of ionic channels (Fig. 43.2).

Moreover, mechanisms are intrinsically organized
in multilayers, that is, they are involved in a hierar-
chical organization in which lower level entities and
activities are the components of higher level entities
and activities. Therefore, a mechanism is a hierarchi-
cally organized (to produce a certain goal or behavior)
system, and a mechanistic explanation is usually, if
not always, multilayered. Following Craver [43.42,
54], we can say that an ideally complete mechanis-
tic explanation describes a mechanism by integrating
three perspectives. The isolated perspective (level 0)
describes the mechanism at its proper, characteristic

1 ms

Membrane potential (mV)

Action potential
50

0

–70

Ek

I II

III

Fig. 43.2 The action potential consisting of (I) a rapid
rise in Vm to a maximum value of roughly C35mV, fol-
lowed by (II) a rapid decline in Vm to values below Vrest,
and then (III) an extended after-potential during which the
neuron is less excitable (known as the refractory period)
(after [43.42])

level. It is an ordinary causal explanation describing
the input–output relations of the mechanism. The con-
textual perspective (level C1) locates the mechanism
in the context of another mechanism, being the for-
mer a part of the latter; this means that the activities
of the former contribute to the working of the latter.
Finally, the constitutive perspective (level �1) breaks
down the mechanism in its constitutive parts in such
a way that we can understand how these parts enable
the input–output relations of the mechanism defined
at the level 0. Mechanistic explanation is thus aimed
at integrating levels of mechanisms. However, ideally
complete mechanistic integration is hard to attain, and
ideally complete mechanistic explanations are corre-
spondingly rare [43.52, p. 360]:

“Models that describe mechanisms can lie any-
where on a continuum between a mechanism sketch
and an ideally complete description of the mecha-
nism. [. . . ] A mechanism sketch [. . . ] characterizes
some parts, activities, and features of the mecha-
nism’s organization, but it has gaps. [. . . ] At the
other end of the continuum are ideally complete de-
scriptions of a mechanism. Such models include all
of the entities, properties, activities, and organiza-
tional features that are relevant to every aspect of
the phenomenon to be explained. Few if any mech-
anistic models provide ideally complete description
of a mechanism.”

To provide an example of this quest for the integra-
tion of levels of mechanisms, Craver [43.42] examines
the development of the explanations of long-term po-
tentiation (LTP) and spatial memory. He distinguishes
at least four levels (Fig. 43.3a). At the top of the hi-
erarchy (the behavioral-organismic level) are memory
and learning, which are investigated by behavioral tests.
Below that level is the hippocampus and the computa-
tional processes it is supposed to perform to generate
spatial maps. At a still lower level are the hippocam-
pal synapses inducing LTP. Also finally, at the lowest
level, are the activities of the molecules of the hip-
pocampal synapses underlying LTP (e.g., the N-methyl
D-aspartate receptor activating and inactivating). These
are mechanistic levels: the N-methyl D-aspartate re-
ceptor is a component of the LTP mechanism; LTP is
a component of the mechanism generating spatial maps,
and the formation of spatial maps is a part of the spatial
navigation mechanism. Integrating these four mech-
anistic levels requires both a looking up integration,
which will show that an item (LTP) is a part of a upper
level mechanism (a computational-hippocampal mech-
anism); and a looking down integration, which will
describe the lower level mechanisms underlying the
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Fig. 43.3a,b Levels of spatial memory (a). Integrating levels of mechanisms (b) (after [43.42])

higher level phenomenon (the molecular mechanisms
of LTP) [43.42, 55, 56] (Fig. 43.3b).

Note that providing a mechanistic explanation of
a certain phenomenon (capacity, system) is giving a cer-
tain type of causal explanation, since searching for
mechanisms is searching the effective cause of a cer-
tain behavior. This is a much important point, since,
on this perspective, mechanistic explanation confronts
nomological explanation. Although it could be argued
that there is some relationship between laws and causes
(consider that it is not rare to hear that causal rela-
tions are instantiations of laws), from the point of view
of the explanatory style mechanistic explanations do
not involve laws. (For a recent discussion of the issue
see [43.57].) We will come back later on the signifi-
cance of this opposition.

The Relation Between Mechanisms
and Computational Models

Recently the notion of computational model has been
embedded in the larger explanatory framework of
mechanistic explanation. But what is, exactly, the rela-
tion between mechanisms and computational models?
The relation is twofold. On one hand, mechanisms are
physical systems that implement, or realize, computa-

tions. On the other hand, a computational model can
be one among the multiple levels of organization that
constitute a mechanistic explanation [43.14, 17]. For
example, the above-mentioned computational process
that hippocampus is supposed to perform to gener-
ate spatial maps. With regard to the first aspect, to
the extent that mechanisms provide the nexus between
abstract computations and concrete physical systems,
they ground the notion of computation. The second as-
pect focuses instead on the issue of explanatory styles,
subsuming computational explanation under the larger
class of mechanistic, and thus causal, explanations.

To sum up, computations are realized by mecha-
nisms, that is, if we give a computational explanation of
a certain phenomenon or ability, there must be a mecha-
nism – a system that admits a mechanistic description –
which realizes or performs the computation. Also since
computational systems may be articulated in several
levels, as we have seen in the case of Marr’s model, it
seems appropriate to say that a computational model is
a complex part of a mechanistic explanation (and, cor-
respondingly, a computational system is a certain kind
of mechanism, usually a part of a complex mechanism).

Even if there are computational models that are de-
fined with no reference at all to mechanisms (as it was
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customary in classical cognitive science, since a full-
blooded account of mechanistic explanation has been
provided only about 15 years ago), we hold that com-
putational models are always mechanistic too, since
computational explanation is essentially mechanistic.
It is mechanistic because the fundamental features of
mechanistic explanations – entities realizing functions,
components etc. – are saved in computational mod-
els (for a slightly different point of view, see [43.17]).
This is one of the reasons to believe that computational
models, qua mechanistic, can hardly be integrated with
dynamical models (see Sect. 43.1.5).

43.1.5 Dynamical Systems

Neural networks and classical models are all computa-
tional models. Arguably, the same cannot be said for
dynamical systems, at least if we consider them from
the perspective of the explanatory style.

Dynamicism consists essentially in applying to be-
havior and cognition methods from the theory of non-
linear dynamical systems theory. A dynamical system is
a physical system whose behavior is described by a set
of differential equations. Nonlinear means that, given
the initial conditions and the equations, the target be-
havior of the model cannot be analytically determined
(except for some particular cases) and will be pre-
dicted only with a certain approximation. For instance,
even once fixed the initial conditions, the system could
evolve in two or more different states.

The dynamical approach focuses on the time evolu-
tion of a system, and seems particularly well equipped
to deal with cases in which a system or a component
of a system A constantly influences and is constantly
influenced by another system or component B (which
could in turn be sensible to another component C, and
so on). Take, for instance, a tennis player who is go-
ing to reply the service: here the locations of the ball
and of the other player change continuously and, at the
same time, the player moves and acts, influencing in
turn the other player, and so on so forth [43.58, p. 348].
In sum, “[e]verything is simultaneously affecting ev-
erything else” [43.59, p. 23]. These events, which are
strictly coupled, appear to be difficult to model with the
tools of classical computational models.

Let us examine an often-cited example of dynam-
ical analysis [43.60, Chap. 2]. In one experiment, the
subjects were asked to oscillate their index fingers
back and forth with the same frequency in each finger.
The oscillation could be in-phase (homologous muscle
groups contracting simultaneously) and antiphase (ho-
mologous muscle groups contracting in an alternating
fashion). At high frequencies of oscillation, however,
the antiphase movement is unstable and at a critical
frequency subjects spontaneously switch from the an-
tiphase motion of the fingers to an in-phase symmetrical
pattern.

A dynamical analysis of this pattern of results be-
gins with plotting the phase relationship between the
two fingers. This variable (D the relative phase) is con-
stant for a wide range of oscillation frequencies but
is subject to a strong shift at a critical value, namely,
the moment of the antiphase/phase shift. Plotting the
unfolding of the relative phase variable is plotting the
values of a collective variable, that is, one whose value
is set by a relation between the values of other variables
(the ones describing individual finger motions). The
values of these collective variables are fixed by the fre-
quency of motion, which thus acts as a so-called control
parameter. The dynamical analysis consists therefore in
a set of equations displaying the space of possible tem-
poral evolutions of relative phase as governed by the
control parameter. This description fixes, in detail, the
so-called state space of the system. In this framework,
the collapse of the antiphase pattern of coordination
into the phased one can be construed as the transition
from a landscape where there are stable attractors for
both patterns of coordination to one in which there is
a stable attractor only for the in-phase motion. The dy-
namical analysis turned out to be very useful also in
understanding the activity of simple robots [43.61] and
the development of infant locomotion [43.62].

Although there are scholars who regard dynamical
systems as a class of computational systems, essentially
because differential equations are computable (and are
a way to compute as well), we take dynamical mod-
els as an alternative to computational models, since the
former are usually brought to bear in nonmechanistic
explanations. We will discuss more extensively this is-
sue in the next section.
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43.2 Open Problems in Computational Modeling

In this section, we will take into consideration two dif-
ferent kinds of problem faced by modeling in cognitive
science. The first problem concerns the scope of com-
putational explanation and has specifically to do with
its capacity of accounting of the so-called central pro-
cesses. The second problem concerns the feasibility of
integrating different styles of explanation.

43.2.1 Computationalism and Central
Cognition

The Problem of the Central Cognition
Jerry Fodor’s Computational and Representational The-
ory of Mind (CRTM) is one of the most important
and, at the same time, controversial systematizations
of computational functionalism. Among its virtues is
a powerful response to Skinner’s objection against the
mentalistic explanation in psychology, the homunculus
fallacy. This is a vital constraint on any serious mental-
istic psychology: a plausible theory of cognition must
avoid the infinite regress triggered by the attempt to ex-
plain a cognitive capacity by tacitly positing an internal
agent with that very capacity. To discharge all the ho-
munculi CRTM combines two ideas:

� Formality condition: The rules that govern the state
transitions in a computational system are sensitive
only to the form of representations, namely to their
syntactic properties, whereas they are insensitive to
the semantic ones.� Recursive decomposition: Complex capacities are
structured ensembles of much simpler capacities.
Thus CRTM endorses the already-mentioned recur-
sive decomposition of complex cognitive capacities
into co-operating ensembles of simpler capacities.

Jointly, these two ideas ensure that a computa-
tional theory of cognition begs no questions. The theory
explains intelligent agency rather than presupposing in-
telligent agency. For the formality condition guarantees
that the elementary operations of a computational the-
ory do not presuppose intelligence (do not involve inter-
pretations); and the recursive decomposition guarantees
that all cognitive functions are ultimately explicable by
these elementary operations [43.63].

Is it really feasible to combine the formality condi-
tion with the recursive decomposition? In other terms,
can the parts or modules into which the functional-
ists decompose the mind work as engines that satisfy
formality condition? To answer this question, we need
to distill from the heterogeneous collection of def-
initions of module and modularity those relevant to

our issue. For example, when many psychologists and
philosophers speak of modules, they intend to refer to
functionally individuated psychological systems. But
then, Fodor justly notes, “everybody who thinks that
mental states have any sort of structure that’s specifiable
in functional terms qualifies as a modularity theorist in
this diluted sense” [43.64, pp. 56–57]. It is therefore ad-
visable to ascribe to the term a less diluted sense on pain
of vacuity.

The first stronger sense of module is an epis-
temic one. A module is a body of cognized infor-
mation – in Chomsky’s linguistics, the tacit beliefs
of a speaker/hearer who masters the grammar of her
own language, namely the principles of universal gram-
mar, plus a choice of parameter values, plus a lexicon.
Moreover, this psychological structure is domain spe-
cific, that is, it is dedicated to solving a restricted
class of problems in a restricted content domain. By
contrast, a domain-general or general-purpose psycho-
logical structure is one that can be used to do problem
solving across many different content domains.

A knowledge base, however, cannot give rise to
behavior through its propositional content alone. Mech-
anisms are necessary “to bring the organization of
behavior into conformity with the propositional struc-
tures that are cognized” [43.65, p. 9]. If this mechanism
is designed to compute only a restricted class of inputs
(i. e., representations of the properties and objects found
in a particular domain), we get a “vertical faculty,”
namely a domain-specific computational mechanism.
For example, the systems that compute the phonolog-
ical analysis of speech are domain specific in that they
operate only upon acoustic signals that are taken to be
utterances: “[T]he very same signal that is heard as the
onset of a consonant when the context specifies that the
stimulus is speech is heard as a whistle or glide when it
is isolated from the speech stream” [43.65, p. 49].

In some domains, a domain-specific computational
mechanism and an epistemic module can form a sin-
gle mechanism. For example, it may be supposed that
a syntactic parser is a domain-specific computational
mechanism that takes as input sensory (e.g., acoustic)
representations of utterances and, in virtue of a database
dedicated to linguistic information, delivers syntac-
tic and semantic representations of physical sentence
forms. It is important to note, however, that in other do-
mains general- rather than specific-domain algorithms
could employ domain-specific bodies of information.
(See Sect. 43.2.1 The Massive Modularity Hypothesis.)
A Fodorean module is precisely such a mechanism –
a domain-specific innately specified processing system
with an innately specified epistemic module as its pro-
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prietary database. Moreover, it has its own proprietary
transducers; delivers shallow (nonconceptual) outputs;
it is mandatory in its operation, swift in its process-
ing, associated with particular neural structures, liable
to specific and characteristic patterns of breakdown, and
developed according to a paced and distinctively ar-
ranged sequence of growth.

The most important aspect of such a system, though,
is that its information exchanges with other systems
are architecturally constrained. First, the central cog-
nitive processes (such as belief fixation and practical
deliberation) can access only the output representations
of the macromodules (D modules composed by mi-
cromodules). Consequently, the intermediate represen-
tations generated by the micromodules are inaccessible
to central cognition. Second, Fodorean modules are iso-
lated from the rest of cognitive system in that they are
informationally encapsulated. This means that a mod-
ule works by employing only its proprietary database,
without any appeal to the more general knowledge
available to the rest of cognition. Marr (and more re-
cently Pylyshyn [43.66, 67]) thought that early vision
mechanisms were informationally encapsulated; Fodor
extends this idea to any peripheral input and output sys-
tem – including audition, face-recognition, language-
processing, and various motor-control systems.

Now, Fodor [43.64, 65, 68] rejects the idea that
the entire human cognition is modular. For what he
intends as central cognition are processes such as be-
lief fixation and practical deliberation, as they are
described in personal-level propositional attitude psy-
chology. Also intentional psychology is distinctively
flexible and nonmodular, as is showed by an anal-
ogy between the processes that lead to the formation
of beliefs and the type of nondemonstrative inference
that is characteristic of the confirmation of hypothe-
ses in science. (Fodor’s analogy is rejected by Car-
ruthers [43.69] and Pinker [43.70]). Like scientific
confirmation, central cognition is characterized by two
properties: it is isotropic, in the sense that “in princi-
ple, any of one’s cognitive commitments (including, of
course, the available experiential data) is relevant to the
(dis)confirmation of any new belief” [43.68, p. 115] and
it is Quinean, in the sense that central systems compute
over properties like simplicity, centrality, conservatism,
which are fixed by the global structure of belief sys-
tem. But if the central systems are Quinean/isotropic,
then they are not encapsulated – processes of belief
formation need to have free access to the whole belief
system.

Fodor’s claim that the architecture of the mind is
mostly non-modular has very bleak implications for
CRTM and computational psychology. The formality
condition says that the rules that govern the state transi-

tions in a cognitive system are sensitive only to the form
of representations, namely to their syntactic properties,
whereas they are insensitive to the semantic ones. Here
an analogy with a logical calculus holds: the form of
the proposition P and Q is entirely a matter of the iden-
tity and arrangement of its parts; and this is everything
one must know to infer that the proposition is true if and
only if P andQ are both true – namely it is not necessary
to know anything about either the meaning of P orQ, or
the extra-linguistic world. Therefore, syntactic proper-
ties are local properties of representations, that is, “they
are constituted entirely by what parts a representations
has and how these parts are arranged. You don’t, as it
were, have to look ‘outside’ a sentence to see what its
syntactic structure is, any more than you have to look
outside a word to see how it is spelled” [43.64, p. 20].
In other terms, from the formality condition, which re-
quires computations to be sensitive only to the form of
representations, follows the locality principle, accord-
ing to which computations work only upon the local
properties of representations.

In the modular processes, it is encapsulation that
assures the respect of the locality principle: for the com-
putations of an encapsulated module are supposed to
access only the information in the proprietary database,
ignoring all other information held in the mind. How-
ever, central processes do not satisfy the locality condi-
tion, being isotropic and Quineian; consequently, they
are not computationally tractable processes. In other
terms, they face what is sometimes known as the frame
problem.

The Massive Modularity Hypothesis
In order to deal with Fodor’s problem of the computa-
tional intractability of central cognition some cognitive
scientists have pursued the massive modularity hy-
pothesis (MMH), which is the core of evolutionary
psychology, a research program in cognitive science
that aims to combine computationalism, nativism, and
adaptivism. Instead of a picture of domain-specific
encapsulated modules feeding into a domain-general
propositional attitude system, MMH portrays the mind
as a swarm of overlapping Darwinianmodules of vary-
ing degrees of specialization and domain specificity.
Such systems are innate computational modules that
take epistemic modules as their databases, and are the
product of natural selection. The latter is their char-
acteristic mark: they are adaptations, that is, cognitive
mechanisms shaped by the forces of evolution to solve
major problems posed in ancestral environments (for-
aging, avoiding predation, finding shelter, co-ordinating
with others, choosing mates, etc.).

According to MMH, then, Fodor’s problem of the
huge informational load on the central cognition is the
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result of misdescribing human cognitive capacities. The
problem does indeed show that an intelligent general-
purpose agent could not be thinking by computing.
However, we are not such agents; our mind is a com-
plex structure of Darwinian modules. This view avoids
Fodor’s problem of central cognition by rejecting the
picture of a central functional arena where the contents
of an agent’s propositional attitudes are stored, pro-
cessed, and poised for the control of behavior.

However, legitimate doubts have been raised about
the empirical evidence offered in favor of MMH.
Samuels [43.71], for example, pointed out three kinds
of difficulties of the empirical arguments for MMH:

1. The supposed evidence for the existence of Dar-
winian modules can often be explained in terms
of other less specific mechanisms. For example, it
has been objected that the content effects in Wa-
son’s selection task are not cogent evidence for the
existence of a module – the “social-cheater” mech-
anism – that would be specific to the domain of
social reasoning, since they can be more plausibly
explained in terms of general mechanisms of verbal
understanding [43.72].

2. Even when there are data that suggest the exis-
tence of a specialized cognitive structure in a given
domain, it is arduous to establish whether it is
a computational module or an epistemic one. For
epistemic modules can be easily integrated in a the-
ory of central processing in which different corpora
of knowledge are computed by a few nonmodular
mechanisms. This point is very well illustrated by
the debate on folk biology. As Samuels [43.71, p.
46] has rightly noticed, the problem here is that the
main evidence for folk biology does not allow us
to adjudicate between the domain-specific hypothe-
sis [43.73] and the general-domain one [43.74]. All
that it allows us to claim is that folk biology needs
a dedicated and (perhaps) innate cognitive structure;
but this, of course, is not enough to demonstrate the
existence of a Darwinian module for folk biology.

3. Even when some robust evidence for computational
modules is available, it is very hard to determine
whether their domain of application is really central
cognition. For example, the evidence for a computa-
tional module specialized in processing geometrical
information [43.75] does not support MMH since
it can be plausibly viewed as part of vision or
visuomotor control [43.66]. The same holds for
what is considered a strong candidate for central
modularity, viz. Leslie’s Theory of Mind Mecha-
nism (ToMM). That ToMM is evidence for central
modularity is highly controversial, mainly in the
light of Leslie’s most recent work, where ToMM

is viewed as a relatively low-level mechanism of
selective attention [43.76], whose functioning rests
on nonmodular executive systems like the selection
processor.

Narrowing the Scope of Central Processing
The difficulties afflicting the empirical arguments for
MMH invite us to be very cautious about taking it as
a complete account of human cognitive architecture.
The most we can argue is that there are a number of
domain-specific and/or encapsulated central systems,
but there are also nonmodular (domain-general and un-
encapsulated) central systems as well.

In light of this, Bermúdez [43.77] argued that the
interesting point about (this weaker form of) MMH is
the suggestion that the role of propositional attitudes in
human cognition has been overstated. MMH leads us
to rethink the traditional nexus between intelligent be-
havior and propositional attitudes, realizing that much
social understanding and social coordination are sub-
served by mechanisms that do not capitalize on the
machinery of intentional psychology. The latter does
not rule all social interactions; it is used far less fre-
quently than is commonly assumed in philosophy of
mind. In this perspective, MMH goes in the right di-
rection since it narrows the scope of central processing,
thus outlining [43.77, p. 242]:

“the possibility of more or less direct links between
perception and action that are sophisticated enough
to be characterized as forms of intentional behavior,
and yet that do not engage the propositional attitude
system.”

Emphasis on belief/desire as the source of action
is strictly related to the endorsement of what can be
called the sandwich model of the mind [43.78], whereby
perception and action are systematically mediated by
the central cognition layer. Central cognition is the
sandwich filling: according to the sandwich model, per-
ception yields beliefs, and these, in turn, trigger actions.
The separation between the three layers, in particular
between perception and cognition, is taken to be very
neat, especially if the model is coupled (as often is) with
the Fodorean view of modularity, according to which
only perceptual systems are modular.

Therefore, if one rejects the sandwich model, be-
liefs and desires may no longer be considered as the
unique causes of action. There are other mechanisms,
not located at the level of folk psychology, which can
explain action. These mechanisms, however, are not
only the Darwinian modules. For instance, a mecha-
nism of emotional sensitivity such as social referencing
is a form of low-level mindreading that subserves so-
cial understanding and social coordination without in-
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volving the attribution of propositional attitudes. Here
Bermúdez is on the same wavelength as mental simula-
tion theorists and social neuroscientists in drawing our
attention to forms of low-level mindreading that have
been largely neglected by philosophers. However, he
goes a step beyond them and explores cases of social
interactions that point in a different direction, that is, sit-
uations that involve mechanisms that can no longer be
described as mindreading mechanisms. He offers two
examples.

In game theory, there are social interactions that are
modeled without assuming that the agents involved are
engaged in explaining or predicting each other’s be-
havior. In social situations that have the structure of
the iterated prisoner’s dilemma, the so-called tit-for-
tat heuristic simply says: “start out cooperating and
then mirror your partner’s move for each successive
move” [43.79]. Applying this heuristic simply requires
understanding the moves available to each player (co-
operation or defection), and remembering what hap-
pened in the last round. So here we have a case of social
interaction that is conducted on the basis of a heuristic
strategy that looks backward to the results of previous
interactions rather than to their psychological etiology.
We do not need to infer other players’ reasons; we only
have to coordinate our behavior with theirs.

There is another important class of social interac-
tions that involve our predicting and/or explaining the
actions of other participants, but in which the relevant
predictions and explanations seem to proceed without
us having to attribute propositional attitudes. These so-
cial interactions rest on what social psychologists call
scripts (frames in artificial intelligence), that is, com-
plex information structures that allow predictions to be
made on the basis of the specification of the purpose
of some social practice (e.g., eating a meal at a restau-
rant), the various individual roles, and the appropriate
sequence of moves

According to Bermúdez, then, much social interac-
tion is enabled by a suite of relatively simple mech-
anisms that exploit purely behavioral regularities. It
is important to notice that these mechanisms subserve
central social cognition (in Fodor’s sense). Neverthe-
less, they implement relatively simple processes of
template matching and pattern recognition, that is, pro-
cesses that are paradigmatic cases of perceptual pro-
cessing. For example, when a player A applies the
tit-for-tat rule, A must determine what the other player
B did in the preceding round. This can be implemented
in virtue of a template matching in which A verifies
that B’s behavioral pattern matches A’s prototype of co-
operation and defection. Moreover detecting the social
roles implicated in a script-based interaction is a case of
template matching: one verifies whether the perceived

behavior matches one of the templates associated with
the script (or the prototype represented in the frame).

Bermúdez notes that the idea that much of what
we intuitively identify as central processing is actu-
ally implemented by mechanisms of template matching
and pattern recognition has been repeatedly put forward
by the advocates of the connectionist computational-
ism, especially by Paul M. Churchland. But unlike the
latter, Bermúdez does not carry the reappraisal of the
role of propositional attitudes in social cognition to the
point of their elimination. For he argues that social cog-
nition does not involve high-level mindreading when
the social world is transparent or ready-to-hand. How-
ever, when we find ourselves in social situations that
are opaque, that is, situations in which all the standard
mechanisms of social understanding and interpersonal
negotiation break down, it seems that we cannot help
but appeal to the type of metarepresentational thinking
characteristic of propositional attitude psychology.

The Global Workspace Approach
to Central Processing

To the extent that Bermúdez leaves room for forms of
social interactions involving that type of metarepresen-
tational thinking characteristic of propositional attitude
psychology, he only made Fodor’s problem of central
cognition less pressing. The architecture for what is
left of our central processing still consists in a freely
accessible cognitive realm, or central arena, in which
attitudes of all types can become active and enter in
processes of reasoning and thinking. According to Car-
ruthers [43.80], however, the evidence from cognitive
science allows us to hold that there is not such an arena.

Carruthers’s claim rests on the validity of a global
workspace account of the conscious accessibility of
our perceptual experiences. There is now extensive ev-
idence supporting such models [43.81–87]. Moreover,
subsequent analyses of functional connectivity patterns
in the human brain have demonstrated just the sort of
neural architecture necessary to realize the main el-
ements of a global broadcasting account [43.88, 89].
Specifically, these studies show the existence of two
main neurocomputational spaces within the brain, each
characterized by a distinct pattern of connectivity.

The first space is a processing network, composed
of a set of parallel, distributed, and functionally spe-
cialized processors or modular subsystems subsumed
by topologically distinct cortical domains with highly
specific local or medium-range connections that encap-
sulate information relevant to its function.

The subsystems compete each other to access the
global neuronal workspace, which is implemented by
long-range cortico–cortical connections, mostly origi-
nating from the pyramidal cells of layers 2 and 3 that are



Part
H
|43.2

944 Part H Models in Physics, Chemistry and Life Sciences

particularly dense in prefrontal, parieto-temporal and
cingulate associative cortices, together with their tha-
lamo-cortical loops. When one of these subsystems ac-
cesses the global neuronal workspace, its outputs (i. e.,
sensory information including perceptions of the world,
the deliverances of somatosensory systems, imagery and
inner speech) are broadcast to an array of specialized ex-
ecutive, conceptual, and affective consumer systems –
for example, systems that consume the perceptual input
to form judgments or make decisions (Fig. 43.4a).

Global broadcasting makes possible the develop-
ment and subsequent benefits of a working memory
system which exploits the mechanisms of global broad-
cast to subserve a wide variety of central cognitive
purposes [43.90–92] (Fig. 43.4b). So there is, indeed,
a central arena in the mind; but this is working mem-
ory. And what can be found within working memory
are not propositional attitudes, but rather imagery, inner
speech, and so forth; working memory’s operations are
always sensory based.
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Fig. 43.4 (a) Global broadcast and
working memory (after [43.93]).
(b) A functional framework for
attention and conscious events
(after [43.94])

Thus, a global broadcast architecture arranges in
parallel specialized conceptual systems around the
global broadcast of attended perceptual information,
and makes entry into a general-purpose working mem-
ory system competitive. Such design features seem
to enable us to circumvent many aspects of Fodor’s
scepticism about being central cognition amenable to
computational modeling [43.89, 93, 95, 96].

43.2.2 The Dynamicist Challenge:
Is Integration Possible?

As mentioned in Sects. 43.1.4 and 43.1.5, dynamicism
can better be regarded as a research paradigm alterna-
tive to mechanicism, therefore to computationalism too.
In this connection, a standard reference is van Gelder
and Port [43.59], which was the first major presentation
of the dynamical approach to cognition. According to
the authors, “to see that there is a dynamical approach is
to see a new way of conceptually reorganizing cognitive
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science as it is currently practiced” [43.59, p. 4]. Such
a reorganization takes a stand against not only classical
computationalism but also the connectionist one – and
this despite the fact that connectionists were the first to
apply the dynamical systems theory to the study of cog-
nition. However, van Gelder and Port argue, the limit of
connectionism lies in the use of the dynamical systems
tools within a paradigm that is still the computationalist
and representationalist one, even though in a brain-like
variant. The dynamicist wants to go beyond.

First, the dynamicist dissolves the boundary be-
tween the cognitive system and the system’s envi-
ronment. Coupling between the equations describing
a cognizing system and those describing the environ-
ment gives rise to complex total system behaviors. In
this perspective [43.97, p. 373],

“the cognitive system is not just the encapsulated
brain; rather, since the nervous system, body, and
environment are all constantly changing and simul-
taneously influencing each other, the true cognitive
system is a single unified system embracing all
three.”

Second, the dynamicist expansion into the environ-
ment implies an explanatory model very different from
the mechanistic one underlying the vertical expansion.
In the 1950s, the appeal to the mechanistic explanatory
strategy by early cognitivists was the logical conclusion
of the battle waged against behaviorism and mathemat-
ical psychology, which conceived psychological expla-
nation as discovery of laws or mathematical regularities
in behavior [43.1, p. 96]. The dynamical approach,
however, relaunches the covering law conception of
explanation. The dynamical analysis identifies the crit-
ical variables characterizing the state of a system and
attempts to construct laws (a set of differential equa-
tions) to account for the system’s trajectory through
state space. The system can no longer be decomposed
into subsystems (modules) that involve computations
on representations. Consequently, the dynamical expla-
nation is seen as incompatible with the explanatory
style of the computationalist mechanicism (Fig. 43.5).

Dynamicism, then, puts forward the radical embod-
ied cognition thesis: to understand the complex inter-
play of brain, body, and environment we do not need
either the concepts of internal representation and com-
putation or the mechanistic decomposition of a cog-
nitive system into a multiplicity of inner neuronal or
functional subsystems; all we need are the analytic tools
and methods of dynamical systems theory [43.98, p.
148]. In this form, however, the dynamicist project is
not a third contender (the other two contenders are
Fodor’s CRTM – or, more generally, symbolic models –

and neural networks) in the controversy on the founda-
tions of cognitive science but, rather, the denial of the
possibility of such a science – to the extent, of course,
that we are right in claiming that (some form of) com-
putational functionalism is at the core of the very idea
of a cognitive science.

However, a reformist perspective challenged the
dynamicist obituary for cognitive science. It uses the
objections to the individualism of classical cognitive
science as guidelines to reconstruct the conceptual
bases of cognitive science.

Active Externalism
Such a reformism has been pursued by Andy Clark in
the externalist framework introduced in Sect. 43.1.3.
Clark thinks that the computational and representa-
tional framework can be reconstructed making due al-
lowances for the embodied and world-embedded char-
acter of natural cognition but without collapsing into
the radical embodied cognition thesis. Accordingly,
he pursues the transformation of that framework into
just one component in a three-tiered explanatory strat-
egy [43.98, p. 126]:

(i) A dynamicist account of the gross behavior of the
agent–environment system

(ii) A mechanistic analysis, describing how the com-
ponents of the agent–environment system interact
to produce the collective properties described in (i)

(iii) A representational and computational account of
the components identified in (ii).

Clark calls this tripartite explanatory strategy
minimal representationalism, and puts it into a wider
theoretical framework: active externalism [43.100,
101]. Unlike semantic externalism, where the mental
contents of an agent are showed to partly depend on
aspects of the environment which are clearly external
to the agent, Clark’s externalism sees the environment
as playing an active role in constituting and driving the
agent’s cognitive processes. In the wake of Gibson’s

Is psychological explanation mechanistic?

Is explanation reductionist?

Reductionism Inter-level mechanism

Dynamical systems theory

Yes

Yes No

No

Fig. 43.5 The debate on explanatory style in cognitive science rep-
resented as a decision tree (after [43.99])
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ecological optics, this environment is viewed as a col-
lection of affordances that are the source of a particular
variety of inner states, namely the action-oriented rep-
resentations which, unlike the symbols in the language
of thought, are personal (in that they are related to the
agent’s needs and the skills that she has), local (in that
they relate to the circumstances currently surrounding
the agent) and computationally cheap (compared with
Marr’s rich inner models of the visual scene).

It is important to notice, however, that action-
oriented representations are only a representational
genus. Clark rightly notices that the concept of inner
representation was introduced in cognitive science to
account for cases in which a cognitive system must co-
ordinate its behaviors with environmental features that
are not always reliably present to the system. In such
cases, the cognitive system is able to decouple from
the external environment and act in an offline fash-
ion by creating some kind of inner item that stands
in for the absent phenomena. These inner stand-ins
are what cognitive scientists have termed inner rep-
resentations [43.102]. Such cases of environmentally
decoupled cognition are really a tough nut to crack for
the antirepresentationalists, who are concerned exclu-
sively with cases of adaptive hookup, that is, cases in
which the inner states of a system (e.g., a sunflower,
or a light-seeking robot) are supposed to coordinate
its behaviors with specific environmental contingen-
cies [43.98, p. 147]. Such cases of adaptive hookup,
however, cannot ground a general antirepresentational-
ist argument: they are not sufficiently “representation
hungry” [43.103].

In light of these considerations, Clark replaces the
classical notion of mental representation with a con-
tinuum of representational genera. At one end of the
spectrum there are the inner states that border the sim-
ple causal correlation and environmental control. At the
other end of the spectrum, we find the type of inner
stand-in that allows us to deal with the representation-
hungry problems. Then between these two poles are the
action-oriented representations.

According to Clark, therefore, depending on the
coupling or decoupling between agent and environ-
ment, one must appeal to the dynamical nonrepresen-
tational explanation or the representational one respec-
tively. It can be objected, however, that this implies
a division of labor between the two styles of explana-
tion, and not their complementarity; as a result, they
cannot be the tiers (i) and (iii) of a single explanatory
strategy, as Clark would want.

Moreover, it is not clear how Clark’s model of ex-
planation can motivate the integration between the tiers
(i) and (ii): if the interactions between the components
of the global system can be described in mechanis-

tic terms, is there still need to conceive the system
in dynamicist terms? In the next section, we will see
how William Bechtel and his collaborators [43.104–
110] tried to deal with the issue.

Integrating Dynamical Modelling
and Mechanistic Analysis

Bechtel [43.105] has rejected antimechanistic constru-
als of the dynamical approach to cognition in that they
can be traced to a misunderstanding of the nature of
mechanistic explanations. The source of this misunder-
standing is van Gelder’s [43.97] analysis of the Watt
governor (Fig. 43.6). The latter is contrasted with a hy-
pothetical computational governor that is characterized
by the following classical features: it uses computa-
tions on representations, is sequential and cyclic, and
has a homuncular (D mechanistic) character. Accord-
ing to van Gelder, the Watt Governor fails to exhibit
these features because of the continuous and simulta-
neous relations of causal influence among the various
factors involved. It is the continuous reciprocal causa-
tion that requires dynamical analysis.

However, mechanistic explanations are not required
to have the sequential and cyclic character that van
Gelder ascribes to the computational governor. Bech-
tel and Richardson [43.109, Chap. 7] note that in the
early stage of the process of developing mechanistic
models scientists often assume that the processes that
they are considering are performed serially. However,
when it is not possible for scientists to develop a linear
model that is adequate to the phenomenon, they start to
introduce feedback loops and other nonlinearities in at-
tempting to develop adequate models. The outcome is
what the authors define as functionally integrated sys-
tems, namely, systems that are not sequential and cyclic
in van Gelder’s sense.

Again, as in the case of representation, a contin-
uum emerges. At one end of the spectrum, we have fully
decomposable (or highly modular) systems, which are
composed of subsystems that are completely indepen-
dent except for the mutual exchange of outputs (this
is the case of Fodor’s encapsulated modules). If the
interactions amongst the subsystems are weak but not
negligible, the system is nearly decomposable [43.111].
As the complexities of interaction amongst parts in-
creases, the explanatory burden shifts from the parts (or
more precisely, the interactions within subsystems) to
their organization (i. e., the interactions between sub-
systems). Thus, we reach the other end of the spectrum,
where we find holistic systems whose components
are functionally equivalent and hence interchangeable.
In between the nearly decomposable systems and the
holistic ones, there are the integrated systems. In these
systems, unlike the holistic systems, it is possible to iso-
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Fig. 43.6 (a) Watt’s centrifugal governor for a steam engine. (b) A schematic representation showing that the angle of
the spindle arms carries information about the speed of the flywheel for the valve, which uses the angle to determine the
opening, thereby regulating the speed of the flywheel (after [43.107])

late different parts that make distinctive contributions
but also give rise to a complex set of interactions that
are nonlinear, and hence much stronger than those of
a nearly decomposable system.

Now, the Watt governor is an integrated system.
Although it does not use the sequential and cyclic ele-
ments of the computational governor, it nonetheless can
be explained in mechanistic terms. In explaining how
it works, we identify separate modules, each of which
contributes something different to its operation; the
components are tightly coupled with each other, but no
more so than in the case of fermentation. Analogously
with psychobiological cognition – Bechtel [43.106] and
Clark [43.98] suggest that much of it is likely to take up
the intermediate space between nearly decomposability
and holism.

Some proponents of a radically holistic view that re-
jects the very possibility to decompose the mind–brain
are neuropsychologists who use dynamical systems
tools to revive the Gestaltist principle that higher level
activities depend upon the dynamical organization of
the entire cortex [43.104, §3]. For example, Van Or-
den et al. [43.112] criticized the double-dissociation
and neuroimaging studies that explain cognitive ac-
tivities in terms of single causes, and promoted the
approaches that rest on the notion of continuous recip-
rocal causation.

A piece of evidence that is supposed to confirm this
holistic view is the presence in the brain of a vast number
of feedforward, feedback, and collateral connections.
However, as Bechtel [43.113, 114] has convincingly ar-
gued, the hypothesis of the neurobiological reality of
holism is scarcely plausible. Important contrary evi-
dence comes from the studies by David van Essen and

his collaborators, who have almost completely mapped
the areas of the Macaque monkey’s visual system over
the last two decades [43.115–119]. The researchers have
identified 32 different areas in the macaque visual cor-
tex and more than 300 connections between these areas;
and the tool-kit of dynamical analysis can be very use-
ful to model this vast number of feedforward, feedback,
and collateral connections. However, although these re-
gions are highly interconnected, we can still determine
what each area contributes to visual information pro-
cessing; i. e., it is not a holistic system, but an integrated
one. Indeed, Bechtel takes this work to be an exemplar of
mechanistic analysis of how the brain performs a cogni-
tive function. And in an integrated system mechanistic
analysis “provides the foundation for dynamical anal-
ysis” [43.106, p. 483] since the latter has explanatory
force only insofar as it describes “the operations of the
underlyingmechanism” [43.110, p. 443], only to the ex-
tent that it reveals “aspects of the causal structure of
a mechanism” [43.120, p. 602].

Bechtel and Abrahamsen [43.108] refer to accounts
integrating mechanistic decomposition of systems into
parts and operations with the quantitative tools provided
by dynamical systems theory as dynamic mechanistic
explanations.

And yet Bechtel’s dynamic mechanistic explana-
tions do not appear to be really successful in harmoniz-
ing mechanistic–computational explanations with the
dynamical ones. To see why, let us go back to the notion
of integrated system.

Integrated systems have parts (subsystems) that are
individuated according to a mechanistic principle; at
the same time, however, since the inter-relations among
parts are nonlinear (e.g., they cannot be reduced to sim-
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ple input/output connections), their global organization
requires a dynamical description, i. e., the whole system
turns out to be a dynamical system. Note that in this pic-
ture the burden of explanation is carried by the mecha-
nistic component, since the mechanistic decomposition
of the system in parts is a non-negotiable condition. In
other words, dynamical explanations make sense only
against a mechanistic background – their role consists
only in, so to speak, filling the (explanatory) gaps.

This idea is highly plausible since, in the case
of cognition, computational models seem to possess
a higher explanatory force [43.120], and computational
models are mechanistic. But here again, as in Clark’s
case, how the integration actually works remains to
a large extent obscure. First, computational explana-
tions require (at least preferably) modular subsystems,
whereas, according to Bechtel’s model, the richness
of interactions makes it difficult to regard subsystems
as modules (and, if all parts were modules, of course
we could dispense with dynamical explanations com-
pletely). Second, it is by no means obvious how to link
the output of modules to the relevant dynamical vari-
ables of the whole system. The notion of integration is
required to put together, in some way, computational
descriptions and dynamical descriptions; by contrast,
in the current view, the two kinds of explanations are
merely alternative.

In short, the appeal to dynamical models is typically
invoked for integrated (sub)systems in Bechtel’s sense,
which are very weaklymodular, since each of their parts
is influenced by the activity in some other parts of the
system. This degree of modularity, though, is hardly
sufficient for those cognitive scientists who argue that
a mechanistic–computational explanation requires con-
straints on the concept of part far more demanding
than what is required for the notion of integrated sys-
tem. What they need is a form of modularity that
is not vulnerable to the problem of central cognition
(Sect. 43.2.1). Carruthers [43.96], for instance, dis-
tinguishes a narrow-scope form of encapsulation from
a wide scope variety. Influenced by the simple heuris-
tics research program of Gigerenzer and Todd [43.121],
he argues that the computational tractability does not
require Fodor’s narrow-scope form of encapsulation
whereby – as we have seen – the encapsulated sys-
tem cannot draw on information held outside of it in
the course of its processing [43.96, p. 58]. Rather, the
computational tractability only requires that a system is
encapsulated in the sense that it can draw on the in-
formation that is present in other systems during the
course of its processing but, on any given occasion, can
draw only on a subset of the exogenous information –
a property that Carruthers calls frugality or wide-scope
encapsulation.

43.3 Conclusions

In this chapter, we gave a comprehensive account of
computational models and showed their relevance in
cognitive science. We discussed computational mod-
els from a variety of perspectives. First of all, from
an explanatory perspective, making explicit the rela-
tion among computational models, computational ex-
planation, and mechanistic explanation; second, from
a metaphysical perspective, illustrating the relation be-
tween computational explanation and functionalism in
the philosophy of mind. Also, we introduced dynami-
cal models, focusing more on their differences, rather
than similarities, from computational models. Then, in
the second section of the chapter, we took into consid-
eration and extensively discussed a pair of important
difficulties faced by computational models (considered
as parts of computational explanations): the problem of
central cognition and the challenge of dynamical mod-
els, considered as a thoroughly alternative explanatory
style. Dealing with these difficulties is indispensable
if we really want to understand the mind: the future
of cognitive science depends crucially on our capac-
ity to accept this challenge. We argued that there is

a promising account of central cognition, based on a de-
velopment of Baars’ global broadcast model; as to the
problem of dynamicism, we presented a sort of ec-
umenical proposal, based on the idea of integrating
mechanistic explanations with dynamical models in dif-
ferent degree, according to the kind of cognitive task,
we have to account for. Yet, difficulties remain in real-
izing this integration.

In short, we can say that, despite some strong crit-
icisms that have been addressed to the concept of
computation and the related notion of representation,
computational models are still at the core of the dis-
ciplines of the mind. Computational models and, more
generally, mechanistic explanations are still the dom-
inant methods in cognitive science. Indeed, on one
hand, the complexity of animal and specifically hu-
man behavior requires an appropriately complex model,
such as computational models, on the other hand,
more traditional nomological explanations appear not
to be explanatorily much apt to hit the target: psy-
chological explanation is closer to the biological one
rather than the physical one. Moreover, the alterna-
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tives to computational models appear to be not very
solid.

This claim should not be intended as a way of hid-
ing certain difficulties of computationalism, as we saw
in the previous section. To put it generally, it is far
from being definitely established that computational
explanation can be extended to all mental processes
and capacities. For this reason, we believe that the
appropriate attitude in the epistemology of mind is ex-
planatory pluralism, at least at the moment. This has
to be intended in a twofold sense. On one hand, men-
tal phenomena require a variety of explanatory levels,
whose inter-relations are of two kinds: decomposition
and contextualization (in other words, we think that
mechanistic explanation vindicates pluralism). On the

other hand, the arguably quasi-holistic character of
some cognitive tasks suggests that the mechanistic style
of explanation has to be integrated in these cases with
a dynamical explanatory style.

Cartwright [43.122] suggested that the most ap-
propriate metaphor of explanation in cognitive science
is the patchwork: a disparate arsenal of modeling
weapons. Not only each mental capacity calls for its
distinctive collection of explanatory layers, but it is also
necessary to relax the constraints on the overall ex-
planatory architecture. We are essentially in agreement
with such a point of view, though, at the same time,
we try to maintain confidence in computationalism as
a general explanatory framework in the sciences of the
mind.
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44. Model-Based Reasoning in the Social Sciences

Federica Russo

Social scientists use different types of model to
reason about social objects and to study social
phenomena. In this chapter, I provide an overview
of various forms of model-based reasoning in
social research, especially quantitative and qual-
itative. In the course of the chapter, I highlight
differences with other variants of model-based
reasoning, notably the one inherited from logical
positivism, and I discuss the use of experiments
and simulation in social contexts. The chapter also
investigates intersections between model-based
reasoning and other notions, such as explanation
and causality, truth and validity.
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The notion of model occupies an important part of the
debate in the philosophy of science. One reason why
this notion deserves so much attention is that mod-
els lie at the interface between the epistemic agent (in
this context, the scientist) and the system under in-
vestigation (be it physical, biological, or social). Thus,
models allow us to study, understand, and interpret the
surrounding reality. The literature is incredibly vast,
spanning very many scientific disciplines as well as
philosophical traditions. As a consequence, providing
an exhaustive summary of the contributions, or finding
the main conceptual research lines, is far from being
an easy task. A further difficulty is that the term model
is currently used by scientists coming from different
backgrounds, as well as by logicians and philosophers
having different perspectives on the topic. This created
distortions that might be dubbed episodes of concep-
tual imperialism: a discipline and its basic concepts are
used as benchmarks to evaluate or discuss another dis-
cipline and its basic concepts. This has often happened

in the social sciences, for instance in the debate about
their status, that is, whether they rightly belong to the
realm of the sciences, alongside the natural sciences,
and physics in particular. Thus, the social sciences have
been often judged according to the standards of other
disciplines, typically physics. What is at stake here is
a question about their methods – and, consequently,
about their objectivity – typically so different than those
of the natural sciences. For this reason, it is worth open-
ing the chapter with an overview of the methods and
models used in the social sciences, before discussing in
detail the concept of model.

The chapter is organized as follows. In Sect. 44.1,
I examine the objects of study of the social sciences
and different types of models: quantitative vs qualita-
tive, experimental vs quasi-experimental. To be sure,
this is not the only possible categorization of social
science models, and I shall refer, when appropriate, to
other types of models, such as theoretical models or
simulations. In Sect. 44.2, I distinguish two concep-
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tions of models: as representations and as objects. For
each of these, I examine two variants. For models as
representations (Sect. 44.2.1), I consider the notion of
set-theoretic structures and of a family of probability
distributions. For models as objects (Sect. 44.2.2), I an-
alyze those positions that interpret models as fictional
entities and as epistemic objects.

The idea that a model is a representation of a given
system is, in some way, the received view which
any other position subsequently developed has to con-
front with. In particular, the first conception, namely
representation in the set-theoretic sense, is the most
discussed one in philosophy of science. The second
conception (family of probability distributions) corre-
sponds instead to what a statistician would think of as
a model. As we shall see, there is a specificity in the use
and meaning of the concept of model in the social sci-
ences that is not entirely captured by the received view
and that is instead captured by the idea that models are
families of probability distributions and epistemic ob-
jects.

In Sect. 44.3, I discuss a selection of philosophical
positions concerning the relationship between models
and reality. I focus on three positions: models as me-
diators, isolations, and maps. These positions should
not be seen in opposition with each other, and, in fact,
they complement each other, as they highlight different
aspects of modeling practices and of model-based rea-
soning in the sciences.

Finally, in Sect. 44.4, I examine the concept of
model in relation to types of model that had not been
discussed earlier in Sect. 44.1 – viz. simulations –
and to some central issues in model-based reasoning:
causality and explanation, validity and truth. The philo-
sophical questions tackled in this section arise in social
research and in any other scientific domain alike, but
here I will privilege discussion on issues concerning
modeling in the social sciences.

Before starting, it is worth lingering on the posi-
tion of this essay in the geography of the philosophy

of science. To begin with, the choice of starting from
a thorough description of the scientific practice is not
accidental. In fact, I adhere to the view according
to which philosophical discussions must be rooted in
a practice, or a problem, or an issue that emerges in
contemporary science or in the history of science [44.1,
2]. This, however, does not rule out a priori philosoph-
ical investigations as an important part of the process
(for a nuanced view on the relations between science
and metaphysics, see, for example, [44.3]). I will then
examine those philosophical positions that help us clar-
ify controversial aspects or important conceptual issues,
as they arise in the scientific practice. The comparison
with the received view (model in the set-theoretic sense)
is important for two reasons. On one hand, the method-
ological literature in social research developed its own
version of the representation view (i. e., as a family of
probability distributions); on the other hand, such com-
parison will help us foster a dialogue between different
subdisciplines in philosophy of science.

It is also necessary to locate this essay in another
area, namely within the (philosophy of the) social sci-
ences themselves, and especially within the tradition of
hermeneutics, of historicism, and of critical theory that
developed since the mid-nineteenth century. There is
no doubt about the value of the methodological con-
tribution of authors such as Wilhelm Dilthey, Theodor
Adorno, Jürgen + Habermas, or Max Weber. No doubt
the scientific practices presented in Sect. 44.1 have, in
different ways, a conceptual debt to these traditions.
However, these will not be examined here.

Finally, I felt it important to give voice to scientific
practices that are relatively less discussed in the litera-
ture, such as qualitativemodels (Sect. 44.1.3). However,
the reader will notice that the arguments discussed in
later sections (notably, Sects. 44.2 and 44.3) focus more
on quantitative than qualitative modeling, which makes
the discussion somewhat incomplete. Yet, the hope is to
draw the attention to a form of model-based reasoning
in need of further philosophical inquiry.

44.1 Modeling Practices in the Social Sciences

44.1.1 Social-Scientific Objects

The social sciences study individuals and societies from
different perspectives; to do so, they use methods and
approaches that are highly heterogeneous. Demogra-
phy, for instance, studies populations according to the
parameters of fertility and mortality, morbidity, and mi-
gration. It does so with the help of statistics and of
quantitative analysis of data, which allow us to get

a snapshot of a population, to see how it changes over
time, and to predict how it will be at some future time.
Economics focuses on the behavior of individuals and
of groups (a family, a company, a market, or a state)
with respect to the management of resources. Sociology
is interested in the social behavior of individuals and
groups, identifying specific contexts and environments
as the sociology of work, of science, or of health. An-
thropology studies human beings within a given society
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in their various dimensions, such as cultural, emotional,
or spiritual. Epidemiology deserves a special note, as it
is at the border that separates the social sciences from
the biomedical sciences. Epidemiology studies the dis-
tribution and variation of mortality and morbidity of the
population, according to biological and socioeconomic
characteristics of individuals. Needless to say, the sci-
entific objects of these disciplines do not always have
sharp and precise contours. Understanding and concep-
tualizing the objects of study of the social sciences is
in itself an interesting and important topic – see for in-
stance [44.4].

The label social science has been persistently used
since the mid-nineteenth century, which is when the so-
cial sciences come into existence as autonomous fields
of scientific investigation.Yet, the social sciences are, in
fact, highly heterogeneous both in their objects and in
their methods. On one hand, some social scientists, for
instance sociologist Émile Durkheim, worked hard to
establish the autonomy of their discipline with respect
to other areas of investigation (notably, psychology).
On the other hand, economics has an object of study
that clearly falls within the realm of the social, and
yet it is often considered apart from other social sci-
ences. Examples abound. This is the case, for instance,
in disciplinary panels for the allocation of national or
European funds. To give another example, this series
of volumes on model-based reasoning or the Italian on-
line journal APhEx devoted specific essays to models
in economics ([44.5] and Chap. 19) and to models in
the social sciences (Chap. 52, [44.6], and this chapter).
Consequently, it is difficult to find one concept of model
that fits the social sciences as a whole; nevertheless, it
is possible to isolate some common conceptual points.

In the following, I will present models and ap-
proaches in the social sciences according to a classi-
fication that is quite widespread and that distinguishes
two lines of research that are seemingly very differ-
ent: quantitative models, based on statistical analyses
of data (Sect. 44.1.2), and qualitative models, typically
based on the direct study of small groups of individu-
als (Sect. 44.1.3). As we will see, however, this does
not mark a difference between models that are intrin-
sically better, more robust, or more valid. The quality
of models, or rather their validity, is to be assessed
on different grounds and concerns them all – see later
Sect. 44.4.3. In the social sciences, quantitative mod-
els are very often observational models, in the sense
that, once data is collected, it is analyzed using the
tools of probability theory and statistics, but the pro-
cess of data generation is not repeated, as can happen in
experimental modeling practices instead. Experimental
models may generate data repeatedly, control certain
experimental conditions in labs with more precision,

and use sophisticated instrumental apparati for mea-
surement. To be sure, experimental models are used in
the social sciences too, and I illustrate some aspects of
this modeling practice in Sect. 44.1.4. The reader in-
terested in learning about scientific practices inside and
outside the laboratory will find [44.7] an inspiring read.
Another possible classification distinguishes between
empirical and theoretical models. Empirical models use
empirical data, collected in different ways, while theo-
retical models are developed theoretically, that is, in the
abstraction of any empirical investigation and are some-
times formalized. Theoretical models are often used in
economics and try to reconstruct, a priori, various pro-
cesses involved in economic behavior. One example
is Schelling’s model of segregation or Friedman’s hy-
pothesis on permanent income. I will not discuss these
models in detail – for an extensive discussion, see [44.5]
and Chap. 19.

44.1.2 Quantitative Modeling

Quantitative analysis has a long tradition, tracing back
to pioneeringmethodologists such as AdolpheQuetelet,
demographer and astronomer, and Émile Durkheim,
sociologist, both active in the second half of the
ninetheenth century. During the first half of the twen-
tieth century, and until the 1970s, the social sciences
saw continuous improvements and refinements of tech-
niques for data analysis, developing increasingly so-
phisticated statistical models and tests. Several reknown
scholars have been protagonist of these developments,
for instance, Sewall Wright was active in the field of
population genetics in the first half of the last century,
or Otis Dudley Duncan and Raymond Boudon both so-
ciologists have been active since the 1960s and 1970s of
the last century. In the last 30 years or so, economists,
statisticians, and computer scientists such as James
Heckman, Kevin Hoover, Judea Pearl, Clark Glymour,
or Donald Rubin (and their collaborators) prompted fur-
ther progress in the use of probability, statistics, and
automated reasoning for the study of the social.

Probability theory and statistics provide us with
useful means to analyze random phenomena like flip-
ping a coin, waiting time in a queue, or other more com-
plex social phenomena such as migration or changes in
the morbidity of a population.

Data analyzed in a statistical model typically come
from censuses, surveys, or other similar methods. But
what is data? Data consist of observations or measure-
ments of characteristics of populations or individuals
under study. This seemingly simple characterization,
hides a conceptual complexity which I will only gloss
over. The generation, use, and re-use of data are all
activities that deserve a deep epistemological, method-
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ological, and metaphysical reflection (for a thorough
discussion, see, for instance, [44.8, 9]). It is worth em-
phasizing that data are not just data, but are already
heavily theory-laden, to borrow the famous expression
of N.R. Hanson. Some data are generated in a rather
simple and noncontroversial way. For instance, nowa-
days population registers in Western countries allow
us to determine the age of an individual very easily
and precisely. Other data, however, are much harder
to generate. For example, there is not a unique way of
measuring socioeconomic status or the level of educa-
tion of individuals. Similarly, other data are indirectly
generated by measuring other characteristics. For in-
stance, school motivation can be measured by recording
class attendance.

Once generated, data are then organized and
grouped according to variables. Here is a possible tax-
onomy of variables (see also [44.10, Chap.3]):

1. Gender and scale: continuous/discrete; quantitative/
qualitative

2. Role: observed, latent, instrumental, proxy
3. Level: individual, aggregate
4. Scope: socioeconomic, demographic, biological,

etc.

Using a type of variable rather than another depends
on reasons that can be methodological, empirical, or
other. Variable age, for instance, is clearly a contin-
uous variable, but for convenience scientists analyze
populations by age structures (taxon 1). Age, in turn,
can provide information regarding socioeconomic char-
acteristics of individuals – for example, a 10-year-old
person is likely to be in school age and a 30-year-old
to be in work age; age may also provide information
on biological aspects – for example, we record hear-
ing loss typically after 60 years of age, and yet with
the increased use of headsets, the phenomenon begins
appearing much earlier, thus providing information on
behavioral aspects (taxon 4). Thus, age can be an ob-
served (and directly measured) variable, or a proxy, that
is, a variable that stands for something else and that is
not directly measured (taxon 2). Finally, most character-
istics are measured for each individual in the sample or
population, for example (individual) income; however,
some phenomena are better modeled using aggregate
variables, for example, the average income for a given
population (taxon 3).

Once data are organized, we have to organize the
variables. This is the task of quantitative models. Typ-
ically, a quantitative model consists of (a system of)
equations and of a graphical representation of these
equations. The social sciences have, in the course of
time, developed more sophisticated quantitative mod-
els, tailored to specific scientific problems. For instance,

multilevel models are designed specifically to study
the relationships between individual and aggregate
variables. As mentioned above, an individual variable
measures a certain characteristic for each individual in
the sample, for example, individual income. An ag-
gregate variable sums up individual measurements into
aggregate measurements, such as mean income at the
regional or national scale. Or, structural models are
specifically used to model the structure of the relation-
ships between variables, which in turn serves to explain
the socioeconomic mechanism(s) underlying a given
phenomenon.

Quantitative analysis can be used to provide a de-
scription of a social phenomenon. In this case, the
model studies how a variable changes depending on
how other variables change. For example, we can trace
how the variable that records births in Alsace varies de-
pending on the variable that records the presence of
storks in the same region, thus establishing a correla-
tion (or co-variation) between the two variables. At this
point, the model only attests to a statistical dependence
between the variables. This dependence is symmetri-
cal: the birth rate in Alsace changes depending on the
change in the number of storks in the region. But we
can reverse the equation: the number of storks in Al-
sace changes depending on the change in the birth rate.

As is well known, correlation alone does not allow
us to determine whether there is a causal relationship
between two variables, and in which direction it flows,
nor it allows us to explain a phenomenon. This is be-
cause of the third variable problem. Given a correlation
between two variables, it is possible to find a third
variable such that, when included in the model, makes
the correlation disappear. Let me illustrate with a toy
example. Yellow fingers are correlated with lung can-
cer. Include now the variable cigarette smoking in the
model. It is easy to show that the correlation disappears
because cigarette smoking is the cause of both yellow
fingers and lung cancer. The philosophical literature
discussed the issue under the headings of screening off
and of the common cause principle, while the method-
ological literature more often talks about confounding
variables and statistical control.

How to infer causation from correlation is a vexata
quaestio in philosophy of causality. Positions proposed
in the literature vary, but there seems to be agreement
at least on the fact that a causal model has more con-
straints than an associational model. In other words,
causal models have some augmented technical featured
compared to an associational model, notably with re-
spect to assumptions, the types of test, and the use of
background knowledge (for a discussion, see, for ex-
ample, [44.11]). I will briefly mention just two types
of tests. Exogeneity tests are used to check if cause
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and effect are properly separated, that is, if the (prob-
abilistic) structure of the model is correct from a causal
point of view. Exogeneity is typically explained by say-
ing that exogenous variables are caused outside the
model, while the endogenous ones are causedwithin the
model (by the exogenous variables) – for a discussion,
see [44.12]. Invariance tests, instead, are used to check
that the causal structure is sufficiently stable across dif-
ferent partitions of the population of reference, or under
interventions or manipulations [44.13].

Introductions to quantitative modeling and to the
concepts mentioned above, also accessible to non-
experts in probability and statistics, are available
in [44.10, 14].

44.1.3 Qualitative Modeling

Qualitative models are mainly used in ethnography
and anthropology, in some branches of sociology, and
also in educational science. A first difference with the
quantitative models is of scale: the larger the sample
size of a quantitative model, the better its quality. The
same, however, does not necessarily hold for qualitative
models. A second difference concerns the techniques
for data analysis. While a quantitative model typically
uses the tools of probability theory and statistics, in
a qualitative model, researchers select small groups of
individuals and study them in detail, for example, by
integrating into their community and observing them
from the inside. In this case, data not only quantitatively
measure certain characteristics, but also qualitatively
describe social practices, behaviors, language use, etc.

It is worth noting that this does not necessarily mean
traveling to remote or distant places to study particu-
lar ethnic groups. Ethnographic research also concerns
the societies close to us, whether geographically or cul-
turally. Ethnographers and sociologists are interested,
for instance, in how young people socialize in the digi-
tal era in Western countries, or how doctors interact as
a team in an operating room, or in the way in which
citizens can be part of decision-making processes re-
lating to the environment or the like – on ethnography
conduct at home, see [44.15]. What triggers anthropo-
logical interest is the object of anthropology itself – on
this, see, for example,Montuschi [44.4], who discusses
the distinction between ethnography and anthropology,
or Eriksen and Nielsen [44.16], who introduce the con-
cept of home blindness, viz. the difficulty of seeing and
studying our own culture, because we belong to it.

It is a widespread misconception that qualitative
methods are less rigorous than quantitative ones, but
this view is wrong. Scientific rigour is not an intrin-
sic feature of a method. Rigour is instead a property of
the process of project design, model building and test-

ing, and of the interpretation of results, and it depends
on how scientists in practice carry out such a process.
Cardano [44.17] offers an interesting presentation of
qualitative methods and explains, step by step, what
are the aspects to be taken into account in the prepara-
tion of an ethnographic study: what individuals to study,
when and how long for, what are the assumptions, how
to perform tests on the hypotheses, how to use theo-
retical assumptions in the interpretation of results, etc.
All these are elements that belong to the long and com-
plex process of modeling, even when formal methods
or quantitative models are not at stake.

Cardano’s approach is interesting because, if we
have previously pointed to some of the differences be-
tween the quantitative and quantitative models, we can
now identify a similarity. The way Cardano describes
ethnographic research is perfectly in line with the pre-
cepts of modern scientific method and of a hypothetico-
deducive methodology: the formulation of hypotheses,
data collection and data analysis, hypothesis testing,
and validation of the model. Therefore, the difference
in the techniques for data analysis (quantitative or qual-
itative) does not draw a line between scientific and
nonscientific, objective and nonobjective. For a discus-
sion on the issue of objectivity, see also [44.18].

44.1.4 Experimental and
Quasi-Experimental Modeling

Models presented earlier belong to the category of
observational models, which are often opposed to ex-
perimental models. I will use, in this context, the term
experimental model to refer to those modeling strate-
gies that make use of experiments. Often, experimental
models are conceptually associated with the natural sci-
ences (physics, biology, etc.) and observational models
with the social sciences and humanities. This is not
entirely correct. Psychology, for instance, increasingly
uses experimental methods to study the mechanisms
that regulate certain phenomena, such as attention or
memory. Economics too uses experiments, as it seeks
to develop and validate economic theories based more
on empirical data and less on theoretical hypotheses
such as the homo oeconomicus, who always maximizes
expected utility and has perfect knowledge. The re-
lations between theory, experiment, and reality raise
many questions, some are epistemological, others are
methodological and, of course, some others are ethical
and moral. The literature is vast. The following con-
tributions touch on various issues related to the use of
experiments in social sciences and economics: [44.19–
24]. These issues are all the more pressing in areas
where experimentation has severe limitations for ethi-
cal or practical reasons, as in the social sciences.
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To illustrate the use of experiments to model social
phenomena, consider the case of the invisible gorilla,
a famous experiment in psychology [44.25]. The re-
searcher asks a person to observe two teams playing
and to count the number of times that the players pass
the ball. At the end of the game, the researcher asks
the person whether he or she has also seen a gorilla
walking through the playing field. In about half of the
cases, the gorilla goes unnoticed. This is because atten-
tion works in a very selective way. Researchers talk, in
cases like this, of inattentional blindness. The experi-
ment has been repeated several times, with significant
variations, in order to confirm the stability of the re-
sults and of the assumptions. This allowed researchers
to capture different aspects and dimensions of the phe-
nomenon of attention. The results of studies go far
beyond the understanding of the phenomenon itself. For
example, results of the invisible gorilla have been used
for campaigns to raise awareness about the problem of
invisible cyclists among city drivers. Experiments like
the invisible gorilla may have other functions within
the modeling process. For instance, they can be used
to test a theory, or to formulate more precise assump-
tions, or to examine different aspects and dimensions
of the same phenomenon. These issues are, in different
ways, aspects of external validity (see also [44.26, 27],
and Sect. 44.4.3).

Of course, experimentation in the social sciences, as
well as in the biomedical sciences, is subject to signif-
icant restrictions. We cannot force people to smoke to
study the effects of nicotine, as we cannot force people
to work 20 hours per day to understand the effects of
stress. An ethnographer can, however, go to the City of
London and study the behavior of young and ambitious
people who try to make a career in a prestigious finan-
cial company. Experimentation in the social sciences
(as well as any other method) has limits. For this reason,

observational models, both quantitative and qualitative,
are an invaluable resource for studying those phenom-
ena on which we cannot directly intervene.

Modeling social phenomena – whether concerned
with economic, medical, or psychological dimensions –
also make use of quasi-experiments or natural experi-
ments. There are empirical studies designed to assess
the impact of an intervention (e.g., a socio-economic or
public health policy, or a natural event) in a given popu-
lation. The basic idea is the same as in randomized trials
(RCTs), but with an important difference. In quasi- or
natural experiments, the allocation of individuals to the
treatment is quasi-random. Potential outcome models
also use techniques called propensity scores to match
individuals for the cases and the controls. Let us rea-
son about an example. Suppose we want to study the
effects of attending private or public school on income.
Researchers will select individuals that are as similar as
possible for most characteristics (age, social class, fam-
ily situation, etc.) and differ only in the type of school
attended. The two groups will then be compared in or-
der to find differences in income that are due to the type
of school attended.

Sometimes, however, this quasi-random allocation
is made by nature, or by the course of events. A fa-
mous example is the outbreak of cholera in London in
1854, stopped by epidemiologist John Snow. Snow was
able to stop the epidemic because he figured out that
the exposure to the bacterium, resulting in contraction
of the disease, was associated with the use of public
water pumps. These were, in fact, served by two aque-
ducts, which filtered water in a different way, the one
holding the bacterium and the other releasing it into
the water. Two groups were naturally created, the ex-
posed and the nonexposed, and they could be studied
and compared as if a real experiment had been per-
formed.

44.2 Concepts of Model

In the previous section, I offered an overview of the
models used in social sciences. Yet, two crucial ques-
tions were left in the background: What is a model?
And what is it for? I will answer these questions start-
ing from the most classic position offered in philosophy
of science: models are representations. Thus, I will be
able to locate the debate on models in the social sci-
ences within the broader framework of the debate in
general philosophy of science. Moreover, I will be able
to isolate some peculiarities of model-based reasoning
in social research.

44.2.1 Models as Representations

According to an established tradition, a model is a rep-
resentation of a phenomenon or of a certain portion of
reality. Models can be represented in at least two ways.
Let us examine them in order.

Set-Theoretic Structures
A model is a representation of a phenomenon, or of
a certain portion of reality, in the sense that it captures
the main features of the phenomenon, and expresses
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them in a formal manner. Set-theoretic or mathematical
models fall under this category. Here, a model consists
of a set of statements having a set-theoretic struc-
ture. Statements are verifiable, either directly, because
they contain terms that refer to observable entities, or
indirectly, because they contain terms referring to theo-
retical entities, for which we have correspondence rules
that bring us to observational statements. The motion
of a pendulum, the motion of particles like electrons
or protons, or the Higgs mechanism, are examples of
this sense of model. This characterization, however,
does not so much answer the direct question: What is
a model?, but rather the question about the nature of
scientific theories, in particular physical theory.

This sense of model is clearly a legacy of logical
positivism, which based the methodology of science
on the idea of meaningfulness and verifiability. Let me
elaborate on this point. Neopositivists were interested,
among other things, in the nature of knowledge, partic-
ularly scientific knowledge. This can be read as a legacy
of the first Wittgenstein. In the Tractatus, Wittgenstein
claims that “To understand a propositionmeans to know
what is the case if it is true” (Proposition 4.024). To
understand a proposition, we have to establish a rela-
tionship between language (expressed in well-formed
formulas) and the world. This position found fertile
ground among the neopositivists, who applied it to sci-
entific knowledge. On this approach, scientific knowl-
edge can be expressed in well-formed formulas and
verified against empirical experience. This was the ori-
gin of the formulation of the verification criterion for
scientific statements and of the criterion of demarcation
between science and nonscience as developed by Karl
Popper. Both criteria greatly influenced the philosophy
of science in the years to come.

Thus science, according to the neopositivists, pro-
duces theories; but what is a theory? The short version
of the answer may be formulated as follows: theo-
ries are sets of statements that must meet very specific
requirements. What requirements? Those developed
by the neopositivists (and inspired, by and large, by
Wittgenstein). The verification criterion occupies a spe-
cial place: a theory is scientific if it is verified to
a sufficiently high degree. Later on, Popper proposed
replacing this criterion with a criterion of falsification.
A theory is scientific if it is falsifiable, that is to say,
if, from the theory, we can deduce observational state-
ments that we can empirically falsify. Both of these
criteria are based on a specific understanding of the-
ory. Theories are not just sets of statements. For a set
of sentences to be considered a theory, it must have
a certain structure, in particular a set-theoretic struc-
ture. Without going into the technicalities, this means
that from a certain set of axioms (for which no proof

is required) and following certain rules of inference (in
particular, deduction), we can prove other statements as
theorems. Basically, the set-theoretic structure is what
gives certainty to the theory and, consequently, to sci-
entific knolwedge.

Let us get back to the structure of the theory.
We defined a model as a set-theoretic structure. More
generally, a model is an abstract structure, such as
a mathematical structure, or a set of statements formal-
ized in first-order logic or other logic. This makes the
starting axioms of the model true, in the sense that we
will now see.

To see if what happens corresponds to what the the-
ory would predict, we need corresponding rules. For
instance, if the theory states that Fuji apples are red,
we need to establish a correspondence between the the-
oretical terms Fuji apple and red, and for all objects
covered by such terms. We will then be in a position
to tell if it is true that Fuji apples are red and not,
for example, green or yellow. The difficulty lies not so
much in verifying properties of observable entities, but
of the unobservable ones. These difficulties are also at
the basis of the realism–antirealism debate. Think of
physical theories developed in the first half of the last
century and the difficulty of establishing, for example,
the correctness of statements about electrons or about
other theoretical entities not directly observable. Con-
sider, also, all the theoretical and experimental apparati
to confirm the existence of the Higgs boson, recently
found by researchers at CERN.

In philosophy of science, the position that models
are representations or structures (in the sense explained
above) has also been developed by Suppes [44.28],
van Fraassen [44.29], French and Ladyman [44.30],
or Boniolo [44.31]. For a recent discussion of rep-
resentation through mathematical structures, see also
Pincock [44.32] orMolinini [44.33].

The idea that a model represents a phenomenon, or
a portion of reality, intuitively captures some aspects of
modeling processes described in Sect. 44.1.2. However,
the sense in which models in the social sciences rep-
resent a certain reality is not given by the set-theoretic
structures. So let us examine a possible alternative.

Families of Probability Distributions
In the social sciences, there is a sense in which mod-
els – especially quantitative models – represent. If you
ask a statistician what a model is, the answer will most
likely be that a model consists in a family of probabil-
ity distributions. These probability distributions, in turn,
represent some aspects of the reality under examination,
in a way that I will now explain.

Let us consider an example. Suppose we run a sur-
vey to see how Italians are doing. To do this, we can
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measure their well being with a number of indica-
tors in additions to the gross domestic product (GDP).
This means that we will try to measure well being not
only from an economic perspective, but also physi-
cal or psychological. A study like this was discussed
back in February 2012 in front of the Italian Parlia-
ment, where the president of Italian National Institute of
Statistics (ISTAT) presented different ways to measure
well being. Neodemos, an online journal of demog-
raphy, published a popular science article about the
ISTAT study, offering also the point of view of the so-
cial sciences on the issue [44.34].

Let us try to reconstruct the key moments of the
modeling process of a study like the one just mentioned.
First, we collect the data and organize the observations
(i. e., the answers of the respondents) into variables. To
answer the original question, we have to understand the
structure of the relationship between these variables.
Such models are called probabilistic because the prob-
ability distributions are related to the variables in the
database (see also Sect. 44.1.2). A probability distribu-
tion is a function that assigns a probability value to each
of the possible values of a variable. To say that a model
is a family of such distributions means putting together
the probability distributions for each of the variables in
the database and then studying their behavior.

The use of probability theory and statistics to study
phenomena (social or natural) presupposes a stochas-
tic representation of reality, rather than a deterministic
one. This is mirrored in the inclusion of error terms that
can stand for measurement errors, latent variables, or
even for the fact that the phenomena are genuinely in-
deterministic [44.35]. In other words, it can be argued
without contradiction that a phenomenon is determin-
istic, and that our representation of the phenomenon is
stochastic. A corollary of this position is that the rep-
resentation of a phenomenon is partial – the presence
of terms of errors or latent variables means that we
cannot take into account all possible aspects of the phe-
nomenon.

It is worth explaining this sense of model, also with
respect to the distinction made in the previous sec-
tion between theory and model. In set-theoretic models,
there is a close relationship between the two. In some
ways, the model is the formal part of a theory, notably of
a physical theory and, typically, for each physical the-
ory we admit more models, or interpretations – think,
for instance of the various models, or interpretations, of
quantum mechanics.

However, in the social sciences, which interest us
here, we are in a different situation. With the exception
of economics and some branches of sociology, the so-
cial sciences do not have theories. Or, at least, they do
not have strong ones (for a discussion, see, for exam-

ple, Wunsch [44.36]). It is also worth noting that the
majority of theories developed in classical economics
fall into the category of theoretical models (mentioned
at the end of Sect. 44.1.1) but that will not be dis-
cussed here. Instead, the empirical models presented
in Sect. 44.1 are used precisely to develop theories of
the social (broadly understood) through the analysis of
empirical data. Think of studies on migratory move-
ments that are carried out systematically in different
countries and at different times. One goal is to try to
formulate a general theory of migration, that can be
applied to different populations, times, and cultures.
Part of the difficulty in developing such general the-
ories in social contexts is due to the object of study:
human behavior changes, and it does so very quickly
in time and space, across cultures, and also as a re-
sult of the implementation of socioeconomic policies.
Of course, this distinction is not, in scientific prac-
tice, so sharp. Empirical models are sometimes used
to test and refine theoretical models. Yet, it is still
controversial whether theoretical models (like ratio-
nal choice theory) should be amended on the basis of
empirical studies in behavioral economics or psychol-
ogy.

To conclude, the idea that a model is a representa-
tion of a given reality belongs to the classic philosoph-
ical debate about the nature and function of models as
well as to the methodological literature in the social sci-
ences. However, as the previous discussion hopefully
showed, this idea is cashed out, in the social sciences,
in a way that has some important differences with re-
spect to the neopositivist position.

44.2.2 Models as Objects

In the literature, another position has also been pro-
posed to answer the question about the nature of the
models. Models, according to this position, are objects.
More precisely, according to one variant of this po-
sition, they are fictional entities, while according to
another variant they are epistemic objects. We will see
how this second account, in particular, offers interesting
instights for the social sciences.

Fictional Entities
The sciences produce different types of model. Some
are physical objects, such as a relief map of an arche-
ological site, or a globe. Many others, however, are
abstract objects, such as Bohr’s atomic model, or the
model of the inverted pendulum.

Both characterizations of model presented earlier
(in the set-theoretic sense and as a family of probability
distributions) hinge upon the idea that models are rep-
resentations of reality. In turn, these representations are
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structures (set theoretic or probabilistic). According to
philosopher Frigg [44.37], however, this conception of
models leaves unanswered the question about their na-
ture. What kind of object is a model? Frigg proposes
to conceive of models as imagined physical systems.
Models are hypothetical entities that have no actual
space-time existence but they are not mere set-theoretic
structures either. In Frigg’s words, “they would be phys-
ical things, if they were real” [44.37, p. 253].

There are, according to Frigg, two reasons to em-
brace his thesis. The first is that it better mirrors the use
that scientists make of model – here, model in physics.
Frigg comments on popular physics textbook, written
by Young and Freedman [44.38]. The two scientists ex-
plain that the physics model describing the motion of
a baseball abstracts from a number of aspects present in
the real system, such as the air friction or the mass of
the ball. This makes complex systems manageable. In
such a description, says Frigg, we find no reference to
the mathematical structure of the system, but rather to
a simplified hypothetical situation. Mäki’s account that
will be examined later in Sect. 44.3.2 also emphasizes
aspects related to abstraction and isolation.

The second reason is more fundamental and has
to do with the relationship between the structure and
the real system. The problem, for Frigg, is that there is
no relationship of morphism (isomorphism, homomor-
phism, . . . ) between the structure and the real system.
These types of relationships hold between two struc-
tures, but not between a structure and a worldly system.
This should prompt us to re-think the relationships
between mathematical representations of a system,
models, and worldly systems. Frigg does not abandon
completely the notion of representation. Mathematical
representations are part of the modeling process. But
his argument is that the model is not a representation.
Models are simplified and idealized systems, distinct
entities that share many of the characteristics of fic-
tional entities in fiction, just like Sherlock Holmes or
any other character or object in a novel.

This position emphasizes the role that abstraction
plays in the process of modeling (for a discussion,
see also [44.39]). Making assumptions about the a-
dimensional nature of atoms, or about the absence of
friction in the motion of the pendulum means elimi-
nating some empirical elements and reasoning about
a distilled version of reality, which typically is too much
complex to be modeled as such. Some of these aspects
are also discussed by other authors, and their positions
will be discussed in Sect. 44.3. Frigg’s position, how-
ever, stays silent on an important aspect: the role that
these objects (the models) play in several activities car-
ried out by the epistemic agent (typically, the scientist).

This is instead explicitly discussed by Tarja Knuuttila,
as we shall now see.

Epistemic Objects
Tarja Knuuttila, together with other scholars, proposed
considering models as epistemic objects [44.40–42].

Models are objects because they are concrete, tan-
gible products that we can manipulate in different
ways. We can not only manipulate a physical model as
a globe, but we can also manipulate a theoretical model,
for example, by changing or setting the value of a vari-
able. For Knuuttila, it is important to highlight what
aspects of modeling allow us to produce knowledge.
Consequently, in her account, it is not vital to distin-
guish different types of manipulations on the models. It
is instead important to isolate those elements common
to the various practices of modeling.

Models are epistemic objects because they mediate
between the epistemic agent and the system examined,
and because they provide an understanding of the phe-
nomenon. This idea, as we shall see, is central also
in another debate, that is about the relationships be-
tween models and reality. Knuuttila’s account is, in fact,
closely related to the one developed by Morgan and
Morrison (Sect. 44.3.1).

This account of model is largely instrumentalist, but
not so much in the classic sense of the term, that is, lead-
ing to antirealist positions about models. Rather, they
are instrumentalist in analogy to the role of technol-
ogy. Models are tools that we build, manipulate, and
use to gain the knowledge of a given phenomenon. In
this sense, they share many of the properties of techno-
logical artifacts. Of course, we lose a clear demarcation
between the scientific objects and the tools to acquire
knowledge about them. The ontology of model also
becomes less neat, and the boundaries between the nat-
ural and the artificial are now blurred. But, perhaps,
this is a price worth paying, if the expected gain is
a better understanding of the scientific practice. The in-
strumental role of the models will be further discussed
in Sect. 44.3.1.

At first sight, this position may seem rather un-
conventional, especially if one is used to engage with
the mainstream literature, according to which models
provide us with knowledge because they represent (in
one way or another) a system. However, if we ex-
pand our horizon, it will not be difficult to see that
this position fits very nicely in another stream of phi-
losophy of science, one that is interested in more
practical – and less abstract – aspects of the scientific
practice. Paradigmatic contributions in this area have
been those of Hacking [44.43], Daston [44.44], and de
Regt et al. [44.45], to name just a few.
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44.3 Models and Reality

The account of models as epistemic objects allows us
to introduce the next theme of this chapter: the rela-
tionship between models and reality. In fact, besides the
question of the nature of the model, it makes sense to in-
quire about its function within the process of acquiring
knowledge of reality. The first two accounts examined
below have been developed in the philosophy of the
social sciences (specifically, philosophy of economics).
The third account is more general in scope, and it offers
some interesting ideas for our topic.

44.3.1 Mediators

The first approach I consider is the one developed
by Morgan and Morrison [44.46]. The purpose of the
discussion of Morgan and Morrison is to clarify the dy-
namics of the construction of models, their function,
and their use. In particular, Morgan and Morrison try to
articulate the idea that models have autonomy and that
their function in scientific practice is to be mediating
instruments.

To begin with, models are said to be autonomous.
But with respect to what? Models, according to Mor-
gan and Morrison, have partial autonomy compared to
the theories on the one hand, and the reality on the other
hand. But, note, partial autonomy also means partial
dependence. This partial autonomy (and dependence)
is already clear at the model-building stage. According
to some schools of thought (especially in economics),
models are derived entirely from theory (for a dis-
cussion, see, for example, [44.47]), and according to
others models are instead entirely bootstrapped from
data alone (as in data mining). But Morgan and Mor-
rison argue that both theory and data are involved (as
well as other elements that do not concern us here).

Morgan and Morrison also want to defend the au-
tonomy of the function of the model. Consider, by
analogy, the use of a hammer. A hammer is separated
(autonomous) from both the wall and the nail, and its
function is to connect the nail to the wall. In this sense
the models mediate – and here kicks in the second idea,
that of mediating instruments – between the two sides:
reality on the one hand and theory on the other hand.
The analogy of the hammer is, however, insufficient to
understand the use and function of models. Models are
useful, in fact, also because of their ability to represent
something, which allows us to use them as epistemic
tools (see Knuuttila discussed earlier in Epistemic Ob-
jects). Yet, while the hammer only allows us to connect
the wall and the nail, a model also allows us to learn
about the two sides that it connects. An interesting as-
pect of this view is that we do not learn from the model

just by looking at it, but by building it and manipulating
it, and that is why they are tools (or, as Knuuttila would
say, epistemic objects).

It is worth emphasizing that conceiving of models
as (some sort of) instruments does not commit us to
an instrumentalist position about models. Typically, in-
strumentalist accounts of models are accompanied by
antirealism. Models do not give epistemic access to an
objective reality, which is independent of the epistemic
agent. But Morgan and Morrison in no way deny that
there is a reality out there to be discovered and studied.
They emphasize, instead, the instrumental function of
the models as they mediate this access to reality. Mod-
els allow us to gain the knowledge of reality, and this
also in virtue of their representative function. Similar
positions have also been developed by Hesse [44.48]
and Cartwright [44.49].

44.3.2 Isolations

In his work, Mäki [44.50, 51] is interested in the mod-
eling process in economics, with particular reference to
the broader problem of realism and antirealism. Mäki
makes the point that the entities studied in economics
are not really independent, in the same sense as a realist
in physics can think of the electron as an independent
entity. Some economic entities certainly are dependent
on the epistemic agent. That is to say, some objects
in economics, such as the preferences of economic
agents, are not directly accessible through our senses,
but are instead mind dependent. Yet, many of the ob-
jects described and studied in economics are part of our
common sense of understanding of the social world, to
which belong other economic entities such as prices,
wages, and taxes. Some entities, such as wages, have
also the physical counterparts (assuming we grant phys-
ical reality to our bank account balance!), while others
remain theoretical constructs, such as, for example,
preferences or values.

Mäki is interested in the modeling process of those
economic phenomena that affect these common sense
entities. Mäki points out that since the early history
of economic theory – think of John Stuart Mill, Karl
Marx, Carl Menger, or Alfred Marshall – we proceeded
by abstraction and isolation. On one hand, economic
theory starts from premises that are incomplete, and in
a sense, even false. For instance, economic rationality,
which does not take into account all factors involved
in the choices taken by economic agents. This incom-
pleteness is also accompanied by a form of idealization,
or isolation, of those factors considered instead rele-
vant. Isolating means that, in explaining a phenomenon,
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some elements are deliberately removed in order to
simplify it. This process of isolation makes a complex
phenomenon more tractable from a theoretical and also
a practical point of view.

The purpose of these idealized – and strictly speak-
ing false – assumptions is to implement some theo-
retical isolations in a controlled manner. This allows,
according to Mäki, to make complex phenomena under-
standable and manageable. A similar account of model-
ing can also be found in the work of Nowak [44.52].

44.3.3 Maps

Giere [44.53] develops an account of the relationships
between models and reality. Giere supports two related
positions. One is that the results of science are perspec-
tival. This means that scientific results are the product
of the perspective adopted in studying a phenomenon.
A relevant analogy is with color vision, which is not an
objective fact, but depends both on the inputs received
and on the instrumental apparatus used (including our
perceptual system). More explicitly, this means that,
whatever science establishes – or, whatever the scien-
tists establish – vitally depends on a several aspects,
from the data used to the analytical methods used (in-
strumental and experimental apparati, and various types
of models). How is this related to the discussion about
models?

First, for Giere, models are models of data, not
of theories. Giere emphasizes the empirical aspect of
models: once data are collected, they must be modeled.
Surely we need theories to develop models, but data
are the starting point. This aspect is important because,
contrary to what is sometimes said, data do not speak
for themselves, not even if you torture them. The adage
“If you torture the data enough, Nature will confess”
is attributed to British economist Ronald Coase, Nobel
Prize for Economics in 1991, who claimed the impor-
tance of studying real, rather than hypothetical markets.

To use the classification of Sect. 44.1, Giere focuses
on empirical models (either quantitative and qualita-
tive), not on theoretical models. Second, models are like
maps. Maps, to be sure, are not true or false, but useful
or useless for a specific purpose. An important conse-
quence of this position concerns the concept of truth,
which ceases to have a metaphysical load, and is in-
stead used only in a minimal sense. I shall get back to
the issue of truth in Sect. 44.4.3.

A notable aspect of this perspectival account is that
it pays careful attention to the scientific practice, or
rather the practices of the scientists, that form a com-
munity. In other words, Giere discusses the meaning
and use of models in very specific terms, anchored to
the scientific practice and the activities of those who
practice science. Thus, the epistemic activities involved
in science, in which modeling is certainly central, are
then distributed – distributed across all the individuals
that belong to the scientific community (on distributed
cognition, see also [44.8]).

Although Giere’s account is not specifically tailored
to the social sciences, it is helpful in order to address
the vexata quaestio of objectivity. The development and
the increasing use of quantitative methods in the social
sciences can be read as an attempt to give objectiv-
ity to disciplines which, historically, have been blamed
for being too subjective and not rigorous enough (on
this, see, for example, Montuschi [44.18]). However, if
we embrace a perspectival approach such as Giere’s,
then the role of the epistemic agent (the scientist) in
model-based reasoning should not be reduced as much
as possible, but should instead be studied and under-
stood as much as possible. Some of these issues are
are also touched upon in the positions discussed ear-
lier (Knuuttila, Morgan and Morrison, Mäki) and more
generally in the literature on scientific understanding,
whose impetus was given by the article by de Regt and
Dieks [44.54] and continued in the volume edited by de
Regt et al. [44.45].

44.4 Models and Neighboring Concepts

Modeling is at the very heart of scientific reasoning and
rightly occupies an important place in the philosophy
of science. But we cannot discuss models and modeling
abstracting from other important issues. In this section,
I will examine some selected topics that are closely re-
lated to model-based reasoning.

44.4.1 Simulations

In Sect. 44.1, I offered an overview of the various mod-
els used in the social sciences. That overview, however,

has a striking omission: simulations. Models have been
classified according to their quantitative or qualitative
character, and according to whether they are experi-
mental or observational. Yet, some models do not fit
in this categorization: these are the simulations. Sim-
ulations are increasingly used in the sciences, including
the social sciences, and offer insights into philosophical
investigations.

The goal of a simulation is to emulate a certain sys-
tem, also called a target system. For instance, one can
simulate the flight of an airplane; the airplane is repro-
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duced on a smaller scale, placed in a wind tunnel and its
behavior studied in simulated weather conditions, such
as a storm. In these cases, we try to reproduce the tar-
get system on a smaller scale. This type of simulations
raises quite a number of questions, not least because
they are based on the assumption that a reduction of
scale leaves unchanged the essential characteristics of
the system.

There are other types of simulations, which per-
haps raise even more philosophical questions. These are
computer simulations. These simulations mimic or at-
tempt to reproduce the operation of a real system in
silico. We can simulate biological systems, such as the
cell’s apoptosis, or physical systems, such as collisions
between particles. In the social sciences, simulations
are used to study processes like urbanization of a city, of
socialization between groups, etc. Simulations are of-
ten used to model complex systems, whose behavior is
not easily predictable (think of models in meteorology).
The aim is to be able to reproduce the state of a system
as it evolves from certain initial conditions that are set
in the computer program. Simulations have an interest-
ing, hybrid status between experiment and theory.

In the social sciences, we are often confronted with
a further difficulty: available background knowledge
may be quite poor. In these contexts, in fact, simulations
are used precisely to acquire new knowledge of a phe-
nomenon. Part of the debate is about whether, and to
what extent, computer simulations accrue the explana-
tory and predictive power of models. This is far from
obvious, as the output of the computer program de-
pends on the instructions entered by the programmer.
This does not mean that the simulations are not useful.
On the contrary, their extensive use both in physics and
biology, as well as in the social sciences, suggests that
there is a conceptual and methodological potential to be
explored, and to which philosophy is paying increasing
attention ([44.55–59], and for the social sciences more
specifically see, for example, [44.60–62]).

In sum, simulations are an important topic for
a chapter on model-based reasoning for two reasons.
On one hand, simulations are part of the method-
ological baggage of the social sciences; on the other
hand, because of their hybrid status between theory and
experiment, they are a fertile area for philosophical in-
vestigation.

44.4.2 Causation and Explanation

In Sect. 44.1.2, I quickly outlined the distinction be-
tween associational and causal models. It is worth
developing the issue further, as it is not just about
technical and methodological aspects, but also (and es-
pecially) of philosophical and conceptual importance.

At the very basis of this distinction lies the perennial
question about causal inference: how/when/under what
conditions we can infer causation from correlations and
probabilities? In turn, this question brings us to the
following one: What is causality? Does causality have
a special meaning in social contexts?

Instead of addressing the question directly, I shall
get to it via a distinction that has been made in the re-
cent debate in the philosophy of causality: production
versus difference making (or, in the terminology in-
troduced by Hall [44.63], production and dependence).
Here, I shall apply concepts, more narrowly, to the ev-
idence that supports a given causal claim, rather than
to types of causality. Thus, for instance, establishing
that smoking is a risk factor for lung cancer (actually,
for most types of cancer), means establishing, in the
first place, a difference-making relation between two
variables: smoking and (deaths due to) lung cancer.
A difference-making relation would state that variations
in the quantity of smoked cigarettes (e.g., less than 10,
between 10 and 20, more than 20) are associated with
the number of deaths due to lung cancer (in a given pop-
ulation and in a given timeframe). It is in this sense that
smoking makes a difference to lung cancer.

Often, however, to determine whether these
difference-making relations are causal, we also need ev-
idence of production, namely of how smoking causes
cancer. Evidence of production includes information
coming from biomedicine, for instance about the mech-
anisms of carcinogenesis triggered by smoking. But it
also includes information about social, psychological,
or behavioral mechanisms. These help understand the
production of cancer in a nonreductive way (on this
point, see [44.64]). An overview of the question causal-
ity and evidence is offered in [44.14], who frame the
problem of evidence not only within the debate on
evidence-based medicine, but also within the broader
question of the methods for causal inference.

The distinction between evidence of production and
of difference making, and their complementarity, is
relevant to model-based reasoning in the social sci-
ences. In fact, while the quantitative models presented
in Sect. 44.1.2 generate evidence of difference mak-
ing, it is less clear how they also generate evidence of
production. The issue is investigated in [44.11], who ex-
amine the case of econometric models in particular.

Another important aspect concerns the explanatory
power of a quantitative model. In analytical sociology
and in the structural modeling tradition, some scholars
emphasized the role played by mechanisms in explain-
ing social phenomena. Ruzzene [44.65] clearly explains
how the social sciences developed and used the con-
cept of mechanism, building a bridge between the social
science and the philosophical literature. Another inter-
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esting line of research worth mentioning concerns the
interpretation of structural models. To be more precise,
what is at stake is the interpretation of a probabilistic
structure as a mechanism (for a phenomenon) – on this
point, see Mouchart et al. [44.12, 66], who discuss dif-
ferent positions found in the literature.

44.4.3 Truth and Validity

In the course of the chapter, I mentioned several possi-
ble purposes and uses of models, some of which have
just been discussed: models may be used to explain, to
establish causal relations, or to simulate a phenomenon.
In this section, I address the following question: What
makes a model good or useful or real?

To begin with, it is worth emphasizing that mod-
els, strictly speaking, are neither true nor false. This
idea underlies the account of Giere, discussed in
Sect. 44.3.3, as he emphasizes the usefulness of the
models. The view is also supported by Mäki, discussed
in Sect. 44.3.2, as he highlights the process of ide-
alization and simplification of certain hypotheses and
assumptions in model-based reasoning. Basso andMar-
chionni [44.5] discuss the issue of the falsity of the
assumptions of model-based reasoning in economics.
All these arguments are based on the analysis of sci-
entific practice. In the following, I would like to offer
different line of argument instead.

Truth and falsity apply, strictly speaking, to state-
ments. For instance, the statement The programWord is
used to write texts with the computer is true. Most com-
petent speakers will also consider true counterfactual
statements such as the following, although their truth
conditions are notoriously more difficult to establish:
Had I heard the alarm, I would not have missed the
train. The results of models too can be formulated as
well-formed statements and consequently – one might
argue – they can be true or false. As we have seen in
Sect. 44.2.1, this was the strategy of the neopositivists
at the beginning of the last century in order to clarify
the notions of model and theory.

How do we build a scientific statement? Suppose
that we study the effects of smoking cessation on mor-
tality rates due to lung cancer. Suppose that the analysis
of the data allows us to establish that the mortality in the
target population (that quit smoking, or smoked less)
actually decreases. We will be inclined to express the
results of such a study as follows Quitting smoking re-
duces the chance of developing cancer by 60% (the
numbers are clearly imagined). Note that this is what
we routinely find in popular science articles, TV pro-
grams, etc. Is it true that eating broccoli and cauliflower
prevents cancer? Is it true that banner ads influence our
purchasing decisions? These questions can be answered

with simple, well-formed statements summarizing the
results of scientific studies. However, I would like to
suggest that the crucial question is not whether these
statements are true or false, but rather whether the en-
tire model behind it is valid or not. The suggestion is to
freeze the question about truth until we clarify how we
build such statements, and then get back to it. The in-
tention is not to create a conceptual opposition between
truth and validity. On the contrary, the proposal is to
sketch a possible path of research. So the first step is to
shift the discussion toward a different notion: validity.

In the social sciences, Cook and Campbell [44.67]
laid down the foundation for a systematic discussion
of the concept of validity. These scholars distinguished
two types of validity within quantitative modeling: in-
ternal and external.Cook andCampbell [44.67] actually
distinguish four types of validity: internal, external,
statistical, and construct. For the sake of simplicity, I
present only internal and external validity, which are
the most discussed ones in the literature. Internal valid-
ity refers to the possibility that the relationship between
two variables, within a given model, is causal or, con-
versely, to the possibility that, given the lack of corre-
lation between two variables, we conclude that there is
no causal relation between them. External validity con-
cerns the possibility of generalizing a causal relation-
ship, established within a specific model, to different
populations or settings. External validity, or extrapola-
tion, is the object of another debate, extremely relevant
to the philosophy of science and to the scientific prac-
tice. Some philosophers, notably Guala [44.68] and
Steel [44.69], tried to explain the conditions and pro-
cedures that allow us to generalize, or extrapolate, the
results of a study to other populations. Paradigmatic
cases concern the biomedical sciences, where it is far
from obvious that we can draw conclusions about the
aetiology of a disease or the active ingredient in a drug
for human patients from animal models.

For instance, demographer Daniel Courgeau devel-
oped a multilevel model to explain the phenomenon
of migration in Norway using data from censuses in
1960, 1970, and 1980. Simply put, Courgeau explained
that the farmers, usually nonmigratory, underwent pres-
sures to migrate, because the percentage of farmers
within their region considerably increased. An expla-
nation based on a multilevel model delivers results that
are valid for Norway during those years. However, this
is not necessarily applicable to other countries, includ-
ing Norway itself, but in a different historical period
(or under different socioeco-demographic conditions).
The account of Cook and Campbell sparked a lively
debate in the methodology of the social sciences. For
instance, some think that internal validity is more im-
portant, some the opposite. Under debate is also the
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issue of whether external validity is necessary, or even
attainable, in the social sciences. The concept of valid-
ity is sometimes given different meanings, as it can refer
to the data, the model, or the results. So far I have ad-
dressed a question about the meaning of the concept of
validity. Let us see how we decide whether a model is
valid or not.

In Sect. 44.1, I touched upon the issue of build-
ing and testing models. I mentioned that data can be
collected, for example, with surveys or interviews. I
also mentioned that we analyze data in different ways,
for instance using statistical models, which in turn
may be very different depending on the type of data
to be analyzed and on the phenomenon to be stud-
ied. I also briefly sketched the main features of the
hypothetico-deductive method that embraces different
stages of modeling building and testing, from data col-
lection to the interpretation of results. To determine
whether a model is valid or not means to determine
whether the entire modeling process is cogent. At each
and every step of the process, we can we ask if things
have been done correctly, or if they could have been
done differently, or better, or if there were errors that
influenced later stages of the modeling procedure.

Now, the question is: Why should validity be op-
posed to truth? In fact, whether there is opposition or
not depends on what conception of truth one adopts.

According to a well-established philosophical tradi-
tion that traces back to Aristotle, the truth of a statement
is established via a correspondence between a linguis-
tic expression and some state of affairs. According to
a Tarskian analysis, The snow is white is a true state-
ment if, and only if, the snow is white. That is, I open
the window, I verify that snow is actually white, and
declare the statement true. This interpretation of truth
is plausible until we deal with simple things like white
snow, the desk I work on, and any other situation within
the remit of unsophisticated empirical tests. This is an
over simplification, however. Think of the empirical test
of the color of my desk, made by myself and by my
colleague, who is color blind on some frequencies. The
statement This desk is greywill be true for me, and most
likely false for my colleague. The problem is known to
philosophers of science, who, however, addressed the
issue in relation to nonobservable entities (including,
most famously, electrons). This simple example shows
that the problem of empirical control, and consequently
of the truth of a (scientific) statement, arises already at
the level of the observables. For a discussion of a veri-
ficationist approach and realism Dorato [44.70].

Consider again the (fictitious) study on the effects
of smoking cessation on mortality due to lung cancer.
The question is whether we can determine the truth of

the statement Quitting smoking reduces the chance of
developing cancer by 60% by some kind of correspon-
dence. In this case, as in many others, it is not obvious
to find a fact, state of affairs, or truthmaker. Every study
has a population of reference; does it follow that there
is a truthmaker for each of these? Or is there one truth-
maker that transcends them? The majority of studies
make use of variables constructed from different indica-
tors. Does it follow that there is a unique way to isolate
facts or states of affairs like quitting smoking? In sum,
the difficulty in finding an easy and clear correspon-
dence between our scientific statements and some facts,
state of affairs, or truthmakers stems from the fact that
social reality is notoriously elusive and, to some extent
constructed (but some may argue the same holds for
natural phenomena) – an idea that has been developed
by Latour [44.71] or Hacking [44.72], to name only the
most prominent theorizers.

One option is to reduce the metaphysical burden of
the concept of truth, and to make it less rigid and more
usable. We can do this by trying out the conceptual tools
that come from the philosophy of information. There,
truth is not cashed out in terms of correspondence but
with respect to the information network in which a cer-
tain expression is embedded. Truth, according to this
view, does not collapse into the concept of validity. The
truth of a statement (e.g., a scientific statement) is es-
tablished (also) on the basis of the validity of the model
within which it has been formulated. Let us see how
truth can be conceptualized from an informational per-
spective, and then go back to the relationship between
truth and validity.

The concept of information has a relatively recent
history. In the last decades, mathematicians, engineers,
and information technologists developed theories of
information that revolutionized, in many ways, our
information and communication technologies. Philoso-
phers also deserve credit, as they initiated a new branch
in philosophy that makes central the notion of infor-
mation and also offers new methods for philosophical
inquiry. The main theorizer and proponent of the phi-
losophy of information is Floridi [44.73].

Floridi offers the following general definition of in-
formation (GDI) coupled with the veridicality thesis.
Simply put, according to the veridicality thesis, truth
is part of (semantic) information: p is an instantiation
of information, understood as semantic content, if, and
only if:

(GDI1) p consists of data.
(GDI2) Data in p are well formed.
(GDI3) Well-formed data are meaningful.
(GDI4) Meaningful well-formed data are truthful.
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According to this definition, the four basic elements
of semantic information are:

(i) Data
(ii) The structure of data
(iii) Their meaningfulness
(iv) Their truthfulness.

For Floridi, structuring data is not confined to giv-
ing a set-theoretic structure to well-formed formulas,
but includes any rule for governing a given system,
code, or language being analyzed. Thus, a probabilis-
tic structure of the type discussed in Sects. 44.1.2 and
families of probability distributions counts as structur-
ing the data.Meaningful refers to any way of complying
with the semantics of a given system, but not confined
to language. Thus, nonsense correlations, such as the
correlation between the rise of bread prices in England
and sea level in Venice, would be meaningless under
this account. The next step is to connect meaning to
truth. In this context, true does not have a correspon-
dentist meaning. Floridi defends a correctness theory of
truth that provides an account of how well formed and
meaningful data become truthful. Simply put, a truth-
ful expression is one that is correct within the modeled
system. There is not a truthmaker making a statement
true, in a correspondentist sense. There is a network
of information that the agent (the competent speaker,
the scientist, etc.) processes in order to establish the

truth of a statement, and this highly depends on the data
considered and on the way they are (or are not) well
formed.

Let us got back to scientific statements. How shall
we determine if they are true? The network of infor-
mation includes considerations made to decide about
the validity of the model. We establish the truth of
a statement within the framework of a modeled sys-
tem, analyzing the various stages of model building
and model testing. Therefore, in establishing the truth
of a statement, we are not referring to a fact or state
of affairs or truthmaker that makes it true. We refer
to a whole network of information that includes the
accuracy of the modeling phase, the adequacy of the
empirical results with respect to background knowl-
edge, the role of scientific evidence in its various forms
(correlations, mechanisms, etc.). Then the plot or infor-
mational network that the epistemic agent builds – and
that constitutes their knowledge – gives us the truth of
a statement.

There is no doubt that these sections do not ex-
haust the problem. I lack space, here, to develop this
approach in detail. The interested reader can consult
Floridi [44.73] and also the introductory textbook avail-
able on the website of the Society for the Philosophy of
Information, outlining the main arguments about truth,
knowledge, and validity from an informational perspec-
tive.

44.5 Conclusion

The objective of this chapter was to provide an
overview of model-based reasoning in the social sci-
ences, to locate it within the debate on models that
extends outside social research, and to highlight some
of the aspects worthy of further philosophical investi-
gation.

I opened the chapter with a description of several
modeling practices in the social sciences and catego-
rized them according to the techniques for data analysis
they use (quantitative or qualitative) and according
to their observational or experimental character. What
emerges from this overview is a multifaceted concept.
There is not one account of the concept of model that
captures all the aspects involved in these different mod-
eling practices. Also, the received view – according to
which models represent portions of reality using set-
theoretic structures – does not seem to fit the case of
the social sciences. Yet, models in social research (es-
pecially quantitative models) do represent portions of
reality, but by means of families of probability distri-
butions. These are the heart of statistical models and

raise important questions about the stochastic character
of phenomena (and of causality) and about the possibil-
ity of explaining phenomena mechanistically.

Models are also objects that we can manipulate to
gain knowledge of phenomena. This view offers an ac-
count of the concept of “model” and also offers ideas
to investigate relationships between models and reality.
The three accounts I presented (models as mediators,
maps, and isolations) do not answer exactly the same
question. Rather, these approaches tackle some aspects
of the relationship between models and reality high-
lighting different stages of the modeling process. These
accounts should not be seen in opposition or competi-
tion to each other, but should instead be seen as being
part of a complex mosaic portraying model-based rea-
soning in science.

From the discussion of the previous section, it
should be clear that the interest in the concept of the
model is not confined to finding the most appropriate
definition. Model-based reasoning is the heart of the
scientific process and this is closely linked to other no-
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tions, all central in the philosophy of science. In this
chapter, I could only provide a preview of debates and
issues that are far more complex and fascinating. Some,
such as the relationship between the model, causality
and explanation, belong to the perennial questions in
philosophy of science. Others, for instance, concern-
ing the explanatory or predictive role of simulations
(especially in silico), are more recent but no less contro-
versial or relevant. Finally, I suggested that the question
of truth, at the basis of science as well as philosophy,
can be addressed in the light of another concept: the va-
lidity of a model.

Many issues have not been covered in this chap-
ter, sometimes for the lack of space and sometimes
because they are outside the area of competence of
the author. For instance, philosophy of science has tra-
ditionally given a lot of importance to the predictive
power of models and theories (especially in physics). In
the social sciences, the problem of prediction has rather
different contours, however. I will just mention two
points, hoping to stimulate the reader’s interest. A de-
mographic projection is not meant to test the predictive
power of a theory, that is, to predict a new observation.
A demographic projection aims instead to anticipate
the structure of the society in 20 or 30 years, in or-
der to design adequate socioeconomic or public health
policies. Another aspect deserves attention. Typically,
in the social sciences, the best predictive models are
the ones with less explanatory power. That is to say,

simpler statistical models, with fewer variables, deliver
more reliable projections than more complex, structural
models with many explanatory variables. We are then
confronted with an interesting asymmetry between pre-
diction and explanation which, to my knowledge, has
not been sufficiently investigated.

To conclude, a philosophy of modeling – cover-
ing both a discussion of the concept of the model and
the various epistemological and methodological aspects
of model-based reasonings – must seek synergies with
the scientific practice, on the one hand, and with other
branches of the philosophy of science, on the other
hand. In fact, given the hyperspecialization of both sci-
ence and philosophy, we need to engage in a dialogue,
in order to formulate relevant questions and useful an-
swers. At the same time, and again because of this
hyperspecialization, philosophy of science must try to
build an integrated view of the scientific practice (cur-
rent practices, or found in the history of science) where
various concepts find their place, like in a mosaic.

Acknowledgments. I wish to thank the editors,
Mauro Dorato and Matteo Morganti, for the opportu-
nity to contribute to this volume. I owe much of what I
know and understand about model-based reasoning “in
practice” to social scientists Michel Mouchart and Guil-
laume Wunsch. Finally, I wish to thank my friend and
colleague Phyllis Illari – for her insightful comments
and most enjoyable conversations.

References

44.1 R. Ankeny, H. Chang, M. Boumans, M. Boon: Intro-
duction: philosophy of science in practice, Eur. J.
Philos. Sci. 1(3), 303–307 (2011)

44.2 T. Arabatzisa, D. Howard: Introduction: Integrated
history and philosophy of science in practice, Stud.
Hist. Philos. Sci. Part A 50, 1–3 (2015), doi:10.1016/
j.shpsa.2014.10.002

44.3 M. Morganti: Combining Science and Metaphysics.
Contemporary Physics, Conceptual Revision and
Common Sense (Palgrave, New York 2013)

44.4 E. Montuschi: The Objects of Social Science (Contin-
uum, London 2003)

44.5 A. Basso, C. Marchionni: I modelli in economia,
APhEx 11 (2015)

44.6 F. Russo: Modelli nelle scienze sociali, APhEx 12
(2015)

44.7 M. Boumans: Science Outside the Laboratory Sci-
ence outside the laboratory. Measurement in field
science and economics (Oxford Univ. Press, Oxford
2015)

44.8 S. Leonelli: On the locality of data and claims about
phenomena, Philos. Sci. 76, 737–749 (2009)

44.9 S. Leonelli: Data interpretation in the digital age,
Perspect. Sci. 22, 397–417 (2014)

44.10 F. Russo: Causality and Causal Modelling in the
Social Sciences. Measuring Variations, Methodos
Series, Vol. 5 (Springer, New York 2009)

44.11 A. Moneta, F. Russo: Causal models and evidential
pluralism in econometrics, J. Econ. Methodol. 21(1),
54–76 (2014)

44.12 M. Mouchart, F. Russo: Causal explanation: Recur-
sive decompositions and mechanisms. In: Causal-
ity in the Sciences, ed. by P.M. Illari, F. Russo,
J. Williamson (Oxford Univ. Press, Oxford 2011)
pp. 317–337

44.13 F. Russo: What invariance is and how to test for it,
Int. Stud. Philos. Sci. 28(2), 157–183 (2014)

44.14 P. Illari, F. Russo: Causality: Philosophical Theory
Meets Scientific Practice (Oxford Univ. Press, Oxford
2014)

44.15 R. van Ginkel: The repatriation of anthropology:
Some observations on endo-ethnography, Anthro-
pol. Medicine 5(3), 251–267 (1998)

44.16 T.H. Eriksen, F.S. Nielsen: A History of Anthropology,
2nd edn. (Pluto, London 2013)

https://dx.doi.org/10.1016/j.shpsa.2014.10.002


Model-Based Reasoning in the Social Sciences References 969
Part

H
|44

44.17 M. Cardano: Ethnography and Reflexivity. Notes on
the Construction of Objectivity in Ethnographic Re-
search, Tech. Rep. 1, NetPaper del Dipartimento di
Scienze Sociali, Univ. Turin (2009)

44.18 E. Montuschi: Oggettività e Scienze Umane (Carocci
Editore, Rome 2006)

44.19 A. Oakly: Experiments in Knowing: Gender and
Method in the Social Sciences (Polity, Cambridge
2000)

44.20 F. Guala: Models, simulations, and experiments.
In: Model-Based Reasoning, ed. by L. Magnani,
N. Nersessian (Springer, New York 2002) pp. 59–74

44.21 U. Mäki: Models are experiments, experiments are
models, J. Econ. Methodol. 12(2), 303–315 (2005)

44.22 M. Morgan: Experiments versus models: New
phenomena, inference and surprise, J. Econ.
Methodol. 12(2), 317–329 (2005)

44.23 D. McArthur: Good ethics can sometimes mean
better science: Research ethics and the Milgram ex-
periments, Sci. Eng. ethics 15(1), 69–79 (2009)

44.24 M. Morgan: Nature’s experiments and natural ex-
periments in the social sciences, Philos. Soc. Sci.
43(3), 341–357 (2013)

44.25 D.J. Simons, C.F. Chabris: Gorillas in our midst: Sus-
tained inattentional blindness for dynamic events,
Perception 28, 1059–1074 (1999)

44.26 D.G. Mook: In defence of external validity, Am. Psy-
chol. 38, 379–387 (1983)

44.27 J.W. Lucas: Theory-testing, generalization, and the
problem of external validity, Sociol. Theory 21(3),
236–253 (2003)

44.28 P. Suppes: A comparison of the meaning and uses
of models in mathematics and the empirical sci-
ences. In: Studies in the methodology and founda-
tions of science. Selected papers from 1951 to 1969,
(Reidel, Dordrecht 1960/1969)

44.29 B. van Fraassen: Structure and perspective: Philo-
sophical perplexity and paradox. In: Logic and
Scientific Methods, ed. by M.L. Dalla Chiara (Kluwer,
Dordrecht 1997) pp. 511–530

44.30 S. French, J. Ladyman: Reinflating the semantic ap-
proach, Int. Stud. Philos. Sci. 13(2), 103–121 (1999)

44.31 G. Boniolo: On Scientific Representations On scien-
tific representation. From Kant to a New Philosophy
of Science (Palgrave, New York 2007)

44.32 C. Pincock: Mathematics and Scientific Representa-
tion (Oxford Univ. Press, Oxford 2012)

44.33 D. Molinini: La spiegazione matematica, APhEx 7
(2013)

44.34 G. De Santis, Benessere: http://www.neodemos.
info/benessere/

44.35 D. Fennell: The error term and its interpretation
in structural models in econometrics. In: Causal-
ity in the Sciences, ed. by P.M. Illari, F. Russo,
J. Williamson (Oxford Univ. Press, Oxford 2011)
pp. 361–378

44.36 G. Wunsch: God has chosen to give the easy case to
the physicists. In: Evolution or Revolution in Euro-
pean Population. European Population Conference,
(Franco Angeli, Milan 1995) pp. 201–224

44.37 R. Frigg: Models and fiction, Synthese 172, 251–268
(2010)

44.38 H.D. Young, R. Freedman: University Physics. With
Modern Physics, 10th edn. (Addison-Wesley, San
Francisco, Reading 2000)

44.39 R. Frigg, S. Hartmann: Models in science. In: The
Stanford Encyclopedia of Philosophy, Winter 2016
edn., ed. by E.N. Zalta, https://plato.stanford.edu/
archives/win2016/entries/models-science/ (2012)

44.40 T. Knuuttila, A. Voutilanen: A parser as an epistemic
artefact: A material view on models, Philos. Sci. 70,
1484–1495 (2003)

44.41 T. Knuuttila: Models, representations, and media-
tion, Philos. Sci. 72, 1260–1271 (2005)

44.42 T. Knuuttila, M. Merz: Understanding by modelling:
An objectual approach. In: Scientific Understand-
ing. Philosophical Perspectives, ed. by H. de Regt,
S. Leonelli, K. Eigner (Univ. Pittsburgh Press, Pitts-
burgh 2009) pp. 146–168

44.43 I. Hacking: Representing and Intervening: Intro-
ductory Topics in the Philosophy of the Natural
Sciences (Cambridge Univ. Press, Cambridge 1983)

44.44 L. Daston: Biographies of Scientific Objects (Univ.
Chicago Press, Chicago 2007)

44.45 H. de Regt, S. Leonelli, K. Eigner (Eds.): Scientific
Understanding. Philosophical Perspectives (Univ.
Pittsburgh Press, Pittsburgh 2009)

44.46 M. Morgan, M. Morrison: Models as mediating in-
struments. In: Models as Mediators. Perspectives
on Natural and Social Science, ed. by M. Morgan,
M. Morrison (Cambridge Univ. Press, Cambridge
1999)

44.47 H.-K. Chao: Representation and Structure in Eco-
nomics. The Methodology of Econometric Models
of the Consumption Function (Routledge, London
2009)

44.48 M. Hesse: Models and Analogies in Science (Cam-
bridge Univ. Press, Cambridge 1966)

44.49 N. Cartwright: How the Laws of Physics Lie (Claren-
don, Oxford 1983)

44.50 U. Mäki: On the method of isolation in economics.
In: Idealization IV: Intelligibility in Science, Poz-
nan Studies in the Philosophy of the Sciences and
the Humanities, Vol. 26, ed. by C. Dilworth (Rodopi,
Amsterdam 1992) pp. 319–354

44.51 U. Mäki: Realism and antirealism about economics.
In: Philosophy of Economics, ed. by U. Mäki (North-
Holland, Amsterdam 2012) pp. 3–24

44.52 L. Nowak: The Structure of Idealizations. Towards
a Systematic Interpretation of the Marxian Idea of
Science (Springer, Dordrecht 1980)

44.53 R. Giere: Scientific Perspectivism (Univ. Chicago
Press, Chicago 2006)

44.54 H. de Regt, D. Dieks: A contextual approach to sci-
entific understanding, Synthese 144, 137–170 (2005)

44.55 F. Rohrlich: Computer Simulation in the physical
sciences, PSA: Proceedings of the Biennial Meeting
of the Philosophy of Science Association 1990 (1991)
pp. 510–518

44.56 W.J. Kauffmann, L.L. Smarr: Supercomputing and
the Transformation of Science (Freeman, Oxford
1993)

44.57 S. Schweber, M. Wächter: Complex systems, mod-
elling and simulations, Stud. Hist. Philos. Mod.

http://www.neodemos.info/benessere/
http://www.neodemos.info/benessere/
https://plato.stanford.edu/archives/win2016/entries/models-science/
https://plato.stanford.edu/archives/win2016/entries/models-science/


Part
H
|44

970 Part H Models in Physics, Chemistry and Life Sciences

Phys. 31, 503–609 (2000)
44.58 M. Winsberg: Science at the Age of Simulation

(Univ. Chicago Press, Chicago 2010)
44.59 F. Varenne, M. Silberstein (Eds.): Modéliser et

Simuler. Epistémologies et Pratiques de la Modéli-
sation et de la Simulation (Matériologiques, Paris
2013)

44.60 N. Gilbert, K.G. Troitzsch: Simulation for the Social
Scientists (Open Univ. Press, Maidenhead 2005)

44.61 N. Gilbert, P. Terna: How to build and use agent-
basedmodels in social science, Mind Soc. 1(1), 57–72
(2000)

44.62 F. Varenne: Les simulations computationnelles
dans les sciences sociales, Nouvelles Perspect. en
Sci. Sociales 5(2), 17–49 (2010)

44.63 N. Hall: Two concepts of causation. In: Causation
and Counterfactuals, ed. by L.A. Paul, E.J. Hall,
J. Collins (MIT Press, Cambridge 2004) pp. 225–276

44.64 M.P. Kelly, R.S. Kelly, F. Russo: The integration of
social, behavioural, and biological mechanisms in
models of pathogenesis, Perspect. Biol. Medicine
57(3), 308–328 (2014)

44.65 A. Ruzzene: Meccanismi sociali nelle scienze so-
ciali, APhEx 5 (2012)

44.66 M. Mouchart, F. Russo, G. Wunsch: Inferring causal
relations by modelling structures, Statistica 70(4),
411–432 (2010)

44.67 T.D. Cook, D.T. Campbell: Quasi-Experimentation.
Design and Analysis Issues for Field Settings (Rand
MacNally, Paris 1979)

44.68 F. Guala: The Methodology of Experimental Eco-
nomics (Cambridge Univ. Press, Cambridge 2005)

44.69 D. Steel: Across the Boundaries. Extrapolation in
Biology and Social Science (Oxford Univ. Press, Ox-
ford 2008)

44.70 M. Dorato: Che Cosa c’Entra l’Anima con gli Atomi?
(Laterza, Rome 2007)

44.71 B. Latour: La Science en Action. Introduction à la
Sociologie des Sciences (Découverte, Paris 1987)

44.72 I. Hacking: The Social Construction of what? (Har-
vard Univ. Press, Cambridge 1999)

44.73 L. Floridi: The Philosophy of Information (Oxford
Univ. Press, Oxford 2011)



971

Models inPart I
Part I Models in Engineering, Architecture,

and Economical and Human Sciences

Ed. by Cameron Shelley

45 Models in Architectural Design
Pieter Pauwels, Ghent, Belgium

46 Representational and Experimental
Modeling in Archaeology
Alison Wylie, Seattle, USA

47 Models and Ideology in Design
Cameron Shelley, Waterloo, Canada

48 Restructuring Incomplete Models in
Innovators Marketplace on Data Jackets
Yukio Ohsawa, Bunkyo-ku, Tokyo, Japan
Teruaki Hayashi, Bunkyo-ku, Tokyo,
Japan
Hiroyuki Kido, Bunkyo-ku, Tokyo, Japan

49 Models in Pedagogy and Education
Flavia Santoianni, Naples, Italy

50 Model-Based Reasoning
in Crime Prevention
Charlotte Gerritsen, Amsterdam,
Netherlands
Tibor Bosse, Amsterdam, The Netherlands

51 Modeling in the Macroeconomics
of Financial Markets
Giovanna Magnani, Pavia, Italy

52 Application of Models
from Social Science to Social Policy
Eleonora Montuschi, Venice, Italy

53 Models and Moral Deliberation
Cameron Shelley, Waterloo, Canada



972

The chapters contained in this part provide an overview
of model-based reasoning in a variety of humanistic dis-
ciplines. Some of these disciplines relate to the material
practices of humanity, including architecture, archaeol-
ogy, design, and technological innovation. Others relate
to humanity through its policy practices, such as peda-
gogy, crime, economics, the social sciences, and moral
reasoning. Of course, the disciplines discussed here
are diverse, and have specialized histories and con-
cerns. At the same time, each one is devoted to what
might be termed inhabitation, that is, ways that peo-
ple have of living in and adapting the world around
them.

For present purposes, inhabitation refers to how
people interact with their material environment, espe-
cially for the purpose of adapting it to their wants and
needs. It also refers to how people organize and reg-
ulate their activities, adapting their actions in view of
their significance for others. The demands of inhabita-
tion are a crucial part of human nature and history.

It is striking how significant model-based reasoning
is to studies of inhabitation. In reading the chapters of
this volume, readers will be impressed with the diver-
sity of models employed and the variety of insights that
can be gained through them. It becomes quite apparent
that inhabitation itself is crucially dependent on differ-
ent kinds of model-based reasoning. The same can be
said for studies of inhabitation in divergent disciplines.
So, it is fitting to have an overview of human sciences
with model-based reasoning at its center.

Chapter 45 provides an overview of modeling as it
figures in the practice of architecture. This chapter well
illustrates the, not always appreciated, fact that what
counts as a model, and as model-based reasoning, de-
pends upon the tools at hand. Traditionally, architects
employed sketches of plans and elevations, as well as
scale models. Recently, the tool kit has expanded to
encompass an array of computer-based aids. Modern
architecture, then, requires command of an expanding
set of modeling tools and a facility for integrating them
in the minds of the architects. The chapter shows how
such integration occurs through a recurrent process of
abductive, deductive, and inductive reasoning.

Chapter 46 presents a taxonomy of model-based
reasoning as used in archaeological interpretation.
Models have long been employed to characterize and
understand the archaeological record, either through
abstraction from archaeological traces or comparison
across cultures. A key issue of debate has been howwell
models can support substantial, scientific conclusions
rather than merely whimsical speculations. The chapter
illustrates challenges posed by models in archaeology

and how practitioners have employed models with sat-
isfactory results.

Chapter 47 illustrates how ideologies affect the use
of models by the designers of material technology.
Besides aiming to meet technological requirements, de-
signers also use models to promote social ideals. Those
ideals could include a religion, such as Catholicism, so-
cial arrangements such as universalism, lifestyles such
as consumerism, or disciplinary traits such as reduction-
ism. The chapter indicates how model-based reasoning
can be an expression of the reasoner as well as a re-
sponse to external requirements.

Chapter 48 illustrates how models may constitute
and facilitate technological innovation. Traditionally,
innovation is viewed as the domain of producers of
technology. However, consumers also participate in in-
novation through ways they find to adapt and find new
value in products or services. The Innovation Market-
place shows how this process of invention relies on
models and model-based reasoning, and has also been
adopted as the standard method for data exchange by
government and industries in Japan.

Chapter 49 surveys the sciences of education from
a variety of perspectives. In the history of the subject,
models of pedagogy have been constructed on psy-
chological, philosophical, institutional, and ideological
premises. In all cases, accounts of pedagogy focus on
the central problem of teaching and learning for which
models are constantly being proposed, applied, and as-
sessed. Continuing focus on this process shows how
important models and modeling are to it.

Chapter 50 shows how models may figure in the
study of crime and law enforcement. Computational
modeling has been employed chiefly to clarify theories
of crime. As the ambient intelligence model suggests,
computational models may also be employed to guide
responses to crime by law enforcement through analy-
sis based on the concept of crime displacement. Thus,
model-based reasoning is crucial to both understanding
crime and reacting to it.

Chapter 51 reviews and discusses models of the
behavior of financial markets, their response to risk
and uncertainty, and the resulting tendency toward eco-
nomic crises. As the crisis of 2007 illustrates, modern
capitalism is prone to sudden periods of instability. Fa-
mously, this same crisis brought about a resurgence of
attention to Keynesian ideas about finances and finan-
cial policy. This crisis and Keynesian models for its
explanation are the point of departure for this chapter,
which explores how uncertainty conditions the some-
times vertiginous behavior of financial markets.
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Chapter 52 considers the role of causal models in
social science research and their use in social policy
construction. Although models are used throughout the
social sciences, their ability to account rigorously for
social phenomena and to motivate effective interven-
tions is disputed. This chapter explores the nature of
causal models and the qualities they have that support
rigorous and applicable social science research.

Chapter 53 discusses various ways in which mod-
els figure in people’s thinking as they solve everyday
moral problems. Not surprisingly, models are central
to this kind of moral deliberation. However, accounts
of this phenomenon vary widely due to the different
accounts of models adopted. This chapter surveys the
main accounts of moral deliberation with their varying
representations of models. The result is an improved
understanding of the crucial work models do as people
make moral decisions.



Models in Arc
975

Part
I|45

45. Models in Architectural Design

Pieter Pauwels

At one time, architects and construction special-
ists used to rely mainly on sketches and physical
models as representations of their own cognitive
design models. Today, they rely increasingly on
computer models including parametric models,
generative models, as-built models, building in-
formation models (BIM), and so forth. Of course,
processes of abstraction and the actual architec-
tural model-based reasoning itself remain in the
mind of the practitioner who is in control of the
design and construction process. However, this
whole new array of alternative computer-based
representation models has profoundly affected
decision-making in architectural design and con-
struction. In this chapter, a brief overview is first
given of the state-of-the-art in design think-
ing research. Following this, an outline is given
of how diverse data models, such as BIM and
parametric models, are currently used in archi-
tectural design and construction. An indication
is then given of how these models relate to the
in-mind model-based reasoning on which archi-
tectural designers and construction experts rely in
decision-making and creative thinking. This out-
line will not only review well-known theories of
design thinking and architectural design practice,
it will also integrate ongoing theoretical research
about analogical reasoning and about abductive,
deductive, and inductive reasoning.

45.1 Architectural Design Thinking ............ 976
45.1.1 The Architectural Designer

as a Practitioner ................................ 976
45.1.2 Where Are the Models in all This?........ 976
45.1.3 Abstraction, Sense-Making,

and Framing into Mental Models ........ 978
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45.3 Implementing and Using ICT
for Design and Construction .............. 984

45.3.1 Pragmatic Usage of Semantic Modeling
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45.3.2 The Usage of Design Agents
or Assistants ..................................... 985
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The word model is ubiquitous in the current practice
of architectural design and construction.Whereas archi-
tects and construction specialists used to rely mainly on
sketches and physical models as representations of their
own cognitive design models, now they rely more and
more on computer models (or computer representations
of their cognitive design models). Parametric models,
generative models, as-built models, BIM, and so forth,

are used day in and day out by any architectural design
and construction practitioner. Although processes of ab-
straction and the actual architectural model-based rea-
soning itself still occur in the mind of the practitioner,
who is in control of the design and construction process,
of course, this whole new array of alternative computer-
based representation models has its impact on decision-
making in architectural design and construction.
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45.1 Architectural Design Thinking

Understanding how designers think has been the goal
of many research initiatives during previous decades.
Several relevant overviews are available that describe
the evolution of these research initiatives and their out-
comes [45.1–3], therefore we will not elaborate here
in extensive detail. With the emerging interpretation
in the 1970s of the design process as a process in
which wicked problems [45.4, 5] or ill-structured prob-
lems [45.6] are to be re-solved, over and over again,
design is now more and more considered as a practice
or a discipline in its own right, rather than a science that
can be addressed using a rigid methodological approach
(see for example [45.7, p. 11]).

45.1.1 The Architectural Designer
as a Practitioner

The basis of this interpretation relies heavily on the the-
ories by Cross [45.8], Lawson [45.9], Schön [45.10],
and Simon [45.11]. These theories typically acknowl-
edge the complexity of the design process and the role
of design thinking within this process. An architectural
design situation is not necessarily considered as a de-
sign problem that is defined by a well-structured set of
constraints, and in which a number of adjustable pa-
rameters is available. Instead, a design situation in these
theories is typically understood as a snap-shot, in terms
of time, in the overall design process, in which a limited
number of constraints and parameters are taken into ac-
count and adjusted by a designer, in order to satisfice
the design situation, as interpreted at that moment, into
an alternative and new design situation. The term satis-
ficing refers to the attitude of architectural designers to
sufficiently, instead of entirely, satisfy constraints (see
also [45.6] and [45.12, p. 224]). In terms of optimiza-
tion approaches to design, it is typically indicated that
designers look for suboptimal (but satisfactory) solu-
tions rather then for the most optimal solutions.

In the theories following the above understand-
ing, a key role is typically taken by the designer as
a decision-maker. Designers are considered to be reflec-
tive practitioners [45.10]. Schön hereby refers to archi-
tectural designers, baseball pitchers, and musicians as
example practitioners [45.10, pp. 54–55]. These practi-
tioners continuously decide which constraints they wish
or do not wish to adhere to, and which parameters
they wish to use in what way. In contrast to the earlier
belief of designers having a problem-focused strategy,
they are now believed to have a more solution-focused
or goal-oriented strategy instead [45.11, 12]. They pro-
ceed forward through the design process, continuously
facing new design situations and addressing them as

they see fit in order to obtain the goal they have in mind
at that specific moment in time. After addressing these
design situations, the goal and the architectural knowl-
edge (that were used to rely on) are typically adjusted
based on the “back-talk of the design situation” or “sit-
uational feedback” [45.10]. Continuously taking action
on design situations results in a co-evolution of prob-
lem space and solution space (see Fig. 45.1 and [45.13,
14]). In other words, architectural designers learn while
doing, not only about the design situation at hand, but
also about architecture and design in general.

Two key features of the prevalent current under-
standing of the design process can be distinguished in
the above paragraphs:

1. An intensive interaction exists between designer
and design context, thereby resulting in a stepwise
proceeding through the design process.

2. Design thinking has an important reflective,
learning-while-doing character [45.10], enabling
designers to learn from experience.

We provide a simple schematic image of this in-
terpretation of the (architectural) design process in
Fig. 45.2. It indicates how a designer forms a mental
model from an observation of the external world or de-
sign situation, and uses this mental model to devise an
appropriate action for altering the design situation into
a new one that can ideally be considered more optimal
than the previous one.

45.1.2 Where Are the Models in all This?

The title of this chapter suggests that models are key to
the above outlined features of the interaction between
designers and design situations. Although the above
paragraphs did not contain the word model too abun-
dantly, it is present in all stages of the design process,
in each step taken by designers in the direction of a fi-

Evolution

Evolution

P(t)

S(t)

P(t+1)

S(t+1)

Problem
space
dimension

Design/
solution
space
dimension

Focus,
  fitness

Focus,
  fitness

   Focus,
fitness

Fig. 45.1 Maher and Poons problem-design exploration
model
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nal (satisficing) design situation (not solution). In each
interaction, namely, architectural designers rely on their
background knowledge in making the appropriate deci-
sions. This background memory is central to the above
design process. After each decision, feedback or situa-
tional backtalk is returned to the designers by the design
situations with which they interacted [45.10] (see also
the oil painting example given by Simon [45.11, p.
163]). As this situational backtalk is interpreted by the
designers, it also reshapes the background knowledge
of these designers.

In learning-while-doing, designers build up knowl-
edge in direct reference to concrete experiences. This
knowledge might be related to “a designerly way of
knowing” [45.8, 15], which was originally put forward
by Archer in 1979 [45.16, p. 348]. On the basis of this
kind of knowledge, designers make design decisions in
newly encountered design contexts. Through their on-
going interaction with new design contexts, designers
continuously modify or adjust their designerly way of
knowing. Obviously, these adjustments have a signifi-
cant effect on future design decisions.

It is important here to consider the stepwise evolu-
tion of the design process. As each step in the design
process (or each consecutive design situation) can be
considered a snapshot, the evolutions in design knowl-
edge of the designer can also be considered in a step-
wise manner. Each step in the evolution of someone’s
design knowledge can hereby be considered a design
model. This idea follows the theory by Schön about the
architectural designer as a reflective practitioner, con-
tinuously interacting with the surrounding context and
being affected by the backtalk of that surrounding con-
text [45.10]. As explained here, Schön also indicates
that design thinking depends on the repertoire or knowl-
edge and experience of the designer. So, the context and
background of designers play a key role in all steps of
the decision-making processes of those designers. This
idea also explains the notion of co-evolution in design
problem and design solution [45.13, 14], assuming that
the design problem can be considered the same as the

Interpretation

Mental model

Action

Observation

Design situation

Fig. 45.2 Schematic outline of the steps (observation – in-
terpretation – action) that are taken by designers during the
interaction with an external design situation

current design situation, and that the design solution
can be considered the same as the internal interpreta-
tion or model of the design situation in the designer’s
mind (Fig. 45.3).

The changing background knowledge of the de-
signer has been discussed at length by Lawson [45.9,
p. 159]. He uses the term guiding principles. These
guiding principles can be understood as the personal
background knowledge or the knowledge by experience
of a designer. They consist of familiar design patterns
that a designer relies upon throughout the design think-
ing process. A designer thus never starts a design from
an empty page, never from scratch or a blank mind.
Instead, a designer always relies on a lifetime of knowl-
edge built up by experiences. It is documented in [45.9,
p. 179] how these guiding principles, in combination
with a mental model of the situation at hand, essentially
guide practitioners (including designers) through their
thinking process. They play an important role not only
in framing the design situation, but also in generating
solutions for a problem, devising experiments, and in
learning from experiences.

According to Lawson [45.9, p. 159], these guiding
principles include not just objective, factual informa-
tion, but include much more information, involving,
for instance, motivations, beliefs, values, and attitudes.
Guiding principles may be very intense and clearly
structured or, on the other hand, vague and unclear,
but they always influence design decisions one way
or another. These characteristics of guiding principles
can be related to the tacit dimension suggested by
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Fig. 45.3 Schematic outline of the co-evolution of the mental
model of a design situation and the external design situation
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Polanyi [45.17, 18], who states that some knowledge
cannot be formalized and is essentially experience-
based, vague, and thus tacit. In some research initia-
tives, guiding principles are almost considered part of
a personal religion, thereby implicitly redefining design
as “a very complicated act of faith” [45.19, p. 3]. This
refers to the sometimes profound intensity of the de-
signer’s belief in personal guiding principles, making it
morally right to follow them. It is similarly indicated by
Ward [45.20] how imagination relies almost entirely on
known concepts, and, although modifications are made,
they are typically only constituted by different combi-
nations of known elements. It is hard to entirely step
outside one’s own categories and beliefs, also in imag-
ining [45.20].

It is very unclear in what form guiding principles are
stored in the mind of a designer. What is clear though,
is that this background information serves as a kind of
repertoire of reference models for the designer to con-
tinuously and actively reorganize and restructure new
design situations in memory into new abstract mental
models or understandings of those design situations. In
this context, references can be made to the work on
case-based reasoning (CBR) [45.21–23], in the sense
that the concept of CBR captures the idea of matching
new cases with previously encountered cases in order to
appropriately act upon them (Fig. 45.4).

45.1.3 Abstraction, Sense-Making,
and Framing into Mental Models

From the previous sections, we now see that there
should be some mechanism or phenomenon that allows
architectural designers to link incoming design situa-
tions to their available repertoire of reference models
(their experiential background information) so that they
can obtain an abstract in-mind interpretation of those
design situations. Basically, this is a moment of inter-
pretation or abstraction. It occurs when a designer is
sketching and all of a sudden gains an insight in the
form of recognizing a part of the sketch as something
he has seen before in an alternative context. It occurs
when an architectural designer is visiting architectural
building sites in order to find inspiration for the is-
sues he is struggling with in the design he is working
on. It occurs when the architectural designer communi-
cates his latest design to a client or to any related or
unrelated third party and gets insight from the feed-
back he receives through simple conversation. While
doing each of these things, the architectural designer
appears to interpret or make abstraction of the incom-
ing information, after which he relates it in his mind to
what he has experienced before. Previously used names
for this phenomenon are retrieval (in the context of
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Fig. 45.4 Schematic outline of the case-based reasoning
(CBR) process (after [45.21–23])

CBR – Fig. 45.4), sense-making and problem framing/
setting [45.10, 24–27].

In [45.10, 26], for instance, design thinking is char-
acterized as a specific kind of problem solving, in which
the designer “must make sense of an uncertain situation
that initially makes no sense”. Making sense of the situ-
ation then happens by switching back and forth between
problem and solution, while continuously reframing
both. Schön [45.10, pp. 39–40] refers to problem set-
ting as:

“the process by which we define the decision to be
made, the ends to be achieved, the means which
may be chosen. In real-world practice, problems
do not present themselves to the practitioner as gi-
vens. They must be constructed from the materials
of problematic situations which are puzzling, trou-
bling, and uncertain.”

In architecture, this often happens in the interaction
between the client and the architect. This interaction
usually starts with a client having an impression of what
he wants to achieve, and an architect who does not have
a clue of the client’s desires and needs. Often, these de-
sires and needs are conflicting or do not seem to make
sense. But, through the continuous feedback that the ar-
chitect receives from the client, this design brief gets
an increasingly clear structure in the designer’s mind.
The architect thus sets the problem (how many floors
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are requested in the building, who will be accessing
and using the building, and so forth) through interaction
with his surroundings. Initially, these surroundings are
constituted by the feedback of the client, but later on,
they will be formed by the sketch on his paper, visits to
the building site, conversations with third parties, and
so forth. One might say that the problem and solution
are continuously reframed, resulting in a co-evolution
of problem and solution. One might also say that the
design situation is evolving step-by-step by the impact
of an architect who decides based on his background
knowledge and the context he is working in.

It is made clear by Schön [45.10] just how impor-
tant the element of reframing the design situation is in
his documentation of the differences between problem
solving in a rational world and problem solving in the
real world [45.10, p. 40]:

“When we set the problem, we select what we will
treat as the things of the situation, we set the bound-
aries of our attention to it, and we impose upon it
a coherence which allows us to say what is wrong
and in what directions the situation needs to be
changed. Problem setting is a process in which, in-
teractively, we name the things to which we will
attend and frame the context in which we will at-
tend to them.”

In an architectural design situation, this occurs, for
example, in the form of an architectural designer decid-
ing at some point to look at the structural design in that
particular design session, and leave out considerations
in terms of energy or user comfort. In the following ses-
sions, he might focus on material use, or user access, or
something entirely else. But in each session, only one
frame of the entire design situation is considered.

What is probably the most interesting moment in
this reframing process, is the point where a solution is
considered satisfactory enough and ready to be put into
practice. This moment resembles the moment in which
the well-known flash of insight occurs. This moment
is described by [45.27] as the moment in which the
two oscillating points, problem and solution, are still
and close enough to be bridged by an apposite con-
cept [45.27, pp. 439–440]:

“The crucial factor [. . . ] is the bridging of these
two partial models by the articulation of an appo-
site concept [. . . ] which enables the models to be
mapped onto each other. The creative leap is not
so much a leap across the chasm between analysis
and synthesis, as the throwing of a bridge across
the chasm between problem and solution. Such
an apposite bridge concept recognizably embodies
satisfactory relationships between problem and so-

lution. It is the recognition of a satisfactory bridging
concept that provides the illumination of the cre-
ative flash of insight.”

The term apposite makes an intended reference
to the notion of appositional reasoning, which was
originally coined by Bogen [45.28] and which is con-
sidered similar or the same as abductive reasoning by
Cross [45.29].

Suppose that our architectural designer is still fo-
cusing on the structural load-bearing capacities of
a building (cfr. framing of the situation). This architect
might successfully relate the current design situation
with a situation he encountered before and conse-
quently decide to apply a similar structural design (for
example, steel columns for load-bearing instead of con-
crete columns or brick walls), because the features of
this structural design choice not only address issues
in the overall building structure, they also appear to
geniously address many other issues in terms of light
penetration in the building, accessibility, fire safety, and
so forth. This train of thought involves a bridge between
an unsure problem and an unsure solution by an appo-
site concept.

45.1.4 Accessing Background Knowledge
Through Analogical Reasoning?

The above distinguished apposite bridge between cur-
rent design situation and the designer’s background
knowledge is often addressed and investigated as
a kind of analogical reasoning or CBR (see for in-
stance [45.30–33]). Analogical reasoning is hereby ex-
plained as the cognitive ability to think about relational
patterns [45.34–37], which allows one to find a struc-
tural alignment or mapping between a base and a target
pattern residing in (partially) different domains [45.34,
37–40]. During design practice, architectural designers
thus continuously make alignments between the cur-
rent design situation (the base pattern) and previously
experienced design situations (the target pattern). Rely-
ing on such alignments, designers infer which action to
take for specific design situations and hence move for-
ward.

This understanding was formed earlier by the in-
vestigations of Douglas and Isherwood, and Cross.
Douglas and Isherwood [45.41], for example, indicate
that [45.41, p. viii]:

“there is a prior and pervasive kind of reasoning
that scans a scene and sizes it up, packing into one
instant’s survey a process of matching, classifying
and comparing. [. . . ] Metaphoric appreciation, as
all the words we have used suggest, is a work of
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approximate measurement, scaling and comparison
between like and unlike elements in a pattern.”

Later on, Cross [45.29] refers to several other re-
search initiatives that distinguish a very similar kind of
reasoning as fundamental for design thinking, thereby
mentioning the terms abductive reasoning, productive
reasoning and appositional reasoning as called by their
respective inventors Peirce [45.42], March [45.43] and
Bogen [45.28].

This kind of reasoning is obviously relied upon in
the interpretation step which is considered in the previ-
ous sections of this chapter. This kind of reasoning is
very poorly understood in general. The only thing we
appear to know, is that it happens. As we are confined
to behavioral studies of human design activity, and we
cannot simply access the human mind during design
activity, there is no real trustworthy indication of how
it happens. When turning to the interpretation of the
“work of approximate measurement” or “metaphoric
appreciation” [45.41, p. viii] as a kind of analogical rea-
soning, we can find out that analogical reasoning often
occurs between a new design-related experience (build-
ing, sketch, three-dimensional (3-D) model, conversa-
tion, and so forth) and a previous design experience as
it is stored in the human mind [45.30]. But also in the
very act of sketching, analogical reasoning is crucial,
because it allows reinterpreting or seeing as, as Gold-
schmidt puts it [45.32, 33]. In seeing as, the designer
reinterprets the sketch and, as such, adds new and origi-
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Fig. 45.5 The approximate location of analogical or appositional
reasoning in our earlier schema of the design process (Figs. 45.2
and 45.3)

nal meaning to it, thereby generating new ideas [45.32,
33]. For many student designers, who have little expe-
rience in architectural examples, seeing as often occurs
in a more superficial way. They tend to find similari-
ties between their sketches and other, often unrelated
concepts and things based on geometrical features and
shape (Look, this looks like a ship. Maybe we can. . .
or We are near the sea, why don’t we make the build-
ing in the shape of a wave?). Experienced architectural
designers often make more abstract, meaningful and/or
direct analogies, because they have a much richer set of
background experiences on which they can rely.

Because analogical reasoning is guided by en-
countered target patterns [45.34, 37–39], the designer
appears to proceed in an unstructured and perhaps aim-
less way. Therefore, the earlier mentioned definition of
imagining [45.9, 44] is also closely related to analogi-
cal reasoning. A similar conclusion is given by Boden’s
research on the creative mind [45.45]. She stresses the
importance of the incubation phase in creative thinking.
In this phase, the conscious mind focuses on other do-
mains, problems, or projects, thus enabling the creative
mind to make diverse alternative and previously uncon-
sidered analogies with the situation at hand [45.45, pp.
33–35].

When turning back to our initial schema of the de-
sign process (Figs. 45.2 and 45.3), we can locate the
position of analogical or appositional reasoning some-
where between the design situation that is observed
and the mental model resulting in the designer’s mind
(Fig. 45.5).

45.1.5 Abstraction from Representation
Model to Mental Model

If the bridging between the current design situation
and the background knowledge of the designer occurs
through analogical reasoning, the base pattern [45.34,
37–39] is tremendously important. Namely, this implies
that what designers experience from design situations
are the sole seeds from which they are able to make in-
terpretations and act creatively upon.

Of course, it is not realistic to assume that de-
signers interact with design situations as a whole,
something that might be concluded from the schemas
in Figs. 45.2, 45.3 and 45.5. Instead, designers inter-
act with a medium that provides a bounded interface
(a frame) to the current design situation (Fig. 45.6).
These media of interaction are of various kinds, in-
cluding people, objects, sketches, 3-D models and so
forth.

The most obvious experiences of design situations
in architecture (elements of interaction in Fig. 45.6) are
sketches [45.46]. As Goldschmidt indicates [45.32, 33],
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sketches are not only visual expressions of what one
wants to express, they are also elements for reinterpreta-
tion and thus for generating all kinds of new knowledge.
Cross similarly refers to the importance of sketching as
it enables a designer to explore several solutions and
problems to a certain design situation at once, thereby
considering several levels of detail at once [45.8, 47].
Schön [45.10], in turn, refers to the habit of many
designers to continuously make representations of the
design situation at hand in documents, plans, sketches,
and so forth, thereby allowing a designer both to an-
swer a previous design situation, and frame the design
situation anew into an alternative perspective. To say
it in Schön’s words, the designer “shapes the situation
in accordance with his initial appreciation of it, the sit-
uation talks back, and he responds to the situation’s
back-talk” [45.10, p. 79].

We will not dive into all the characteristic features
of sketching, but we will instead generalize among very
diverse possibly available base patterns used to initi-
ate analogical reasoning. Sketches, namely, are but one
of the many possible representation media that can be
used by designers to reflect on the design situation. Be-
sides sketches, designers can use conversations with
colleague architects, physical scale models, walking
around on construction sites or inspiring related pieces
of architecture, and so forth. Rather recently, this ar-
ray of interaction media has notably enlarged through
the development of all kinds of information technolo-
gies. New media are now available to the designer,
among which there are parametric design models, two-
dimensional (2-D) computer-aided design (CAD) mod-
els, 3-D BIM models, databases, websites on the Inter-
net, teleconference applications, virtual game engine en-
vironments, and so forth. So, design representations can
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take on many forms, including a sketch [45.32, 46, 48],
a simple discussion [45.49], a CADmodel, and so forth.

The main idea here is that by making alternative
representations, designers aim at confirming the ab-
stract model they have of a particular design situation,
which is always to some extent unclear, wicked or
unknown. By experiencing the resulting design rep-
resentation, a new understanding or abstract in-mind
model of the design situation thus emerges, which re-
frames the previous design situation and thus alters the
design process.

45.2 BIM Models and Parametric Models

The apposite bridging, interpretation, or abductive rea-
soning step is a capacity that is not available in a com-
puter. As we do not know the way in which our
background information is stored in our neurological
brain, we are obviously unable to replicate this. As
a result, no information system exists that is able to
store the target patterns that are required for analogi-
cal reasoning, let alone one that is able to match these
target patterns with incoming sensory information and
thus make analogies in a creative and autonomousman-
ner, as we do as human beings. So, no information
system is able to take over such a typically human
capacity.

45.2.1 New Technological Media
in Design Thinking

Nonetheless, architectural designers can still take ad-
vantage of information systems as an additionalmedium
that allows them to make alternative representations
with which they can interact in their sense-making or
interpretation process. Any computer-based representa-
tion thus functions similar to how a sketch functions.
Each such representation hereby represents only a lim-
ited semantic domain, only a partial reflection of the
complete design situation. They are representations of
the designer’s mental model, and by no means do they
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come close to the original mental modelwhich is always
in the mind of the architectural designer and which is
inherently ungraspable. Instead, the representations in
these media are to be considered as representations that
result from this mental model and that form, as such, ini-
tiators for further reflection on this mental model. In the
following section, we will briefly look into the conse-
quences in the context of BIMmodeling and parametric
modeling software, as reference examples.

45.2.2 BIM Models and Parametric Models

There have been many developments in information
and communication technologies (ICT) for the domain
of architecture, engineering and construction (AEC).
Most ICT applications in this domain allow to build
a certain representation or model of an architectural
design (element). A considerable number of the devel-
opments in ICT for the AEC domain have focused on
enlarging the amount of semantics that can be included
within the resulting representations or models. In other
words, instead of allowing designers to model a de-
sign using lines, points, boxes or surfaces, they now
typically allow to model typed objects, such as walls,
doors, structural columns, and so forth. Each instance
of one of those object types can then automatically be
represented using the properties that were predefined
for these object types. These properties typically in-
clude basic features, such as height, width, and location,
but they also include far more complex properties, such
as relations with other objects (aggregation, decompo-
sition, neighborhood, etc.), representational properties
(texture, geometry, etc.), and so forth.

These developments have resulted in a number of
modeling applications with capacities that make them
stand out from the traditional CAD or computer-aided
drafting applications. One can distinguish the following
modeling application types.

Building Information Modeling (BIM)
Applications

BIM applications allow to represent buildings using
a hierarchical structure of typed objects, including
building objects, materials, people, and so forth [45.50].
References can be made to the concept of feature-based
modeling (FBM) [45.51]. The workflow in such appli-
cations results in a single 3-D BIM model, which is
supposed to include all the information needed to build
the building (Fig. 45.7).

Parametric and Generative Modeling
Applications

Parametric and generative modeling applications al-
low to represent a design using a number of typically

geometric parameters. By moving sliders, parameter
values are changed, and a design model can be regener-
ated from these modified parameter values. The design
model is hereby formed by a network of parameter val-
ues and control functions that generate geometry using
the associated parameter values (Fig. 45.8).

Database Applications
Many more basic applications in the architectural de-
sign and construction industry still rely on rather basic
relational database systems. This includes, for instance,
four-dimensional (4-D) (time scheduling) and five-di-
mensional (5-D) (cost scheduling) applications, facility
management (FM) applications, energy performance
calculation software, and so forth. Of course, such
applications also use a semantic model of the architec-
tural design, represented by tuple values in a relational
database.

45.2.3 Features and Issues in the Usage
of the New Modeling Applications

Obviously, for all of the three technology types men-
tioned above (BIM software, parametric software,
database software), there are numerous interpretations
and implementations. We will not dive into the details
for each of these technology types in this chapter, as the
focus is here on the role and function of these new in-
teraction media within the design process. Within the
scope of this chapter, it should suffice to keep in mind
that each of the outlined software environments allows
to build a simple or complex semantic model as a rep-
resentation to interact with.

The semantic model that can be built using the
outlined modeling environment typically follows the in-
formation structure that is defined by the programming
code behind the corresponding modeling application.

Fig. 45.7 Revit Architecture is one of the available BIM
modeling applications that allow architectural designers to
model a BIM model representation of their design
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Fig. 45.8 Rhinoceros, to-
gether with the Grasshopper
plugin, is an often used
environment for the para-
metric modeling of building
geometry. This environment
is typically relying on nodes
and sliders to represent the
semantics of the designed
geometry

A Revit BIM model (Fig. 45.7) is something that can-
not be captured by a parametric model in Rhinoceros
and Grasshopper (Fig. 45.8), because both modeling
environments deploy different programming codes and
corresponding information structures. Basic 2-D CAD
applications enable the user to model a design in 2-D
geometric object models, using lines, points, surfaces,
and so forth. Basic 3-D applications allow this in 3-D,
using boxes, spheres, voids, and so forth. More ad-
vanced CAD systems typically focus on information
management, and thus enable the user to model a design
in more informative elements, such as walls, windows,
columns, beams, and so forth.

By allowing designers to model their design in
a more meaningful manner (more semantic object types
such as walls and doors instead of the more syntactic
points and lines), designers are supposedly enabled to
represent their design as a model that is much more
closely related to the in-mind abstract model that they
use in the design thinking process (Fig. 45.9). In con-
crete terms, rather then only being able to represent
a design using pencil marks on a paper, semantic fea-
tures in software applications allow the designers to
model a semantic structure (the ontology) that reflects
the in-mind structure of their designs and then use that
semantic structure to represent the actual design (in-
stantiation of the ontology). It is then easier to make
decisions, as the gap between the semantic model of the
design (Fig. 45.9, right) and the in-mind design model
(Fig. 45.9, left) is smaller and the interpretation step that
is to be made by the designer should be easier.

This functions relatively well. There are, of course,
a number of issues that are commonly identified in us-
ing these modeling applications:

1. Too much time is needed to build the appropriate se-
mantic structure for one’s particular in-mind design
model, resulting in a preference for quicker draft-

ing applications or drafting media (computer-aided
drafting or sketch environments).

2. As the in-mind design model is continuously chang-
ing (cfr. co-evolution of problem and solution),
one’s semantic structure is never up to date with
that in-mind design model. In other words, the
semantic 3-D model (Fig. 45.9, right) is always
a number of steps behind the in-mind design model
(Fig. 45.9, left).

3. A need arises to share the semantic model of the de-
sign with other people, as is typically also done with
sketches. However, transferring/communicating the
meaning of the custom semantic structure to any-
one else requires considerable effort from that other
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person as the presented semantic structure never
matches with his own in-mindmodel. This is related
to the well-known interoperability problem (see for
reference [45.52–56]).

When considering the theories presented in the first
section of this chapter, it is rather obvious and under-
standable that these three main difficulties emerge. If
the abstract in-mind design model changes at every
single snapshot of interaction with some kind of inter-
action medium (Fig. 45.9), of course, the representation
on the medium with which is interacted is outdated at
every single moment in time. Hence, it would also be
a futile attempt to make a complete representation of an
abstract in-mind design model in any of the available
3-D modeling applications. Note that it would likewise

be a futile attempt to make such a complete representa-
tion in one paper sketch.

Furthermore, in order to get information into an-
other information structure (the interoperability chal-
lenge), no matter in what kind of information structure
it was originally captured, one always requires in-
terpretation if it is to be done properly. Thus, this
requires human effort. The best option in this con-
text of interoperability problems is to at least make
flexible and intuitive tools available so that a designer
can at least do the required interpretation effort in
a relatively smooth and efficient manner and transform
information from one semantic schema into another. Se-
mantic web technologies might provide some of such
flexible and intuitive tools, as is indicated in [45.56–
59].

45.3 Implementing and Using ICT for Design and Construction

Considering the above writings in this chapter, model-
ing applications will remain to be used as alternative
media for interaction by architectural designers and
construction experts, no matter the amount of semantics
they allow designers to represent. The semantic struc-
tures of these applications might to some extent match
or resemble the in-mind model of the designer, but it
will always fall short in comparison. That being consid-
ered, there is, first and foremost, a need for a flexible,
intuitive, and above all, pragmatic usage of modeling
applications in architectural design and construction.
Many examples of such usage strategies exist in prac-
tice. Unfortunately, this pragmatic approach remains to
include the effects caused by limited interoperability of
information [45.53], namely an increased loss of time
and an increased number of construction errors during
the construction process due to the necessary remodel-
ing of information from one environment to another.

45.3.1 Pragmatic Usage of Semantic
Modeling Applications

A first example of this pragmatic approach is doc-
umented in [45.60] and elaborates on the pragmatic
usage of BIM systems in the construction of the Port
House in Antwerp. Initially, an integrated BIM ap-
proach [45.50] was targeted in this project, using Revit
Architecture as a central BIM environment. The BIM
model would then serve as a central reference model
containing and providing information for all project
partners. The construction company tried to be faithful
to the BIM idea, but they gradually shifted to a more
pragmatic software usage approach. A BIM model was

engineered and maintained as a reference model by the
construction team in charge of the whole construction
process. Depending on the background and software
usage approach of the project partners, the informa-
tion in this BIM model was interpreted and provided
to the related project partners according to the seman-
tic structures they were using and the medium in which
they were working. Communication of information thus
included, for instance, Excel spreadsheets, PDF docu-
ments, and partial 3-D models in various file formats.
In importing and exporting these documents to and
from the modeling environment, human interpretation
was required in the form of manual conversion efforts.
Nevertheless, this human interpretation step produced
a desirable result within a foreseeable and plannable
time span.

The pragmatic software usage approach outlined
here and in [45.60] requires a very good balance be-
tween automatic (technological reformatting) and man-
ual procedures (human interpretation steps). The in-
formation structures of applications can be integrated
either by implementing project-specific software com-
ponents or by manual modeling. The key to a pragmatic
usage of (semantic) modeling applications is finding the
right balance between these automatic and manual pro-
cedures (Fig. 45.10), so that it fits the current design
situation.

Similar approaches appear to be followed in other
large architectural firms that concentrate on geometri-
cally or semantically complex architectural projects. In
most cases, the balance shifts towards the usage of au-
tomatic methods, as larger and more complex projects
often benefit from automatic procedures in terms of
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+ Automatic procedures
+ Fast
+ Accurate
+ Flexible/dynamic model
– Systematical
– Exceptions excluded

  Manual modeling   –
 Slow   –

Port houseAutomatic Manual

 Error-prone   –
  Rigid/static model   –

Not systematical   +
  Exceptions included   +

Fig. 45.10 Indication of the balance between advantages
and disadvantages of using manual and automatic proce-
dures in information-handling in the Port House architec-
tural design project (after [45.60])

efficiency or return on investment. A good example
is the Specialist Modelling Group (SMG) in Foster
C Partners, which is a group that appears to concen-
trate on optimizing information exchange and complex
modeling for specific projects [45.61]. It appears to be
confirmed in [45.60] that this not necessarily requires
a standard information management approach. Prag-
matically constructing a common agreement between
project team members and combining manual and au-
tomatic methods with an expert group of programmers,
process modelers and/or communication specialists can
prove to be just as effective.

45.3.2 The Usage
of Design Agents or Assistants

Thus, for architectural designers and construction spe-
cialists, the better option in using information technolo-
gies is to consider these technologies as yet another set
of available media with which they can interact as part
of their reflective practice. As with all media, there are
certain rules, advantages and disadvantages that charac-
terize each medium. One should thus carefully consider
what medium to consider for what purpose. Something
that all media have in common, nonetheless, is that they
can all capture but a fragment of our in-mind abstract
knowledge.

One might wonder whether there really is no alter-
native, whether information systems will really not be
capable, almost as if by definition, to capture an abstract
model similar to the way in which human beings do so.
As indicated in the first section of this chapter, there is
only one thing that stands in the way of such a develop-
ment and that is the element of interpretation, analog-
ical reasoning or abductive reasoning (see Fig. 45.5).
This seems to be one of the main capacities that distin-
guishes man from computer. Key design actions require
interpretation, including: the mapping of incoming se-
mantic information to its own semantic structures, or the
construction of context-specific and purposeful shape

Interpretation

Mental model

Interpretation

Mental model

Action

Reply by designer

Observation

Action

Observation

Interpretation

Mental model

Interpretation

Mental model

Action

Reply by designer

Action

Observation

Reply by design agent

Fig. 45.11 Our original schema of the design process, adapted in
order to communicate how the interaction between designer and
computer-based agent could be taking place

grammars and creation of appropriate design decisions
while relying on and continuously adapting this shape
grammar, or the performance of multidimensional op-
timization or satisficing of design constraints. In order
for a computer to perform these actions, it will first have
to be able to interpret incoming information and un-
derstand it using a mechanism that involves a form of
abductive, analogical or appositional reasoning.

If this is ever realized, it will result in the third of
three realms of software usages in architectural design
and construction support, as they were originally identi-
fied by Lawson [45.62]. We have seen the first two in the
previous sections, namely, (1) the computer as a rigid
problem-solving and all-knowing oracle, and (2) the
computer as a draughtsman, which is simply used as yet
another interaction medium while the designer remains
the only decision-making and interpreting agent. In
a third scenario (3), the computer is to be used as a true
design agent or assistant (see also [45.57] for more in-
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formation about how this relates to the earlier outlined
pragmatic approach). In this scenario, designers interact
with autonomously reasoning computer-based agents,
as if they would interact with any other medium. Both
the designer and the computer-based agent would then
interpret incoming information and learn from experi-
ence. Using our schematic format of the design process
again, this interaction between designer and computer-
based agent would likely look as depicted in Fig. 45.11,
with processes of inquiry happening in the human mind
(Fig. 45.11, left) as well as in the computer agent’s in-
formation system (Fig. 45.11, right).

For this scenario to be realized, interpretation as it
functions in the human mind needs to be implemented.
In this regard, some effort has already been placed in the
automation or implementation of abductive reasoning.
It is useful to consider the number of research initia-
tives in the domain of abductive logic programming
(ALP) [45.63]. Second, we have already looked into
some pointers towards CBR in brief [45.21–23]. Un-
fortunately, most of these research initiatives appear to
lack tangible research results. Not one of the resulting
software systems appears capable of reliably simulating
an interpretation step as it is produced by any human
agent in an autonomous and natural manner, let alone
within an architectural design context.

Some researchers have taken a different approach
and have primarily considered the larger cycle that peo-
ple appear to go through in any interaction with an
outside world [45.64–66]. This larger cycle resembles
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Interpretation
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reasoning

n Ob ti

Se
Inductive
reasoning

Fig. 45.12 Our original schema of the design process, with an over-
lay of where the abductive, deductive, and inductive reasoning
might be taking place

the original process of inquiry as it was outlined mul-
tiple times by Peirce [45.42]. It is hereby considered
useful to not only consider abductive reasoning, but to
also look for the occurrence of inductive and deductive
reasoning as they were considered by Peirce [45.42].
This implementation approach makes sense as it seems
to be the only valid way to let an agent learn in an
autonomous manner, yet enabling it to store previous
experiences so that they can be reused in interpreting
future observations. Additionally, combining abductive
reasoning with inductive and deductive reasoning in an
iterative cycle is required if the agent’s functionality
is to remain true to Peirce’s idea of a process of in-
quiry. When relying on this interpretation of Peirce’s
process of inquiry [45.64–66], we might be able to in-
dicate where such a cycle resides in our earlier diagrams
of the design process (Fig. 45.12).

One research initiative that appeared to take on the
realization of this agent approach can be found in the
work of King [45.67, 68]. In this work, the goal was
to build a machine that can autonomously “discover
new scientific knowledge” by its capacity to “devise
a hypothesis, carry out experiments, to test it and as-
sess results” [45.68]. This endeavor to enable a machine
to go through these diverse stages is very much like
building a machine that is able to go through Peirce’s
process of inquiry, in the sense that in the case of
King’s research, the main question was also whether
they were able to build a “robot scientist that can actu-
ally accomplish the entire process” [45.68]. Eventually,
a machine was built that is capable of successfully con-
struing hypotheses, devise appropriate experiments and
test them, in the domain of functional genomics, a do-
main in which the relations between genes and their
functions are investigated. These actions are made using
a core body of knowledge, resulting from a “formaliza-
tion that involves over 10 000 different research units in
a nested treelike structure, 10 levels deep, that relates
6:6 million biomass measurements to their logical de-
scription” [45.67].

In any case, even if this autonomous agent-based
approach proves valid and a useful implementation of
such an autonomous reasoning agent can be realized, it
will take years before this agent takes on a form that
can provide help to an architectural designer as it was
theoretically outlined by Lawson [45.62]. Namely, it re-
quires at least 25 years for brilliant human agents to
learn this capacity and there is no reason to assume that
computer-based agents might be able to outperform this
human capacity. So, to conclude, we are best off, for
now, with following the pragmatic software usage ap-
proach as it was outlined earlier in this chapter and keep
relying on the architectural designers themselves as re-
flective practitioners and decision-makers.
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46. Representational and Experimental Modeling
in Archaeology

Alison Wylie

I distinguish, by specificity and representational
function, several different types of archaeologi-
cal models: phenomenological, scaffolding, and
explanatory models. These take the form of con-
crete, mathematical, and computational models
(following Weisberg’s taxonomy), and they exem-
plify what Morgan describes as the double life of
models; they vary significantly in the degree to
which they are intended to accurately represent
a particular target, or are media for experimen-
tal manipulation of idealized cultural processes.
At the phenomenological end of the spectrum,
representational models of data include typologi-
cal constructs that selectively represent variability
in archaeological data on several dimensions:
formal (material), spatial, and temporal. Archaeol-
ogists also build phenomenological models of data
drawn from nonarchaeological sources – cultural
and natural – that are relevant for interpreting
archaeological data as evidence. Assemblages of
these target and source models provide the neces-
sary scaffolding for building and evaluating more
ambitious explanatory and experimental mod-
els of cultural systems and processes, actual and
hypothetical.
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Archaeology is nothing if not a modeling discipline.
Archaeologists model the data they recover from the
archaeological record, the sources on which they draw
to interpret these data, the specific events and activities
that produced the surviving traces, and the encompass-
ing social, cultural, ecological contexts and processes
in which these events and activities took place. And yet
there has been persistent ambivalence among archae-
ologists about models and modeling practices. Early
advocates of modeling in archaeology were aligned
with the emergence of a self-consciously scientific re-
search program in the late 1960s and 1970s, the New
Archaeology. But the defining commitment of the New
Archaeology – to move beyond mere description of
the record and interpretive speculation about the past;
to realize genuinely explanatory understanding of the

past – was most influentially articulated in terms of
a vernacular logical positivism [46.1, Part 2]. The ex-
planatory goals of scientific inquiry were characterized
in terms of covering-law models, and a programmatic
commitment was made to design inquiry as a program
of hypothetico-deductive testing; law-like generaliza-
tions about cultural systems and processes were to be
systematically tested against archaeological data or, if
established on other grounds, applied as explanatory
principles to archaeological cases. In practice, how-
ever, it is typically models that even the most ardent
archaeological positivists build and test, not isolated
theoretical or factual claims, much less systems of
laws or law-like propositions. They routinely make
use of models, framed at a number of different lev-
els of specificity, to explain events and conditions in
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the cultural past in terms of underlying mechanisms
and historically specific processes rather than by sub-
suming particulars under general regularities. It is more
productive, I argue, to think about archaeological prac-
tice as a genre of empirically grounded, investigative
reasoning with and through models – a perspective
elaborated by recent advocates of a model-based ar-
chaeology [46.2].

This shift in analytic frame may seem straightfor-
ward enough but things quickly become complicated
when you consider the range of constructs that archae-
ologists count as models; these are radically heteroge-

neous on a number of different dimensions. The task I
take up here is to address the question:What are archae-
ological models? I propose a taxonomy of the kinds of
models archaeologists build and use, distinguished by
specificity and representational function. In the process
I address two further questions: What do archaeologists
use models to do? And, how do they learn from models?
I take this to be scaffolding necessary for the norma-
tive epistemic task, which lies outside the scope of this
chapter, of addressing questions about what makes for
a better or worse models and modeling practice in ar-
chaeology, given their diverse purposes.

46.1 Philosophical Resources and Archaeological Parallels

In framing a taxonomy of archaeological models I draw
on a point made with particular clarity by Morrison
andMorgan inModels as mediating instruments [46.3]:
that modeling practice is not well understood if you
think of models primarily as tools for operationalizing
theory, derived top-down from theory or constructed
as models of theory for application to real world sys-
tems, or as simplified descriptions of phenomena that
function as tools for systematizing data built, bottom-
up, from the analysis of a specific body of data. Ar-
chaeological models are no exception; they are rarely
constructed in either of these ways, and even when
they approximate to these types of modeling practice
their content is often much more complex. In Morri-
son and Morgan’s terms, key classes of archaeological
models are autonomous; they incorporate content that
is not derived from or reducible to the data they rep-
resent or the theories they interpret. As such, they put
archaeologists in a position to learn things about an ar-
chaeological subject that they could not have learned
either from direct empirical investigation or by manip-
ulating – testing, refining, applying – existing theory.
That said, I find it useful to think of archaeologi-
cal models as falling along a spectrum of degrees of
abstraction (or idealization) and empirical specificity,
with resolutely descriptive, data-systematizing mod-
els at the phenomenological end of the spectrum and
highly idealized, theoretically motivated models at the
other.

Morgan’s recent discussion of the double life of
models is a second useful resource, in this case for
understanding the variability of purpose evident in ar-
chaeological models [46.4]. She makes the case that
models in economics figure both as objects of inves-
tigation and as tools for investigation; they support
experimental as well as representational uses. As I will
show, an important class of archaeological models is

quite explicitly designed to support experimental ma-
nipulation; they are objects of investigation in Morgan’s
sense, rather than strictly representational tools. This is
a point made in especially compelling terms by Kohler
and van der Leeuw when they argue that the value of
models, as constructs that mediate between “the real
world and ourselves,” is that they support the “joint
exploration of the model and its target system” [46.2,
p. 4].

Finally, I draw on an older philosophical literature
on models that anticipates, in some respects, recent
philosophical thinking about models in science exem-
plified by Weisberg’s Simulation and Similarity [46.5],
but is particularly useful in an archaeological context
because of its focus on the role of analogical rea-
soning in the construction and use of models. The
account of modeling developed by Harré [46.6] and
by Hesse [46.7, 8] brings into sharp focus the com-
plexity of models themselves, and of the relationships
that hold between models and their targets and sources.
The taxonomy of archaeological models that I outline
here presupposes their argument, now much expanded
by Weisberg, that sentential and formal, mathematical
models by no means exhaust the range of models that
figure in the sciences. Iconic or picturing models, in-
cluding what Weisberg describes as concrete models,
play a crucial role in empirical inquiry: they “stand
in for [. . . ] mechanisms of nature of which we are
ignorant”; they allow researchers to “picture possible
mechanisms for producing phenomena”Harré [46.6,
p. 54]. Especially relevant here is the distinction Harré
draws between two basic types of iconic model: home-
omorphic models, in which source and subject are
the same; and paramorphic models, in which these
are different. A key feature of paramorphic models,
where archaeological practice is concerned, is that they
may be multiply connected [46.6, pp. 47–49]; they in-
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corporate elements drawn from a number of sources
relevant for modeling different aspects of archaeolog-
ical subjects that have no comprehensive contemporary
analog.

In developing this taxonomy of archaeological
models and modeling practices, I am influenced as well
by the magisterial analysis, “Models and Paradigms
in Contemporary Archaeology” [46.9] offered by the
British archaeologist, Clarke, as the framework for
an early and prescient collection of essays Models in
Archeology [46.10] and by the distinctions drawn by
Kohler and van der Leeuw in connection with the case
they make for a model-based archaeology [46.2]. Both
recognize the purpose-specific, partial nature of mod-
els. Clarke emphasizes the different functions served
by models pitched at different levels of abstraction, ly-
ing on a continuum much like that posited by Morgan
and Morrison for economics and the physical sciences.
Archaeological models include what Clarke calls mind
models that function like Kuhnian paradigms; opera-
tional models that interpret these orienting conceptual
models in observational terms; and models that system-
atize (selectively and economically) complex bodies of
data, serving as heuristic devices for visualizing,manip-
ulating, organizing, and comparing observations [46.9,
pp. 2–5]. Together, Clarke argues, models of these
various kinds are a crucial resource for generating
and articulating explanatory hypotheses. Taking up the

cause of archaeological modeling 35 years later, the ex-
planatory function of models is primary for Kohler and
van der Leeuw: “a model here is just a candidate ex-
planation” [46.2, p. 1]. However, invoking Levins on
the impossibility of simultaneously maximizing gener-
ality, realism, and precision [46.11], they also recognize
a range of scales and degrees of abstraction in the mod-
els archaeologists devise to answer “how and why ques-
tions” [46.2, pp. 1, 7]. These are primarily marked by
degree of aggregation; the key contrast for Kohler and
van der Leeuw is between a new generation of agent-
based models and earlier systems models (more of this
ancestry shortly). Kohler and van der Leeuw also make
a point that figures prominently in Clarke’s brief for
model-based modes of practice and converges directly
onWeisberg’s taxonomy of scientific models: that mod-
els come in a great many different forms. Their roster
of mental, verbal, physical, and formal (mathemati-
cal and simulation) models is reminiscent of Clarke’s
argument that models can be constructed as physical
homomorphic parallels between model and target or
can take the form of formal (mathematical) represen-
tations of abstract systems of relationships inherent in
the target [46.9, p. 41]. In short, despite an empha-
sis on discontinuities, these programmatic arguments
for model-based archaeology reflect significant conti-
nuities in evolving archaeological practice to which I
hope the taxonomy proposed here does justice.

46.2 The Challenges of Archaeological Modeling

Some advocates of the explanatorily ambitious NewAr-
chaeology did make the case for what they described
as a systems rather than a law and order approach
which put modeling at the center of archaeological in-
quiry [46.12, 13], which in some respects anticipated
arguments made with considerable force in the UK
by Clarke [46.9]. In the discussions of modeling as-
sociated with the New Archaeology the emphasis was
initially on theory-driven, whole system models, usu-
ally of an explicitly eco-determinist cast; these were
intended to capture the essential causal and structural
features of distinct types of cultural systems and the
processes by which they adapted to the ecological
contexts in which they took shape and evolved over
time. But from the outset the constraints on whole sys-
tem modeling and on the mathematical and simulation
modeling techniques used to operationalize archaeo-
logical theories of cultural process were recognized
to be all but insurmountable in explanatorily inter-
esting cases. In a classic statement dating to 1975,
echoed in a number of later assessments, Doran and

Hodson identified three pivotal problems. First, they ob-
served, “models which are mathematically tractable are
too simple for most archaeological problems” [46.14,
p. 315]. This is not just a technical constraint. Al-
though computer technology was, even then, making
possible simulations that could better cope with the
computational challenges of modeling whole systems,
a second more fundamental problem is that these mod-
els require a level of understanding of the conditions
and processes modeled that is “only rarely met in
archaeological work” [46.14, p. 315]. Finally, an in-
escapable problem for archaeological modelers noted
by Doran and Hodson and reiterated many times since
is the “fundamental noisiness” of archaeological data
which makes it difficult to empirically assess the de-
scriptive and explanatory claims about the cultural
past captured by or derived from these models [46.15,
p. 230].

Despite this early pessimism about the prospects of
ever realizing the explanatory ambitions of the New Ar-
chaeology by means of modeling approaches, models
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are ubiquitous in archaeology. As Kohler and van der
Leeuw put it, archaeologists [46.2, p. 3]:

“have drifted in practice toward what philosophers
of science call a model-based (Giere 1999) or se-
mantic (Lloyd 1988; Suppe 1977 [. . . ]) approach to
the task of explaining what happened, and why, in
prehistory.”

This in part due to the proliferation of fast, cheap
computer technology but, even with the promise that
Doran and Hodson’s first problem might be resolved,
the archaeological models that now answer the call
to explanatory understanding are typically much more
narrowly circumscribed than the whole system models
initially advocated by allies and critics of the New Ar-
chaeology. This reflects, in part, a growing appreciation
of the complexity of the human, social ecodynamics
by which cultural systems modify as much as adapt

to their environments [46.2, p. 10]. If anything, this
makes Doran and Hodson’s second two concerns even
more acute. In response, archaeologists have shifted
their focus to building and refining models of specific
conditions and processes that are, or that could have
been, responsible for specific types of event or forms of
life to which the archaeological record bears witness.
As Kohler and van der Leeuw describe the mandate for
a model-based archaeology at this juncture, it is to un-
derstand “relatively small-scale” human systems, but to
understand them in something closer to their full com-
plexity: as “embedded within [. . . ] the environments
they inhabit and alter” [46.2, p. 2]. At the same time,
a broad cross-section of archaeologists have embraced
a wide range of more prosaic modeling practices that
are resolutely descriptive and phenomenological, but
that are no less crucial to the broader explanatory goals
of contemporary archaeology.

46.3 A Taxonomy of Archaeological Models

With these conceptual resources in hand, consider some
of the types of work-a-day models that abound in ar-
chaeology.

46.3.1 Phenomenological Models
of Archaeological Subject
and Source Data

One prevalent use of models in archaeology is to
characterize, in systematic terms, various types of ar-
chaeological data, and the diverse experimental and
ethnohistoric sources on which archaeologists rely to
interpret these data as evidence. These models take
a range of forms: mathematical, computational, and
in some cases concrete, to use Weisberg’s categoriza-
tion [46.5, Chap. 2]. They are typically homeomorphic
models designed to represent variability in the target
or source domain. As such, they lie at the phenomeno-
logical end of the spectrum of model function marked
by Morgan and Morrison although, I will argue, they
incorporate much often unrecognized theoretical and
interpretive content.

Models of Archaeological Data
Models of archaeological data typically represent vari-
ability on three dimensions: formal, material variabil-
ity; the spatial distribution of artifacts and features
within sites, or of sites and assemblages of artifacts
across a region; and chronological trends in the appear-
ance, frequency, and disappearance of artifact types,
architectural styles, and cultural formations over time.

Material, formal variability in archaeological data is
captured by descriptive typologies, ranging from highly
specific artifact typologies aimed at systematizing local
variability in material culture to expansive classifi-
cation schemes that delineate trans-historical cultural
formations and trans-regional cultural horizons. At the
artifact-specific end of the spectrum, ceramic and lithic
(stone tool) typologies have been especially crucial in
many contexts as chronologically and spatially sensi-
tive markers that came to anchor the characterization
of archaeological cultures [46.16]: distinctive assem-
blages of archaeological material – for example, stylis-
tically distinctive artifacts, house forms, burial rites and
subsistence practices that consistently co-occur – that
were presumed to be the expression of distinct cultural
configurations. So, for example, the late Neolithic cul-
ture(s) of western Europe that came to be known as the
Beaker people were characterized archaeologically by
a package of artifacts associated with a characteristic
type of pottery, and the hunting-intensive Paleo-indian
cultures of central North America were named for
the distinctive Clovis and Fulsom projectile and spear
points in terms of which they were first identified in
the 1920s and 1930s. Broader syntheses of archae-
ological cultures, of the kind posited by Willey and
Phillips for the Americas [46.17], and by Childe for Eu-
rope [46.18], characterize broad cultural horizons based
on the sequence of appearance and distribution of these
co-occurrent classes of archaeological evidence.

The presumption that formal (material) variabil-
ity of this kind has inherent cultural significance has
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been a matter of sharp contention within archaeol-
ogy since at least the 1940s and 1950s, when Brew
and Ford, and later Spaulding, articulated opposing
views about what these models of data represent: that
they are selective, purpose-specific impositions by the
analyst [46.19, 20], as opposed to culturally salient fea-
tures of the archaeological record that archaeologists
discover (Spaulding [46.21, 22] and see Adams and
Adams [46.23] and Wylie [46.1, pp. 42–51] for anal-
ysis of this debate). To illustrate the contingency and
purpose-specificity of typological systems, Ford offered
a thought experiment: a variety of house forms on the
fictional Island of Gama Gama characterized by a range
of different traits (e.g., roof style, construction on stilts,
size, layout) whose variability is continuous across time
and space. Although regularities in the distribution and
association of these material traits can certainly be iden-
tified empirically (indeed, statistically discovered, as
Spaulding had insisted), it is possible to carve material
culture at different joints. Shifting the selection of traits
will yield different patterns of association and spatial/
temporal distribution, and often enough their variability
is continuous so that different boundaries can be drawn
between types [46.24]. Ford’s point was that archae-
ological typologies are tools of analysis, constructed
as needed to address particular archaeological ques-
tions. The typologies that served archaeologists initially
in modeling spatial and temporal relations within and
between classes of archaeological data may not be
a plausible proxy for cultural identity, or useful in track-
ing shifts in technologies, subsistence practice, trading
relations or social status, to name just areas of archaeo-
logical interest.

Spatial distribution models vary dramatically in
scale, target, form, and purpose. They include, for ex-
ample, spatial auto-correlation models that delineate
artifact drop-zones around hearths and in activity ar-
eas, and a range of other models that capture the
spatial relations between key features within archaeo-
logical sites. Classic examples are models that represent
regularities observed in the orientation of burials and
associated grave goods in mortuary sites (see the exam-
ple of a Roman period cemetery in the UK discussed
below), and the patterned clustering of functionally dis-
tinct rooms in Southwestern pueblos that was the basis
for Hill’s posit of generationally stable households at
Pueblo [46.25], an early demonstration project for the
New Archaeology. They include, as well, models of
an architectural grammar of the kind developed by
Glassie for Middle Virginia folk housing: an inven-
tory of geometric forms structured by a basic unit of
measurement (the diagonal constitutive rectangles and
squares) and a set of grammatical rules for assembling
these into canonical house forms [46.26]. At a regional

scale archaeologists develop formal and computational
models of the distribution sites or visible features on
the landscape, now facilitated by widespread use of
geographical information systems (GISs). For exam-
ple, spatial packing models (imported from quantitative
geography) were developed to capture the proxemics
of settlement hierarchies which, in turn, were the ba-
sis for positing regional chiefdoms in Neolithic Eu-
rope [46.27]. More recently, landscape archaeologists
have developed richly interpretive spatial models of the
sacral (rather than political) landscapes in which Ne-
olithic and Bronze Age monuments like Stonehenge
are embedded [46.28, 29]. A related example that incor-
porates experimental elements (of which, more below)
is Llobera’s delineation of corridors of movement be-
tween Neolithic Galician mamoas, identified both in
terms of ease of movement, given regional topology,
and the viewscape afforded travelers along these path-
ways [46.30]. In these cases, digital repositories of
spatial data and the analytic power of GIS analyses are
a crucial resource; predictive modeling of where ar-
chaeological sites of various kinds are likely to occur
is now a key component of cultural resource manage-
ment [46.31].

Chronological models represent the appearance and
disappearance, and related changes in the form and
frequency of specific types of material culture over
time, and at scales ranging from individual artifact
types, cross-type styles and assemblages, to broad cul-
tural formations. The locus classicus for such models
is Kroeber’s decidedly nonarchaeological seriation of
changes in fashion in which he determined that, de-
spite the perception of rapid and dramatic change,
the proportions that define what is fashionable change
very slowly and predictably; his test case was the evo-
lution of styles in women’s formal wear from 1845
to 1915 [46.32]. Influential examples developed to
illustrate these seriation principles in archaeological
terms include Deetz and Dethlefsen’s classic analysis
of changes in the frequency of decorative styles in New
England tombstones; they demonstrated the same reg-
ular battleship curve in stylistic changes over time as
had Kroeber [46.33]. Another example that continues
to be used as a basis for building finegrained chronolo-
gies in historical archaeology is Binford’s formal model
of a regular pattern of change in the mean bore hole
diameter of clay tobacco pipes produced in Europe
and North America between 1600 and 1900, described
as deterministic and mathematical by Clarke [46.9,
p. 18]. Although physical dating techniques are now
predominantly the basis for archaeological chronolo-
gies, tradition-specific seriation models continue to be
a key resource in many contexts. Indeed, although it
was widely assumed that local, relative chronologies
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would automatically be replaced when radiocarbon dat-
ing was introduced – the first radiocarbon revolution
(initiated by Libby in the 1950s) – in fact, discrepan-
cies between these systems have been pivotal in raising
questions about the accuracy of absolute chronolo-
gies that generated the painstaking, 60 year process of
calibrating radiocarbon dating curves – the second ra-
diocarbon revolution [46.34, pp. 130–140].

The challenge of establishing spatial-temporal con-
trol dominated the initial construction of typological
systems in most contexts of archaeological research,
but this by no means exhausts the purposes for which
they are used. As Boozer observes in a discussion of
the “tyranny of typologies” [46.35], once these phe-
nomenological models were developed, practitioners
often lost sight of the purposes they were designed
to serve. They became entrenched as the dominant
medium of communication within archaeology; they
configure reporting conventions and set the framework
for the comparative analyses that were the basis not
only for regional models of cultural diversity and evo-
lution, but also the fine-grained analogical comparisons
that underpin interpretive claims about the evidential
significance of archaeological data. Often they persist
even when accumulating data undermines the distinc-
tions they draw and as focal questions change, requiring
analysis in terms of traits that track other dimensions of
variability. As the disconnect between these models of
data and evolving research agendas becomes increas-
ingly strained, the central point made by Brew and
Ford in the mid-1950s is more relevant than ever: that
in constructing typologies archaeologists must choose
among a great many observable, measurable traits, so
any one selection necessarily reflects specific investiga-
tive purposes. In analysis of a problematic typology of
domestic Romano-Egyptian house forms, Boozer draws
attention to the ramifying downstream consequences
of failing to keep the contingency of these models of
data clearly in view, reifying them as representations of
a fundamental cultural reality and treating them as the
framework within which all subsequent research must
be conducted [46.35, pp. 104–106].

Models of Nonarchaeological Sources
A second important genre of phenomenological mod-
eling in archaeology is of the data drawn from nonar-
chaeological sources on which archaeologists rely to
interpret archaeological data as evidence. These are also
typically homeomorphic models, in this case of natural
or cultural processes that are presumed to be respon-
sible for (or that could have been responsible for) the
production, deposition, and preservation or degradation
of the types of material that make up the archaeologi-
cal record: N-transform and C-transformmodels, to use

language introduced in the 1980s by Schiffer in connec-
tion with widely influential account of archaeological
inference [46.36].

Archaeologists rely on an enormously broad range
of other fields, from ethnography and history to
biomedicine, ecology, and physics for the background
knowledge necessary to build these models. But as use-
ful as these resources are, often archaeologists find
that the cultural and/or natural processes of interest to
them have not been intensively studied, or not stud-
ied at scales or in contexts relevant to archaeological
questions. The fields of experimental archaeology and
ethno-archaeology have grown up in response to these
limitations. At the C-transform end of the spectrum, the
Kalinga Ethnoarchaeological Project is one example of
a long-running research program in which archaeolo-
gists have undertaken their own ethnographic research
with the aim of documenting methods of production,
exchange networks, and patterns of cultural transmis-
sion, in this case, of ceramic technology [46.37]. A re-
cent report on this project includes a directional graph
of household pottery exchange: a phenomenological
model of ethnographic data relevant to the question of
whether shifting patterns in ceramic production and ex-
change can serve as a proxy for intensification in a craft-
based agricultural economy [46.37, p. 43]. N-transform
modeling includes, for example, the uses archaeolo-
gists make of well-established geological models of soil
formation and erosion processes to understand archae-
ological deposits. But here again archaeologists often
develop their own models of the impact that, for ex-
ample, the activities of burrowing animals and insects
can have on archaeological features and stratigraphy:
“bioturbation” and “faunalturbation” [46.38, pp. 271–
276]. A classic example is Stein’s model of the rate
at which earthworms can completely turn over an ar-
chaeological midden, obscuring archaeological features
and redistributing cultural material [46.39]. A number
of experimental archaeologists have taken this a step
further, building concrete models designed to provide
insight into the processes by which particular classes
of artifacts could have been produced or transformed
over time into distinctive types of archaeological de-
posit. Bell [46.40] describes a number of experimental
projects in England and Europe that involve full-scale
recreations of key archaeological features, like earth-
works and mounds, house structures and middens,
which are then monitored, sometimes over decades,
for patterns of collapse and erosion. The identifica-
tion of weed complexes that are diagnostic of different
types of early Neolithic farming practices in Europe
(described below) depends on phenomenological mod-
els of bioecological conditions under which weed and
food crop species co-occur, and the results of agri-
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cultural experiments designed to model the impact on
these plant assemblages of different plant husbandry
regimes [46.41, 42].

Recent developments in archaeometalurgy, dietary
studies, and radiocarbon dating, among other areas, also
illustrate the complexity of putting external resources to
work in archaeological contexts, particularly when this
requires modeling physical or biochemical processes
that are affected by and that reciprocally shape human
activities. For example, Pollard and Bray [46.43] make
the case that provenience studies of European Bronze
Age metal artifacts has run aground; the complexity of
the chemical composition of these artifacts undermines
a long-running program of analysis aimed at linking in-
dividual artifacts or assemblages to particular sources
of raw material. Rather than persist in the attempt to
disentangle a signal linked to origin from the noise of
degradation – an approach they describe as narrowly
scientific – they argue for an alternative that takes as
its point of departure the assumption that the chemical
components of these objects are themselves dynamic,
the product of jointly social and technological/material
histories of circulation, reuse, repurposing. To this end
they identify distinct types of copper based on the
presence or absence of trace elements that reflects the
differential effects on them of oxidation and interaction
under conditions of repeated melting, mixing, and re-
cycling: a phenomenological model of variability in the
chemical composition of this class of material [46.43,
pp. 118–120]. Similarly, complex phenomenological
modeling is required to make use of stable isotope and
trace element analysis of skeletal material as a basis
for reconstructing dietary profiles. In an example dis-
cussed below, this involved modeling the clines in the
chemical composition of groundwater across England
and Europe in order to estimate the geographical ori-
gins and lifetime travels of individuals buried in a late
Romano-British cemetery. Finally, the process of refin-
ing radiocarbon dates likewise depends on integrating
evidence relating to physical, climatic, ecological con-
ditions that can affect the ratio of radioactive to stable
carbon in organic matter recovered from archaeologi-
cal contexts: for example, fluctuations in atmospheric
carbon levels, carbon sinks, patterns of carbon uptake,
sources of contamination. While these N-transform
models focus on factors affecting the radiocarbon signal
itself, the characteristic approach of the third radio-
carbon revolution has been a pragmatic Bayesianism
([46.34, pp. 140–141], [46.44, pp. 217–218]): a strat-
egy of modeling the probability distributions for a range
of radiocarbon dates that could have been produced by
an organic sample. This approach takes into account
not only N-transform processes that affect the mea-
sured ratio of stable to radioactive carbon in a sample,

but also multiple lines of archaeology-source evidence
including, for example, stratigraphic superposition and
seriation.

These examples of phenomenological models –
models of data associated with archaeological subjects
and sources – illustrate the now well-established point
that seemingly straightforward descriptive, representa-
tional models are actually quite complex conceptually.
Even when, on the face of it, they seem to be abstracted
directly from the phenomena, and their source and sub-
ject is ostensibly the same, they incorporate substantial
purpose-specific theoretical and interpretive, as well as
descriptive, content.

46.3.2 Scaffolding Models:
Measurement Tools and Guides
to Interpretation

The complexity of phenomenological models arises,
not just because their targets and sometimes their
sources are complex, but because their purposes are
complex; they are intended to serve a number of infer-
ential and investigative purposes beyond systematizing
the data they represent. Models of source data are
intended to capture projectable relations between the
physical traces that survive in the archaeological record
and the antecedent events, conditions, and processes
that produced them. Well constructed, they are medi-
ators in a rather different sense than that introduced
by Morgan and Morrison; they function in archaeologi-
cal interpretation as auxiliary hypotheses that mediate
the interpretation of archaeological data as evidence
relevant for positing and testing hypotheses about the
archaeological target of interest: cultural events and ac-
tivities, conditions of life, systems, and processes. Here
are two examples in which archaeologists make use of
phenomenological models of source and subject data in
this scaffolding sense, as measurement tools or inter-
pretive guides.

The Roman Diaspora Project. In this project ar-
chaeologists make sophisticated use of an array of
N-transform and C-transform models to specify the
likely origins and lifetime travel of individuals buried in
a late period Roman cemetery in Winchester and York,
UK [46.45, 46]. The catalyst for this study was an in-
terpretation, dating to the 1970s, of the formal traits of
burials in this cemetery – skull morphology; epigraphy,
statuary, and associated artifacts; and patterns of spa-
tial orientation and distribution – that were taken to be
markers of cultural affiliation and status associated with
degree of Romanization, resistance to Roman rule, and
North African or Eastern European origins as incomers.
The Diaspora project team undertook to develop dietary
profiles based on isotope and trace element analysis of
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bone marrow and dental cores that allowed them to de-
termine where individuals were likely born and spent
their early years, as well as where they had lived and
traveled. This analysis depends crucially on two types
of phenomenologicalmodels mentioned earlier: models
of cross-continent clines in the mineral composition of
groundwater, and of the isotopic signatures of various
types of diet. The upshot was that several individu-
als who had been identified originally as incomers had
most likely been born and raised in the vicinity of the
cemetery where they had been buried; others who most
likely originated in North Africa were buried in graves
that had been interpreted as elite; and several children
proved to have originated outside the region where they
were buried. These scaffolding models were, then, the
basis for characterizing the status and mobility of in-
dividuals buried at Winchester and York in terms that
pose a substantial challenge to the earlier interpretation
of their remains and the canonical, text-based accounts
of population diversity and mobility in the Roman Em-
pire that had informed this interpretation [46.45, 46].

Farming practice in Neolithic Eastern Europe. The
objective of this project was to adjudicate between
competing models of the farming practices that had
been adopted in various locales as agricultural sub-
sistence patterns were taking shape in Eastern Eu-
rope through the Mesolithic to Neolithic transition
10 000 years ago [46.41]. Each of these models had
some support, and each had different explanatory im-
plications for understanding the impact of this major
transition in subsistence practice on settlement patterns,
material culture, social relations, and population mobil-
ity. It had proven difficult to discriminate between these
competing models not least because the contemporary
analogues for each type of practice involve suites of
plants – cultigens and weeds – now adapted to ecolog-
ical settings that have been continuously reconfigured
through millennia of intensive human activity. To deter-
mine which types of farming practice were adopted at
various junctures and in different locales Bogaard de-
veloped a series of scaffolding models of functional
plant ecology that incorporate the phenomenological
models of experimental and bioecological data men-
tioned earlier. These scaffolding models represent the
distinctive complement of weeds associated with each
type of crop and crop management, for example, in-
tensive rather than extensive agriculture, shifting rather
than fixed-plot cultivation, and spring rather than winter
cropping [46.41, pp. 154–159]. The background knowl-
edge from plant science and archaeobotany provided
an initial set of posits about these weed complexes, re-
fined through a program of experimental archaeology
designed to recreate hypothesized Neolithic farming
practices and document their ecological viability, labor

demands, yield, and archaeological signatures. Bogaard
thus constructs archaeological proxies for the major
crop husbandry models on offer and uses these lower
level scaffolding models as the basis for systematically
assessing the representational plausibility of each of
them in specific prehistoric contexts.

In these two cases archaeologists build an assem-
blage of homeomorphic phenomenological models of
source as well as archaeological data that, together,
serve as scaffolding for the interpretation of archae-
ological data as evidence of specific past events and
practices. As interpretive scaffolding, these models
serve as the basis for analogical arguments that make
possible systematic comparisons between the sources
of interpretation (natural and/or cultural processes ob-
served in the present) and the archaeological targets
or subject of interpretation [46.47, 48]. While no one
line of evidence based on scaffolding models is likely
to be decisive, they can be used very effectively, in
combination, to build and test broader reconstructive
and explanatory claims about the past. The principle
at work here is that such cables of argument will be
compelling to the extent that the scaffolding models
used to construct distinct lines of evidence are causally
and epistemically independent of one another; this “ver-
tical independence” is the key to ensuring that they
have the capacity to be mutually constraining [46.49,
p. 387], [46.50].

46.3.3 Reconstructive and Explanatory
Models

As these examples suggest, assemblages of scaffolding
and phenomenologicalmodels are the basis for building
explanatory models of the cultural past of the kind that
are identified as the central goal of archaeology. These
last are complex paramorphic models either of particu-
lar archaeological targets (specific past cultures) or of
generalizable types of cultural system or cultural pro-
cess. Consider three reconstructive models that address
explanatory questions, and that bring into sharp focus
two key dimensions on which archaeological modeling
varies: in degree of idealization as opposed to repre-
sentational fidelity to a specific subject past; and in the
nonrepresentational use of models in an experimental
mode, as objects of investigation.

Representational models: the Desert Archaic sim-
ulation. This is a classic whole-system simulation of
prehistoric subsistence practice in the Great Basin (US)
known as the “Desert Archaic” that was developed
by Thomas [46.51], in the spirit of the New Archae-
ology, to determine whether the Shoshone seasonal
round documented in the 1930s could be projected
back in time: whether it could be treated as, in effect,
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a homeomorphic model of the subsistence practices of
antecedent, archaeologically identified cultures in the
region. Thomas’ strategy was, first, to develop a com-
putational model of the source: Steward’s 1938 ethno-
graphic account of the seasonal round of Shoshone
foragers in the Great Basin [46.52]. He then “reduce[d]
the activities [modeled] to their correlative tool assem-
blages”, ran this single year model a thousand times,
corrected for the impact of less frequently available re-
sources, and in this way generated aggregate patterns
of artifact deposition for the region. He then tested
the model output against the results of archaeological
surveys in the region, establishing that drop patterns
for most artifact classes did conform to expectations,
most strikingly in case of sites located in open areas
where they had not previously been archaeologically
documented. This process also threw into relief sev-
eral empirical and inferential weaknesses inherent in
his model, for example, the tool types differentiated by
edge angle proved not to be reliably diagnostic of the
functionally different types of site posited by the model.
In short, one result of testing the expectations gener-
ated by his simulation of the Shoshone ethnohistoric
seasonal round was to make it clear that the lithic ty-
pologies on which archaeologists conventionally relied
in this region – phenomenological models of this class
of archaeological data – were too coarse-grained with
respect to tool function to be reliable scaffolding for the
interpretation of these data as evidence relevant to ques-
tions about subsistence practice.

This reconstructive, explanatory model is explicitly
representational and homeomorphic, at least aspira-
tionally; it is intended to capture how actually Shoshone
foragers exploited the resources afforded by the Great
Basin over the 1000 year period precontact. It is cred-
ible to the extent that the models of data (source and
subject) used to generate test outcomes are themselves
well established and fit for purpose, and to the extent
that they are also causally and epistemically indepen-
dent of the overarching model they are meant to test.
The principle at work here is that the material signa-
ture posited for each element of the Shoshone seasonal
round should not nepotistically ensure that archaeo-
logical data will conform to expectation; I describe
this elsewhere as a requirement of “vertical indepen-
dence” [46.49, p. 381].

Hybrid representational and experimental models:
Gila Naquitz (the early Mesoamerican village). This is
a more sophisticated computational model of the evolu-
tion of the foraging and farming practices of a hypothet-
ical microband developed by Flannery and Reynolds
in the mid-1980s [46.53]; it answers Flannery’s ear-
lier call for attention to modeling approaches when the
New Archaeology was taking shape [46.12]. One goal

of this modeling exercise was to simulate the process
of incremental change in subsistence practices evident
in the archaeological record of a cave site in the Oaxaca
valley (8700–6600 BC). The simulation developed was,
in this respect, a representational model built up from
an assemblage of subsidiary homeomorphic scaffolding
models; Flannery and Reynolds report that they did “ev-
erything we could think of to make the model realistic”
with respect to to the climate and paleoecology of Gila
Naquitz, and the “wide spectrum” repertoire of foraging
resources exploited by its late Holocene occupants that
had been documented archaeologically [46.53, p. 436].
In addition, however, this model incorporates a crucial
experimental component; Flannery and Reynolds ma-
nipulate key elements of the model to test the impact
of different intergenerational processes of community
learning from trial and error in face of fluctuating
climatic and ecological conditions [46.53, p. 441]. Flan-
nery’s larger purpose is to assess the credibility of
competing explanatory accounts of how and why agri-
culture developed, apparently independently, in a great
many locales around the world at roughly the same
time (10 000�5000BC). He argues that archaeologi-
cal and paleo-ecological evidence calls into question
conventional appeals to exogenous forcing factors like
environmental crisis, and urges archaeologists to con-
sider the explanatory potential of accounts that posit
more gradual processes by which incipient agriculture
emerged as an extension of foraging practices, driven
as much by internal social processes as by pressures to
adapt to climatic variation in the early Holocene.

Flannery and Richard’s strategy was to develop
a computational model in two stages, simulating first
the evolution of wide spectrum foraging in the area
of Gila Naquitz, and then the emergence, in this con-
text, of incipient agriculture. To make these models as
realistic as possible, the repertoire of subsistence ac-
tivities represented in each of these two stages was
based on archaeological data that establish what re-
sources were being exploited when the cave at Gila
Naquitz was occupied; the climate was modeled as gen-
erating wet, dry, and average years randomly, based
on paleoclimatic data; and the assignment of values to
such variables as availability, yield, labor requirements
and dietary return for the dozen key sources of food
exploited by the microband was based on scaffolding
models of region-specific archaeological and paleoe-
cological data. In addition, Flannery and Reynolds
developed several hypothetical subroutines to model
the information-sharing and decision-making practices
by which the hypothetical foragers could learn from
trial and error experimentation with different resource
collecting schedules and modifications to their reper-
toire of collecting strategies. This jointly realistic and
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experimental simulation was initially run for foraging
strategies alone and showed rapid improvement in ef-
ficiency until, after about 500 iterations, it proved hard
to improve on the established pattern; at this point pos-
itive feedback for change shifted to negative feedback
encouraging conservatism. Then they introduced sev-
eral archaeologically documented incipient agricultural
strategies to the repertoire – for example, clearing thorn
forest to allow weedy plants (beans, and squash) to
colonize, and deliberately planting maize and squash
seeds – and simulated another learning process. In this
second stage simulation the foraging strategies of the
hypothetical microband gradually shifted, incorporat-
ing the full suite of agricultural strategies until they
reached stable performance in 550 iterations.

The adequacy of the model as a representation
of the real system should be evaluated in two ways,
Flannery and Reynolds argue. First, as with Thomas’
model, it should be assessed in terms of the corre-
spondence of model outcomes with actual outcomes
documented archaeologically – specifically, outcomes
not built into the original simulation. Key measures of
success were congruence in the relative emphasis on
each plant species exploited for both models; the or-
der in which changes in practice and shifts in emphasis
emerge in the case of incipient agriculture model; and in
the time frame for stabilization in both models. Second,
Flannery and Reynolds add an assessment of model ro-
bustness that depends on experimental manipulation of
model parameters and inputs. For example, to assess
the role and plausibility of the multigenerational learn-
ing processes they had built into the foraging model
they disabled the information feedback loop and found
that performance peaked early but then oscillated in
a manner quite unlike anything suggested by the archae-
ological record. They also changed the environmental
conditions and population density under which agricul-
tural strategies were adopted and found that the random
alternation of wet, dry, and average years is a crucial
stimulus for the experimentation and learning processes
that, in the simulation, give rise to incipient agricul-
ture. Under conditions of substantially greater climatic
or populational stress the hypothetical band proved to
be more conservative, while under conditions of lower
stress the band’s subsistence strategies fluctuated with-
out the directional intensification of practice observed
archaeologically.

This, then, is a computational paramorphic model
poised between modeling how actually and how pos-
sibly incipient agriculture took shape in the Oaxaca
valley. It incorporates a number of subsidiary homeo-
morphic models – analytic and descriptive models of
climate, ecology, subsistence strategy – but reaches be-
yond them to model archaeologically enigmatic socio-

cognitive factors. As such, this model is autonomous
in the sense outlined by Morgan and Morrison [46.54]
and, given this autonomy, it manifests the double life
of models discussed more recently by Morgan [46.4].
The simulation developed by Flannery and Reynolds
serves both as a tool for investigating the archaeologi-
cal subject, for which representational adequacy is key,
and as an object of investigation in its own right. Exper-
imental manipulation of the model generated a number
of insights into causal dynamics of the system that
could not be directly investigated, and suggests that
intergenerational learning from trial and error can re-
sult in extensions of foraging practices that ultimately
transform them into agricultural practices. In short,
exploration of the hypothetical world of the model pro-
vides at least preliminary support for their more general
contention that you do not necessarily need to posit
a prime mover external to the system to account for
major cultural transformations; these may well be ex-
plicable in terms of incremental changes in a number of
interlinked social practices and ecological conditions.

Sophisticated models designed to simulate com-
plex, path-dependent interactions between multiple
causal and ecological factors, including decision mak-
ing processes and social dynamics, have since been
developed in a number of connections. In a recent op-
timal foraging model of the Pleistocene colonization
of Sahul (Australia-New Guinea), O’Connell and Allen
are explicit in rejecting minimalist models that down-
play the cognitive and technological sophistication of
these incoming foraging populations [46.55, p. 5]. Their
model incorporates ethnographically and ecologically
informed submodels of decision-making that had re-
ciprocal impact on the complex environments they en-
tered, under conditions of short-term climatic instabil-
ity [46.55, p. 12]. Contributors toModel-Based Archae-
ology [46.56] likewise emphasize the complexity of the
processes by which human populationsmodify their en-
vironments and, in turn, reconfigure their practices and
technologies in response to environments they have in
part created [46.57, p. 61]. Their agent-based models
are built up from a great many scaffolding models that
are as realistic as possible, given available archaeologi-
cal and paleoecological data, but also incorporate what
Kohler et al. refer to as “cultural algorithms” [46.57,
p. 89]. These models are then a platform for simulating
the impact of various types of stress and shifts in social
organization or learning process. For example, Wilkin-
son et al. [46.58] develop a baseline model of an Early
Bronze Age Mesopotamian settlement that they de-
scribe as a plausible, but “static view of settlement and
land use” [46.58, p. 192]. They then build agent-based
simulations that incorporate a number of key behavioral
patterns (reciprocal exchange, kinship and subsistence
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activities) in order to explore the effects of chronic or
acute labor shortages and disease on settlement popula-
tion and household viability. These simulations are not
representational, but they provide an insight into factors
that affect settlement sustainability “from the stand-
point of the individual household agents” rather than at
the level of the settlement as a whole and its “aggregate
properties” [46.58, pp. 201, 203]. They illustrate “dif-
ferent evolutionary trends that households can follow”
within the same socio-ecological environment, and in
the process bring into focus conditions under which ag-
gregate system behavior can abruptly change as a con-
sequence of agent-level decisions that push the system
toward “a hidden resource threshold” [46.58, p. 206].

Experimental models: Hopi agriculturalists in the
US Southwest. This is a suite of even more hypothetical
“how possibly” models developed by Hegmon [46.59]
and Robertson [46.60] to explore the impact of dif-
ferent food sharing practices on the survival rates of
households in a small-scale farming community, and
the potential for (some of) these practices to gener-
ate stratification [46.60, p. 13]. Although they rely
on well established phenomenological and scaffolding
models of the paleoecology, settlement patterns, and
social organization in the prehistoric Southwest, their
purpose is not to model the dynamics of any partic-
ular ancestral Hopi farming community. Rather it is
to investigate various properties and dynamics of the
model itself. Hegmon’s initial model is a highly ide-
alized computational model designed to simulate the
survival rates of a dozen households in a hypothetical
farming community that practices traditional ethno-
graphically documented Hopi-style maize farming on
three different kinds of fields under typical Southwest
conditions of crop yields in wet and dry years. She asks
what the survival rates for individual households would
be if, rather than sharing food in dry, low-yield years,
each household kept its own produce to itself, if they
shared only in years of scarcity, or if all households
consistently pooled their produce. For multiple runs of
20-year simulation cycles she found that households
had only a 45% survival rate if they relied exclusively
on their own produce. By contrast, on a restricted shar-
ing scenario the survival rate was 80% for households
in communities of four or more households. Pooling all
produce generated equivocal results.

A related model developed by Robertson [46.60]
relies on the same basic set-up but simulates the ef-
fects, over time, of two different sharing arrangements:
an egalitarian, credit-dispersing strategy by which the
shortfall of individual households is met through re-
distribution of a pool of total community surplus, and
a credit concentrating procedure by which the house-
hold with the largest surplus has the first opportunity

to redistribute, starting with households with the small-
est shortfall and meeting the needs of as many deficit
households as its surplus permits. Robertson finds
that [46.60, p. 13]:

“restricted sharing practices not only enhance
household survival rates but also have the potential
to lead to the growth of rather high levels of both
debt and credit without any overt political maneu-
vering.”

For 100 runs of 40-year simulation cycles most
households canceled out their credit or debt to one an-
other, but some households did significantly better than
others. Crucially, Robertson reports that these results
were not tightly correlated with differences in the qual-
ity of the fields allocated to a household, and that they
are robust even under the credit dispersing strategy,
with some amplification under the credit concentrating
strategy.

Despite their reliance on realistic, if highly ideal-
ized, baseline models of the regional ecology and of
ancestral Hopi farming practices, these models are con-
structed primarily for purposes of experimentation, not
to simulate the dynamics of any actual archaeologi-
cal community as in the case of the models developed
by Thomas [46.51], Flannery and Reynolds [46.53], or
Wilkinson et al. [46.58]. The value of these models is
heuristic; they allow Hegmon and Robertson to test
hypothetical claims about the cumulative effects that
different social arrangements could potentially have on
the distribution of wealth in Southwestern communi-
ties that cannot be directly tested archaeologically. In
the process, they show that significant social strati-
fication can emerge without having to introduce the
mechanisms of a chiefdom-style political formation.
Kohler et al. [46.57] describe similar goals in connec-
tion with an agent-based simulation of the performance
of farming households in the context of a suite of highly
realistic, archaeologically constrained resource models
of the environment in which prehispanic settlement pat-
terns would have evolved in southwestern Colorado
(600�1300AD). Their ultimate goal is to understand
archaeologically documented cycles of colonization,
settlement concentration, and depopulation in the re-
gion [46.57, p. 63] but their primary interest in the
simulation is in “abstract properties of the simulated ex-
change systems” [46.57, p. 96]. They defer assessment
of the archaeological plausibility of these simulations,
noting that their discussion of factors that make a dif-
ference in this simulation “is purely hypothetical”; the
value of the simulation is its “power [. . . ] to show us
alternative worlds” which, even if they did not exist,
“may be able to tell us many things about the worlds
that did” [46.57, pp. 99–100].
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46.4 Conclusions
I draw three conclusions from this taxonomy of archae-
ological models.

First, the diversity of archaeological modeling prac-
tices reinforces analyses developed in other contexts,
most pointedly, in philosophical terms, by Weisberg
in Simulation and Similarity [46.5], and by Kohler
and van der Leeuw in their brief for model-based ar-
chaeology [46.2]. What counts as adequacy in model
construction depends fundamentally on what the model
in question is meant to do, and this is an irreducibly
pragmatic issue: a matter of research priorities, techni-
cal capabilities, empirical and interpretive resources.

Second, reconstructive and explanatory models of
the cultural past are assemblages of smaller scale phe-
nomenological and scaffolding models that, together,
represent specific factors, variables or processes pre-
sumed to constitute the archaeological target, whether
this is a particular event, a local set of practices, or
large-scale cultural systems and long-term processes.
Taken as a whole, these assemblages are multiply con-
nected paramorphic models; they are constructed ana-
logically, and their content derives from homeomorphic
models of subject-domain archaeological data and of
source-domain data drawn from a diverse array of other
fields.

Finally, models at one scale, or models of one di-
mension of a cultural system or life-world, are the basis
for testing and refining models pitched at other scales
or that represent other dimensions of the target. Claims
about the empirical, theoretical credibility of an ex-
planatory account of the past typically concern the cred-
ibility of model components, themselves narrowly spec-
ified models of particular aspects of the past cultural
context or process or system under study. On a model-
ing approach, evidential constraints are thus diffuse, im-
pinging on archaeological understanding of the cultural
past at a number of points; testing model outputs against
source data or archaeological datamay suggest the plau-
sibility of the model as a whole, but more immediately
it establishes the credibility of specific elements of the
assemblage. The hypothetico-deductive account of con-
firmation and testing that was vigorously advocated by
New Archaeologists and still influences programmatic
debate in archaeology captures little of what matters in
this process of building, refining, manipulating, and as-
sessing explanatory models in archaeology. When these
models are compelling, their credibility arises from mu-
tually constraining and reinforcing relations among sub-
sidiary models rather than from any one self-warranting
epistemic foundation.
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47. Models and Ideology in Design

Cameron Shelley

Models play a number of roles in design. Models
may assist designers in the solution of technical
problems. In addition, models may assist de-
signers in achieving ideological goals. Ideological
goals of designers could include respect for cultural
norms, such as the distinction between masculine
and feminine, or adherence to a design paradigm,
such asmodernism. In this latter role, design mod-
els could be compared to model citizens, that is,
community members of exemplary character. Use
of such models helps designers to produce solu-
tions that fit with the prevailing norms of good
design and to promote the standards of design
paradigms. For example, the Ville Savoye house
was designed by Le Corbusier using ships as models
both to solve technical problems of accommoda-
tion but also to visibly promote the modernist
design paradigm. The purpose of this chapter is
to review examples of models that serve this last
ideological function. Design ideologies reviewed
include revivalism, modernism, industrial design,
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and biomimicry. Each of these paradigms is char-
acterized by a set of values that designers seek
to reflect and promote through their works. There
is no finite or canonical list of design ideologies
but this set is widely known and acknowledged.
So, these examples illustrate how models may
serve ideological functions in various design dis-
ciplines.

47.1 Design and Ideology

In his history of modern design, Forty [47.1] considers
several explanations for the increasing differentiation
in design of consumer products from the nineteenth
century forwards. For example, product design increas-
ingly varied according to the gender of the intended
purchaser. This trend was manifested in various articles,
including wristwatches [47.1, p. 65]:

“In wristwatches, the disparity in size between those
for gentlemen and those for ladies exceeded that be-
tween male and female wrists, and a lady’s watch
usually had more delicate features and face. Be-
ing smaller, ladies’ watches have generally been
more expensive, but when they can be compared to
men’s watches of a similar price, the ladies’ models
are still more ornamented. In the 1907 Army and

Navy Stores catalogue, the men’s watches were all
calibrated with Roman numerals, while the ladies’
watches all had Arabic numerals, whose form –
curvilinear rather than angular – may be judged
more delicate.”

These differences in wristwatch design have little
to do with any physical differences between the arms
and eyes of men and women and more to do with dif-
ferences in their social roles. As the social spheres of
men and women diverged, so did prevalent ideals of
the masculine and feminine. These ideals then came
to be embodied in the design of consumer goods that,
in turn, served as confirmation that the ideals reflected
an objective reality. In other words, as Forty [47.1, p.
66] points out, the design of objects such as men’s and
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ladies’ wristwatches reflects an ideology in which mas-
culine versus feminine is a crucial distinction. Design,
along with fiction, education, and religion, helped to
make this ideology manifest, thus both making it vis-
ible and material and also reinforcing its veracity.

The role of design in both manifesting and reinforc-
ing ideology is demonstrated in other social concep-
tions as well, such as juvenile versus adult,middle class
versus working class, and master versus servant [47.1,
p. 67ff].

47.2 Models and Ideology

Given the importance of ideology in accounting for de-
signs, there remains the issue of how ideology exerts
its influence. One way in which ideology participates
in design is through the use of models. Designers fre-
quently rely on models in order to address design
problems.

For example, in the original version of the Calcu-
lator app for its iPod and iPhone, Apple designed the
interface to recall the signature Braun ET-44 calculator
created by legendary designer Dieter Rams [47.2]. The
rounded buttons with convex, raised centers were a dis-
tinctive design element of the original calculator. Even
though the flat, touch-sensitive surface of the iPhone
could not accommodate raised buttons, the crisp and
candy-like appearance made the interface attractive and
inviting.

Apple’s designers had at least two reasons for us-
ing the ET-66 as a model. First, it was a borrowing
from a proven design, aimed to make the calculator
app straightforward and pleasant for users, regardless
of their familiarity with the original. Second, it was an
homage to a design classic; Steve Jobs’ admiration for
Rams is well known [47.3]. By imitating the ET-66,
Apple’s designers connected their work to an honored
design tradition. In brief, Rams’ ET-66 stood as a model
for the Calculator app in two respects, as a guide to re-
solving an interface challenge and as an assurance of
right-mindedness of their design philosophy.

The term model itself exhibits an ambiguity be-
tween these two senses:

1. A model can be a model solution, that is, something
that exhibits how a particular problem can be solved
correctly or optimally.

2. A model can be a model citizen, that is, someone
who embodies right thinking and good conduct and
is thus worthy of emulation.

A model solution provides a solution to a problem
that can be applied analogically to other problems of

a similar nature. A model citizen embodies the values
of a community and inspires others to act in accord with
those same values.

Rams’ calculator served as a model for the Calcu-
lator app in both senses. It saved Apple designers the
trouble of trying to design a calculator interface from
first principles. It also provided them with a standard
of design excellence that their own work could strive to
live up to.

The role of models as model citizens in design more
clearly reflects their role in the ideology of design. That
is, model citizens represent an ideal of social standards
and behavior that designs tend to reify and reflect. So,
to further understand the place of ideology and models
in design, we must examine models in design as model
citizens.

To explore this subject further, it will be convenient
to look at design as practiced in a number of ideo-
logically informed, modern design movements. Each
movement exemplifies a different ideology and illus-
trates how models have been used as model citizens in
design. The designmovements discussed are as follows:

1. Revivalism: The Gothic Revival of the nineteenth
century looked to the European Middle Ages for
models of good design.

2. Modernism: The Modernist movement of the early
twentieth century looked to contemporary heavy in-
dustry for models of good design.

3. Industrial design: Consultant designers of the mid-
twentieth century looked to forecasts of future in-
dustry for models of good design.

4. Biomimicry: Engineers in the later twentieth century
looked to biological organisms for models of good
design.

In each case, the ideological aspects of models,
in the sense used by Forty [47.1], are explained and
discussed. From this examination, the importance of
ideology in model selection will become more clear.
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47.3 Revivalism: Looking to the Past

In general, revivalism refers to the use of elements
from an historical design style in contemporary designs.
One of the best-known revivalist design movements
was the Gothic Revival, which reached its height in
Britain in the nineteenth century. The Gothic Revival
began in the eighteenth century, after the antiquarian
Horace Walpole wrote the medieval romance, the Cas-
tle of Otranto in 1764, and another book about his
old house, Strawberry Hill in 1774. The latter book
described how Walpole renovated this house with ele-
ments from medieval buildings, such as pointed arches,
crockets, quatrefoils, and so on. This book helped to
raise general interest in the architecture and design from
medieval Europe [47.4].

In the years after the Napoleonic Wars, the gov-
ernment Church Building Commission undertook to
subsidize the construction of hundreds of churches
throughout Britain. The general idea was to knit back
together the social fabric that had unraveled somewhat
under the pressures of the prolonged and ideologically
charged conflict. Many of these churches were built in
a Gothic style. That is, they often applied design ele-
ments from Gothic structures, in the spirit of Walpole’s
version of decoration [47.5]. See the Gothic Revival St.
Peter’s church, built under the auspices of the Commis-
sion in Fig. 47.1 for an example.

Some architects criticized the Commission’s ap-
proach to architecture. Among them was Augustus
Welby Northmore Pugin (1812�1852), most famous
for his work on the Palace of Westminster in the 1840s.
Pugin objected that, oftentimes, Gothic elements such

Fig. 47.1 St. Peter’s Church, Blackley, UK. Designed by
E. H. Shellard, ca. 1845. The church has the basic form of
a Greek temple but is dressed up with Gothic features such
as pointed windows and superfluous buttresses. Photo by
David Dixon

as pointed windows and buttresses were simply tacked
on to structures that were essentially classical in design,
having the basic form of Greek temples. The result-
ing hybrid structures were not truly Gothic at all in his
eyes. Compare St. Peter’s to the neoclassical St. John’s
church, built under the auspices of the Commission, in
Fig. 47.2. Note how St. Peter’s imitates the roof profile
and basic layout of the neoclassical model, except with
Gothic-style buttresses and accoutrements in place of
classical ones.

Pugin had formed a strong attachment to medieval
buildings and churches in particular. He had converted
to Catholicism in 1834, in part as a result of his ex-
periences studying medieval churches in England and
northern France. He saw a strong connection between
medieval architecture and proper, Christian faith. As his
biographer puts it, for Pugin, “the Catholic Church is the
true church, Gothic architecture its revealed form, true
in the sense of absolute, a divine, revealed form” [47.6].

For Pugin, the ideology of the Gothic Revival con-
tained at least two social ideals, those being authenticity
and conservatism. Being authentic did not mean, of
course, that a building had to be a genuine medieval
structure. Instead, it meant that a building should be
a close facsimile of genuine buildings of the earlier era.
Studies of genuine structures in England and northern
France served as models that could guide the revivalist
architect in this matter.

Fig. 47.2 St. John’s church, London, UK. Designed by
Francis Octavius Bedford ca. 1824. Photo by The Voice
of Hassocks
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An important aspect of authenticity, then, was lo-
calism. That is, revivalist structures should use local
materials and building methods that imitated the meth-
ods used in the Middle Ages by builders in the vicinity
where the new building was to stand. In the Middle
Ages, the transportation infrastructure of northern Eu-
rope was neither efficient nor developed enough to
allow for the shipment of large volumes of materials
over long distances. As a result, medieval buildings
tended to be made of materials acquired in the lo-
cal area. Similarly, poor infrastructure meant that the
builders hired to construct buildings were also recruited
from the local area. This situation facilitated the exis-
tence of local idioms in design. That is, each region
tended to see the rise of design traditions within the re-
gion and different from the traditions that arose in other
regions. For authenticity in a building to be situated in
a given region, Pugin thought it best to observe the local
building traditions that characterized genuine, medieval
buildings nearby.

From an instrumental standpoint, this emphasis on
localism was not always optimal. In the nineteenth
century, it would often be more economical to ship ma-
terials and workmen from other areas of the country by
rail or canal. Pugin’s emphasis on localism was moti-
vated on ideological and not instrumental grounds.

Beyond authenticity, Pugin’s careful imitation of
medieval design was motivated by religious conser-
vatism. Contemporary Protestant churches tended to be
spatially simple in the sense that their interiors were
relatively undifferentiated spaces in which the con-
gregation and minister gathered together. A Catholic
church from the Middle Ages was a microcosm of the
medieval worldview, a hierarchical arrangement of sep-
arate spaces, each with its own appropriate functions
and occupants. Pugin’s church designs persisted in this
traditional divided arrangement of spaces. For exam-
ple, Pugin’s church designs usually contained a rood
screen to separate the nave from the chancel, thus keep-
ing the altar and choir apart from the congregation. This

separation had an important function in the medieval
ceremony of mass but had fallen out of favor among
Anglicans and Catholics by the nineteenth century. Pu-
gin designed the screens for his churches as a way of
advocating for the return to medieval forms of worship,
which he regarded as worthier. A controversy ensued
that was settled, in the end, by an appeal to the Vatican,
which sided with Pugin’s opponents. As a result, many
of the rood screens in his churches were subsequently
removed [47.7].

So, authenticity and religious conservatism were
important social ideals in Pugin’s version of the Gothic
Revival. First, the continued presence of medieval
Gothic architecture in the country supported the view
that such architecture was an authentic expression of
Englishness. Study of regional variations in medieval
Gothic architecture in England only served to reinforce
its authenticity. By reviving the Gothic style, then, Pu-
gin was not introducing a foreign element into English
life.

Second, Pugin could point to the models as evidence
of the Englishness of the Catholic Church. Britain was
officially Anglican and had only recently passed a law
tolerating Catholicism and allowing Catholics to hold
public offices. Pugin hoped to turn this tolerance into
broader acceptance of Catholicism, even reconciliation
with the Anglican Church. People’s attachment to these
medieval buildings, reinforced through Pugin’s own
works, might lead them to reconsider their separation
from the Church of Rome.

The Gothic Revival shows how models can play
a role in the ideological side of design. Design is under-
taken not merely to solve a given problem but to reflect
a worldview. In the Gothic Revival, historical authen-
ticity and religious propriety were dominant ideological
values that informed design. Practitioners of the Gothic
Revival, such as Pugin, naturally looked to surviving in-
stances of Gothic architecture as models of solutions to
technical design problems and also as embodiments of
their social ideals.

47.4 Modernism: Transcending History

Historical structures are an obvious source of mod-
els within a design ideology that seeks to reinstate
or reinvigorate past modes of living. By the outset
of the twentieth century, some designers had decided
that revivalism was not a tenable ideology. Technolog-
ical advances had brought with them new challenges
and those challenges called for new approaches. Thus,
appropriate design ideology had to be divorced from at-
tachments to the past.

The designer who perhaps most embodies this
form of modernism is Le Corbusier. Born as Charles
Edouard Jeanneret (1887–1965) in Switzerland, Le
Corbusier trained in engraving but made his mark in
architecture and urban planning. Le Corbusier set up
his practice in Paris towards the end of World War
I and advocated modernist housing as a means of
quickly rebuilding the housing stock destroyed in the
war. He published a collection of essays, Vers une
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architecture [47.8], discussing his views on architec-
ture.

In this book, Le Corbusier famously promoted his
view that the design of contemporary industrial objects
formed the best source of models for architecture. In
particular, he described a house as “a machine for liv-
ing”, meaning that houses should be designed just like
cars, boats, or other mass-produced objects. His most
famous house, the Villa Savoye built in 1928–1931 near
Paris, was designed in this manner (Fig. 47.3). It was
made of modern materials, reinforced concrete, steel,
and glass, with no attempt at disguise or decoration. The
use of steel and concrete structure meant that there was
no need for load-bearing walls, so interior walls were
eliminated or minimized. Thus, the interior was largely
open space. Each of the four exterior walls contained
long ribbon windows, reducing the distinction between
inside and outside. The roof was flat, not peaked, and
contained a garden for the occupants to use, rather like
the recreation deck on an ocean liner. In fact, the design
of the house was inspired by the design of the decks of
ocean liners such as RMS Aquitania, a picture of which
was featured in Le Corbusier’s book (Fig. 47.4).

Fig. 47.3 La Ville Savoye, Poissy, France. Designed by Le
Corbusier ca. 1930

Fig. 47.4 Deck of the RMS Aquitania. Detail of photo by
Library of Congress

In urban planning, Le Corbusier’s early ideas are
conveyed by the Ville Conptemporaine exhibit that
he mounted at the Salon d’Automne in Paris in
1922 [47.9]. This ideal city contained a central district
consisting of glass skyscrapers and apartment buildings
arranged in a grid pattern. Connecting the buildings
with each other and the surrounding countryside were
a network of highways. At the center where the high-
ways met would be a seven-level transportation hub
including levels for railways, highways, subways, with
an airport on the top layer. The buildings were to be
raised off the ground on stilts so that the ground level of
the entire city could be a large green space.

Each component of the design is dedicated to the
fulfillment of a single function. The buildings in the
central core were for white-collar workers who would
run the city. Blue-collar workers and industrial facili-
ties would be placed in areas outside the central district.
Some buildings in the core were for work, others for
housing, others for commerce. Some spaces were ded-
icated to transportation, for example highways and
airports, whereas others were dedicated to recreation,
for example rooftops and the ground-floor green space.
In order to transition from one activity to another, a per-
son would drive a car along the highway to the space
designed for that activity.

This initial design was generic. However, Le Cor-
busier later exhibited a design of this type specifically
for Paris at the Exposition des Arts Decoratifs in 1925.
It was called the Voisin plan after the automobile and
aircraft manufacturer that sponsored Le Corbusier at
the event. In this plan, Le Corbusier suggested razing
the central district of Paris and replacing it with a grid
of eighteen sixty-story skyscrapers connected by high-
ways. Important monuments like Notre Dame would be
retained but, otherwise, the core of the city was to be en-
tirely rebuilt. The traditional but chaotic layout of Paris,
with its maze of medieval streets, was to be eliminated
in favor a functional and efficient grid of massive build-
ings and roads.

Le Corbusier’s ideas become influential particu-
larly after World War II, when building and rebuilding
projects took off all over the industrialized world. High-
ways were built, old neighborhoods were bulldozed to
make way for expressways and apartment blocks, and
the downtowns of big cities filled with slabs of concrete,
glass, and steel. Note the resemblance of the Co-op City
buildings in Fig. 47.5, constructed ca. 1970, to those en-
visioned by Le Corbusier.

A great virtue of modernist design is that it made
efficient use of industrial materials, allowing infrastruc-
ture to be built rapidly and affordably. A great problem
of the modernist approach is that it could be over-
whelming and inflexible, treating people somewhat as
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Fig. 47.5 Co-op City, the Bronx, USA. Photo by Jules An-
tonio

goods to be stored and moved about as required by the
design of their infrastructure [47.10].

The main social ideals of Le Corbusier’s modernist
view are functionalism and conformity. Functionalism
identifies the analytic approach to design adopted by
the modernists, embodied in the expression form fol-
lows function. In brief, design should be approached
from perspective independent of history. To a function-
alist designer, it is of no relevance how buildings or
anything else were designed in antiquity or the Middle
Ages. All that matters is the problem to be solved and
the means available to solve it with. Le Corbusier took
a Platonic view on which the activities of living and the
architectural forms for building are regarded as a set
of timeless forms. His buildings exhibited a preference
for simple geometric figures and solids in combina-
tion.

In terms of analysis, modernist designers sought
to disaggregate the various activities that would oc-
cur in the use of the design. When designing a house,
or machine for living, the process of living should be
broken down into its subprocesses and some space des-
ignated for each. The remaining task was to place the
spaces for each activity in the correct relation to each
other. In the Villa Savoye, the ground floor contained
spaces for auxiliary functions, including the entrance,
the garage, and rooms for chauffeurs and maids. The
main floor contained the bedrooms for sleeping, the
kitchen for cooking, and the salon for interacting. The
roof contained the garden for relaxation and recreation.
In the Voisin plan, activities such as resting, recreat-
ing, working, andmovingwere each assigned a separate
space. Highways were used to allow people to move
from one activity to another with as little hindrance as
possible.

Besides disaggregation, functionalism also implies
a kind of universalism. Just as the relevance of historical
antecedents is minimized, so is the relevance of region-

alism. Functionalist design tends to focus on the basics.
Living in a house, for example, is analyzed to an almost
biological level: eating, sleeping, exercising, interact-
ing. These functions are universal ideals that apply to all
people. In contrast, cultural preferences, such as having
a porch or enlarged foyer to lend importance to the front
entrance, are minor considerations.

In addition, another important component of func-
tionalism is honesty [47.11]. That is, the aesthetic value
of a modernist design should come from its construc-
tion instead of from add-on decorations that serve no
basic purpose. In the Victorian era, designers might use
iron as a structural element of Gothic buildings, as Pu-
gin did for the Palace of Westminster. However, the
iron would be hidden from view. From a modernist per-
spective, this practice is dishonest. A building made of
steel, glass and concrete should display these materi-
als. Furthermore, its construction should be such that
nothing further is required to make the building look
good.

Besides functionalism as such, modernist designs
also tend to require conformity from their users. A mod-
ernist building, for example, does not invite later modi-
fication. If the building’s form resulted from a correct
application of timeless ideals, then no modifications
should be necessary. In the Voisin plan, residents were
not to be invited to customize their spaces to suit them-
selves. In some cases, this attribute of modernist design
may be put down to the narcissism of the designers. In
many cases, however, conformity was an implication
of the modernist view of industrial production as the
ultimate state of civilization. The efficiencies of indus-
trial design and production would drive out suboptimal
or idiosyncratic architecture, replacing it with universal
design. In that event, people would have to accommo-
date themselves to their designed surroundings, rather
than the reverse. This view is admirable in its egalitari-
anism, that everyone should enjoy the same, amenable
standard of living. However, it is also objectionable in
the sense that it aims to achieve this end through impo-
sition of a rigid mode of life.

In any event, models were important to the devel-
opment of modernist design. The influence of ships, in
particular, on Le Corbusier was noted above. The ability
of passenger ships like the Aquitania to efficiently ac-
commodate hundreds of people on long voyages clearly
impressed him. In his architecture, he sought to apply
the lessons of ship design, as he saw them, to the design
of houses and even cities. The efficiency with which
modernist designs could provide accommodation for
large number of people, using modern, mass-produced
materials such as concrete, steel, and glass, made it
a highly suitable building regime for the post-World
War II construction boom.
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Of course, modernist models had their limits. Af-
ter all, ships (and cars and airplanes, other sources
much admired by Le Corbusier and contemporary mod-
ernists) are not themselves machines for living but
machines for transportation. The arrangements made in
such vehicles for people to travel in them temporar-
ily are not necessarily appropriate for structures where
people expect to live permanently. The conformity re-
quired in arrangements for air travel, for example, is
more of an imposition in a house or a neighborhood.

However, such limitations might be overlooked
because industrial models also served their ideologi-
cal function. That is, living in industrial surroundings
would accommodate people to the industrialized world
that they inhabited. In his way, then, Le Corbusier
was just as concerned as Pugin for the authenticity
of his architecture. However, cars and ocean liners
served him as guarantors of authenticity and the good
life in place of the medieval cathedrals favored by his
predecessor.

47.5 Industrial Design: The Shape of Things to Come

Besides looking to the past for inspiration or to the
present, it is also conceivable to look to the future for
models suitable for the purposes of good design. Al-
though such a perspective may sound paradoxical or
even impossible, it was characteristic of a third design
movement that I wish to examine, that being industrial
design.

Strictly speaking, industrial design is not a move-
ment but a profession. It arose as a result of the
industrial revolution and the mass production of goods.
Before the revolution, household goods were typically
produced by craftsmen who worked in local design
traditions, producing a given item from raw materi-
als. With industrialization, craftsmen were replaced by
semiskilled laborers who did not participate in the de-
sign process. Goods were designed either in imitation
of previous craft traditions, or they were designed by
their inventors. By the early twentieth century, both
these approaches had proven inadequate for the novel
technologies that were being mass produced. A group
of professionals arose whose occupation was giving
proper form to these new technologies. These were the
industrial designers.

In spite of the fact that industrial design was, and
continues to be, a profession, its first practitioners
shared a set of social ideals that informed their work.
Thus, the profession also constituted a design move-
ment with a characteristic ideology. Perhaps the key
values of this ideology were progress and consumerism.

The value of progress in industrial design was most
clearly captured by Raymond Loewy, perhaps the most
famous industrial designer of his era. Loewy (1893–
1986) was born in France and received an education in
technology in a preparatory school in Paris. He served
in the French Army Corps of Engineers during the
World War I. After the war, he emigrated to the United
States where he made a living applying his artistic tal-
ents as a window dresser for New York department
stores and as an illustrator for fashion magazines. His

first break in industrial design came with the com-
mission to redesign the Gestetner duplicating machine
in 1929. Afterwards, Loewy established a successful
design consultancy and participated in the design of
a variety of industrial objects, from cigarette packages
to cars, locomotives, and refrigerators.

In his autobiography, Loewy tries to capture some
of the lessons he had learned over the course of his ca-
reer [47.12]. One of the key lessons is embodied in what
he calls the MAYA principle. MAYA is an acronym for
the phrase most advanced yet acceptable. In his view,
a well-designed product should appear to its users to
be technologically advanced but also comfortably fa-
miliar. Loewy had observed a tension in people’s minds
about what they expect from the things they use: On
the one hand, people expect technology to improve over
time, so that a newer product should outperform older
ones. As a result, they expect the design of their gear to
change over time. On the other hand, people like to stick
with what they know or are used to. Thus, change in de-
sign can be discomforting or unwelcome. The MAYA
principle suggests that industrial design has to balance
people’s expectation of innovation with their need for
stability.

Consider Loewy’s redesign of the Gestetner mimeo-
graph machine [47.13]. The Gestetner was an industrial
contraption with an exposed mechanism and perched
on an ungainly metal frame. Loewy enclosed the mech-
anism in a streamlined case and streamlined the ma-
chine’s appearance and footprint. By enclosing the
machine’s workings, Loewy made it less dangerous, for
example, the user’s tie and fingers were not likely to get
caught in its gears and its toner was less likely to splash
the user’s skin and clothing. The new appearance also
made the machine more approachable.

Loewy’s redesign of the Gestetner provides a good
illustration of the MAYA principle. The new design was
advanced in the sense that it brought the productivity of
an industrial device into the office space. Beforehand,
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the ungainly and mechanical look of the Gestetner had
caused users to categorize it as industrial equipment.
Thus, it was treated like a furnace or a boiler and hid-
den away from the office spaces where its duplicating
function was most useful. Afterward, by making the
Gestetner look and feel much like a file cabinet, Loewy
caused office managers to think of it as a piece of office
furniture, to be kept in the workplace itself. Thus, the
new design was advanced in the sense that it brought
industrial productivity to the office, and acceptable in
the sense that it looked right at home next to the file
cabinets and desks already situated there. After the in-
troduction of the new design, the Gestetner sold well as
a piece of office furniture.

The MAYA principle illustrates the importance of
progress to industrial design of this era. Advancement,
on this principle, is an indispensable part of the de-
sign of new goods. That is, one of the jobs of a good
designer is to provide customers with goods that will
outperform previous designs, thus making the work of
customers more productive, and their lives more pleas-
ant. As a practical matter, the MAYA principle also
instructs us that progress is best served up in moderate
doses. This view stands somewhat in contrast with the
view among some current designers that advancement
should come in the form of game-changing or disrup-
tive designs.

Consumerism is also part of this picture, although
not one that is explicitly noted in the MAYA principle.
If there is to be advancement in design, then existing
designs must become obsolete. New designs can make
old ones obsolete in at least two ways. First, new de-
signs may perform a given job better than old designs.
A new engine, for example, may burn fuel more effi-
ciently than older designs. Second, new designs may
appeal to people more than old designs. The practice
of changing the style of cars each year provides a good
example: people may get rid of an old car in favor of
a new one not because the new one is technically supe-
rior but because the appearance of the new car makes
them feel unhappy about the appearance of the old one.
This mental phenomenon is known as psychological ob-
solescence [47.14].

One example of how industrial design could be
applied to psychological obsolescence is provided
by Loewy. One of Loewy’s best-known designs was
a streamlined pencil sharpener. The sharpener was de-
signed in the shape of an aerodynamic tear drop, with
the hole for insertion of the pencil tip at the round end
and the handle to turn the mechanism at the pointed
end. William Gibson describes the sharpener as fol-
lows [47.15]:

Fig. 47.6 Petipoint streamlined iron, made by the Weverly
Tool Co. of Sandusky, Ohio, ca. 1941. Detail of photo by
Tomislav Medak

“The Thirties had seen the first generation of Ameri-
can industrial designers; until the Thirties, all pencil
sharpeners had looked like pencil sharpeners; your
basic Victorian mechanism, perhaps with a curlicue
of decorative trim. After the advent of the de-
signers, some pencil sharpeners looked as though
they’d been put together in wind tunnels. For the
most part, the change was only skin-deep; under
the streamlined chrome shell, you’d find the same
Victorian mechanism. Which made a certain kind
of sense, because the most successful American
designers had been recruited from the ranks of
Broadway theater designers. It was all a stage set,
a series of elaborate props for playing at living in
the future.”

The point is that the mechanism of the sharpener has
not changed. Loewy has simply made the casing more
up-to-date.

This application of industrial design encourages
consumerism in the sense that it invites users to con-
fuse technological innovation with stylistic innovation.
In the case of the pencil sharpener, this confusion could
lead users to dispose of their existing goods in order
to purchase new ones that do not sharpen pencils any
better.
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Gibson also observes that industrial design of the
era allowed people to play at living in the future. This
point is key to see how the use of models fits into
this version of industrial design. Designers like Loewy
could not, of course, actually see into the future and
take from there the models they needed for the present.
They could, however, take current trends in technology
and extrapolate them. One trend they could extrapolate
involved streamlining, that is, the use of aerodynamic
shapes. Industrial designers of that era felt that air travel
was the transportation of the future for all [47.16]. Thus,
industrial designers took existing aircraft as models,
imagined how they would look in the future, and then

applied these ideas to the design of various contempo-
rary goods, even such slow-moving objects as pencil
sharpeners or irons [47.17] (Fig. 47.6). Thus it was
that industrial designers could look to the future, as
it were, for models to apply to contemporary design
problems.

As with revivalists or modernists, industrial design-
ers of the early twentieth century used models in order
to address design problems. Their models were se-
lected not merely for their ability to answer questions
of function but because they embodied the ideals of the
movement. Central to the ideology of that movement
were the ideals of progress and consumerism.

47.6 Biomimicry

Designers typically look to artifacts to find models for
their work. Of course, it makes sense to seek one artifact
to be a model for another. Yet, the natural world also
provides models for designers. On the face of it, this
observation seems odd since the natural world is not an
artifact. However, the process of evolution has produced
organic forms that can be treated as designs, that is, as
solutions to problems posed by the environment. For
example, many early airplane designers looked to birds
and other flying organisms in order to work out their
designs [47.18]. As is the case with artifacts, organisms
such as birds can serve as model solutions but also as
model citizens.

In fact, several design movements have taken or-
ganisms as models in different ways. In art, the Art
Nouveau movement often used plants as models for its
curvaceous forms. Designers interested in sustainability
often look to organic systems for inspiration, such as the
Cradle-to-Cradle paradigm espoused by McDonough
and Braungart [47.19]. Others adopt organic mod-
els based on the biophilia hypothesis of Edward O.
Wilson [47.20], on which human beings simply have
a profound need of, and liking for, natural forms and
systems. Each movement has a distinct ideology asso-
ciated with it.

Another design movement taking organisms as
models, known sometimes as biomimicry, views or-
ganisms as marvels of engineering. The efficiency and
optimality found in organic forms serves as a model
for engineering designs [47.21]. Biomimicry is the
paradigm explored here. In particular, the exposition of
biomimicry given by French [47.22] is used because its
ideological content is presented clearly.

Like the modernist architects, an important ideal
of biomimicry is functionalism. That is, design should
be dispassionate and analytic. Like Le Corbusier, who

sought to separate architecture from nostalgic attach-
ments to historical forms, French holds that good engi-
neering is the result of cool calculation, for which evo-
lution provides an instructive example [47.22, p. xii]:

“Living organisms are examples of design strictly
for function, the product of blind evolutionary
forces rather than conscious thought, yet far ex-
celling the products of engineering. When the en-
gineer looks at nature he sees familiar principles of
design being followed, often in surprising and ele-
gant ways.”

The forces of evolution are blind in the sense that
they respond only to the problems of the present and
are not sentimental about the past or, for that matter,
concerned with their legacy for the future.

The anti-sentimental stance of biomimicry focuses
the attention of the designer on the products of evolu-
tion through natural selection. In many treatments, nat-
ural selection is the only kind of evolutionary scheme
discussed, for example [47.18].

Other evolutionary forces are set aside. Dar-
win [47.23] argued that, in addition to natural selection,
the form of organisms could be explained by sexual
selection. The extravagant tail of the peacock, for exam-
ple, could not be explained by a struggle for existence
as it hardly improves the peacock’s ability to fight, fly
or feed. However, it could be explained by the need of
male birds to impress choosy females. The focus on aes-
thetics involved in sexual selection is not compatible
with the functionalist outlook of biomimicry.

Biomimicry also exhibits the other aspect of func-
tionalism shown by modernism, namely an emphasis on
efficiency. French notes how organisms display adher-
ence to a principle of economic efficiency, namely the
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division of labor. In classical economics, an economy
functions most productively when each of its members
simply does what they do best, and nothing else. A sim-
ilar principle holds in the organic world [47.22, p. 3]:

“The division of labour is but a special case of
a more general principle of functional design, the
separation of functions. Thus, simple single-celled
organisms have to provide all their functions in one
cell, whereas higher animals and plants have many
different kinds of cell for special purposes, carry-
ing sap, extracting water and minerals from the soil,
transmitting signals, secreting digestive juices, etc.
The early steam-engines, following Newcomen’s
design of 1712, had a cylinder in which the steam
did work and in which it was also condensed.Watt’s
engine, fifty years or so later, separated the func-
tions of working cylinder and steam condenser, so
greatly increasing the efficiency.”

Organisms evolve to display this economy of orga-
nization, thus providing models for engineers.

As before, this characterization of the natural world
diverts attention from organic structures that serve mul-
tiple functions. The feathers on a bird’s wings, for
example, may help that structure to create lift, but also
play a role in creating thrust, and supplying a platform
for decorative features important in the competition for
mates.

Also like modernist architects, although biomimicry
involves suspicion of ornament, it shows an aesthetic
concern through attention to elegance. A design, like an
organism, can achieve elegance simply by being thor-
oughly functional [47.22, p. 14]:

“One characteristic of functional design is elegance.
Most people find a buttercup beautiful, and many
would say that the locomotive was at least pleasant
to look at. However, the buttercup has an essen-
tial elegance, much more fundamental than its mere
appearance. It is an elegant solution to a difficult
problem in functional design.”

This approach to aesthetics is reductionist in the
sense that it holds that a kind of beauty, namely el-
egance, can be achieved by adhering to nonaesthetic
values such as dispassionate analysis and economy.
This kind of beauty is exemplified by organisms like
buttercups but also, to a lesser degree perhaps, by arti-
facts like locomotives. French’s treatment of elegance
is thus much like the modernists’ treatment of honesty
in functionalism.

A salient difference between biomimicry and mod-
ernism is that the former allows an ideal of plurality
instead of conformity. Modernists like Le Corbusier
held that their views on design applied fundamentally

and universally. As such, there is no room for other de-
sign paradigms.

Biomimicry, however, admits the (limited) applica-
bility of other approaches to the use of natural models
in design. French contrasts the field of engineering with
that of architecture, which has a different ideology and
occasionally produces good results [47.22, pp. 5–6]:

“However, in much architecture the functional as-
pects are very secondary to aesthetic ones, and,
moreover, rather readily met (or indeed, neglected
altogether, as in some badly-designed buildings
which have nonetheless won awards). Another de-
fect of architecture as a training ground for func-
tional design was that often the economic con-
straint, so powerful throughout nature and engi-
neering, was virtually absent, the patrons caring
more for glory than the public good (which was
the public’s loss then, but is sometimes our gain
now).”

Clearly, French’s pluralism is graded and grudg-
ing. That is, he places engineering above architecture in
terms of the typical quality of its results. Nevertheless,
architects sometimes produce works that are both artis-
tic and sound. A medieval cathedral, for example, may
be ornamented in beautiful sculptures of people and an-
imals that no engineer would ever produce. Yet, it also
includes a broad roof and sturdy buttresses that make it
sound and lasting.

One other ideal of biomimicry of the type described
by French may be termed masculinity.Hofstede [47.24]
defines masculinity in a culture as a gender role that em-
phazises self-orientation, assertiveness, and ambition
over feminine values such as relationships, communica-
tion and caring. The preference for masculine features
of evolution is suggested by the emphasis placed on
natural selection as a competition for survival amongst
individuals, a kind of war of all against all. Attention is
paid mostly to features that animals have for obtaining
food, fleeing predators or fighting rivals. Features that
animals have for more feminine tasks such as forming
groups, cooperating with others and raising offspring
are less often examined. Consider this description of
the severity of conditions to which natural designs re-
spond [47.22, pp. 265–266]:

“The difficulties of a hostile environment are added
to by those of growth; many organisms must fend
for themselves from an early stage; for example,
fish may be all on their own when only a cen-
timeter or so long, though they may eventually
reach a meter in length. The caterpillar-pupa-but-
terfly and tadpole-frog metamorphoses are familiar.
If the caterpillar is eaten there will be no butterfly;
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each stage must be viable. Insects and other arthro-
poda, such as crabs and shrimps, have a hard outer
skin which cannot grow with them, and must be
moulted periodically as it becomes too tight; until
the soft new armour hardens, they are relatively de-
fenceless.”

Adaptations that animals possess for feminine func-
tions are mentioned briefly and as an afterthought
[47.22, p. 266]:

“One of the devices used to cope with the extreme
severity of the design problem of living creatures is
a very high production rate, so that out of millions
of embryos a handful may survive. But some less
wasteful approaches have appeared in the course of
evolution, principally, the protection of the young
by adults among the higher animals and termites,
ants and bees.”

It seems fair to say that biomimicry concerns itself
primarily with those aspects of animal bodies that are
most closely associated with culturally masculine ac-
tivities.

As with any ideology, biomimicry tends to be self-
reinforcing. That is, models for artifacts may be located
in nature according to the ideals described above. Sub-
sequently, the success of artifacts designed in this way
attests to the validity of the ideology. For example,
perhaps the most famous instance of biomimicry is vel-
cro [47.18, pp. 268–270]. Swiss engineer George de
Mestral investigated how burrs stuck so tightly to his
coat and his dog’s fur. He went on to devise an artificial
equivalent made of nylon that is still a popular fas-
tener. Burrs are the seed pods of burdock plants, which
use their adhesive function in order to spread the seeds
around as a part of the struggle for survival. Thus, the
continuing fame of this example attests to the functional
and masculine ideals of biomimicry.

47.7 Conclusion
Design paradigms exhibit ideological characteristics.
That is, they adhere to a set of ideals about what good
design is and is not. The selection and use of models in
a design paradigm is duly affected by the prevailing ide-
ology. Within a design paradigm, models are selected
both because they are model solutions, providing an-
swers to design questions, and because they are model
citizens, properly reflecting and reinforcing the ideals
of the paradigm.

The ideologies of four design movements have been
explored and exhibited. Revivalism, modernism, indus-
trial design, and biomimicry have all been important

approaches to design problems. Each exhibits a char-
acteristic ideology. Each ideology is reflected in the
selection and use of models in each case. In this way,
each ideology assists in the process of innovation of so-
lutions to design problems, and produces artifacts that
bear out the soundness of the ideology.
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48. Restructuring Incomplete Models in Innovators
Marketplace on Data Jackets

Yukio Ohsawa, Teruaki Hayashi, Hiroyuki Kido

Innovators Marketplace, a market-like workshop
where cards showing existing pieces of knowledge
in various domains are combined to create ideas
of services/products and thrown into demand-
driven communication to choose practical ideas,
has been extended to a setting of the market of
data. This extension is called Innovators Market-
place on Data Jackets, a workshop in which each
prepared card called a data jacket represents the
digest knowledge about a dataset, that is, a kind
of metadata. Data jackets are disclosed, whereas
the corresponding data are not, and participants
of the workshop create ideas for combining and
analyzing data using the visualized correlation
of data jackets. In this chapter, this workshop is
described as a systematic process for reasoning
on incomplete models, where each data jacket is
regarded as an incomplete local model in the do-
main of the data, and communication is launched
for satisfying requirements in the market (regarded
as incomplete global models) by restructuring and
combining local models. The data jacket may ini-
tially include atoms and terms in the domain, not
connected via complete causal relations. Via the
communication, however, links including causal
relations appear and are revised toward obtain-
ing a glocal model corresponding to a solution to
satisfy requirements in the marketplace. In this
process, the local model corresponding to each el-
ement is also revised to obtain useful knowledge
digesting the corresponding data.
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One century passed since Schumpeter suggested the
concept innovation as a creative activity by which the
economy jumps up to a new state, and that this cre-
ativity is to be realized by a novel combination of in-
dustrial resources [48.1]. After half a century, Rogers
pointed out that leading consumers play the role of in-
novators [48.2]. That is, an important idea cannot be-
come an innovationwithout innovators who are not only
thosewho produce products/services but also consumers
who discover new values of products in using them and
diffuse the discovered values to the majority. Here lead-

ing consumers can also invent, not only use and diffuse
technologies [48.3]. Thus, innovation came to be a term
referring to the thoughts and the interaction of stake-
holders in the market, involving inventors in companies,
sensitive and communicative diffusers, and also con-
sumers. As a result of their interaction, novel dimensions
are to be introduced for evaluating and improving the
performance of humans’ activities in the real life, as in
Drucker’s redefinition of innovation “a change that cre-
ates a new dimension of performance,” which urged him
to discuss do’s are essential paths to innovation [48.4, 5].
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48.1 Chance Discovery as a Trigger to Innovation
In this chapter, we aim at showing the potential con-
tribution of model-based reasoning to modeling the
process of data-driven innovation. For this, we intro-
duce chance discovery that means to discover a chance
event – an uncertain event significant for making a de-
cision, as in the definition since 2000 [48.6]. Especially
if the chance event is rare or novel, the attention to the
event may trigger the creation of a novel performance
dimension to the human life, as Drucker’s above defini-
tion of innovation. In fact, users of methods for chance
discovery went beyond their previous achievements in
data-based decisions, as exemplified in the next section.
In successful cases [48.7, 8], chance discovery has been
understood as innovation by enhancing humans’ activi-
ties with value sensing [48.9] and sense making [48.10,
11], taking advantage of tools for data visualization po-
sitioned and used in the process for decision making.
Areas such as evidence extraction and link discovery
(EELD) [48.12] shared this basic idea, but the point of
chance discovery was unique in the sense we focused
on the effect of communication with sharing a graph vi-
sualizing the correlation of events in data for creating
scenarios of actions that satisfy stakeholders’ inten-
tions and constraints, by connecting frequent patterns
via chance events.

In this chapter, first we review some basic ap-
proaches to chance discovery. Then Innovators Market-
place (IM) [48.13] will be introduced as a methodology
of workshop for chance discovery, where participants
are aided to communicate from individual viewpoints
reflecting their roles in the market, reason with combin-

ing pieces of basic knowledge as elements for creation,
and communicate to introduce various aspects and
knowledge for improving presented ideas and choosing
practical ideas. Then in the latter half of this chapter
IM will be extended to IM with Data Jackets (IMDJ),
recently developed in order to fulfill intentions of busi-
ness people by social data sharing without violating
constraints of stakeholders.

From the aspect of model-based reasoning, each el-
ement to be combined in IMDJ initially includes a set of
atoms and terms in its local domain, which are not yet
connected via causal relations. Links including causal
relations are to be given via reasoning and communi-
cation to combine the elements, to embody and realize
consumers’ requirements casted as a global model, in
the sense the requirements are not restricted to a definite
relevant domain. In this process, the local model corre-
sponding to each element is revised, with constructing
and reconstructing glocal models that mean the links
between local and global models, via the idea-revising
communication as shown later. Here stakeholders ex-
ternalize intentions and constraints via communication,
so that latent values are externalized and scenarios of
actions for realizing those values are created. Strategies
to combine and/or analyze data are obtained, as solu-
tions for the requirements, as a result of choice from
these scenarios. A logical framework for guiding this
process of reasoning in IMDJ is shown in this chapter,
on which we propose a new procedure of IMDJ where
participants shall obtain feasible solutions to satisfy re-
quirements of data analysis users.

48.2 Chance Discovery from Data and Communication

Data mining recently tends to be regarded as a method
for showing objectively useful knowledge, as far as peo-
ple read application cases of data mining superficially.
This is a reasonable trend, because large amount of data
are collected via sensing systems such as POS (position
of sales) registers, RFID tags, events in a networked
system, etc., without interruption of subjective thoughts
of humans. Furthermore, the importance of attention to
the volume, the variety, and the velocity of changes in
data is coming to be widely and concretely conceived
in businesses and sciences.

48.2.1 Chance Discovery as a Problematic
Child of Data Mining

These features of recent data are, however, really cast-
ing a serious problem. A number of variables in data

increases with the growth in the variety, and the vol-
ume of data embracing changes reflecting the changes
in the real world is making it hard to choose essential
attributes (which may be called variables). For exam-
ple, suppose the features of animals have got collected
in huge data corresponding to the overall history of
evolution. Via evolution, anus and urethra have been
developed and came to be separate for almost all mam-
mals, not for birds or reptiles. Thus, the number of
holes at the bottom of the body may be regarded as
a useful attribute for defining mammals as a separate
class from others. To define mammals, however, this at-
tribute cannot be regarded as the most essential because
other attributes may take place. For example, the stabil-
ity of blood temperature, that is, monothematic or not,
is a feature regarded as typical for mammals. Attribute
selection methods have been developed for explaining
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classes simply and correctly, on selected essential at-
tributes without such a redundancy [48.14, 15].

On the other hand, recently the attention of users
(rather than researchers) of data mining came to be
paid to a new problem – explanation of the bound-
ary between classes. For example, some rare species
are hard to be classified into mammals or reptiles or
birds, because they have features that cannot be cov-
ered in a single class as far as we apply such attributes
as above. Platypus has one hole at the body bottom
that works both as anus and urethra, but has a sta-
ble blood temperature, that is, homoiothermal. This
makes platypus be positioned at the boundary between
mammals and reptiles/birds. Here we should now re-
store the importance of the number of body bottom
holes for classifying animals into two large classes
(mammals, and reptiles/birds) and also explaining the
outstanding feature of the rare samples of homoio-
thermal animals positioned between the two classes.
Although platypus in Fig. 48.1 has been finally clas-
sified as a member of mammalia, such a rare sample
in data has been ignored as a noise in quite classi-
cal methods of data analysis, whereas other studies
highlighted predicting rare events [48.16, 17], extract-
ing exceptional patterns [48.18, 19].

On the other hand, in the approaches to chance
discovery under the definition of a chance as an event
significant for human’s decision, we stood on the
principle that a decision is to choose one from multiple
scenarios of actions/events that can be taken in the fu-
ture. Based on this principle, a chance can be regarded
as an event at the cross point of multiple scenarios,
may be transient and rare, after which the forthcoming
sequence of events is uncertain. The cross point is an
important candidate of chance if it means a trigger of
contextual shift, that is, an event that occurs in transition
from one established scenario to a scenario that occurs
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  lizard Fig. 48.1 A novel/rare,

event or item, guiding to the
discovery of useful variables
for explaining the boundary
of classes. Such variables
give insights for modeling
hidden causalities

in a new context. This is understandable by relating
the dimension of performance in Drucker’s definition
of innovation to the context here. That is, a noteworthy
chance should be at the boundary of contexts, such as
platypus for biologists desiring to explain the history
of evolution. Symptoms at the boundary of disease
progress and recovery [48.20] and products at the
boundary of different contexts of consumptions [48.7]
have been obtained in cases of chance discovery.
Chance discovery can be positioned as a data-driven
guidance of humans’ attention to black swans [48.21].

An important point here is that not all cross points
of scenarios are necessarily noteworthy chances. Thus
we need a method to choose a useful event, even if we
can be informed about all events at contextual bounds
based on data available. For doing this, one way may
be to count up all possible sequences including candi-
dates of chances, and compare their evaluated utilities.
This, however, is inefficient even for a computer if we
have a large number of observations corresponding to
the large number of events and their attributes in data.
Considering this point, we focused efforts to developing
methods to take advantage of human’s sense to choose
high-utility scenarios and events, borrowing computer’s
power to visualize a map showing the complex structure
of event–event co-occurrences (actions of humans have
been counted as events).

However, even if one has got a sophisticated soft-
ware for visualizing big data, it is not easy to learn to
sense the utility of a sequence of events without embed-
ding one’s body in the real-world situation and acquire
experiences of gain/loss due to various sequences of
events and actions. In other words, the process of acting
on/for thoughts with manipulation [48.22, 23] is re-
quired for enabling data collection and interaction with
the environment, toward opening one’s mind to incon-
sistencies and questions. As a result, hidden events are
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revealed and variables – identical to attributes above
such as the number of holes in the animal body in
the example above – are highlighted. From the col-
lected data, scenario communication of humans [48.8,
24] aided by data visualization works in externalizing
latent criteria for evaluating an event as a candidate
of chance. Such externalized criteria may come to
be regarded as latent variables, of which the contri-
bution to the utility of an event (or of the scenario
including an event) had been discounted. In this step,
analogy [48.25, 26], insight with reframing [48.27, 28],
and metacognition came to be argued as bases for real-
izing chance discovery as a systematic process toward
perceiving useful information for decision making. In
projects we conducted with industries, teams of mar-
keting or product developing acquired novel awareness
of valuable parts of their markets they had not taken
into consideration. For acquiring the awareness, such
tools for visualization as KeyGraph [48.7, 20, 29–32]
assisted decision-making users by showing a map of the
market having (1) a set of clusters of items frequently
co-selected, that is, items in each cluster have been cho-
sen by the same customer at the same time, and (2) rare
items at the boundary of these clusters, which may im-
ply a latent market coming up in the future. In other
words, we regarded such a rare item as a candidate of
chance, because a scenario that is a sequence of actions
and events to occur in a certain context is represented
by events or items in each cluster. Items in (2) can be
regarded as bridges between scenarios, at their cross
points, or a significant chance to switch from/to sce-

Cluster of frequent
items (or events) in
the market

This is a good
textile for relaxing
semicasual clothes

Cluster of
frequent
items

A potential
chance

Suits and
shirts for
business

Cluster of frequent items

Casual use

An item (textile in this
case) frequently ordered
Infrequent items between
clusters (potential chances)

Fig. 48.2 A successful use
case of chance discovery.
Each node represents a textile
(black: frequent textile,
white: infrequent), links
co-occurrences in customers’
ordering (solid: between
frequent items, dotted:
between a frequent item and
an infrequent) (after [48.7])

narios as in the case of a biologist looking at animals
in Fig. 48.1 with the desire to discover an explanatory
scenario of history of evolution.

Here let us refer to a case presented in [48.7], where
a map obtained by KeyGraph assisted chance discov-
ery in business, which will be linked to IM in the next
section. For this example, KeyGraph showed clusters
in item (1) above, and rare items in (2) above which
meant products in the niche not yet popular. The map
obtained in a textile manufacturing firm from data of
customers’ choices of textile products, was as outlined
in Fig. 48.2. Here, the black nodes linked by solid
lines show clusters above. The white nodes and the dot-
ted lines show items corresponding to (2) above and
their co-occurrence with items in clusters respectively.
Ten marketers in this textile firm attached real textile
samples corresponding nodes in the printed map. The
marketers, looking at the figure and touching the textile
items on it, discussed about their new scenarios, that is,
plans of business. First, they noticed the clusters corre-
sponding to popular item sets mentioned in (1) above:
The large cluster in the right means an established mar-
ket of textiles for business clothes (suits, shirts/blouses
for under suits, etc.), and the one in the left came to
be interpreted as of casual (called worn-out) wear by
multiple marketers. Then, a few marketers pointed out
that consumers desire to change from one cluster to an-
other. For example, when one moves from the place to
work at daytime to a restaurant for dinner after work-
ing, one may like to change clothes from business suits
to casual for relaxation. Interested in such consumers,
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the marketers came to pay attention to an item between
the clusters, because they noticed and agreed that the
item is suitable as a material of a new jacket to wear
after working, without changing trousers, as desired by
consumers. In this case of Fig. 48.2, their new scenario
was to sell the new item at the center of the map that
was not yet popular by that time, to suit manufacturers
as a material of casual jacket office workers can wear
fitting the trousers of suits to go out for dinner.

Such a creative communication in business can be
regarded as a manner for externalizing latent knowl-
edge, of marketers and developers of textile in the case
of Fig. 48.2. As studied in requirement engineering,
externalizing latent intentions and constraints of stake-
holders are an essential step for designing acceptable
products/services [48.33–35]. And, the latent (tacit di-
mension of) knowledge presented by Polanyi [48.36]
behind activities of humans should be and can be exter-
nalized for and by enabling a creative process of collab-
oration in businesses [48.37]. However, we should also
note that externalized or created knowledge cannot be
always evaluated highly or accepted by others.

This point can be linked to sticky information [48.3,
38, 39], meaning information is to be localized to indi-
vidual people who may be either industrial inventors
or consumers. The information about consumers’ re-
quirements and the knowledge of inventors are hard to
be transferred from/to each other, which may disturb
the mutual understanding of all stakeholders including
consumers. This happens even between developers of
a product, so sometimes teamwork in a firm comes to be
disturbed. In successful cases, even if useful informa-
tion in a firm is sticky, users of a product may propose
new designs from their own utility-intensive viewpoints
whereas manufacturers may design products to improve
the power efficiency from the solution-intensive view-
points. This might be good enough if the proposal of
user is easy to implement with techniques available for
users or if users get satisfied by the technical improve-
ment by manufacturer. However, this does not stand if
users’ ideas are not feasible or if technologies of inven-
tors are not easy to understand or available for users.

A new approach of chance discovery to this prob-
lem can be found in the invention of tsugology [48.40],
where the three-tuple hidden behind an action – inten-
tion, preconstraint (pre-existing constraint), and post-
constraint (the constraint to be made after and due to
the action) – is called a tsugo after a Japanese daily
use word. People, living in social relationships, should
externalize one’s and others’ tsugoes for choosing ac-
tions that are feasible, that is, for realizing an intention
under constraints that sometimes emerge from the real
life. A point of tsugology (studies for externalizing
and connecting tsugoes of stakeholders of a problem

in face) is that constraints emerge dynamically. That
is, post-constraints may emerge from one’s action and
may make a preconstraint on others’ actions, in contrast
to static constraints considered in design methodolo-
gies in the literature. For example, if Mr. X sells out
data on consumption of foods and drinks, the pre-
constraint of consumers, such as their requirement to
protect their privacy, may be violated. In this case,
the leakage of information about privacy is a post-
constraint for Mr. X that had not been considered before
but got externalized in discussing the plan to find busi-
ness opportunities from consumption data. By noticing
such a constraint, Mr. X should think of a new action,
such as using data without customers’ IDs but just link-
ing his data with other’s data about weather, via date
and time for realizing his original intention to sell beer
efficiently to suitable consumers. This intention itself
may also get externalized via speaking out his own
thoughts in a workshop with neighbors and colleagues.
As in [48.40], we found that the essential part of sticky
information is relevant to underlying tsugoes, that is,
intensions and constraints of stakeholders.

We can summarize the recommendable process to
chance discovery [48.6], learned from successful and
unsuccessful cases so far, as follows. The process
should start from data collection based on user’s (or
users’) interest. Then, one can visualize the data us-
ing suitable tools for chance discovery, and regard it as
a map of the market. The visualized result aids in col-
lecting stakeholders as participants of communication
to discuss novel scenarios leading to a successful busi-
ness. This process can be reinterpreted by the four-step
spiral below:

1. Sensing external events: Keep sensing events in the
environment, and collecting data on events that are
beyond individual human’s sensing capacity.

2. Recollection: Try to recollect and explain scenarios
from the past. These are sequences of events and
actions, explained with the background context. For
this step, subject data, that is, text about one’s and
teammates’ thoughts of actions and tsugoes, should
be collected to visualize thoughts as an itemized list
of sentences, drawn images, or a graph of word-
to-word correlations. Individual’s meta-cognition of
one’s own awareness is thus accelerated.

3. Scenarization: Extend the scenarios about the past
into scenarios as plans for the future, applying anal-
ogy, and explain the scenarios as done in step (2).
Data visualization here aids participants’ building
of scenarios based on the visualized connections of
events and items.

4. Co-evolution of scenarios: In creating, by com-
bining, scenarios in (3) participants speak out to



Part
I|48.3

1020 Part I Models in Engineering, Architecture, and Economical and Human Sciences

externalize variables, that is, embodied criteria to
evaluate the utility of created scenarios. Variables
relevant to tsugoes of stakeholders are to be ex-
ternalized here from awareness of inconsistencies
between scenarios of participants. Crosses of sce-
narios are obtained as a result of this step.

Via these steps, the following three effects are ex-
pected:

Effect I: Representing basic knowledge, that is, the
preparatory knowledge to be explained in step (2)
above and combined for innovation mainly in step
(4). The knowledge should be represented by indi-
viduals in order to enable the reasoning for novel
combination and explanation of scenarios. This re-
quirement for step (2) urges individuals to discuss
latent contexts behind events in step (1).

Effect II: Reasoning with combinations and analogy:
The extension with analogical transplantation and
combination in steps (3) and (4) of basic knowledge,
possibly with changing minor parts, are executed.
For this, participants are urged to find similarities
between the bases (problems for which basic knowl-
edge worked previously) and the target (the present

problem) and explain them as common features of
the past and the future, which work as candidates of
common variables of scenarios to be combined. For
example, relaxing in the center of Fig. 48.2 can be
a variable to explain an obtained use scenario of the
new item which is a candidate of potential chance.

Effect III: Communication with presenting users’/
inventors’ conditions: Individuals speak, reflecting
each one’s living condition, facing conflicts. Such
a communication is relevant to step (4) above,
urges awareness of latent conditions which should
be considered for reaching consensus about the
scenario to choose in decision making. For example,
the requirement to fit the trousers of suits could be
considered in modifying the color of the new textile
in the center of Fig. 48.2.

Note that items above show our viewpoints to
highlight the link between chance discovery and our
methods of workshops for innovation. For more general
principles of innovative collaboration, reader is referred
to references on collaborative design approach [48.41–
43], to find processes to evaluate and discover values of
existing and emerging items.

48.3 IM for Externalizing and Connecting Requirements and Solutions

Here again let us confirm that this chapter has been
written to show the utility of model-based reasoning
in data-driven innovation. For this purpose, the method
IMDJ to be introduced in Sect. 48.4 plays a role of envi-
ronment setting for communication toward data-driven
innovation based on the methodology of chance discov-
ery, by which we propose a model-based explanation
of reasoning to combine and analyze data. And, in this
section, we introduce IM in preparation for Sect. 48.4.

IM is a gamified workshop where ideas are created
by inventors who combine elements, that is, existing
technologies and pieces of knowledge, and evaluated
by players who play their roles as consumers. IM can
be regarded as a method for chance discovery. That is,
IM is a workshop where each inventor presents one’s
own basic knowledge from the viewpoint of a mem-
ber of the market (e.g., a provider/inventor of products),
reason with combinations and/or analogy, and commu-
nicate with consumers, focusing and shifting contexts.
The case in Fig. 48.2 can be regarded as an origin of IM,
where marketers knowing different parts of the mar-
ket and relevant technologies communicated to present
emerging demands for creating a strategic scenario of
business.

IM starts with a given set of basic cards, on which
summaries of existing pieces of knowledge are printed.
The cards are put on a game-board that is a graph, visu-
alizing the correlations among contents of basic cards
in order to aid the creation of inventors’ ideas. As in
Fig. 48.3, the inventor’s tasks are to buy a preferable
number of basic cards and combine some of those cards
to present an idea for new business. Other inventors
may propose the presenting inventor to start collabo-
ration or share the created idea, with negotiating the
dealing price. Here each can use a presented idea as
a new element to combine with basic cards or other
ideas. The inventor having got the largest amount of
money at the halting time (a fixed length of time af-
ter starting) wins the game. On the other hand, each
consumer plays one’s own role, which is an occupa-
tion chosen from among a variety such as housekeeper,
farmer, medical doctor, power industry, aged people,
students, manufacturer, transportation, etc., and buys
a preferable idea from some inventor for the price de-
termined by negotiation, for improving the life quality
of his/her own role. A consumer becomes the winning
consumer if he/she obtains the highest value as a result
of other participants’ evaluation about his/her presenta-
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Inventor
Consumer

Why don′t you buy my
new idea to invent a
headset for customer′s
information service?

Your idea seems
unsatisfactory, because
I requested information
anywhere any time.

Fig. 48.3 A scene of Innovators Marketplace (IM)

tion at the halting time. This presentation is about how
the quality of life will be improved by the ideas the
consumer bought in IM. IM has been introduced in in-
dustries and researches, for example, for strategies in
businesses and for sustainable safety of nuclear power
plants [48.13].

To make the game-board, the contents of basic
cards are collected to make a text file and visualized
with KeyGraph [48.29] or its extension such as data-
crystallization [48.44]. Here KeyGraph shows the posi-
tions of not only existing knowledge but also of latent
possibility that a new idea may emerge by combin-
ing pieces of existing knowledge connected or closely
located in the graph. For example, the basic cards show-
ing existing data in Fig. 48.4 (DJ here will be explained
later in Sect. 48.4) are DJ27: Basin sewer distribution
that shows the location of basic sewers in a city, DJ28:
City planning road information that enables to inves-
tigate the traffic conditions on each road of the city,
and DJ31: water supply diffusion that means data about
quantity of water supplied at each point of the city.
By combining these pieces of information, an inven-
tor proposed the idea of water disaster free city that
is to be realized by enabling to extinguish flooded pol-
luted water and to supply clean water to citizens. Since
this idea was evaluated highly by participants who at-
tended as consumers, hereafter the participants came to
be encouraged to apply data to reinforce disaster pro-
tection.

Reader interested in the details and the novelty
of IM are advised to see [48.13], but let us show
a very brief comparison of IM with another methods

Road information for
city planning Data about water

supply diffusion

Basin sewer
distribution

Solution: water disaster free city

Fig. 48.4 Innovation game on the game board, made of KeyGraph

of idea creation using stickers and/or cards. That is,
the Kawakita Jiro (KJ) method (as introduced Hamble-
ton [48.45], called Affinity Diagram) has been world
widely used for half a century since it was invented.
In KJ, collected pieces of information are put on cards,
arranged on a two-dimensional space and classified hi-
erarchically into clusters and subclusters, reflecting the
concepts participants externalize. Then, lines between
clusters are drawn with titles, corresponding to partic-
ipants’ ideas about relationships among the clusters.
Finally the location of all cards and lines among them
are observed. As a result, concepts and scenarios are ac-
quired by tracing the lines and closely positioned cards.
However, because visualization such as KeyGraph has
not been employed in KJ, the bird-eye view of the as-
sociations of ideas, is not easily available in the early
stage. As shown by Ohsawa and Nishihara [48.13],
we published technical features of IM such as the ef-
fects of KeyGraph. It is more important, however, to
learn the manner of communication in IM, borrowed
from the market of products and services, where people
interact competitively and co-creatively with evalua-
tions of ideas using toy money. And, the example above
(Figs. 48.3 and 48.4) is of a specific IM for combin-
ing and reusing data that is, of IMDJ to be mentioned
below. That is, the novelty of Innovators Marketplace
is not a point in this chapter where we focus on the
logical structure of users’ thoughts in IMDJ that is
a specification of IM. In other words, we use IMDJ as
a setting of collective intelligence for data-driven inno-
vation, in order to discuss the meaning of model-based
reasoning.
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48.4 Innovators Marketplace on Data Jackets

The IMDJ method has an additional novelty to IM,
which is the data jackets (DJ). The point of DJ is that
it enables participants to show out the digests of data
they own for evaluating the potential use value of data,
without opening the content. DJ can be used as a knowl-
edge unit as a card in IM to be used as an element to be
combined with others in the workshop. Advising reader
to see [48.46, 47] for some details, below let us briefly
introduce IMDJ.

48.4.1 Marketplaces of Data

As in the previous work such as IM, we define stake-
holders as people involved in the process to solve
a problem. In order to realize creative communications
for externalizing and solving problems they potentially
share, stakeholders should share data to the extent they
can. The market of data is a useful concept for realizing
such a creative communication of stakeholders seeking
innovation, in that the market is essentially a social en-
vironment where items are created and exchanged for
reasonable conditions. That is, data in the market of
data are created, valued, sold, opened free, shared af-
ter negotiation or based on some external guiding force
such as the governmental control. In the on-line mar-
ket of data [48.48, 49], a number of data digests are
exhibited, similar to the catalogue of free-access open
data (e.g., [48.50, 51]) except that prices are assigned
to each dataset in the market. The effect of thus pricing
data is significant. That is, potential users and providers
of data are enabled, respectively, via pricing, to pro-
vide and choose suitable data to share. Furthermore,
by estimating the utility of each dataset via negotia-
tion to discount/raise the price, stakeholders can even
discuss for improving use scenarios of data to ful-
fill new values in their businesses. For this purpose,
data should be priced reasonably on fair negotiation of
stakeholders – owners, analysts, users, and brokers of
data.

Thus, the market of data is expected to be a place
where the value of data are communicated with exter-
nalizing and sharing potential scenarios for combining
and using data. In addition, analysts often need to learn
techniques from each other. In order to analyze data
in hand, it is an essential step for an analyst to im-
port structural models of causality from domains of
other analysts, and to choose a suitable model for ex-
plaining the latent causality in his/her target domain.
This, in other words, is analogical learning of the ba-
sic knowledge structure [48.52] or of knowledge-use
process from other analysts. In comparison with the
diverting use of previous analysis, called transfer learn-

ing [48.53], the effect of the marketplace is to have
humans, rather than machines, learn generic ideas from
other analysts’ experiences.

The thoughts for data-driven innovation in IMDJ,
where values of data are externalized and shared in the
wide society, can be explained as a model-based reason-
ing (MBR) as in this chapter. The basic idea of IMDJ
comes from what customers and salesclerks do in shop-
ping stores of media such as movie DVDs, where only
quite superficial pieces of information in disk jackets
are shown for advertisement or for exhibition to cus-
tomers approaching shelves. On the other hand, the
content of DVD – movies, music, etc. – should be hid-
den in order to reduce the risk that the details may be
copied and used free by anyone who does not pay or
by rivals. Such a policy may look like an attitude of
data closure that may suppress data-driven innovation,
but is a useful idea as the basis of IMDJ where each
data owner takes part with filling in and disclosing only
DJs, which are just small pieces of information describ-
ing the digest of existing data. These pieces work as the
unit of knowledge in the logical reasoning.

48.4.2 The Procedure of IMDJ

IMDJ [48.46, 47] is a specification of the IM. IMDJ is
a process where participants propose ideas to combine
data, even if the data are confidential, by disclosing DJs
that are digests of existing data or data to be collected in
the future, and to analyze the combined data. In contrast
to data contents, hard to collect or manage, DJs are easy
to collect (just enter via [48.54], the entry sheet of DJs),
and to describe links between data. DJs here correspond
to elements to be combined in IM. For example, a DJ
corresponding to weather data and another to data on
consumptions in a restaurant can be disclosed, although
the data contents should not be, and used for under-
standing the potential relevance of data about weather
and about food consumption. Such an understanding
will be urged by presenting time and place as common
variables described in the two DJs. By communication
with sharing attention to these variables, participants in
IMDJ may propose a scenario to combine and analyze
datasets via links of DJs, to discover reasons for new
activities.

IMDJ is a gamified workshop, where winners are
to be determined in the same manner as in IM. That
is, one who earns the largest amount of money be-
comes the winning inventor, and one becomes the best
user if having made the best presentation about how the
solutions one bought in the game can satisfy the own re-
quirements in the market, as customers in IM did. Each
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DJ(A): food & drink
consumption DJ(B): weather

DJ(C): Nutritionbeer consumption meat consumption

place date

date

air
temperature

Ca

K

place

consumer′s ID

Proposed plan (solution): Combine data behind
DJ(A) and DJ(B), to learn a pattern
(a) Air temperature change at date (see DJ(A))
 → consumption at date

fat

protein

food/drink
(beer, meat, ...)

pla

Requirement. Tell me the
influence of weather on
the consumption of beer!

Fig. 48.5 The core step in
Innovators’ Marketplace
on Data Jackets (IMDJ)
(after [48.47])

participant listens to and evaluates others’ utterances in
order to buy practical and useful solutions in order to
become the winning user, and tries to present solutions
in order to be evaluated highly and become the winning
inventor as in Fig. 48.5 [48.47], in the communication
phase. For example, by combining two datasets, one
about weather and the other about liquor consumption,
a solution such as one tends to drink one more bot-
tle of beer if the air temperature is higher by 3ı than
the day before, can be proposed. This idea may be in-
teresting to a user working for a brewery, but may be
criticized if not yet satisfactory to others. Criticisms are
not easy to listen to, but urge improvements of solutions
in IMDJ because participants consider them rather than
being upset, in a gamified mood.

The utility of data may not be evaluated directly
in IMDJ, because data are not necessarily disclosed.
However, the utility can be evaluated reflecting the eval-

uation of ideas in DJ. That is, the evaluation of an idea
reflecting its feasibility and utility, that is, coincidence
with participants’ requirement, will be reflected to the
evaluation of DJs used for creating the idea. As a result,
a user interested in a solution pays both to the inventor
for the solution and to the expert, that is, provider of
the DJ used, for the data used for inventor’s creating the
idea. This indirect evaluation of data during the playing
time of IMDJ will be finally reflected to the condition
in which the data get provided to analysts or users. Data
corresponding to DJs used in creating an idea (solu-
tion), bought for a high price in IMDJ, are expected to
be purchased for a high price after the session of IMDJ.
On the other hand, even if the DJ has been used in many
solutions, the owner of the corresponding data may de-
cide to open the data free to the public in spite of the
high evaluation in IMDJ, for the benefits of people in
the society.

48.5 IMDJ as Place for Reasoning on Incomplete Models

48.5.1 Grounding Incompletely Defined
Models Into Well-Defined Models

IMDJ can be expressed as a process to revise models
of actions and events by coupling three types of infor-
mation, that is, (1) of requirement from users, (2) of
data from experts or data owners, and (3) of propos-
als from inventors. (1), (2), and (3) can be, respectively,
regarded as a global, local, and glocal models, as
follows:

1. A global model: The representation of desired
knowledge that a participant playing the role of data

user (corresponding to consumer in IM) expresses,
as a requirement without restriction of the technical
domain for solution

2. A local model: A set of atoms and/or terms in a do-
main of technology, which may be used for solving
the requirement above but not yet connected via
causal relations that are certain to be valid. These
models are to be given initially as DJs

3. A glocal model: The representation of a connec-
tion between local and global models, represented
by using elements in multiple local domains. Such
a model is expected to be created as the result of
inventors’ reasoning
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Requirement models of (1) above form an in-
complete structure of demanded causality or relations
among events. For example, a brewery’s requirement
to know the causality between weather and beer con-
sumption can be put in natural language as if weather
changes, the consumption of beer may change that is
incomplete in that it is unknown which variables of
weather should be included in the condition if weather
changes. Such a causality can be described as an incom-
plete and uncertain model as

beer_consumption ? weather_change ; (48.1)

where the LHS of the relation represented by ? shows
a tentative conclusion of the condition given in the
RHS. Let us call this as a declared requirement, or
goal G. Yet, the causality is not convinced or numeri-
cally evaluated in such a form as conditional probability
P(beer_consumptionjweather_change) because neither
beer_consumption nor weather_change are defined as
variables in data. The causality may be modeled as in
(48.2), on the other hand, via the analysis of data com-
bining data about beer consumption and about weather.
That is, somemodel may have been described by the ex-
pert of each dataset, as the local model, over functions
such as air_temp(date) and beer_percons(date), where
date means the variable in the form of dd/mm/yyyy ap-
pearing both in data beer_percons and air_temp. If so,
the proposed model in (48.1) can be concretized as in
(48.2) via data analysis and become a candidate of solu-
tion that embodies the requirement represented. This is
a glocal model because this connects the goal in (48.3)
and local models that is, data given in local domains
such as beer consumption and of weather. The local
model is made complete by data supporting. l and K
respectively mean liter and Kelvin.

beer_percons .date/ > 0:3 l

 air_temp .date/� air_temp .date � 1/ > 2K

(48.2)

The grounding from the incomplete model as in (48.1)
to the well-defined model as in (48.2) should occur
based on the knowledge of expert about data, via the
communication between experts and inventors in IMDJ
and analysis of data if applicable. Below we aim at
formally describing the systematic process where the
requirement, that is, the user’s goal as in (48.1), is to be
externalized and the solution to the requirement as in
(48.2) can be obtained based on experts’ local models
corresponding to provided data. The three stakehold-
ers, that is, experts, inventors, and users of data should
interact for restructuring the local, glocal, and global
models, respectively, in IMDJ in order to realize such

a process. In this section we aim at describing the con-
straints we should realize as a social system where the
process is to be realized.

Innovators Marketplace on Data Jackets, described
as a list of constraints

DJi.i 2 Œ1;N�/: The i-th DJ, among those collected be-
fore or created in IMDJ

DJi WD fFi;Pi;Vi; g , where elements are defined as fol-
lows:
Fi: the set of variables inDJi, expressed as functions

over other variables in DJi
Pi: the set of predicates (relations of variables) in

DJi
Vi: the set of other variables in DJi than Fi or Pj.

G: The goal, that is, the requirement incompletely de-
fined as the relation over informal terms correspond-
ing to events/features as in (48.1).

T: The theory, that is, a model described by a set of
clauses represented by a combination of defined
predicates in PG below. T is given by T (PG,FG, VG),
that is, a relation over elements PG, FG, and VG, of
a set of DJs in DJcom(G) defined as in (48.3), which
satisfies (48.4) where [v ] for variable v means the
defined domain range of the value of v and also sat-
isfies Conditions I and II mentioned below. Below,
we list a part, rather than all clauses, of T , in exem-
plifying T .

DJcom.G/ WD fDJa;DJb; : : :DJLg
� fDJ1;DJ2; : : : ;DJNg where

PG WD Pa [Pb [ � � �PL ;FG WD Fa [Fb [ � � �FL ;

VG WD Va [Vb [ � � � [VL : (48.3)

9v 2 VGŒ
8Vx 2 fVa;Vb; : : :VLg ;

9vx 2 Vx.Œv �\ Œvx�¤¿/� : (48.4)

Condition I: 9G0ŒG < G0( T�, which means goal G
subsumes a conclusion G0 derived by theory T .
Here, subsuming means there is a substitution to el-
ements in G that implies G0, and substitution here
means to rewrite terms in G using defined functions
in FG, variables in VG, and predicates in PG. This is
a generalization of substitution to variables, for the
grounding of informal (in natural language) expres-
sions of a goal.

Condition II: T is completely defined (this concept is
defined just after here) and consistent with data Da,
Db, . . . , DL corresponding to DJs in DJcom(G).

fDJa;DJb; : : : ;DJLg, put DJcom(G), is the DJ set,
the combination of which satisfies G.

Completely defined T above means a completed
glocal model, which is a logically consistent relation
between G0 defined in Condition I and theory T . Let us



Restructuring IncompleteModels in Innovators Marketplace on Data Jackets 48.5 IMDJ as Place for Reasoning on IncompleteModels 1025

Part
I|48.5

here restrict G0 and T to be a set of Horn clauses de-
scribed by one head (conclusion) and body (conditions)
for simplicity. The example of G0 and T below is used
only for this explanation of completely defined T in this
subsection.

G0 beer is consumed .city; date/

 air temperature rises .city; date/ : (48.5)

T W beer is consumed .city; date/

 air temperature rises .city; date/;

people are rich .city/ : (48.6)

air temperature rises .city; date/

 Typhoon is coming .city; date/ : (48.7)

Then the relation T is completely defined for G0 is de-
fined as follows:

i) G0 is derived by T and existing data, that is, the head
of G0 should be included in the head of some clause
in T , and all predicates in the body of G0 should be
in the body of some clause in T , with satisfying (ii)
through (iv).
Example: T above derives (i. e., resolves) G0 above
if it is believed to be true that people are rich and
Typhoon is coming as in (ii) below.

ii) All clauses and bodies of clauses in T are supported
by data if any, corresponding to DJs in DJcom(G),
and other clauses in T .
Example: people are rich and Typhoon is coming,
as well as (48.6) and (48.7), must be supported by
some data for deriving G0.

iii) In each clause in T , all variables in the head must
appear in some predicate in the body. This is the
range restriction constraint in clause logic.
Example: city and date are included in the bodies in
all clauses above.
Combining this condition with condition (ii), the
theory comes to be based on data. That is, all vari-
ables appearing in predicates derived from T are
certified to be in some DJ(s) in DJcom, as in (48.4).

iv) All predicates in the body of each clause must share
some variable(s) with some other predicates in the
same clause, for the resolution in deriving a predi-
cate in the head of a clause.
Example: city is shared between the two predicates
in the first clause in T above. This variable should
be also shared with Typhoon is coming in the second
clause, to be resolved with people are rich (city) in
deriving G0.
This condition is formalized as in (48.4), a point of
which is that the names variables may differ across
data, but the existence of common values in the

defined domain ranges is regarded as a reason for
believing the two variables can be unified. Such
a common variable is essential for enabling com-
parison or combination of data. However, the value
common to variables, for example, a variable vx in
Vx and vy in Vy, does not have to really exist in nei-
ther Dx nor Dy. This is because the analysis may
result in finding sheer difference in the values of vx
and vy rather than a pattern linking variables in Dx

andDy to be learned using common values of vx and
vy. In this sense, [v ] in (48.4) is defined as the do-
main range of variable v , not the values really taken
in data.

Note we have at least two alternative subconditions
for Condition II-(ii) as follows

Condition II-ii(a):
9D� Da [Db [ � � � [DLfT) Dg (48.8)

Condition II-ii(b):

Da [Db [ � � � [DL) T (48.9)

Condition II-(a) means T explains some part of the
data, and Condition II-(b) means T is a necessary the-
ory for the data in DJcom. A noteworthy point is that
the contents of data are not necessarily available in ad-
vance or in the initial state of IMDJ. In such a case, the
data are analyzed after the data trading after workshop.
And in the analysis, statistical validation for evaluating
the support, that is, the extent of satisfying Condition
II-ii(a), or the confidence that is, the extent of satisfying
Condition II-ii(b), of the theory proposed in IMDJ is to
be executed. If a theory – regarded as a glocal model in
this chapter – is not acceptable according to the evalu-
ation, the revision of the model will be considered, and
new rules will be explored by data mining applied to
data in DJcom.

48.5.2 Abductive Reasoning for Thoughts
and Communications in IMDJ

Let us return to the example of (48.1) and (48.2), in
order to present the process of reasoning to obtain sat-
isfactory models. The breaking of (48.1) into (48.2), is
to be realized here via the substitution below.

Transforming goal G to G0: put beer_consumption
 ? weather_change as in (48.10) by substituting
beer_consumption with beer_consumption (date) and
weather_change with air_temperature_change(date).
This and the next step to describe (48.11) and (48.12)
are to be executed by considering words’ meaning.

G0 W beer_consumption .date/

 air_temperature_change .date/ (48.10)
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Definition of predicates in G0: for undefined con-
stants ˛ and ˇ,

air_temperature_change .date/

WD air_temp .date/� air_temp .date� 1/ > ˛K
(48.11)

beer_consumption .date/

WD beer_percons .date/ > ˇ l (48.12)

G0 is thus interpreted as (48.13)

air_temp .date/� air_temp.date� 1/ > ˛K
 beer_percons .date/ > ˇ l :

(48.13)

And, parameters ˛ and ˇ in (48.11) are embodied us-
ing data below, brought in by experts of weather and of
beer, respectively, modeled by functions as

air_temp .date/ W
average daily air temperature for each day date

beer_percons .date/ W
average consumption of beer per consumer for date

As a result of validation on these data, parameters
are substitutedwith values as ˛ D 2 and ˇ D 0:3, so that
(48.2) is obtained as the solution, which is a completion
of the theory as glocal model in (48.13).

As shown above, the initial and informal model G
of requirement globally rules the overall knowledge
processing from a general viewpoint, that is, with-
out fixing variables in any data (such as date) to use
for reasoning. Then, the local models in (48.11) and
(48.12) corresponding to data in local domains are cho-
sen and applied, to connect beer_consumption(date)
and air_temperature_change(date) in G0 of (48.10) via
variable date and the clause created in the glocal model.
As a result, the incompletely defined goal G is put into
an expression of first-order logic (FOL) with defined
predicates.

Here we should note the goal could not have been
translated into such a well-defined FOL without hav-
ing experts’ knowledge for modeling their data. Also
here we find inventors’ reasoning to combine experts’
models as in (48.11) and (48.12) worked in substituting
words in the global model, that is, the informally sug-
gested goalG, with predicates to be defined on variables
in available data. Without this contribution of experts’
knowledge, (48.2) and (48.13) may have lost the com-
pletely defined nature especially Condition II-(iii), and
put as in (48.14) due to choosing data on the superficial

similarity to terms in G and variables in data, without
checking the meaning or values of variables.

beer_consumed .month/

 weather_condition .week/ (48.14)

In (48.14), variables are not shared between the head
and the body. Thus we can regard the inventors’ models
as glocal, that is, the result of interaction between the
global model and local variables in VG in data. On the
other hand, in the successful example to derive (48.2)
above, date worked as the common variable in VG be-
tween the used two datasets, playing the role to connect
data on weather and on beer consumption. The utility of
this variable is evaluated and supported by comparing
the values in date in the data including air_temp(date1)
and the data including beer_percons(date2) to find the
existence of common values between date1 and date2,
as meant by (48.4). As a result, it is confirmed that date
can be in VG and used for resolution of the two predi-
cates.

As in this case, the requirement should be presented
by a data user. Then, in order to translate the require-
ment into FOL, the elements in the requirement should
be put into predicates or functions corresponding to
variables in existing data. A set of data, including these
variables and share variables such as date in the above
example, should be collected here. For this, experts hav-
ing models of data may be invited for presenting local
models for these data, for using/collecting data corre-
sponding to local models that may derive the global
requirement model if combined by the glocal model of
inventors’ proposal. An alternative set of data may be
proposed here, described as DJcom, if a set is not satis-
factory for describing the requirement. This goal-driven
process of reasoning can be regarded as abduction, and
itemized as steps below. It is clear from this list that the
organization of IMD provides with the reasoning and
communication required for satisfying constraints pro-
posed in the previous section.

A Process of Abductive Reasoning with
Communication for IMDJ

Step 1 (goal setting): Users of data or of analysis re-
sults express requirement G as a model G0 in FOL,
with predicates invented with the assistance of ex-
perts. Here experts describe local models for DJs
with inventing predicates (functions are translated
into predicates as in (48.11) and (48.12)), reflect-
ing the interpreted relations of attributes in each DJ,
and make DJcom a set of DJs including attributes or
predicates in G0.

Step 2: Inventors check the existence of common val-
ues of variables in different DJs in DJcom (for this,
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DJ(A): food & drink
consumption

DJ(A): food & drink
consumption

DJ(A): food & drink
consumption

Step (3)
Glocal (proposal) model T i.e., hypothetical solution
beer_consumption (date) ← air_temperature_change(date),
air_temperature_change(date)
  := air_temp (date) – air_temp(date –1) > αK
beer_consumption (date) := beer_percons(date) > β l

Step (1)
G (Goal, i.e., the model of requirement)
 beer_consumption ← ? weather_change
G' (revised model for the requirement)
 beer_consumption(date)
 ← air_temperature_change(date)

Step (2)

Failure in step (3) restarts the process

DJ(B): weather

DJ(B): weather

DJ(B): weather

DJ(C): location of stores

beer_consumption (date) Atom–variable, item, word, etc.
Atom in the glocal model for a requirement

Customer′s requirement
Links in glocal models
Links in local models

air_temperature_change (date)

beer_ percons

beer_percons (date)

beer_percons
(date, store)

place
date

air_temp

place
date

date

date

date

date

place

store

store

Evaluation of T : 70% confident for α = 0.3, β = 2.
This is a failure, because 70% is not sufficient (continuing to the next cycle)

G (Goal): Revised model for requirement, where terms invented already are used but
variables for each predicate and the causality are uncertain:
 beer_percons(date, store) ← ? air_temp (date, place(store))

Revised glocal model by inventor:
 beer_perconsRev(date, store) ← air_tempRev(date, place(store))
 beer_perconsRev(date, store) :=    beer_percons(date, store) > 0.3 l
 air_tempRev(date, place(store))
    :=    air_temp(date, place(store) = Tokyo)) – air_temp (date–1, place (store) = Tokyo) > 2K.

Validation: 85% confident for stores in Tokyo

air_temp (date)

air_temp (date, place)place (store)

Fig. 48.6 The abductive rea-
soning based on incomplete
models in IMDJ

it is recommended that experts declare the defined
domain range of variables in describing DJs in ad-
vance).

Step 3 (abduction as the main step): Inventors explore
hypothetical theory T , which derives G0 and include
only predicates and attributes obtained in steps so
far.

If such a hypothetical theory T exists, T is evalu-
ated subjectively on users’ interest, or objectively on
data, if available, corresponding to DJs of which at-
tributes and predicates are in T . If the evaluation of
T is higher than a predefined threshold, it is regarded
as the solution. If the evaluation is lower, discard T
and restart Step 3.
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DJ(A): food & drink
consumption

The next cycle, if step (3) still evaluates the theory as
of low quality

DJ(B): weather
DJ(C): location
of stores

DJ(D): natural phenomena

beer_percons
(date, store)

date

date

date place

place

store

G (Goal): Final model for requirement
 beer_percons(date, store) ← ? phenomenon (date, place)

air_temp (date, place)

air_temp
(date, place)

phenomenon (date, place)

place (store)

store

Final glocal model by inventor:
beer_perconsRev(date, store)
  ← typhoon(date–1, place2), close(place(store), place2)
Above: supported by the following local models
 beer_perconsRev(date, store)
  ← air_temperature_change (date, place(store)))]
 air_temperature_change (date, place1)
  ← typhoon(date–1, place2), close(place1, place2)
where
beer_ perconsRev(date, store) := beer_percons (date, store) > 0.3 l.
close(place1, place2) := distance(place1, place2) < 3000 km
typhoon (date , place) := phenomenon (date, place) = typhoon

Fig. 48.7 An abductive
reasoning, where local
models are added (continuing
from Fig. 48.6)

Otherwise (if no hypothetical theory T derives G0),
call experts for adding DJs (including attributes
missed for derivingG0), and restart from Step 1 since
the failure to deriveG0 means the global model is not
supported by the current local models.

Thus, each hypothetical theory T turns out to be
a glocal model combining local models obtained in Step
3 to explain G0 of Step 1. The criteria for the evalua-
tion of theories on data corresponding to DJs, in Step 3,
should differ for different goals. For example, data on
beer consumption per day in all districts will be desired
for validating (48.13) precisely, if covering all districts
by beer market is desired. For this purpose, a DJ for in-
venting T and the data for evaluating T should include
address of consumer as a variable. On the other hand,
this variable will not be reflected neither to invention
nor evaluation of T , if the goal is to check the total
consumption of beer all over a country. In a different
case, the user may evaluate the novelty of T , in spite of
its low precision and small coverage in the market, if
he seeks to discover a clue for creating new market of
beer.

Figure 48.6 shows a modification of the last exam-
ple, in that the model once obtained in Step 3 is here
as insufficient (70% of confidence) with substituting ˛
with 2 and ˇ with 0.3. This is superficially a failure but
is a case of requirement externalization, in that the re-
sult of data analysis made the user notice his/her own
latent desire to predict beer consumption by higher con-
fidence.

As a result, participants will consider to add data
about the correspondence between liquor store and its
location given by the variable place, so that expert(s)
owning such data creates a new function place(store)
for explaining his knowledge about additional data (the
latter half of Step 3). This can be regarded as an in-
vention made because the insufficient confidence as
a result of the previous analysis is attributed to the
insufficient consideration of attributes, which may ex-
plain beer consumption, such as the liquor store selling
beer. By adding the attributes, that is, (date, store)
or with (date, place(store)) in Step 3, participants ob-
tain a model as more confident proposal, as in the last
step of Fig. 48.6. Here, the store selling beer and its
place are connected due to adding DJ. This case shows
the nonmonotonic nature of abduction in the proce-
dure.

Figure 48.6 is still a simplistic example. More
generally we may iterate abductive reasoning further.
For example, additional data about extraordinary natu-
ral phenomena including disasters, may be used as in
Fig. 48.7 for learning such a causality as if typhoon is
active in China, the air temperature in Tokyo increases.
This causality will be obtained by finding a correspond-
ing pattern from data inventing predicate typhoon as

air_temperature_change .date; Tokyo/

 typhoon.date� 1;China/ (48.15)

Furthermore, by inventing predicate close with collect-
ing facts for other places than Tokyo and China, the goal
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may be revised to (48.16), meaning one should be con-
cerned about the influence of natural phenomena such
as typhoon for predicting the beer consumption per con-
sumer

beer_perconsRev .date; store/

 typhoon .date� 1; place2/ ;
close .place.store/; place2/ : (48.16)

The real intension of user may have been to vali-
date an idea like (48.16), rather than the uttered one as
in (48.1). On the way of communication in IMDJ, such
a real intention tend to be externalized. As in these ex-
amples, participants concretize local and glocal models
from goals given as abstract global models and various
datasets, by revising and combining local models in the
abductive reasoning to derive the goal.

48.6 Conclusions
In the Innovators Marketplace on Data Jackets (IMDJ),
small pieces of information called Data Jackets con-
taining abstracts of confidential data, that is, data that
cannot be disclosed, are submitted. Then the process of
IMDJ goes as a gamified workshop where participants
create and propose ideas to combine and/or analyze data
corresponding to DJs. The ideas are evaluated, on the
matching of requirements and the utility of the expected
knowledge or action scenario to be obtained from the
proposed analysis.

This chapter proposed a formalization of the pro-
cess of IMDJ as of abductive reasoning, and derived
a proposal of refined process of the workshop to iter-
ate cycles of steps for communication, reasoning, and
sharing DJ. By this formalization, the link of IMDJ to
a logical framework in model-based reasoning and to
a feasible procedure of innovation came to be clearer
by introducing the co-evolution of global, glocal, and
local models. These models correspond respectively to
the requirements of data users, the proposals of inven-
tors of analysis plans, and the knowledge of experts of
data domains.

Such a logical formalization from the viewpoint of
model-based reasoning is of high use value, in two

senses, that is, (a) the presented three steps are expected
to save IMDJ organizer in explaining the procedure
without ambiguity, (b) we may consider in the future
to automate a part of the whole process with develop-
ing computational methods to cope with the complexity
of nonmonotonic reasoning [48.55] such as abduction.

In the future, our direction will be to realize logical
IMDJ, mainly in the sense of (a) above, toward humans’
logical and creative data-based decision making. An es-
sential problem addressed to the future is how we can
support a beneficial real act of participants of IMDJ.
That is, they tend to invent new, rather than just ad-
hering to given, requirements as pointed out in the last
section, motivated by the communication in the work-
shop. The frequency of this act cannot be explained by
just adding Step 0 before the whole procedure presented
in this chapter, nor should be suppressed just for follow-
ing this procedure because this act results in inventing
data reuse plans with novelty and utility.
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49. Models in Pedagogy and Education

Flavia Santoianni

Pedagogy is a discipline concerned with theo-
ries and practices of education. Its epistemological
model is complex. It may be considered as qual-
ified by two structural directions: pluralism and
dialecticity.

The pluralism of pedagogy is represented by its
possible theoretical routes, by the different levels
of sharing of disciplinarity and by a multiplicity
of aspects. It involves empirical and experimental
research, historical and philosophical dimensions,
and epistemological and metatheoretical lines.
The theoretical plurality of pedagogy concerns sub-
jects, ages and places of education, languages and
research methods, and actual directions and inter-
pretative issues. The multidisciplinary plurality of
pedagogy distinguishes it in pedagogical sciences,
educational sciences, and educational develop-
mental sciences. The disciplinary multiplicity of
pedagogy is expressed by the diversity of peda-
gogical sciences that belong to general pedagogy.
Even if pedagogical sciences are multiple, social
pedagogy, history of pedagogy and special needs
education are disciplines specifically related to the
field of pedagogy.

The dialecticity of pedagogy expresses its con-
troversial nature divided between science and
philosophy. The scientific approach to pedagogy
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evolves from systematicity to complexity. It de-
velops, namely, in parallel with the construction
and the reconstruction of the very idea of sci-
ence. The systematization of educational sciences
strengthens the philosophical role of pedagogy.
The so-called identity crisis of pedagogy will bring
it to rediscover the sense of its own reflexive in-
tentionality. The relationship between theory and
practice makes pedagogy a science of education,
in particular a theory of educational development
processes.

Pedagogy is a discipline concerned with theories and
practices of education. The etymological meaning de-
rives from the Greek language and means to guide
(˛����) the child (
˛�	), that is, education. Pedagogy
today relates to all the ages of humans and to a plurality
of relational contexts.

From an epistemological viewpoint, the discipline
is characterized by a complex model. As introduced by
Cambi [49.1], this model shows two structural direc-
tions: pluralism and dialecticity.
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49.1 Pluralism

The pluralism of pedagogy is represented by its possible
theoretical routes, by the different levels of sharing of
disciplinarity and by a multiplicity of aspects.

From a pluralistic viewpoint, it is possible to distin-
guish three coexisting aspects:

1. Empirical and experimental research, related to the
model of the hard sciences.

2. Historical and philosophical dimensions, anchored
to specific values and perspectives.

3. Epistemological and metatheoretical lines, which
express the critical and regulative role of the dis-
cipline.

49.1.1 Theoretical Plurality

Pedagogical theoretical routes concern a plurality of
subjects, the ages of education, the places of education,
the languages, the research methods, and several inter-
pretative directions.

Subjects, Ages, and Places of Education
The subjects of education have individual biological,
psychological, and relational differences [49.2], which
modulate their own ways of learning in a wide range
of possibilities including cognitive discomfort and spe-
cific learning disorders [49.3, 4]. There are studies on
gender [49.5] and social differences [49.6] regarding
economic, environmental, and cultural deprivation. An
emerging field concerns ethnic, linguistic, and cultural
differences, which triggered intercultural studies [49.7,
8].

Learning is seen as an on-going process throughout
the course of an individual lifespan [49.9]. For this
reason, pedagogy concerns multiple ages: basic educa-
tion for children and youths until university, with the
processes of literacy and schooling; continuing educa-
tion for adults, and educational proposals for seniors.
Education is about the cycles of life – in a pedagogical
and andragogical perspective – to implement lifelong
learning, continuing education, adult education, and
theories of adulthood [49.10]. The methodology of
these approaches is based on the analysis of experiential
contents and on the encouragement of self-manage-
ment of learning processes. The teacher as a facilitator
becomes an organizer of resources [49.11]. Adult
education is continuous because it includes different
stages of individual life. Adult education encourages
change, through transformation and reorganization
impulses, for a constant renewal of the person.

The places of education interact with individual and
social development [49.12]. Family is the context of pri-

mary socialization, where learning is both explicit and
implicit. School is the place of formal education and
of self/guided reflection, even if the teaching and learn-
ing relationship can be influenced by implicit learning
also here [49.13]. Moreover, institutions and associa-
tions that manage cultural activities – such as museums,
libraries, and theaters – are considered places of nonfor-
mal education [49.14].

Also, technologies may be interpreted as a con-
text of education [49.15]: for example, the instruments
of social communication, as traditional media (cinema,
television, radio, telephone) and electronic media (com-
puter and social networks).

Languages and Research Methods
Pedagogy uses different languages. Explicative, analyt-
ical, and descriptive language – preferred by scientific
pedagogy – coexists with narrative, and interpretative
language by which personal stories are analyzed. The
philosophical language of axiological nature defines
the epistemological scope and the content value of the
discipline, while everyday life and common sense lan-
guage is usually utilized to solve concrete problems.
Finally, there are the nonverbal languages [49.16], as
the proxemics of communication, and the disciplinary
languages [49.17], specifically used by the disciplinary
didactics.

Research in education is multifaceted: it may be the-
oretical research, basic, formal, and structural research,
which deals with the relationship with other sciences; at
the same time it may be experimental research, which
uses observation and measurement to improve teach-
ing practices. It may be historical research, which deals
with the evolution of educational institutions, and com-
parative research, which compares different territorial
and national models of pedagogical organization.

Methods of educational research are several: nomo-
thetic, idiographic, experimental, grounded theory, ac-
tion research, historical, comparative, narrative, and
clinical methods. They are quantitative and qualita-
tive [49.18], they connect the scientific and philosoph-
ical areas of the discipline, and are often considered
interpretative paradigms more than scientific methods.

Directions and Interpretative Issues
Pedagogy discusses either recurring and structural is-
sues or emerging issues. Among the recurring and
structural issues is the question of the relationship be-
tween education, instruction, training, and educational
development: what are the mutual influences? A related
issue is the question of the relationship between means
and ends: which are predominant, from time to time, in
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different historical situations? Another theme is related
to the critique of educational institutions: what is their
role and their more effective work?

Also, there are issues that affect pedagogical anti-
nomies. These can be formal – science and philosophy,
theory and practice, knowledge and skills, technology
and art. Or these can be theoretical/practical – au-
thority and freedom, culture and professional training,
rupture and continuity in education. Pedagogical anti-
nomies can also be practical/educative, such as those
concerning the relationships between teacher and stu-
dents. Other issues relate to the set of educational skills:
which one should be the better training? Moreover, the
links between pedagogy and politics: what relationships
subsist with ideology?

Emerging issues relate to forefront issues, such as
how to define the concept of educational development,
how to prepare the young on the complexity of the
current situations, and how to educate them to respect
differences, especially in multicultural societies. Also,
how to discuss the concept of value in postmodern
societies, and how to dig deeper on the topic of subjec-
tivity and its global interpretation through the concept
of the persona, to focus on its role in education and
school.

This entails recognizing the relationship between
body and mind, and the cognitive, affective and or-
ganismic dimensions that are intertwined according to
a comprehensive and holistic vision. Another aspect
is to implement guidance procedures in learning path-
ways, within a process of care and taking charge of the
learner.

In this sense, the role of the school is significant:
how can and should it be autonomous and selective,
how should it be influenced by technology? Which
positions should be taken towards students in situa-
tions of great difficulty towards learning: for instance,
the meaning of rejection of school. How about the in-
tention of educating for community participation and
critical thinking? Moreover, the openness and inclusion
towards students in trouble, with specific learning dis-
abilities or with physical disabilities, as well as towards
students from other cultures.

Culture is another topic of interest: to recognize the
role played by culture in the school, to affirm a plural-
istic and dialectic culture, to educate the young towards
a crosscultural mind, to recognize the role played by
humanistic knowledge as by scientific and technologi-
cal ones.

This discourse includes a reflection on communica-
tion technologies. The on-going debate on information
and communication technology today asks not just what
are the chances of access to knowledge through net-
works of communication, but rather how pedagogy can

render effective the opportunities for learning and shar-
ing in a relational network from an educational point of
view. Communication technologies may alter the space-
time dimension, so pedagogy needs to reflect on the
meaning of virtual experiences. Moreover, these ex-
periences should be joined to traditional routes. New
methods of distance education are studied and the crite-
ria by which e-learning can be effective for learning is
expanded. Media education explores the use of media
and even their social, psychological, and communica-
tive power and their possible individual and collective
influences.

Particular attention is given to the concept of free-
dom, seen both as subjective realization, personal
emancipation and as a competent and active citizen-
ship in a supportive community. Finally, attention to the
environment is given either as research on learning en-
vironments design, in all its diversity, or as ecological
education.

49.1.2 Multidisciplinary Plurality

Of how many domains may pedagogy consist? The
knowledges that compose it, or which are around it, can
be distinguished in pedagogical sciences, educational
sciences, and developmental sciences [49.19].

Pedagogical Sciences
Pedagogy is divided into pedagogical sciences, which
all have general pedagogy underlying. These sciences
can be numerous and are constantly developing, in-
creasing according to the specialization of knowledge;
in particular: social pedagogy, history of pedagogy,
special needs education, didactics and experimental
pedagogy. Experimental pedagogy, such as didactics,
is seen as a theoretical, methodological, and practical
framework in a close relationship with general peda-
gogy [49.20].

Educational Sciences
Educational sciences are disciplines that study the gen-
eral and local conditions of education and the educa-
tional situation; they accomplish a general reflection
on education [49.21]. Educational sciences include the
historical, epistemological, psychological, sociological,
and didactical fields of investigation. Therefore, they
include disciplines such as history of education, ed-
ucational epistemology, psychology of education, so-
ciology of education, anthropology of education, and
teaching.

In this interpretative framework, philosophy of ed-
ucation can be considered at the border of educational
sciences, because it plays a regulatory and mediating
role of a metareflective nature in relation to sciences of
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education. Hence, it supports general education from an
epistemological point of view.

Educational Developmental Sciences
Educational developmental sciences represent a trait
d’union with other disciplines that, in the humanities
or in the natural sciences, study the development of the
human species.

What relationships are between pedagogy and other
areas of knowledge? What are the relationships that
pedagogy develops with other disciplines [49.22] and
which fields and levels of these relationships may be
concerned [49.23]?

The pluralistic nature of pedagogy leads it to bor-
row research objects and methods of investigation from
other disciplines; for this reason, sometimes there are
chances of confusing its disciplinary identity with other
ones. Relations between the different types of knowl-
edge can be multidisciplinary, interdisciplinary, and
transdisciplinary [49.24]; these are connections of in-
creasing interdependence.

The relationship between pedagogy and science
of education should be multidisciplinary. In this case,
different disciplines, with different epistemological
stances, with various research methodologies and sec-
torial operational tools, can share research hypothesis
of mutual interest and then collaborate together with-
out losing their disciplinary specificity. Pedagogy is
a model of science in itself [49.25].

49.1.3 Disciplinary Multiplicity

The multiplicity of aspects that compose the educa-
tional pluralism can be represented by the diversity of
pedagogical sciences that belong to general pedagogy.
Pedagogical sciences are multiple; some ministerial
subdivisions refer to the social pedagogy, history of
pedagogy and special needs education as disciplines
specifically related to the field of pedagogy.

Social Pedagogy
Social pedagogy applies the educational theories in op-
erational form to various social contexts and reflects
theoretically on these issues [49.26]. Its role is to weld
the educational activities in the territories, within their
local dynamics, in a transformative and emancipatory
way for all the partners involved and the communities
to which they belong.

The task of the social pedagogy is to build an in-
tegrated educational system between the school and
the nonformal agencies such as the family, the church,
the working world, the associations, the local author-
ities, and the informal systems, such as multimedia
networks.

Social pedagogy uses a systemic-relational model
of education that allows the placing of local interpreta-
tive patterns within more global visions. Through this
model it manages to connect theory to practice and vice
versa, by reformulating from time to time, in a partic-
ipatory way, practices and theories in relation to the
educational needs of the communities in which they are
highlighted.

The disciplinary knowledge cannot be separated
from the contexts but rather should be able to under-
stand their specificity, the existential experiences that
develop in them, and their social emergencies through
participatory action research [49.27].

History of Pedagogy
History of pedagogy also relates to the history of
educational institutions. After the 1970s of the twen-
tieth century, the history of pedagogy gradually inter-
acts with the history of education, since this includes
more detailed attention towards the educational sys-
tems [49.28].

History of pedagogy studies how the concept of ed-
ucation has developed in the course of the history of
humanity [49.29]. The diachronic dimension of the con-
cept of education has developed in the transition from
the Greek paideia, the free human development through
culture, with aims of universal validity, to the bildung of
the nineteenth century, unitary and not fragmented ed-
ucation, linked to the composition of several domains,
from science to art, through which subjects shape their
own image, bild.

In the Greek paideia, education takes place ac-
cording to perspectives of universalization and interior
harmonization through culture. Although there is a du-
alism of educational models, because intellectual work
and manual labor are separated, paideia represents the
ideal of the human, the global expression of the individ-
ual in its full manifestation. The paideia embodies the
encyclopaedic tension of the classical world, the open-
ness to all knowledge, the idea of humanities as areas of
study. Education consists both in the personal relation-
ship between the teacher and the student, both in the
competitive tension which affects the corporeal dimen-
sion, the physical appearance, shaping itself as practical
education within the polis, a pedagogical community in
a global sense.

In the Greek enlightenment, culture becomes more
critical, technical, scientific, and democratic. Paideia
becomes more attentive to human problems and to the
techniques of speech, to the use of words. Education
is moral, rhetorical, and historical, increasingly tense
to the principle of kalokagathos, the beautiful and the
good, the cultivation of the specific aspects of humanity
through the study.
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In Socrates’ thought, education is considered as
episteme and not just as ethos or as praxis. Educa-
tion therefore becomes paideia, the universalization of
the subject through rational discussion, education of
mankind through culture and civilization – maieutical,
dialogical, and dialectical. An education in which the
humanitas is the result of a focused education to the
know thyself. The range is from a pragmatic to a theo-
retical dimension of educating.

In Platonic paideia, education of the individual
under the control of reason takes place through the con-
templation of ideas (the man is imprisoned in the cave
of the body and of the doxa, of the opinion). The aim
of the paideia is the recognition of the spirituality of the
soul and of its contemplative identity; virtue is identi-
fied with knowledge. Political paideia is born, which is
activated according to the different social classes and
their different ways of education (technical learning for
manufacturers, training courage for warriors, dialectical
education for rulers).

Paideia embodies a blend of musaica education
(gymnastics, poetry, and music) with literary education,
thus representing an overall process. However, in this
time arises the dichotomy between a rational and philo-
sophical model of education, regarded as superior, and
a lower model – technical, professional, and produc-
tive – of education. This dichotomy will be destined to
last in Western society.

In Aristotelian paideia, men realize themselves ac-
cording to their own shape, defined by the intellectual
activity (nous). The aim of education is to achieve the
virtue of wisdom through the educational mastery and
the control of the body. Man is a social animal that de-
velops in a concrete and real way.

In Roman civilization, education becomes literary
education but even moral education, civic virtue, re-
spect for tradition, for patria potestas and res publica.
The educational model is based on the values of hero-
ism, dignity, and courage; also piety, and sacrifice.
Education acquires the rhetorical character of human-
itas, the study of the liberal arts, Humanae litterae, as
an introduction to the virtues of the orator, an ideal fig-
ure from an ethical standpoint.

The Latin humanitas switches to Middle Ages
paideia Christi. After the conquest of Greece and the
contact with the Hellenism, the Roman culture is trans-
formed and acquires the Hellenistic character of edu-
cation as self-care, self-control, inner balance, literary
culture, use of the word, and consciousness of tradition.
Ties with the Republican custom become loose: educa-
tion is about man as universal expression of humankind
and not just as a citizen.

By the Hellenistic influence, pedagogy gradually
frees itself from the ethos, until the romanitas model

(which is based on the recognition of the state, on the
rights, and on an hegemonic and universal culture) will
be integrated with the educational model of the Chris-
tian culture, which advocates political and social values,
different and revolutionary than the classic ones such as
equality, solidarity, and humility.

Enkyklios paideia coexists with the educational vi-
sion of religion in a blend that lasts until the Middle
Ages, when Christian paideia and its educational pro-
gram, related to the Christian message – to its values
of interiority, sublimation, transcendence – will over-
shadow the classical culture.

Middle Ages paideia turns into the humanistic and
renaissance model of education, which is rooted in
a man-centered secular worldview, whose author is
Homo faber (either as an individual, and social subject).
The key concepts are those of freedom, progress, eman-
cipation, and rationalization.

Humanistic paideia returns to classical paideia: it
becomes free human education in touch with culture
and social life. Humanistic paideia resumes its aesthetic
and scientific aspects from classical paideia, as its ex-
pression in the arts, its development in the techniques,
its statement of thought as the study of the living and of
the existing in a multiplicity of fields (from created to
constructed), and its capacity to change reality.

The educational model is political; it revolves
around a secular and civil education, worldly in its char-
acter, in controversy against subordination to theology,
to encyclopaedism and formalism. It is, however, an
aristocratic education, not directed to the middle and
popular classes as, instead, the movement of the Ref-
ormation that encourages an autonomous approach to
culture and its dissemination through a personal read-
ing of the holy texts.

Pedagogy of the counter reformation promotes ed-
ucational curricula inspired by a rhetorical and gram-
matical vision of education, characterized by detailed
precepts and by strict rules. For instance, the ratio stu-
diorum, the planning of educational activities governed
by strict regulations, in line with the ethical and reli-
gious aims of the order of the Jesuits, whose cultural
and educational model converges to the political and
social models expressed by religious and civil author-
ity.

In the late renaissance, education becomes more
and more tense towards an encyclopaedic vision of the
knowledge and becomes, in the late sixteenth and early
seventeenth century, utopian pedagogy. Pedagogy aims
to correlate a harmonic model of man, proper to hu-
manistic pedagogy, with the design of ideal societies,
in which the individual is a civil and social subject. At
the same time, the seventeenth century is the century of
the new science, in which the scientific method is born
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and opens up the way for a rigorous foundation of ped-
agogy through a problematization of the methods and
an experimental approach to practice.

In the eighteenth century, the concepts of education
and socialization prevail over fragmentation of edu-
cational models and education is defined in a social
and scientific sense. The bourgeois vision is affected
by the political and cultural reformism of the secular-
ized society: education acts as social homologation and
a strengthening of civic consciousness for a promotion
of the rational, free from prejudices and beliefs.

The modernity remarks the gradual emancipation
of pedagogical knowledge from metaphysics – its pro-
gressive scientific investment and its consequent rela-
tivization – as confirmed by the links with politics and
ideology.

The sociopolitical paradigm in pedagogy can be
said to be characterized by the social philosophy of
education, with ethical and political objectives, by the
oscillation between the role of education on policy and
vice versa [49.30], and by an historical, critical, and
hermeneutical accuracy. The theory of education uses
the social commitment as a model of the character of
design of pedagogy, for a renewal of society; so it grad-
ually moves away from any philosophy of education
that reflects the dominant culture.

In the ninteenth century, paideia comes back as
German bildung and its full educational expression.
This century shows the link between education, soci-
ety, ideology, and politics early but also between art
and pedagogy; from an epistemological point of view,
pedagogy becomes a rigorous, experimental, positive,
and autonomous domain at the end of the century. The
positivist scientific paradigm indeed brings pedagogy to
social and institutional rationalization tasks.

In bildung, the human and cultural education inter-
connects individuality, science, and art to a model of
man that elaborates its own internal shape, its image,
bild. Bildung thus recovers the meaning of paideia as
unification of knowledge against the fragmentation of
culture and the influence of technology.

During the twentieth century, the deconstruction of
the subject and the specialization of knowledge led to
a rethinking of the ideal concept of paideia. The many
directions taken by pedagogy share the idea of a new
model of bild – synergistic, developmental, and dys-
morphic.

Pedagogy is now disenchanted: it shares the is-
sues related to the postmodern societies and attempts
to address them. At the same time it does not give
up the project of construction of identities and of re-

thinking of subjectivity. The involved categories are:
deconstruction, interpretation, planning, responsibility,
communication, and solidarity.

Through these categories, scientific and philosophi-
cal pedagogy find their meeting point in the idea of the
subject as a person. Pedagogy becomes the science of
the personal education, in the society of diffused knowl-
edge.

The social dimension becomes collective sharing,
solidarity in social practices, motor of local and global
development that supports the individual, continuous
and never predictable processes of internalization of
knowledge. The postmodern neo-bildung is therefore
a bildung without bild [49.31, p. 51].

Special Needs Education
Special needs education is a research science that ad-
dresses the difference resulting from disability and
deficit and the differences of gender and culture. These
issues are also addressed by the pedagogy of gender and
intercultural education. The purpose of special needs
education is the integration, to provide appropriate re-
sponses to differences through special care that do not
occur in separate contexts, but in educational shared
places [49.32]. Special needs education is therefore in-
tegrated with general pedagogy, which deals with the
concept of cognitive discomfort.

To go beyond separation towards integration does
not mean neglecting special attention and professional
figures able to meet special needs. In this sense, integra-
tion and special responses shouldn’t be opposed. The
specific needs of each individual, seen in her/his singu-
larity, should be respected without providing answers to
the needs of individuals grouped into categories. Spe-
cial problems can be faced without control models that
require special places and categories, but rather with
open models that fit in with a variety of situations.

For this reason it is important to improve the voca-
tional training in this area [49.33]. In particular, today
it is required of teachers to take specific training to
recognize, manage, and integrate students with specific
learning disabilities in school settings.

A situation of disability is composed of multiple el-
ements that interact with each other. The damage cannot
be extrapolated from the historical, cultural and envi-
ronmental context in which it is located. It is just the
interaction with the contextual elements that can im-
prove the quality of life and reduce the handicap relative
to disability. Special needs education therefore develops
special expertise in relation to the perspective of inclu-
sion [49.34].
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49.2 Dialecticity

The dialecticity of pedagogy expresses its controversial
nature divided between science and philosophy– that is,
between explanation and understanding, between the-
ory and practice, between the various disciplines that
comprise it, each of which offers its own educational
theories.

Pedagogy is a discipline in progress, under con-
struction and re-construction.

A discipline that is constantly renewed – like the
phoenix, a fantastic mythological animal that is reborn
from its own ashes, while retaining its unchanged na-
ture, identitarian and dynamic at the same time [49.35].

Pedagogy always reconstructs itself in different
ways, just because it is in search for more and more new
interpretative hypotheses about the education of the hu-
man species. Every time, pedagogy is reflected in its
pluralistic identity, in its holistic, rather than general,
unity [49.36], and in its own disciplinary nature – dys-
morphic, complex, and postmodern.

While renewing, pedagogy preserves in time the
same architecture, consisting of two main epistemolog-
ical axes.

49.2.1 Science and Philosophy

The relationship with the object of its own research,
which makes it a science, a discipline with a defined
epistemological status, is at the border between the hu-
manistic and the scientific areas. In fact, in pedagogy,
scientific and philosophical aspects that belong to the
same entanglement may coexist.

Pedagogy as a Science
Along the course of the twentieth century, the re-
flections about the scientificity of pedagogy shift the
epistemological axis from an idea of pedagogy as a dis-
cipline to an idea of pedagogy as a science, and farther,
to an idea of pedagogy as a science of education, in the
sense of a field of knowing with its specific objects and
methods. The scientific approach to pedagogy evolves
from systematicity to complexity. It develops, namely,
in parallel with the construction and the reconstruction
of the very idea of science.

The demand of pedagogy to be seen as a science,
defining its disciplinary framework, is an idea gained
in the course of its history. It’s source seems to have
been the emergence of the scientific paradigm in the
eighteenth century, from Locke’s empiricism and its
reflections on the importance of experience in the pro-
cesses of knowing.

In the ninteenth century, the scientific paradigm in
pedagogy is enriched by the positivist considerations

on the interplay between theory and observation and by
the verifiability of scientific statements in relation to the
empirical observation of reality. It can be said that the
debate on the scientific foundation of pedagogy started
in 1806 with the volume of Herbart [49.37] Allgemeine
Pädagogik aus dem Zweck der Erziehung abgeleitet,
which highlights the necessity to consider pedagogy as
a science, while allowing the antinomic nature of the
discipline – both descriptive, and normative.

The demand for a scientific approach that runs
through the course of the ninteenth century and is char-
acterized by the positivist approach – axiomatic, nomo-
thetic, and systematizing, as the scientific method of
Comte – turns instead, at the beginning of the twentieth
century, towards a more conscious reflection on the pe-
culiarities of pedagogical discourse. In 1911, Durkheim
compiles the entry Pédagogie for the Nouveau Dic-
tionnaire de Pédagogie et d́instruction primaire and
explains how pedagogy may be considered a science
that reflects on education, a practical theory.

The term science of education, used at singular, oc-
curs periodically in nineteenth century pedagogy – by
Bain in England and by Siciliani, Ardigò in Italy. It is
heard in the pedagogy of the second half of the twenti-
eth century – in Germany, there are Brezinka, Lochner,
Rohrs – but also inDewey, in The sources of a science of
education [49.22]. In Dewey’s pragmatism, pedagogy
may have a scientific and rigorous method, but it is not
necessarily systematic. The pedagogical specificity is
expressed in the rediscovery of a sense of intentional-
ity, that can be recognized in all the other disciplines,
seen as possible sources of a science of education. The
trait d’union between them is represented by specific
hypotheses of project intentionally expressed from time
to time in educational direction.

Pedagogy as a science itself poses many questions.
First of all, since by its nature it enters into a relation-
ship with a variety of knowledge: what may its specific
object of investigation (singular or plural, theoretical
or applied) be? Secondly: What type of science should
it be? The object of investigation of pedagogy is based
around the education of men and women in their his-
torical, cultural, and social contextualization. However,
subjects, objects, and methods of pedagogy are always
to be considered plural: they are indeed individual and
social processes, contextually oriented, of multidis-
ciplinary, plural and variable, nature. It is possible to
establish relations of reciprocal interplay between them.

The search for an epistemological status for general
pedagogy is unique because each discipline builds its
own epistemology, its own way to be a science. Dur-
ing the twentieth century, pedagogy has tried to find an
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epistemology that expresses its proprium and may jus-
tify it iuxta propria principia.

In the second half of the last century, the crisis
of the concept of science has returned a problem-
atic and complex image of it, focused on uncertainty,
instability, disorder, diversity, evolution, and situativ-
ity [49.38]. The problematization of science and the
criticism of its infallibility proposed by Popper, Kuhn,
Lakatos, Feyerabend has overcome the traditional prin-
ciples of intelligibility of classical science, the idea that
science should be general, ahistorical, totalizing, regu-
lated by laws, organizational invariants and constants;
causal, linear, deterministic, acontextual, observer-in-
dependent, objective, and logical. The principles un-
derlying the paradigm of complexity [49.39] rather
represent a rethinking of science and, in particular, they
propose the idea that science can be idiosyncratic and
unique, as well as general, contingent, historical, ir-
reversible, holistic and subject to feedbacks, to inter-
relations and re-orientations.

Pedagogy is therefore a complex science and not
a systemic one. Science “as an attitude and not like
a system” as De Bartolomeis [49.40] wrote in The ped-
agogy as a science of 1953. Since the 1950s of the
twentieth century, pedagogy catches both its fragmen-
tation in multiple sciences and its unitariness between
science and philosophy [49.41]. What links pedagogy
to other sciences is a functional and pragmatic unity,
not a systematic or a methodological one [49.42]. In
fact, the scientific data of other disciplines involve ped-
agogy only if applied to specific working hypotheses,
which will serve the educational aims.

Between the 1970s and 1980s, sciences of educa-
tion are born [49.43]. The Traité des sciences péda-
gogiques [49.43], edited by Debesse and Mialaret, is
now considered the official text of formalization of ed-
ucational sciences. The Traité distinguishes between
sciences of education and pedagogical sciences – the
former more theoretical, the latter more methodologi-
cal – and it affirms their mutual interdependence. Ped-
agogy is stated as a regulatory science across multiple
sciences of education. To perform this role pedagogy
highlights its philosophical dimension.

Pedagogy as a Philosophy
The systematization of educational sciences strength-
ens the philosophical role of pedagogy. Since the 1980s
of the twentieth century, the so-called identity crisis of
pedagogy will bring it to rediscover the sense of its own
reflexive intentionality.

Through the philosophical dimension pedagogy ex-
presses its critical role.

The research object of the discipline is not only
related to the processes of education, but also to the

metareflexive relations with other disciplines. Peda-
gogy then is shaped as a network of knowledge related
to collaborative relationships, while retaining each of
them a separate disciplinary autonomy.

At its core, philosophy of education is now rec-
ognized as an integrative aspect of the pedagogical
expression in a variety of sciences of education. The
philosophical approach, however, is no more analytical
and systematic, but hermeneutic.

Philosophy of education plays a mediating and re-
flexive role both between the different domains and
both between the various aspects that compose the com-
plexity of pedagogy like its antinomy, historicity, and
the openness to utopian models [49.44].

The metatheoretical inquiry uses second level re-
flections – the theory of theory – to analyze the dynamic
relationship with the practice. Any theory of education
in fact can not be an a priori nor dogmatic as it has an in-
divisible relationship with the practice that contributes
to the definition of its historical, political, and social
role.

The metatheoretical model explains the links be-
tween theory and practice through historically deter-
mined categories. In addition, the hermeneutic ap-
proach supports the pedagogical purposes expressed
through the search for the meaning of its own philo-
sophical dimension.

The philosophical aspects of pedagogy evolve from
the macroparadigm of the modern to the postmodern.

49.2.2 Theory and Practice

The relationship between theory and practice makes
pedagogy a science of education, in particular a theory
of educational development processes.

Pedagogy is a theoretical and practical discipline,
built on the ideal triangles theory-practice-theory and
practice-theory-practice. Pedagogy indeed has a theo-
retical and projectual dimension to deal with the educa-
tional practice.

In practical dimension, theories pass an empirical
verification and are confirmed, processed or falsified.
This allows to review theories again and consequently
to change practice.

Epistemological characteristics concerning the rela-
tionship between theory and practice in pedagogy are:
dynamism, research, and retroaction.

Dynamism, Research, and Retroaction
Dynamism, as it is an ongoing discipline, it is in con-
tinuous progress. The theory of education utilizes the
theoretical construct of antipedagogia [49.45] as an in-
dicator of the need for a continual renewal. Pedagogy,
in this sense, becomes pedagogy of research.
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Research’s epistemological statute is flexible and
based on inquiry, as it is a critical discipline. Although
the various theories of education are many and differ-
ent, in educational research there are some recurring
concepts:

� The focus on the personal and social development
of students and the deepening of their biological and
psychological peculiarities.� The promotion of the interests of students towards
knowledge and disciplines of study; towards the
environment, to sustain an ecological awareness; to-
wards others to promote respect, communication,
collaboration, solidarity, and emancipation.� The use of the game. In its cognitive dimension, to
empower the exploratory, constructive, communica-
tive, and creative function that characterizes it. In its
emotional dimension, because of the role of its sym-
bolic and therapeutic function.� The attention to individual and social differences of
physical, mental, cultural, gender, and age nature to
respect, promote, and enhance the diversity, as ap-
propriate. It should also be necessary to educate for
the diversity for aperture, encounter, and dialog.� The respect of the individual autonomy as an evo-
lutionary project, as an expression of personal iden-
tity, as a fulfillment of freedom as a potential for
growth, as an opportunity for critical thinking, for
the setup of the capacity for choice and for the de-
velopment of active learning.� The study of the individual singularity in its cogni-
tive processing aspects, with particular reference to
the plurality of facets of the cognitive prism, in its
explicit and implicit levels and in the ways in which
they interact: in their primary development, in their
structural modularity and in their evolutionary com-
patibility.� The development of the sensory and aesthetic di-
mension, to teach to enjoy the various forms of art
but also to produce artistically in a creative way.� The acknowledgment of the role played by the
embodiment in the acquisition of knowledge, in par-
ticular the ways in which the field of embodied
cognition interacts with the teaching and learning
contexts.� The recognition of the role played by the affective
sphere and the strengthening of its balanced devel-
opment, in relation to cognitive development. This
research is intertwined with the psychological ap-
proach.

� The encouragement of social and ethical educa-
tion, which fosters respect and responsibility, the
concepts of coexistence, citizenship and solidarity,
within the current multiethnic and multicultural so-
cieties.

Retroaction, as it is a recurrent discipline, which
tends to reuse its own paradigms. Although theories
of education are continuously overcome by later the-
ories, the previous persist, update, redefine themselves
and may even go back in use.

The different interpretative lines that compose the
architecture of pedagogy define the relationship be-
tween instruction, learning and educability.

Instruction, Learning, and Educability
The statement of instruction includes knowledge, skills,
and methodological tools through which educational
goals can be conveyed via explicit curricula such as
school and institutional curricula or via implicit curric-
ula such as nonformal and experiential ones.

Learning is an unavoidable process that can be
activated independently of explicit purposes. It has
a biopsychological and pedagogical value that can be
driven by educational values but it does not necessarily
depend on them.

Educability is the study of the education of the
mind in the epigenesis; the study of the possibili-
ties and constraints of education. According to the
principles of educability, each individual activates
diverse and dynamic learning that interact modify-
ing themselves along the personal history of learn-
ing [49.46].

Education, Training,
and Educational Development

The concept of education is never neutral. Education
has indeed an intentional, purposeful, and normative
nature, which involves questions of philosophical foun-
dation, as value and meaning.

The category of training and educational develop-
ment is not only vocational training applied to specific
contexts. Educational development underlines the sub-
jectivity and its shaping in individually different ways
and in several times and places. It may be considered
interdependent in relation to education, and it is more
operational.

The intertwining between education, training, and
educational development may be outlined by applied
models of education.
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49.3 Applied Models

49.3.1 Traditional Models

Models of education influence teaching models [49.47].
Those that are currently used have been developed over
the course of the twentieth century. Although some of
them are dated, their positive characteristics make them
still valid today. However, these models may involve
negative aspects. For this reason, their understanding is
basilar for teaching. In fact, only the informed use of
models of education can effectively support their man-
agement.

Traditional models of education reflect different
types of teaching. Among these models behaviorist
teaching and cognitive teaching are included. Metare-
flective teaching may be entered in this tradition, be-
cause it shares with the previous models some didacti-
cal aspects.

Traditional models are linked by the following char-
acteristics:

� The relationship between teacher and students is
asymmetric.� The teacher transmits information and the students
receive it.� The effectiveness of teaching is evaluated by the
amount of information transmitted.

Traditional models, however, differ from one an-
other in this way:

� Behaviorist teaching is born at the beginning of the
twentieth century through behaviorist studies and
it grew until the middle of the last century. Learn-
ing consists in associating stimuli and responses.
Notions are captured and repeated. The role of the
teacher and of the learning environment is empha-
sized.� Cognitivist teaching is developed since the Second
World War, at the middle of the twentieth century,
with the birth of cognitive science. Learning means
individual information processing and is intended
with the purpose of carrying out cognitive tasks. In-
formation is acquired through specific strategies and
is rearranged in a personal way. The role of the stu-
dent in the learning process is highlighted.� Metareflective teaching has been identified between
the 1970s and 1980s in the twentieth century. Learn-
ing is about reflecting on processes of knowledge
and on acquisition and management of concepts
and strategies. Students learn to recognize strate-
gies they use to learn. Metareflective teaching can
be considered a point of junction with current mod-
els of education. On the one hand it does not discuss

the asymmetric nature of the teaching and learning
relationship, and it considers teaching a process of
transmission. On the other hand, it does not eval-
uate the amount of information transmitted as an
expression of the effectiveness of teaching. Metare-
flective teaching instead evaluates the quality of the
organization of learning, cognitivist teaching does
this partially, as well. This last aspect, with the ac-
companying idea that learning is not only individual
but also collective, makes metareflective teaching
close to postcognitivism and then linkable to present
models of education.

Behaviorist Model
In the behaviorist model, learning is a response to
a stimulus, an association between a stimulus and a con-
ditioned habit. Learning is thus conditioning [49.48,
49].

At the beginning of the twentieth century, studies
on behavior (behaviorism) challenged all knowledge of
mind based on intuition and introspection. The mind
was considered an unknowable black box: the cognitive
behavior of a student is the product of her/his manifest
and directly observable actions.

Teaching stimulates students and determines the
learning process. The educational environment defines
conditions and opportunities for learning. Any behavior
can be acquired from the environment, except for the in-
nate reflexes and the primary emotions. The motivation
to study develops itself in relation to the external stim-
uli. The teacher is responsible for student motivation.
The model is in fact teacher centered.

The teacher transmits information in a notionistic
way. Students acquire information passively without
critical reworking. The teacher controls the class by
keywords and conventional gestures, such as clapping
hands or opening the register. Students change their
cognitive behavior under the teacher’s control. The
result is the disciplined behavioral response and the
modeling behavior, through the recognition of the mer-
its and the punishment of errors. Self-control and auto
shaping are taught.

Students imitate the teacher through apprentice-
ships. There is not a significant difference between
know how and know that. Each student must achieve
a standard of mastery performance common to all. In
this model individual diversity and personal learning
paths are undervalued.

Emotional and cognitive processing is linked in
learning and learning, which occurs through the same
processes. It is believed that emotional states, although
anxious, can play in favor of learning. The emotional
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tension can stimulate cognitive enhancement. The ma-
nipulation of the emotional anxious states is useful for
classroom management.

Learning is a sequential process, in which the start
and end points have the same value. The path of instruc-
tion is divided into short learning units, as a series of
steps. Teaching is programmed through explicit objec-
tives predefined from the outset.

The evaluation of the student occurs through the
analysis of what the student shows of knowing. Learn-
ing is strengthened through exercise and repetition. To
avoid a consolidation of misunderstandings or mistakes,
students are often interrogated; for example, after the
explanation of a topic. It is thought that it is not neces-
sary to leave to students the individual time that could
be needed for a personal revision of contents. The time
to learn must be reduced and optimized. The average of
the results obtained by the class are considered to cal-
culate the amount of time required to perform a task.

The evaluation of the teacher is heterodirect, that
is, it depends on external factors, such as colleagues or
superiors, who may suggest criteria for the revision of
teaching.

Cognitive Model
The cognitive model considers learning information
processing of the mind [49.50]. The classic behavior-
ist formula becomes stimulus – organism – response.

The mind is compared to a computer and is simu-
lated through it. The input stimulates the information
processing mechanisms of the mind that, at the end
of the processing, produces the output, a behavioral
response produced by learning. Learning, however, is
significant and not transmissive: to store information it
is needed to manage units of meaning.

The information processing implies that the cogni-
tive system works with different hierarchical functions,
respecting specific activation sequences. The subject in-
terprets the information and translates it into its own
codes selecting the perceptual stimulation. The infor-
mation selected, translated and encoded, are shaped
as mental representations, i. e., linguistic symbols and
numbers.

The processed data are stored in the short and in
the long-term memory, for the retrieval of information
involved in response planning. The cognitive system
manages archives of memories and is intended to be as
a computer, a system with a limited capacity that may
contain a predefined number of information.

The cognitive system processes information se-
quentially and hierarchically. Learning is therefore
a linear process from percepts to concepts, from sim-
ple to complex. The ascending vision of knowledge is

widespread in the West together with the idea of the
mind governed by reason. Indeed, in the computational
cognitive model the mind is considered as rational,
guided by rules, abstract and complex.

Postcognitivist models – for which the mind is also
influenced by the emotional, bodily and organismic
components – have discussed this model; learning is not
subjective but distributed and situated.

In the computational cognitive model, the mind is
instead considered as a container, an operating system
with limited capacity as the hard disk of a computer.
Even if attention is given to cognitive processing, the
teacher reflects on how much information can be taught
in a lesson and therefore how much knowledge can
be learned by each student and how this aim may be
achieved to let information be understood and stored at
best.

Sequences of instruction are organized from simple
to complex. The learning contents are simplified and
compacted in significant teaching units to facilitate un-
derstanding. Only understanding produces a significant
long-term storage in memory. Among the objectives of
the teaching is in fact the stabilization during time of
the information in the long-term memory. Understand-
ing means to interpret the meanings and to rework them,
in an autonomous and individual way, through the use
of learning strategies.

Another objective of the teaching is the organization
of linguistic concepts. The processes of understanding,
processing and storage in memory take place through
language. The concept of mental representation implies
the management of linguistic symbols and of symbolic
translation of languages (scripts, frames).

The relationship with students tends to be prede-
fined. For this reason, since the Second World War the
educational offer has been often generalized as a stan-
dard one. However, around 1980s in the Anglo-Saxon
contest, lines of research that encourage individually
differentiated ways of teaching have been developed
within this model [49.51, 52]. If in the previous model
the evaluation of a student was limited by the quan-
tity of her/his intelligence, for example through the
ranges of IQ, now this model rather considers how
an individual can be smart. The cognitive system is
seen as differentiated inside and distinct in a plurality
of aspects both at the perceptual, and the processing,
level.

The individualization of teaching involves the re-
thinking of teaching strategies. Teaching should be
individualized and personalized, that is, renewed ac-
cording to a vision of the student as a unique, singular
and variable, person in a dynamic relationship with the
teacher and other students.
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Metareflective Model
This model is at the border between the traditional mod-
els – with which it can share the idea that teaching is
asymmetric and transmissive – and the postcognitive
models that have developed over the last twenty years
of the past century, with which it can share a re-think-
ing of the mind as distributed and collaborative. The
metareflective model represents a possible link between
the traditional and current educational models.

If in traditional models the amount of the learned
contents and the quality of the strategies used to pro-
cess them are evaluated, this model is based instead
on the evaluation of the awareness of each student
about how to manage cognitive and emotional levels of
learning through individual strategies [49.53–55]. Each
student should in fact structure individual modalities of
monitoring and control in order to regulate the flow
of learning within its own cognitive system. Reflec-
tion on learning influences its self-regulating function
of autonomous and self-conscious management. This
reflection can be shared with other students in a collab-
orative way because each student may learn to assess
her/his own quality of learning.

The teacher is an example of managerial organiza-
tion of concepts because she/he achieves to regulate
her/his own learning. The purpose of education is to
stimulate students’ self-reflective function. This func-
tion – that is, the awareness about the ways in which
each cognitive system uses its resources – involves
a second level work about learning that is defined
precisely as metareflective, metacognitive, and meta-
emotional as appropriate.

The role of the metareflective teacher is to make
students aware of the ways in which they learn. The stu-
dent that reflects on her/his own learning strategies can
manage them and assess autonomously her/his prepara-
tion.

Among the processes for monitoring and control of
cognitive functions are:

� The E.O.L. (ease of learning), that is, an estimation
of the ease of learning of the information presented
by the educational offer.� The J.O.L. (judgment of learning), that is, the per-
sonal judgment of a student about the probability to
recall a learned information.� The F.O.K. (feeling of knowing), that is, the feeling
of knowing a learned information that, however, the
student can not remember at all (the phenomenon
on the tip of the tongue).� The P.T.R. (prediction of total recall), that is, the
prediction of the final total amount of memory recall
after a single learning session.

In this model the ways through which tacit knowl-
edge – ideas, theories, and concepts of implicit nature
that each individual develops dealing with reality – be-
come aware, referable, and verbalized are also studied.
Emerging theories about the surrounding world and the
minds of other individuals are validated, reviewed or
processed.

Each student has an explicit and implicit learn-
ing potential. Implicit learning, mainly present in the
structuring of thought in the early stages of cognitive
development, can absorb from the environment poten-
tially disordered and disorganized information. One of
the objectives of the metareflective model is therefore to
make explicit the implicit acquisitions that may repre-
sent a potential source of discomfort for the functioning
of the cognitive system. In this model implicit learning
has a predominantly negative value and it is assessed its
educational risk.

Learning opportunities also concern explicit and
implicit contexts, defined as formal, nonformal, and in-
formal educational contexts. It is namely possible to
learn in a nonvoluntary indirect way by environmental
experiences.

Even the teacher uses the metareflective method to
review and possibly change her/his teaching strategies.

49.3.2 Actual Models

Current models of education have developed in the last
decades of the twentieth century without a chronologi-
cal linearity defining their onset. The recognizable types
of teaching within these models have indeed emerged
in a parallel and mutually interacting way; for this rea-
son they are hardly distinguishable one from each other.
However, it is possible to identify the teaching mod-
els of contextualism, culturalism, and constructivism,
in the line of development of the patterns of thought of
Vigotsky, Bruner, and Piaget.

These three models belong to the broader frame-
work of interpretation called postcognitivism.

Compared to the traditional models of education, in
the postcognitivist models:

� Cognitive interaction is considered not only in its
abstract processing but also in its emotional, bodily,
and organismic dimension.� The study of the mind, therefore, is no longer in
vitro but becomes in vivo.� Cognitive and emotional aspects of the learning are
linked.� The mind is not separated from the body: knowl-
edge thus includes perceptual and behavioral areas
that are often expressed through implicit levels.
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� The contexts of learning are intended as specific sit-
uations located in space and time.� Learning is not a task oriented process but an em-
bodied, situated, and distributed one.� The educational relationship becomes almost sym-
metric, because knowledge is no longer transmitted
but shared and co-constructed, negotiated within the
learning community.� The teacher acts as a facilitator of learning and
a mediator in the processes of knowledge.

Knowledge is distributed, situated, and embod-
ied [49.56–58]. Distributed knowledge has motivated
contextualist models of teaching; situated knowledge
has justified culturalist patterns, and both these inter-
pretations have concurred to define constructivist and
socio-constructivist didactics.

Didactics is no longer individually oriented (toward
the teacher or the student) but is based on the concept
of the relationship between the teacher and the student
and among students.

Contextualist Model
In the contextualist model, knowledge is a distributed
process, and it is no more the subjective patrimony of
each individual. The mind is seen beyond the bound-
aries of individuality and is distributed among several
individuals who perform a work of sharing, socializing,
and negotiating learning [49.59, 60].

There is a shift from learning processes to knowl-
edge structures. The student leaves the world of singular
learning and enters that of shared learning, in which
the knowledge itself is a collective heritage to which
everyone can contribute. The educational relationship
becomes almost symmetrical, with no-guided processes
that are activated in different contexts – formal but also
semiformal, nonformal and informal.

The class group becomes a learning commu-
nity [49.61, 62]. The learning community is a real and/
or virtual meeting place in which the educational ex-
change takes place. Knowledge becomes increasingly
linked to the different contexts of belonging and is
rooted in them.

Learning is a collective process. Knowledge is
shared in the intersubjectivity: every task, that is the
knowledge object to study, becomes a problem to be
dealt with in the learning community, through dynamic
exchange and discussion. Among the aims of the teach-
ing there is not only the education of the individual
student but also the education of the learning commu-
nity. Therefore, the ability of students to learn to express
their own views and to know how to relate to each other
in a mediating way, continuously revising their own
opinions, is enhanced.

Particular emphasis is given to the language as
a tool of social communication that allows the educa-
tional exchange of ideas, theories and concepts in the
processes of social co-construction and in the commu-
nitarian negotiation of meanings.

Culturalist Model
Even in the culturalist model, knowledge is distributed
among multiple parties. The distribution of knowledge,
however, includes the cognitive artifacts, i. e., the pos-
sible expressions that make up the various cultural
frameworks. Attention is given to the different cul-
tures – and to their evolution – in which the mind
develops [49.63–65]. Cultures constitute learning envi-
ronments where knowledge is acquired and is replayed
also through the peripheral devices, i. e., the technology
tools. The cognitive artifacts and the peripheral devices
are contingent and relative to situations defined in space
and time; therefore they are located in specific cognitive
contexts, belonging to each culture. The mind is situ-
ated and embedded in the environment.

Situated knowledge loses its character of gener-
ality that it had previously: it is no longer a static
and predefined patrimony of information, the general
culture. The various areas of knowledge become dy-
namic, constantly changing, different in form and in
content, and representative of specific ways to make
culture. They are considered domains of knowledge,
contextualized and interactive areas in which cognitive
relations are activated. Knowledge is therefore related
to times, places, cultures, relationships, and cognitive
domains.

The teacher is proposed as a model of identifica-
tion for her/his students. Learning means to enter into
a cognitive relationship with others, within a learning
community in which knowledge is shared, mediated
and negotiated. The learning community represent the
belonging group, with its own way of making culture,
of producing knowledge and of teaching it.

Learning in a learning community means taking the
cultural responsibility of personal cognitive heritage. At
the same time, it can mean the possibility to detach
from it in an autonomous way, even if always in rela-
tion to educational figures which have been configured
as a model and as an example. What occurs is a pro-
cess of identification that may lead to the recognition
of the individual cognitive identity, i. e., the knowledge
of the personal cognitive heritage. The acquisition of
cognitive identity may involve both integrative and de-
tachment functions.

The student can consider the experience and the per-
sonal knowledge as a resource of which she/he becomes
responsible: she/he thus acquires the cognitive respon-
sibility for her/his own choices and for the meaning
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that these choices may acquire within the learning com-
munity. Through processes of initiation, the role of the
student becomes that of a member of the community;
an apprentice who learns to internalize the educational
acts of the belonging adult system through processes
of scaffolding. The apprenticeship is done under the
guidance of an experienced adult who is also a medi-
ator and a facilitator in the learning community. The
student is educated in relation to the experiential knowl-
edge of this educational figure that nevertheless plays
a role of reference: the student may indeed choose to
follow the example of her/his own adult model. Other-
wise, the student may choose to detach herself/himself
from the givenmodel and to propose alternative models,
after having however had a relationship of comparison
with the adult model.

Knowledge thus is developed according to the com-
munity sharing of the belief systems, the discursive
practices, namely the use of languages for the negoti-
ation of meanings, then through the linguistic exchange
but also through the sharing of cognitive artifacts, and
of peripheral devices, so generating the productions of
different cultures.

Constructivist Model
The constructivist model emphasizes the role of the
subject in the process of construction of knowledge,
even when students learn together. This model pro-
motes the critical and interpretive development of au-
tonomous learning. The experiential relationship with
the environment is a process of guided discovery. The
teacher collaborates in the development of individual
knowledge structures.

In the course of the ontogenetic development, each
individual elaborates implicit theories – defined as
naive and of common sense – relative to the surround-
ing environment or to the minds of others [49.66, 67].
The teacher can make these implicit theories explicit
through education. The intervention of teaching occurs
on demand, when the teacher considers it necessary
to clarify a concept or when specifically requested by
a student. The teacher keeps a more asymmetric posi-
tion toward the student than in other current models of
education; in fact, the teacher’s role is that of a guide.
The educational guide takes place in semiformal con-
texts.

Learning is an adaptive process in which knowl-
edge is constructed to be acquired and produced. In
learning environments, educational interactions occur
for adaptation and participation, as in sociocultural con-
structivism.

The process of change that accompanies the con-
struction of knowledge should be autonomous and,

at the same time, guided by the teacher only when
necessary. In this way their visit in the world of knowl-
edge may enable students to interpret reality in a per-
sonal way. According to neo-Piagetian constructivism
[49.68], the subjective theories about reality have to
be shared within the community of learning to be vali-
dated, transformed, or abandoned.

The potential of the individual to know in a learn-
ing environment is then developed according to the
individual knowledge structures and to their sharing in
situations of collective co-construction.

49.3.3 Experimental Models

Experimental models analyze the influence of neu-
roscience and biological sciences in education. The
fields of study addressing the relationship between
mind and brain, particularly bioeducational sciences,
express the research perspectives of experimental mod-
els [49.69].

Experimental models share these views:

� Embodied cognition� Holistic understanding of the human system as
a complex phenomenon� Relationship between the mental, organismic, and
environmental dimension� Study of the evolutionary processes in ontogenesis
and in phylogenesis� Interpretation of learning as an adaptive process� Attention to the development of individual knowl-
edge structures� Designing implicit learning environments for edu-
cability� Nonreductionist, interactionist, and integrative re-
search approaches.

Enriched Model
The enriched model is a classical model; perhaps it
has always been used in the teaching and learning re-
lationship. The basic idea is that for an environment
to be effective, it has to stimulate students as much as
possible: therefore it has to be designed in a rich and
stimulating way; it should use a multimodal methodol-
ogy [49.70].

Learning is a process that is based on brain plas-
ticity and on the neural network’s modifiability. The
teacher works to get from students openness to change,
and to educational stimuli. The teacher tries to fully ex-
press the potential of each student; a poor and deprived
learning environment may not activate students’ readi-
ness to learn. This model is widely used in the early
school levels.
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The enriched model sometimes uncritically reflects
the ascensional and linear vision of knowledge, accord-
ing to which concepts are developed by percepts, and
abstract ideas are developed from sensations.

Furthermore, this model can be influenced by a con-
sideration of the development as a continuous conse-
quent progress. This idea involves an interpretation of
the development itself as a process that may only occur
according to certain conditions that may be present in
a given learning environment.

Development in general should not be considered
as a process that takes place starting on the basis of
its potential genetic and epigenetic bases; it is instead
a dynamic and interactive process, discontinuous and
variable, which conditions cannot be predefined.

Organismic Model
In the organismicmodel, mind is embodied [49.71], and
not separated from body and brain as in a part of the tra-
ditional Western thought. The interaction between the
affective/emotional and bodily/organismic level is stud-
ied in the processes of knowledge management. In this
model, therefore, bodily and emotional functions are
linked to cognitive functions in influencing the explicit
and implicit processing of knowledge.

The organismic model studies implicit learning on
the perceptual, motor, but also processing side [49.72].
Implicit learning can be automated, automatized, and
contribute to the structuring of learning as an implicit
form of knowledge. In some of them, it is expected that
the implicit may interact with the explicit through spe-
cific dynamics of relationship.

Implicit learning is studied in its evolutionary and
adaptive significance, as a possible form of knowl-
edge that is based on the conservation and on the
selective repetition of the strategies that prove to
be the most effective in the ontogenetic and phylo-
genetic development. This model also explores the
role played by implicit learning in the prototypical
knowledge processing and as a default support for
explicit learning, e.g., in the Elementary Logic The-
ory [49.73].

The organismic model attributes importance to the
proxemics of communication in educational practices,
to the influence of physiological states on learning, and
to the diversity of learning times that cannot be prede-
fined in relation to cognitive tasks.

Adaptive Model
The adaptive model highlights the individual peculiar-
ity of the learner and the unpredictability of situations
in which learning occurs. In a general sense, the cogni-
tive diversity of individuals interacts with the domain
specificity of the various knowledge fields and with
the relativity of each context. Consequently, knowl-
edge appears as constantly modifiable and continuously
changing [49.74].

The design of the educational offer becomes dy-
namic, ever predefined. Programming a learning envi-
ronment foresees both its positive and negative devel-
opment: evolutionary forces and resistances to change,
according to the perception of the efficacy of learning
by students.

Educational planning becomes adaptive. To be ed-
ucational, interactions that eventually occur within it
have to be reciprocal: if a student accepts the changes
required by the environment as a condition of adapta-
tion, at the same time the environment has to embrace
the heterodirect change and to accept to modify itself
consequently.

In the adaptive model, the teacher evaluates the
possibilities and the constraints of the educational ac-
tion, that is, he/she evaluates the educability of learners.
Each student has a personal cognitive potential that has
developed over time through continuous adaptation pro-
cesses.

The explicit or implicit personal history of learn-
ers may be both open and close to change. The levels
of modifiability of a cognitive system depend on the
modularity of the learning within the system itself, in
different ways for each individual.

Cognitive modifiability is related to the explicit and
implicit choices that each student takes on in its path
of experience. The individual strategic procedures of
processing are intertwined with the external influences.
The result may be the adaptive efficacy, but also the
cognitive discomfort.

The levels of cognitive modifiability therefore also
depend on the compatibility and on the adaptive inter-
action between the ways of learning of a student and the
ways of teaching of a teacher.

Educability then concerns how aspects of the cogni-
tive experience can be integrated with each other in the
complex mechanism of any adaptive system, along the
personal history of learning.
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49.4 Conclusions
The mechanism of the pedagogical discourse is ex-
pressed in the complexity of the relationship between
ideology, science, and utopia [49.1]. This last aspect, in
particular, may represent the trait d’union between the
scientific and the philosophical component. The utopian
nature of pedagogy tends toward the model of an ideal
educating society [49.75]. Utopia underlies the design
of the pedagogical domain.

The vector of utopia reflects the deep complex-
ity of the issue and its rejection of universality, as-

sertiveness, and uniqueness. This does not preclude,
however, the research for models and methods as
part of a scientific status of interpretive nature, sen-
sitive to cultures, in dialogue with societies, open
to the ideas of project and possibility; therefore, to
utopia.

Pedagogy, in conclusion, is a very dynamic and
open field of research whose developmental directions
are horizontal, multidisciplinarily pervasive and contin-
uously in progress.
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50. Model-Based Reasoning in Crime Prevention

Charlotte Gerritsen, Tibor Bosse

Model-based reasoning approaches can be used
to formalize and analyze (informal) theories from
the field of criminology, to help gain more in-
sight in criminological phenomena that were not
clear based on just the informal theory. The anal-
ysis of the displacement of crime is an important
research interest in criminological research. In
this chapter, an agent-based simulation model
of crime displacement is presented, which can
be used not only to simulate the spatiotempo-
ral dynamics of crime, but also to analyze and
control those dynamics. Methods are used that
are aimed at developing intelligent systems that
monitor human-related processes and provide
appropriate support. More specifically, an explicit
domainmodel of crime displacement has been de-
veloped, and model-based reasoning techniques
are applied to the domain model, in order to an-
alyze which environmental circumstances result in
which crime rates, and to determine which support
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measures are most appropriate. The model can be
used as an analytical tool for researchers and policy
makers to perform thought experiments, that is, to
shedmore light on the process under investigation,
and possibly improve existing policies (e.g., for
surveillance).

Criminology is the study of crime, criminals, and the
punishment of criminals [50.1]. To study criminal be-
havior a number of standard research methods exist, for
example, victim surveys, offender surveys, social ex-
periments, and the analysis of police data. Based on
these methods, multiple theories have been developed
that provide insight into delinquent behavior. However,
these theories are usually informal, meaning that they
are written in natural language or described graphically
and, thus, in principle ambiguous. Approaches based on
computational modeling can prove to be very useful to
address this void. Criminological theories can be trans-
lated into a formal, unambiguous, machine-readable
notation so that they can be used for model-based rea-
soning and simulation, for example, [50.2–4] and help
gain more insights in criminological phenomena that
were not clear based on just the informal theory.

Within the field of criminology, one of the main re-
search interests is the analysis of the displacement of
crime [50.5–7]. Typically, certain locations in a city
seem to attract many criminal activities, but only for

a short period. These locations where many crimes
occur are called hot spots [50.7]. Questions that are im-
portant in understanding the displacement of crime are:

� When do hot spots of high crime rates emerge?� Where do they emerge?� And, perhaps most importantly, how can they be
prevented.

In recent years, computational modeling and simulation
have proved to be a useful instrument to answer such
questions. Most of these approaches take the routine
activity theory as a point of departure, that is, the as-
sumption that crime is likely to occur when a motivated
offender finds a suitable target, while capable guardians
are lacking [50.5]. By creating an artificial world in
a computational environment, populating it with com-
putational entities representing the agents addressed
by the theory (i. e., offenders, targets, and guardians),
and establishing mathematical rules that govern the
agents’ behavior, the spatiotemporal implications of
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the theory can be studied with the help of the com-
puter.

Nevertheless, when investigating the literature on
computational modeling of displacement of crime,
a wide variety of different computational modeling ap-
proaches can be distinguished. Among the approaches
that are applied, one can find agent-based model-
ing [50.8–11], population-based modeling [50.9], cel-
lular automata [50.12, 13], different spatial analysis
techniques [50.14], and evolutionary computing tech-
niques [50.11]. The underlying principle behind agent-
based modeling approaches is the agent metaphor, that
is, the idea to compose a model of autonomous pieces
of software that make their own decisions, based on in-
formation they observe in their direct environment. For
instance, the agent-based approach presented in [50.8]
simulates the spatiotemporal dynamics of crime as
a result of individual decisions of offenders, targets,
and guardians (e.g., to move around, or to perform
assaults or arrests). In contrast, population-based mod-
eling approaches, for example, [50.9] do not distinguish
individual agents, but instead describe the dynamics of
crime in terms of mathematical formulae (mostly dif-
ferential equations) over variables that represent the
densities of certain subgroups in the population. Fur-
thermore, cellular automata (CA) are discrete models
that consist of grids of cells that are in particular
states (e.g., on or off), of which the dynamics are
determined by rules that take the states of adjacent
cells into account. Liu et al. [50.13] have used CAs
to simulate individual crime events, in order to gen-
erate plausible crime patterns. In their approach, the
main elements are offenders, targets, and crime places,
of which different attributes can be manipulated, such
as motivation of offenders, capability of guardians,
and accessibility of places. Additionally, a number of
spatial analysis techniques are used in [50.2]; these
techniques include, among others, geographical infor-
mation systems (GIS) and analytical methods. Finally,
evolutionary computing is a subarea of artificial in-
telligence (AI) that attempts to find optimal solutions
to mathematical problems by exploiting a computa-
tional variant of biological evolution. More specifically,
by representing candidate solutions to an optimiza-
tion problem in terms of individuals in a population,
and having the population evolve using operations
such as recombination and mutation (where the bet-
ter performing individuals have a higher probability
to reproduce), good solutions can be found to prob-
lems in a variety of domains, including criminology.
For example, in [50.11] some results are presented that
were achieved with GAPatrol, an evolutionary multi
agent-based simulation tool devised to assist police

managers in the design of effective police patrol route
strategies.

Although these approaches all share the aim of in-
vestigating crime displacement, the perspectives taken
differ. For example, some authors try to develop simu-
lation models of crime displacement in existing cities,
which can be directly related to real-world data, for
example, [50.13], whereas others deliberately abstract
from empirical information, for example, [50.9]. The
idea behind the latter perspective is that the simula-
tion environment is used as an analytical tool, mainly
used by researchers and policy makers, for thought
experiments, to shed more light on the process un-
der investigation, and perhaps improve existing poli-
cies (e.g., for surveillance) [50.15]. Also, some au-
thors take an intermediate point of view, for example,
[50.4, 8]. They initially build their simulation model
to study the phenomenon per se, but define its ba-
sic concepts in such a way that it can be directly
connected to empirical information, if this becomes
available.

This intermediate perspective is also taken in the
current chapter. Its main goal is to develop an agent-
based simulation model of crime displacement, which
can be used not only to simulate the spatiotemporal dy-
namics of crime, but also to analyze and control those
dynamics. This second aim distinguishes it from most
existing approaches, which are mainly descriptive (in-
stead of prescriptive).

To achieve this goal, we make use of techniques
from AI, and in particular from ambient intelligence
(AmI). Ambient intelligence [50.16–18] represents a vi-
sion of the future where humans will be surrounded
by pervasive and unobtrusive electronic environments,
which are sensitive and responsive to their needs. In
order to develop such intelligent environments, Bosse
et al. [50.19] introduced a methodology to endow intel-
ligent systems with the possibility to reason explicitly
about the mental and physical states of humans. In this
chapter, this methodology is reused in order to develop
an intelligent system that reasons about crime displace-
ment.

More specifically, this chapter will first describe the
development of an explicit domain model of crime dis-
placement (which describes displacement in terms of
states of the world over time, and transitions between
these states). On top of that, model-based reasoning
techniques [50.20] will be applied to the domain model,
in order to analyze which environmental circumstances
result in which crime rates, and to determine which sup-
port measures are most appropriate [50.21]. Hence, both
an analysis model and a support model will be devel-
oped.
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In the remainder of this chapter, first some back-
ground information about the area of AmI will be
provided, followed by an introduction to the basic
methodology for the development of intelligent human-
aware model-based systems that will be used. Based

on this methodology, the next sections will introduce,
respectively, the domain model, analysis model, and
support model for crime displacement. After that some
preliminary simulation results will be presented, fol-
lowed by a discussion.

50.1 Ambient Intelligence

AmI [50.16–18] represents a vision of the future where
human beings will be surrounded by pervasive and un-
obtrusive electronic environments, which are sensitive
and responsive to their needs. Such an environment has
a certain degree of awareness of the presence and states
of living creatures in it, and supports their activities. It
analyzes their behavior, and may anticipate on it. AmI
integrates concepts from ubiquitous computing and AI
with the vision that technology will become invisible,
embedded in our natural surroundings, present when-
ever we need it, attuned to the humans’ senses, and
adaptive to them. In an AmI environment, people are
surrounded by networks of embedded intelligent de-
vices that can sense their state, anticipate, and when
relevant adapt to their needs. Therefore, the environ-
ment should be able to determine which actions have
to be undertaken in order to keep this state optimal.

For this purpose, acquisition of sensor information
about humans and their functioning is an important fac-
tor. However, without adequate additional knowledge
for analysis of this information, the scope of such ap-
plications is limited. As argued by Bosse et al. [50.19],
AmI applications can show a more human-like under-
standing and base personal care on this understanding
when they are equipped with knowledge about the
relevant physiological, psychological, and/or social as-
pects of human functioning. For example, this may
concern elderly people, patients depending on reg-
ular medicine usage, surveillance, penitentiary care,
psychotherapeutical/self-help communities, but also,
for example, humans in highly demanding tasks such
as warfare officers, air traffic controllers, crisis and
disaster managers, and humans in space missions; for
example, [50.22].

Within human-directed scientific areas, such as cog-
nitive science, psychology, neuroscience, and biomedi-
cal sciences, models have been and are being developed
for a variety of aspects of human functioning. If such
models of human processes are represented in a for-
mal and computational format, and incorporated in the
human environment in devices that monitor the phys-
ical and mental state of the human, then such devices
are able to perform a more in-depth analysis of the hu-
man’s functioning. This can result in an environment

that may more effectively affect the state of humans by
undertaking actions in a knowledgeablemanner that im-
prove their wellbeing and performance. For example,
the workspaces of naval officers may include systems
that, among others, track their eye movements and char-
acteristics of incoming stimuli (e.g., airplanes on a radar
screen), and use this information in a computational
model that is able to estimate where their attention is
focused at. When it turns out that an officer neglects
parts of a radar screen, such a system can either indi-
cate this to the person, or arrange on the background
that another person or computer system takes care of
this neglected part. Note that for a radar screen it would
also be possible to make static design changes, for
example, those that improve situation awareness, for
example, picture of the environment [50.23]. However,
as different circumstances might need a different de-
sign, the advantage of a dynamic system is that the
environment can be adapted taking both the circum-
stances and the real-time behavior of the human into
account.

In applications of this type, an ambience is cre-
ated that has a better understanding of humans, based
on computationally formalized knowledge from the
human-directed disciplines. The use of knowledge from
these disciplines in AmI applications is beneficial, be-
cause it allows taking care in a more sophisticated
manner of humans in their daily living in medical, psy-
chological, and social respects. In more detail, content
from the domain of human-directed sciences, among
others, can be taken from areas such as medical physi-
ology, health sciences, neuroscience, cognitive psychol-
ogy, clinical psychology, psychopathology, sociology,
criminology, and exercise and sport sciences.

Although it does not directly fit in the description
of AmI, the system envisioned by the current paper
has a number of similarities with the types of systems
sketched above. That is, it will also take information
about humans and their dynamics as input (namely the
spatial distribution of individuals over the city, and in-
formation about crime rates), it will also be equipped
with (formalized) knowledge from human-directed dis-
ciplines (in this case criminological knowledge about
crime displacement), and it will also generate sup-
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port measures as output (i. e., advice to reduce crime).
Thus, in order to develop the intelligent system for
reasoning about crime displacement, it makes sense to

reuse approaches from the AmI area. In particular, the
methodology from [50.19] is used, which is introduced
below.

50.2 Methodology

In this section, the adopted approach to develop in-
telligent human-aware systems is presented in detail
[50.19]. Here, human-aware is defined as being able
to analyze and estimate what is going on in the hu-
man’s mind (a form of mindreading) and in his or her
body (a form of bodyreading). Input for these processes
are observed information about the human’s state over
time, and dynamic models for the human’s physical and
mental processes. For the mental side, such a dynamic
model is sometimes called a theory of mind [50.24]
and may cover, for example, emotion, attention, in-
tention, and belief. Similarly for the human’s physical
processes, such a model relates, for example, to skin
conditions, heart rates, and levels of blood sugar, in-
sulin, adrenalin, testosterone, serotonin, and specific
medicines taken. Note that different types of mod-
els are needed: physiological, neurological, cognitive,
emotional, social, as well as models of the physical and
artificial environment (In this chapter, the main focus
is on social/environmental states and models, that is,
locations of persons, and decisions to move to other lo-
cation. Nevertheless, the model is sufficiently generic to
be extended with the other types of states as well).

A framework can be used as a template for the spe-
cific class of AmI applications as described. The struc-
ture of such an ambient software and hardware design
can be described in an agent-based manner at a concep-
tual design level and can be given generic facilities built
in to represent knowledge, models, and analysis meth-
ods about humans, for example (Fig. 50.1):

� Human state and history models� Environment state and history models

T
e
m
p
l
a
t
e

Intelligent
human-aware
system

Human state models
Human history models

Environment state models
Environment history models

Human profile models

Human process models
Environment process models

Analysis methods

Fig. 50.1 Framework to develop intelligent human-aware systems
(after [50.19])

� Profiles and characteristics models of humans� Ontologies and knowledge from biomedical, neuro-
logical, psychological, and/or social disciplines� Dynamic process models about human functioning� Dynamic environment process models� Methods for analysis on the basis of such models.

Examples of useful analysis methods are voice and
skin analysis with respect to emotional states, gesture
analysis, and heart rate analysis. The template can in-
clude slots where the application-specific content can
be filled to get an executable design for a working sys-
tem. The analysis method used in this chapter mainly
addresses displacement of crime, that is, it calculates
how a certain distribution of persons over space would
lead to movement of criminal activities.

A general approach for embedding knowledge
about the interaction between the environment and the
human(s) in AmI applications is to integrate dynamic
models of this interaction (i. e., a model of the do-
main) into the application. This integration takes place
by embedding domain models in certain ways within
agent models of the intelligent application. By incor-
porating domain models within an agent model, the
intelligent agent gets an understanding of the processes
of its surrounding environment, which is a solid basis
for knowledgeable intelligent behavior. Three different
ways to integrate domain models within agent models
can be distinguished. A most simple way is to use a do-
main model that specifically models human behavior in
the following manner:

Domain model directly used as agent model. In this
case a domain model that describes human pro-
cesses and behavior is used directly as an agent
model, in order to simulate human behavior. Note
that here the domain model and agent model refer to
the same agent.

Such an agent model can be used in interaction with
other agent models, in particular with ambient agent
models to obtain a test environment for simulations. For
this last type of (artificial) agents, domain models can
be integrated within their agent models in two different
ways, in order to obtain one or more (sub)models; see
Fig. 50.2. Here the solid arrows indicate information
exchange between processes (data flow) and the dot-



Model-Based Reasoning in Crime Prevention 50.3 Domain Model 1055
Part

I|50.3

Domain model

Analysis
model

Support
model

Ambient agent model

Domain
model

Human agent model

Fig. 50.2 Overview of
the multiagent system
architecture (after [50.19])

ted arrows the integration process of the domain models
within the agent models.

As shown in Fig. 50.2, the following submodels can
be obtained based on a domain model:

� Analysis model: To perform analysis of the human’s
states and processes by reasoning based on obser-
vations (possibly using specific sensors) and the
domain model.� Support model: To generate support for the human
by reasoning based on the domain model.

Note that here the domain model that is integrated
refers to one or more human agents, whereas the agent
model in which it is integrated refers to an artificial

agent (the intelligent system). In the following sections,
this methodologywill be applied to the domain of crime
displacement. First a domain model is presented which
represents the spatiotemporal dynamics of crime. Next,
an analysis model is presented, which is able to reason
about the domain model in order to predict crime rates
for particular situations. And finally, a support model is
presented, which is able to suggest to the user the most
appropriate measures to reduce crime rates. For exam-
ple, in case the analysis model predicts that the crime
rates at the railway station will increase with 20% in
the next year, and that these rates can be kept stable by
increasing the amount of police by 5%, then it may pro-
pose to invest in 5% more police forces.

50.3 Domain Model

This section presents the domain model for crime dis-
placement. The important concepts used are introduced
in Sect. 50.3.1, and their formalization is described in
Sect. 50.3.2.

50.3.1 Crime Displacement

As explained in the introduction, most large cities in the
world contain a number of hot spots, that is, locations
where the majority of the crimes occur [50.7, 25]. Such
locations may vary from railway stations to shopping
malls. These hot spots usually have several things in
common, among which the presence of many passers-
by (which makes the location attractive for criminals)
and the lack of adequate surveillance. However, after
a while the situation often changes: the criminal activ-
ities shift to another location. This may be caused by
improved surveillance systems (such as cameras) at that
location, by an increased number of police officers, or
because the police changed their policy.

Another important factor in explaining crime dis-
placement is the reputation of specific locations in

a city [50.6]. This reputation may be a cause of crime
displacement, as well as an effect. For example, a lo-
cation that is known for its high crime rates usually
attracts police officers [50.25], whereas most citizens
will be more likely to avoid it [50.26]. As a result, the
amount of criminal activity at such a location will de-
crease, which affects its reputation again.

To summarize, in order to model the process of
crime displacement, several aspects are important. First,
one should have information about the total number
of agents in the different groups involved, that is, the
number of criminals, number of guardians, and num-
ber of passers-by. Next, it is assumed that the world
(or city) that is addressed can be represented in terms
of a number of different locations. It is important to
know how many agents of each type are present at
each location: the density of criminals, guardians, and
passers-by. Furthermore, to describe the movement of
the different agents from one location to another, infor-
mation about the reputation (or attractiveness) of the
locations is needed. This attractiveness is different for
each type of agent. For example, passers-by like lo-
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cations where it is safe, for example, locations where
some guardians are present and no criminals. On the
other hand, guardians are attracted by places where a lot
of criminals are present, and criminals like locations
where there are many passers-by and no guardians. Fi-
nally, to be able to represent the idea of hot spots, the
number of assaults per location is modeled. The idea is
that more assaults take place at locations where there
are many criminals and passers-by, and few guardians,
cf. the routine activity theory by [50.5].

The interaction between the concepts introduced
above is visualized in Fig. 50.3. This figure depicts
the influences between the different groups at one lo-
cation. Here, the circles denote the concepts that were
mentioned above in italics, and the arrows indicate
influences between concepts (influences on attractive-
ness have been drawn using dotted arrows to enhance
readability). (Note that Fig. 50.3 does not depict the in-
fluence of some basic attractiveness of a location for
certain groups (i. e., an attractiveness that is indepen-
dent of the distribution of agents at the location). For
the sake of readability, this notion has been left out of
the picture, but it often plays a role in reality. For in-
stance, locations like a railway station will be visited
more often by passers-by than other locations, simply
because people need to go there to reach their desired
destination. Therefore, the notion of basic attractiveness
will also be considered in this chapter).

50.3.2 Formalization

In order to build the domain model for crime dis-
placement, the concepts that were introduced above (in
italics) are formalized in terms of mathematical vari-

Total number of
criminals

Total number of
guardians

Total number of
passers-by

Attractiveness location
for criminals

Attractiveness location
for passers-by

Density
criminals

Density
passers-by

Density
guardians Assaults

at locationAttractiveness location
for guardians

Fig. 50.3 Interaction be-
tween criminals, guardians,
and passers-by

ables. The variable names that are used are summarised
in Table 50.1.

Next, a number of mathematical equations are in-
troduced to represent the causal relations between these
variables. Most of these ideas are taken over from [50.9,
27, 28]. First, the calculation of the number of agents
at a location is done by determining the movement of
agents that takes place based on the attractiveness of
the location. For example, for criminals, the following
formula is used

c.L; tC�t/D c.L; t/C �.ˇ.L; c; t/c� c.L; t//�t :

This expresses that the density c.L; tC�t/ of crimi-
nals at location L on time tC�t is equal to the density of
criminals at the location at time t plus a constant � (ex-
pressing the rate at which criminals move per time unit)
times the movement of criminals from t to tC�t from
and to location L, multiplied by�t. Here, the movement
of criminals is calculated by multiplying the relative at-
tractiveness ˇ.L; c; t/ of the location (compared to the
other locations) for criminals with the total number c of
criminals (which is constant). From this, the density of
criminals at the location at t is subtracted, resulting in
the change of the number of criminals for this location.
For passers-by, a similar formula is used

p.L; tC�t/D p.L; t/C �.ˇ.L;p; t/p� p.L; t//�t :

However, as opposed to [50.9], the movement of
the guardians is not (necessarily) modelled using this
formula. Instead, to represent guardian movement, dif-
ferent strategies can be filled in.

Next, the attractiveness of a location can be ex-
pressed based on some form of reputation of the loca-



Model-Based Reasoning in Crime Prevention 50.3 Domain Model 1057
Part

I|50.3

Table 50.1 Variables used in the domain model

Name Explanation
c Total number of criminals
g Total number of guardians
p Total number of passers-by
c.L; t/ Density of criminals at location L at time t.
g.L; t/ Density of guardians at location L at time t.
p.L; t/ Density of passers-by at location L at time t.
ˇ.L; a; t/ Attractiveness of location L at time t for

type a agents: c (criminals), p (passers-by),
or g (guardians)

ba.L; a; t/ Basic attractiveness of location L at time t
for type a agents: c (criminals), p (passers-
by), or g (guardians)

Assault_rate
.L; t/

Number of assaults taking place at location
L per time unit.

tion for the respective type of agents. Several variants
of a reputation concept can be used. The only constraint
is that it is assumed to be normalized such that the to-
tal over the locations equals 1. An example of a simple
reputation concept is based on the densities of agents,
as expressed below.

ˇ.L; c; t/D p.L; t/

p
for criminals ;

ˇ.L;p; t/D g.L; t/

g
for passers-by :

This expresses that criminals are more attracted to
locations with higher densities of passers-by, whereas
passers-by are attracted more to locations with higher
densities of guardians. This definition of reputation is
used in [50.9]. Although this definition is simple, which
makes the model well suited for mathematical analy-
sis, it is not very realistic. To solve this problem, in this
chapter, the following linear combinations of densities
are used.

ˇ.L; c; t/D ˇc1
�
1� g.L; t/

g

�

Cˇc2 p.L; t/
p
Cˇc3ba.L; c; t/ ;

ˇ.L;p; t/D ˇp1
�
1� c.L; t/

c

�

Cˇp2 g.L; t/
g
Cˇp3ba.L;p; t/ :

(Note that these attractiveness formulae are not nor-
malized yet. To ensure that the values stay between 0

and 1, each attractiveness value is divided by the sum
of the values over all locations. Moreover, the influence
by agents from the same group is not considered.)

This expresses that criminals are repelled by
guardians, but attracted by passers-by. Similarly,
passers-by are repelled by criminals, but may be at-
tracted by guardians. In addition, for each type of agent
some basic attractiveness can be defined. The weight
factors (ˇxy, which may also be 0) indicate the relative
importance of each aspect. Again, for the guardians no
formula is specified, since this depends on the guardian
movement strategy that is selected.

Finally, to measure the assaults that take place per
time unit, also different variants of formulae can be
used [50.9]. In this chapter, the following is used

assault_rate.L; t/Dmax.c.L; t/p.L; t/

� �g.L; t/; 0/ :

Here, the assault rate at a location at time t is cal-
culated as the product of the densities of criminals
and passers-by, minus the product of the guardian den-
sity and a constant � , which represents the capacity
of guardians to avoid an assault. The motivation be-
hind this is that the maximum amount of assaults that
can take place at a location is c.L; t/p.L; t/, but that
this number can be reduced by the effectiveness of the
guardians (which corresponds exactly to the routine ac-
tivity theory). In principle, this assault rate can become
less than 0 (the guardians can have a higher capacity to
stop assaults than the criminals have to commit them);
therefore the maximum can be taken of 0 and the out-
come described above. Based on this assault rate, the
total (cumulative) amount of assaults that take place at
a location is calculated as

total_assaults.L; tC�t/D total_assaults.L; t/

C assault_rate.L; t/�t :

Although the domain model is presented here in
a purely mathematical notation, its actual implementa-
tion has been done in the agent-based modeling envi-
ronment LEADSTO [50.29]. This environment is well
suited for the current purposes, since it integrates both
qualitative, logical aspects and quantitative, numerical
aspects. The basic building blocks of LEADSTO are
executable rules of the format ˛� ˇ, which indicates
that state property ˛ leads to state property ˇ. Here, ˛
and ˇ can be (conjunctions of) logical and numerical
predicates.
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50.4 Analysis Model

This section extends the domain model introduced in
the previous section to an analysis model. The analy-
sis model (and the support model, see next section) is
created by taking the domain model as a basis, and ap-
plying model-based reasoning to it. In particular, two
types of reasoning are applied taken from [50.20]: for-
ward and backward reasoning. In short, these types of
reasoning make use of the following kinds of (simpli-
fied) rules (where X and Y are variables in a model, for
example, as in Fig. 50.3):

� If you believe X and believe that Y depends on X,
then you also believe Y .

belief.X/^ belief(depends_on.Y;X//

! belief.Y/ :

� If you desire Y and believe that Y depends on X,
then you also desire X.

desire.Y/^ belief(depends_on.Y;X//
! desire.X/ :

To illustrate the idea, assume that we focus on an
existing city, of which the average number of crimi-
nals, guardians, and passers-by at the different locations
is known (to a certain extent). Thus, specific num-
bers can be assigned to the variables density_criminals,
density_guardians, and density_passers_by in Fig. 50.3
(which correspond to c.L; t/, g.L; t/, and p.L; t/ in Ta-
ble 50.1). Then, via forward reasoning (the first rule
shown above), the model can predict how the number
of assaults will change over time.

One step further, instead of taking the actual densi-
ties of guardians at the different locations, the analysis
model can also be used to investigate how the crime
rates would change in case the densities of guardians
were different. To this end, the analysis model is ex-
tended with the possibility to specify particular crime

Table 50.2 Guardian movement strategies considered by the analysis model

Strategy Formalization of �.L; t/
Baseline 0
Reactive 1 .c.L; t/=c/g� g.L; t/
Reactive 2 aar.L; t/g� g.L; t/
Reactive 3 taar.L; t/g� g.L; t/
Reactive 4 .p.L; t/=p/g� g.L; t/
Anticipate 1 .c.L; t/C �2.ˇ.L; c; t/c� c.L; t//�t/=cg� g.L; t/
Anticipate 2 p.L; t/C �2.ˇ.L; p; t/p� p.L; t//�t/=pg� g.L; t/
Anticipate 3 ..c.L; t/C �2.ˇ.L; c; t/c� c.L; t//�t/=cC .p.L; t/C �2.ˇ.L; p; t/p� p.L; t//�t/=p/=2g� g.L; t/
Hybrid 1 ..aar.L; t/g� g.L; t//C .p.L; t/C �2.ˇ.L; p; t/p� p.L; t//�t/=pg� g.L; t//=2
Hybrid 2 ..taar.L; t/g� g.L; t//C .p.L; t/C �2.ˇ.L; p; t/p� p.L; t//�t/=pg� g.L; t//=2

prevention strategies. The idea is that, in addition to the
rules that govern the behavior of criminals and passers-
by, the behavior of the guardians can be specified by
selecting one out of multiple strategies.

In current practice, the crime prevention policies
that are applied by law enforcement agencies are –
mostly – reactive [50.25, 30]. That is, these agencies
often only increase the level of guardianship at loca-
tions where crimes have been committed in the past. As
a consequence, this often means that such a decision
is made too late, because the damage has already been
done. Instead, we hypothesize that a more anticipatory
strategy (e.g., a strategy to invest in more guardians at
locations where one predicts that a hot spotwill emerge)
may be more efficient.

To be able to investigate this, the analysis model
is equipped with multiple strategies for movement of
guardians (varying from reactive to anticipatory, and
combinations of the two). The selected strategies are
based on [50.27, 28], in which they were already tested
against some initial scenarios. In total, the analysis
model contains 10 different strategies (see also Ta-
ble 50.2):

� The first strategy is a baseline strategy. In this case
guardians do not move at all. Their density at the
different locations remains stable over time.� The second strategy (called reactive 1) states that
the amount of guardians that move to a new location
is proportional to the density of criminals at that lo-
cation.� The third strategy (reactive 2) states that the amount
of guardians that move to a new location is pro-
portional to the percentage of the assaults that have
recently taken place at that location.� The fourth strategy (reactive 3) states that the
amount of guardians that move to a new location
is proportional to the percentage of all assaults that
have taken place so far at that location.
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� The fifth strategy (reactive 4) states that the amount
of guardians that move to a new location is propor-
tional to the density of passers-by at that location.� In the sixth strategy (anticipate 1), the amount of
guardians that move to a new location is propor-
tional to the density of criminals they expect that
location to have in the future.� In the seventh strategy (anticipate 2), the amount
of guardians that move to a new location is propor-
tional to the density of passers-by they expect that
location to have in the future.� In the eighth strategy (anticipate 3), the amount of
guardians that move to a new location is propor-
tional to the amount of assaults they expect that will
take place at that location in the future. This pre-
dicted amount of assaults is approximated by taking
the average of the expected densities of criminals
and passers-by.� The ninth strategy (hybrid 1) is a combination of
reactive 2 and anticipate 2. Here, the amount of
guardians that move to a new location is the av-
erage of the amounts of guardians determined by
those two strategies.� The tenth strategy (hybrid 2) is a combination of
reactive 3 and anticipate 2. Here, the amount of
guardians that move to a new location is the av-
erage of the amounts of guardians determined by
those two strategies.

To formalize these strategies, the following formula
is used

g.L; tC�t/D g.L; t/C �	.L; t/�t :

This formula is similar to the formulae used for
criminals and passers-by, but the amount of guardians
that move per time unit is indicated by the factor 	.L; t/,
which depends on the chosen strategy. The different
definitions of 	 are shown in Table 50.2. For example,
for the baseline strategy, 	.L; t/D 0, which means that
the amount of guardians at time point tC�t is equal to
the amount at t.

In the strategies reactive 2 and 3, the average assault
rate aar.L; t/ and the total average assault rate taar.L; t/
are calculated by

aar.L; t/D assault_rate.L; t/P
XWloc assault_rate.X; t/

;

taar.L; t/D total_assaults.L; t/P
XWloc total_assaults.X; t/

:

As can be seen from Table 50.2, the idea of the an-
ticipation strategies it that the guardians use formulae
that are similar to the formulae for movement of crim-
inals and passers-by to predict how they will move in
the near future. Obviously, these predictions will not be
100% correct, since they do not consider interaction be-
tween the different types of agents, but our assumption
is that they may be useful means to develop an efficient
strategy.

Furthermore, different values can be taken for the
parameter �2 in the anticipation strategies. This param-
eter represents the speed by which the criminals and/or
passers-by move in the predicted scenario (or, in other
words, the distance in the future for which the predic-
tion is made). For example, by taking a very high value
for �2 in the anticipate 1 strategy, guardians get the ten-
dency to move to locations that are predicted to have
a high density of criminals in the very far future.

As mentioned earlier, the idea of having different
strategies is that the analysis model can test which one
performs best. A question is however how to define the
notion of a good strategy. One possibility is to look
at effectiveness, for example, by considering the strat-
egy that results in the lowest crime rates (total_assaults)
as the best. However, in reality also the costs of crime
prevention play an important role. Various mechanisms
to improve guardianship exist (e.g., adding and mov-
ing security guards, burglar alarms, fencing, lighting),
but they all involve costs [50.30]. Thus, instead of only
measuring the amount of assaults that result from each
strategy, in the calculation of the best strategy one
should compensate for the costs involved. For this rea-
son, the following formula (which was not included
in [50.20]) has been added

total_costs.tC�t/

D total_costs.t/C
X

XWloc

	.X; t/"�t :

This formula counts the total costs that are spent on
crime prevention (for all locations involved) during the
simulation. Parameter " represents the guardian move-
ment costs per time step.
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50.5 Support Model
On top of the analysis model presented above, also
a support model for crime prevention has been devel-
oped. This model takes as input certain information
about the future scenario for which the user desires sup-
port. Based on this information, it generates advices
about which strategies are recommended to prevent
crime in this scenario.

More specifically, the model first needs to have
some information about the state of the world. In par-
ticular, the user needs to specify the geography of the
city (i. e., which locations are relevant?), and the ini-
tial densities of the different types of agents for each
location. In addition to this, the user needs to define
a scenario, that is, (s)he needs to indicate the total
time span for which the system is to provide sup-
port, and to specify for each location how its basic
attractiveness will change during this time span. For
instance, in case a circus will temporarily come to
town, the basic attractiveness of the location of the
circus is likely to increase. Finally, the user has to spec-
ify the maximum amount of money (s)he desires to
spend.

To summarize, the support model takes the follow-
ing information as input (which needs to be entered by
the user of the system):

� Geography of the city (i. e., which locations are rel-
evant?)� Initial densities of the different types of agents
.c.L; t/, g.L; t/, p.L; t// for each location� Total time span of the scenario� Basic attractiveness for the different types of agents
.ba.L; c; t/, ba.L;g; t/, ba.L;p; t// for each location
over time� Maximum budget.

On the basis of these settings, the support model re-
quests the analysis model to perform simulations for
all possible strategies, to determine for each of these
strategies to which crime rates it would lead, and what
its costs would be. After that, the support model se-
lects the best strategies, and presents information about
those strategies to the user. The strategies that are as-
sessed as best are those strategies of which the costs are
lower than the maximum budget. Moreover, concerning
the remaining strategies, in case some strategy s1 turns
out both more expensive and less effective than some
strategy s2, then this strategy s1 is removed from the se-
lection. Upon request, the model can also provide the
user more detailed information about the dynamics of
the effect of a particular strategy in the scenario.

50.6 Results

A prototype implementation of the model has been de-
veloped. To illustrate the behavior of the prototype,
below (part of) the dynamics of an example execution
are shown in detail.

This example addresses a scenario where there
are three locations, and 3900 agents. The population
considered consists of 600 (potential) criminals, 300
guardians, and 3000 passers-by. Initially, these agents
are distributed equally over the three location (i. e., at
each location, there are 200 criminals, 100 guardians
and 1000 passers/by). Moreover, all locations start with
the same basic attractiveness (D 0:33 on a Œ0; 1� scale).
After 50 time steps the attractiveness of the locations
changes: location 1 becomes very attractive .D 0:6/, lo-
cation 2 becomes slightly less attractive .D 0:3/, and
location 3 becomes much less attractive .D 0:1/. The
scenario lasts 100 time steps and the maximum budget
the user can spend is 100.

When executing the system based on these settings,
for the analysis model would predict the dynamics
of the scenario for each of the different strategies, as
mentioned above. As an illustration, such a prediction

is visualized for one particular strategy (in this case,
the reactive 2 strategy, Table 50.2) in Fig. 50.4. Fig-
ure 50.4a–d shows the assault rate, and the amount of
criminals, guardians, and passers-by at the different lo-
cations. In all graphs, the red line indicates location L1,
the green line indicates location L2, and the blue line in-
dicates location L3. The black line in Fig. 50.4a shows
the total amount of assaults, that is, the sum of the as-
saults at the three locations.

As can be seen in Fig. 50.4, over the first 50 time
points, the number of the different types of agents at the
locations stays equal. After time point 50, the amounts
change. The guardians move away from location 3 to
location 1, which is the most attractive location. The
criminals move away from location 1 because they want

Table 50.3 Recommendation by the support model

Recommended
strategies

Predicted
costs

Predicted
% assaults prevented

Anticipate 1 30:38 7:7
Anticipate 2 93:16 70:9
Anticipate 3 45:10 40:6
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Fig. 50.4a–d Results of an example simulation run by the analysis model

to move away from the guardians. The passers-by move
toward location 1 since they want to be at the safest
location (i. e., the location with the highest amount of
guardians and the lowest amount of criminals). In this
case, the strategy used by the guardians seems to work
well, because the total number of assaults (i. e., the
black line in Fig. 50.4a) grows not much faster than
it did during the first 50 time points. When comparing
this, for instance, with a baseline strategy in which the
guardians are static (which is also tested by the analysis
model but not shown in Fig. 50.4), this turns out to be
a significant improvement.

All in all, the analysis model tries out all possi-
ble strategies and provides the results to the support
model. Based on this, the support model selects the
most promising strategies (in the context of the user’s

preferences), and presents them as a recommendation
to the user. Table 50.3 shows what this recommenda-
tion looks like for the current scenario.

As can be seen from Table 50.3, the system predicts
that the three anticipate strategies are best, that is, they
have costs that are below the budget of the user and
are nevertheless effective. Moreover, the system pre-
dicts that strategy anticipate 1 will be cheapest, but that
strategy anticipate 2 will be most effective.

Although this is only a single example scenario, it
clearly illustrates that the model is able to generate an
appropriate advice on police investment, which may
actually be used by policy makes in order to reduce
crime rates. For a more detailed comparison between
the different strategies in various scenarios, see [50.27,
28].
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50.7 Discussion
In this chapter, model-based reasoning techniques
were applied to the domain of criminology. We pre-
sented an approach to analyze crime displacement. The
approach was inspired by an existing methodology
from AmI [50.16–18], which proposes that intelligent
human-aware systems are composed of three sepa-
rate components, namely a domain model, an analysis
model, and a support model [50.19]. In the context of
crime displacement, the role of the domain model was
to simulate the dynamics of crime displacement, but on
top of that, the analysis model proved useful to reason
about such simulations for different settings, and the
support model was able to generate advice on the ba-
sis of the results of this reasoning. The advice consists
of a selection of guardian movement strategies that are
recommended for a particular scenario, augmented with
additional information about the costs and effectiveness

of these strategies. A prototype version of the model has
been implemented, and some initial tests have pointed
out that the model provides realistic advices.

Despite these encouraging results, one should be
careful not to overgeneralize them. Currently, they were
achieved in simulations that used several specific pa-
rameters and simplifying assumptions. Nevertheless,
after further testing, the model may provide useful input
for policy makers, in order to elaborate their thoughts
about efficient strategies, and possibly improve existing
surveillance policies.
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51. Modeling in the Macroeconomics
of Financial Markets

Giovanna Magnani

Since the stock price bubble of 1920 and the fol-
lowing 1929–1933 Great Depression, financial crises
have become increasingly frequent and globalized.
When in the late 2007 the Global Financial Crisis
began to show the flawed characteristics of the
US capitalist system while spreading throughout
all other economies of the world, the ideas of the
post-Keynesian School of Economics – a school of
economic thought having its origins in The General
Theory – and in particular, those of Hyman Minsky,
became prominent. Minsky’s conception of “crisis-
prone markets” has become fundamental not only
to interpret the 2007 credit crunch – as well as
a sort of “ignored prediction” – but also to eluci-
date the features of the post-modern capitalistic
system and its evolution. This chapter begins with
a review of Minsky’s thought on the inherently
unstable nature of capitalism. It then examines
Irving Fisher’s debt deflation model and its appli-
cation to interpret financial crises and recessions.
A reflection on the issues of finance-led capitalism
in the neo-liberal era completes the first part of
the chapter where it is argued that the Minskyian
model, if integrated with the social structure of
accumulation theory, is very relevant for interpret-
ing the causes and the evolution of the 2007 crisis.
The second part of the chapter progresses with
the investigation around the constructs of risk and
uncertainty, and their modeling in Economics and
Business Studies.
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51.1 The Intrinsic Instability of Financial Markets

In the following sections, we review Hyman Minsky’s
financial instability hypothesis, starting from his inter-
pretation of John Maynard Keynes’ General Theory.
Subsequently, we examine Minsky’s financial theory of
investment and the investment theory of the business
cycle.

The central idea of Minsky’s theory is that stabil-
ity is destabilizingmeaning that even a stable economic
(capitalistic) environment will endogenously move to-
ward unstable conditions. Capitalism is seen as prone
to crisis, with the origins for economic collapse rooted
inside the growth process itself. More specifically,
a capitalist economy with sophisticated financial in-
stitutions is inherently flawed because of its cyclical
nature, where short- and long-term expectations are un-
stable because of the presence of uncertainty.

During an economic downturn, banks and other
financial institutions act more conservatively in their
lending, as such practices produce efficient outputs to
firms which are in turn taking on less risk (as they have
a sustainable level of indebtedness). But during times of
growth, firms start to engage in riskier activities borrow-
ing money to accelerate growth to even higher rates as
their optimistic forecasts are validated. Economic units
become riskier – starting from a situation where they are
simply hedge units to evolve into speculative or ultra-
speculative ones – as financial institutions become laxer
in their lending practices. Euphoria spreads over and
low interest rates make leveraging affordable.

An economic system increasingly based on specu-
lative units is going to be intrinsicallymuch exposed to
financial crises because itbecomes more fragile; thus,
any small fluctuation in financial markets (in particular
an increase in interest rates) can have great rebounds on
real variables.

Indeed, the ability to repay debt and to refinance
business is a function of expected future profits. These
latter are a function of investment and in turn, the ability
to finance future investments is strictly correlated to the
expectations that those investments will be able both to
repay debts and to refinance business.

As the vicious spiral of increased speculative and ul-
tra-speculative lending positions carries on, units which
face liquidity problems caused by their over-indebted-
ness are forced to refinance or to sell their activities at
declining prices (debt-deflation). This leads to falling
investment, demand, and profits. Whenever over-in-
debted investors are forced to sell even their less-
speculative positions to make good on their loans; at
this point, a major sell-off begins and markets create
a severe demand for cash: an event that has come to
be known as a Minsky moment. The crisis of 2007

has been classified by many commentators as a Min-
sky moment. Paul McCulley, a bond fund director at
the Pacific Investment Company, has been the first who
coined the term following Hyman Minsky’s financial
instability hypothesis. The term has been subsequently
clarified by George Magnus, a senior economic advi-
sor at the global investment bank UBS. According to
Magnus, a Minsky moment in financial markets is the
point at which “credit supply starts to dry up [. . . ] sys-
temic risk emerges and the central bank is obliged to
intervene” [51.1]. This stage is first characterized by
“a prolonged period of rapid acceleration of debt” in
which the most traditional debt is replaced by new debt
borrowed to repay the already existing one. Then “‘the
moment’ occurs when lenders became more and more
cautious or restrictive” and at this point “the risks of
systemic economic contraction and asset depreciation
become all too vivid” [51.2].

According to Minsky, two sets of solutions emerge
as necessary in order to reverse the income decline
caused by a financial shock. First, central banks should
act as lenders-of-last-resort (the so-called big bank)
and second, the governments should run high deficits
that can sustain firms’ profits, employment, and final
demand even if income has declined (the so-called
big government). Countercyclical government spend-
ing, which constitutes a significant share of aggregate
demand, can reverse the tendency toward debt-deflation
that emerges during the crisis. Summing up, the bigger
the government, the greater the stability of the econ-
omy.

51.1.1 The Interpretation
of the General Theory

During the 1980s, when mainstream macroeconomic
research started to study the role of finance within
the economic system, Hyman P. Minsky’s theories be-
came of foremost importance. Minsky argued that the
structure of the contemporary capitalism is made of
exceedingly complex financial arrangements. He in-
deed preferred to call himself a financial Keynesian
rather than a post-Keynesian because of his aim to clar-
ify and extend Keynes’ theories including the complex
financial relations, markets, and institutions which char-
acterize the contemporary capitalist structure. Indeed,
Minsky’s financial instability hypothesis – as it is gen-
erally called in the Academia – derives from his studies
of Keynes, based in particular on The General Theory
of Employment, Interest and Money [51.3].

His financial Keynesian perspective contrasts
sharply with that in the mainstream macroeconomic de-
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bates of the 1960s and 1970s where the role of financial
relations was considered to be limited. The financial in-
stability hypothesis arose out of an attempt by Minsky
to understand Keynes in light of the extreme financial
disturbance of the 1920–1930 decade which led to the
Great Depression of 1929–1933. Such an interpretation
is alternative to the one which led to the birth of the so-
called neoclassical synthesismainly developed by John
Hicks and popularized by the mathematical economist
Paul Samuelson, in that it stresses Keynes’ explanation
of complex capitalist economy’s behavior made of so-
phisticated financial institutions. As mentioned already,
Minsky believed that such a kind of economic system
tends to be inherently flawed. This flawed feature is re-
lated to its cyclical nature, meaning that it is made of
a succession of transitory phases where economic be-
haviors change and where, according to this definition,
the system cannot by its own processes continuously
sustain full employment [51.4].

With respect to the financial structure within a cap-
italist economy, we can identify the presence of (i)
private portfolios, made of real-capital assets or specu-
lative financial assets – and (ii) banks, generally defined
as institutions specialized in finance. Monetary and fi-
nancial institutions determine the way in which funds
required for gathering stocks of capital assets and those
needed for the production of new ones are obtained.
Following Keynes, Minsky agrees with the assumption
that the proximate cause of the transitory nature of each
cyclical phase is the instability of investment, but the
deeper cause is the instability related to portfolios deci-
sions and compositions, and to financial interrelations.
In order to better frame such an argument, we need to il-
lustrate its foundation on a specific modeling of the con-
struct of uncertainty. Uncertainty in this context means
that future is not predictable, and therefore changing
views about what will happen affect people’s choices
about portfolios compositions, financial decisions, and
relations in general. The presence of uncertainty makes
the formation of short- and long-term expectations pre-
carious. Since short-term expectations are for instance –
from firms’ point of view – the basis for current produc-
tion decisions whereas long-term ones affect investment
decisions, a variation in one or both can change the
equilibrium conditions between production and invest-
ment, as well as agents’ portfolio choices.

While classical economics (i. e., the school of eco-
nomic thought born in the eighteenth century with
Adam Smith, David Ricardo, and John Stuart Mill) and
the neoclassical synthesis (i. e., the consensus view of
macroeconomics which emerged in the mid-1950s in
the United States) are based upon a barter paradigm,
the Keynesian theory of investment rests upon a specu-
lative-financial paradigm [51.5, p. 21]:

“[. . . ] in the General Theory Keynes adopts a City
or Wall Street paradigm: the economy is viewed
from the board room of a Wall Street investment
bank.”

By adopting the City paradigm, Keynes assumes
that the economy is a sophisticated monetary system
where money has not only simple trade functions, but it
also acts as a financial veil between “the real asset and
the wealth owner.” As pointed out by Davidson [51.6],
Keynes specifically argued that money has also another
important function: since people know that they cannot
predict future, society has attempted to create institu-
tions that will provide people with some control over
their uncertain economic destiny; the use of money per-
mits individual to have some kind of control over their
cash inflows (CIFs) and outflows and so, of their mon-
etary economic future. Keynes’ conception of money is
clearly stated by his sentence [51.7, p. 169]:

“There is a multitude of real assets in the world
which constitutes our capital wealth- buildings,
stocks of commodities, goods in the course of man-
ufacture and of transport, and so forth. The nominal
owners of these assets, however, have not infre-
quently borrowed money in order to become pos-
sessed of them. To a corresponding extent the actual
owners of wealth have claims, not on real assets,
but on money. A considerable part of this financ-
ing takes place through the banking system, which
interposes its guarantee between its depositors who
lend money and its borrowing customers to whom
it loans money wherewith to finance the purchase of
real assets. The interposition of this veil of money
between the real asset and the wealth owner is a spe-
cially marked characteristic of the modern world.”

Looking at the economy from a “Wall Street board
room”, Minsky sees a world made of commitments
to pay cash in the future in exchange for cash today,
where the most crucial type of commitment is business
debt, assuming that it is the very peculiar component of
a modern capitalist economy. The ability of firms to re-
pay debt and to refinance businesses in order to make
new investments is a function of the expected future
profits (gross profits), where gross profits themselves
are, in turn, largely determined by investments. This
means that the ability to finance future investments is
strictly correlated with the expectation that future in-
vestment will be higher enough so that future cash flows
will be able both to repay debt and to refinance the busi-
ness. Minsky argues that an economic system with pri-
vate debts is deeply influenced by agents’ (firms and
bankers) views about the future course of investment
and thus the determination of units’ liability structures
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and in the end, future production, income, and employ-
ment. It is uncertainty – the Keynesian type of – for
which “there is no scientific basis on which to form
any calculable profitability whatever. We simply do not
know” [51.8, p. 214]. In the next sections, we will pro-
gressively illustrate Minsky’s financial theory of invest-
ment and his investment theory of the business cycle, in
light of the assumptions hemade uponKeynes’ vision of
behavior in an uncertain capitalistic economy. But first
we need to portray Minsky’s model of the capitalist sys-
tem itself.

51.1.2 The Nature of the Capitalist System

The Financial Nature of Capitalism and Money
Supply Endogeneity

Minsky recognizes different distinct forms of capitalist
systems, but at the same time he argues that they share
similar characteristics. According to his analysis [51.9],
our capitalist economy is first of all a monetary produc-
tion system where money is at the center of economic
decisions, and where the aim of any economic activ-
ity is to get a monetary gain. Following Keynes, money
is understood as a veil that camouflages ultimate own-
ership of wealth [51.10] and that any economic theory
(i. e., the neoclassical synthesis which considers money
only as a bartering veil) which ignores this major aspect
of money cannot be considered a useful tool to design
appropriate policies. This kind of veil is different from
the one in quantity theory of money. The veil of quantity
theory basically says that the price level in an economy
depends on how much money is in the economy: when
money supply changes, the real economy does not be-
cause when money supply changes by a certain amount,
everything else does as well. If it doubles, then prices
double: money supply is the force that changes the price
level

MV D PY ; (51.1)

M! P ; (51.2)

where M is the money supply, V is money’s velocity of
circulation, P is the general price level, and Y is the real
value of national output (i. e., GDP).

The idea that money supply has to be treated
as endogenous is largely accepted by post-Keynesian
theories: accordingly, credit volume is generated en-
dogenously inside the private sector because of banks
introducing money into the economy directly by financ-
ing current productive activities. Credit is brought into
existence by banks (without preventive savings acts),
through the creation of deposits. The financing of pro-
duction is therefore linked to banks’ availability and
capacity of injecting money into the economic system
through investment acts [51.11]. Hence, money is not

only a medium of exchange or a store of value, but also
the financial mean through which banks allow credit to
units. In such a prospective, banks’ credit potential is
not fixed by the monetary base (i. e., a measure of the
money supply that is the sum of all the money in cir-
culation plus deposits, and commercial banks’ reserves
with the Central Bank). Money supply is a function of
the interaction between firms, banks, workers, and fi-
nancial markets.

Within the Minskyan framework, money has an en-
dogenous nature: it is a type of obligation appearing
on the market as investment or current production ac-
tivities are in the process of being financed. It has to
be noted that according to Minsky, money supply en-
dogeneity is compatible with the liquidity preference
hypothesis [51.12] since he extends his financial insta-
bility hypothesis to banks and credit markets, analyzing
creditor and debtor risk throughout all the business cy-
cles phases [51.11], thus taking into consideration the
liquidity preference functions of each actor. Liquid-
ity preference means that the less liquid (i. e., easily
tradable) the investment is, the greater the premium de-
manded by investors in the face of greater risk.

One of the most innovative arguments in Minsky’s
theory is that when demand for money stimulates sup-
ply, it not only increases money velocity of circulation,
but also causes the introduction of financial innova-
tions. The release of less liquid and more onerous
financial instruments (called quasi-money) is the rea-
son why during boom periods the amount of money in
circulation rises. Thus, money supply is not given once
and for all: the amount changes during the economic
cycle (during a boom period money demand will stim-
ulate for an increasing supply). Although the effective
quantity of money in circulation is demand driven, it
is not unbounded. Money supply is positively related
to the rate of interest with a given financial structure,
but it increases when banks and financial intermediaries
squeeze inactive money and issue new substitutes for
money, reacting to monetary policy or just exploiting
profit opportunities during the cycle [51.13].

The Role of Banks and of Financial
Innovations

Banks are an essential component of the system at all
stages of the economic process. In addition, bankers
are both a source of dynamism and destabilization and,
therefore, need to be managed [51.10]. Banks can be
thought as all kind of institutions that contribute, di-
rectly or indirectly, to the financing and funding of
economic activities. At the same time the aim of the
banking activity is that of maximizing expected profits.
Banks are considered byMinsky truly speculative enter-
prises since the maturity of their debts is far shorter than
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the maturity of their assets, so that there is a refinanc-
ing cost upon which they have to speculate [51.5]. By
allowing loans, banks are subject to credit risk; there-
fore, they first of all assess firms’ expected profitability.
Banks will profit from their lending activity only if
firms are able to meet their debt payment commit-
ments. Hence, bankers’ expectations on entrepreneur-
ship are pivotal in determining the economic course of
events (even if also bankers’ expectations are formed in
a world made of uncertainty), since they are the prereq-
uisite to obtain funds.

In order to maximize profits, banks attempt to make
an increasingly efficient use of their lending potential,
and push for an increase in loans. At the same time, sim-
ilar to commercial banks, financial intermediaries that
are profit-seeking agents, also constantly try to extend
credit, by financing new positions. Financial interme-
diaries issue new kinds of financial instruments which
serve as effective money without increasing required
reserves [51.14]. A given amount of bank loans and de-
mand deposits supports a higher volume of finance to
the whole economy.

The Centrality of Profits
In arguing about the financial nature of modern capi-
talism, and in particular of investment, Minsky recog-
nizes three ways in which the former affects the lat-
ter. First, in financing of positions in the existing stock
of capital assets; second, in financing investment and
production/distribution activities; third, in meeting pay-
ment commitments as stated on financial contracts. He
argues that the techniques employed to finance positions
in capital assets affect asset prices and that prices reflect
expected profits that can be earned by using capital as-
sets into production and the payment commitments that
have to be agreed to finance ownership. Since a debt in-
volves an exchange of money today for promises to pay
money tomorrow, the smaller the amount that has to be
promised to obtain current money to finance capital as-
sets, the greater the demand for such capital assets. Sup-
ply of capital assets is fixed and therefore an increase in
their demand will cause an increase in their price.

It is necessary for quasi-rents – that is, the dif-
ference between the total revenue from selling output
produced with the aid of capital assets and costs asso-
ciated with that production – to be greater than future
payment commitments (at least on a relevant time hori-
zon), so that it is suitable to proceed to the production
and acquisition of capital activities. The maintenance
over time of a positive gap between cash-inflows and
cash-outflows depends on the realization of expecta-
tions on future profits, but also on the debt-structure
inherited from the past and on the course of financial
costs in the current period [51.14]. Since we can say that

profits are inflows used by firms in order to meet debt
commitments, and expected profits are the stimulus for
making investments and determine the possibility to
renew existing debts or to generate new ones – expecta-
tions on future profits are the determinants of current
investment and financing decisions. The centrality of
profits, seen as the engine for growth and financial dy-
namics (debt structures), is confirmed by the use of
Kalecki’s equations of profit by Minsky (Sect. 51.2.1).

51.1.3 Cash Flows Analysis and Classification
of Financial Postures

All economic activities (real and financial assets) are
acquired by firms through a combination of equity
and short/medium long-term debt. Since debt implies
a commitment in order to repay principal and interests,
periodical cash outflows (COFs) are generated. On the
other hand, investments and productive activities are ex-
pected to give birth to CIF. Note that current profits are
a sign of the generation and of the amount of future
profits and thanks to this, firms decide or not for greater
indebtedness.

An economic unit – or the economy itself – needs
to generate enough CIF or to have enough idle cash
balance (ICB), in order to meet its COF [51.15]. If
the net cash inflow (NCF) is negative and no ICB is
available, an economic unit will be considered illiq-
uid or even insolvent [51.9]. We can identify different
sources and uses of funds for each economic activ-
ity, also depending on the level of analysis (business
unit, sector, and whole economy): possible sources and
main NCF are different. Our economy is one in which
borrowing and lending on the margins of safety are
commonplace. Each financing transaction involves an
exchange of money today for money later on; the fu-
ture cash receipts which will enable the borrower to
fulfill the money-tomorrow parts of the contract are
conditional upon the performance of the economy over
a longer or shorter period. All economic activities in-
volve income transactions, balance-sheet transactions,
and portfolio transactions; we can classify sources of
CIF into three categories [51.4, 16]. Cash flows from
income operations are those deriving from productive
activity or from investment: they are wages, salaries,
and profits. Cash flows from balance sheet operations
are those deriving from financial contracts (interest and
principal). Cash flows from portfolio activities are those
related to transactions involving real assets or financial
ones (assets acquisitions or the issue of liabilities). It is
the relative weight of these cash flows that determines
the exposure grade of a system to a financial crisis. In
particular, financial instability derives from the prop-
agation of the practice through which a unit finances
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long-term activities by underwriting new debt (position
refinancing). The model in which Minsky investment
theory is developed is a closed economy with a very
small State (that is to say, public intervention has no
relevant dimension), where capital accumulations im-
plies debt, which in turn is constituted first of all by
banking finance. There are two types of financing: the
short term, which is to finance productive activities and
the long-term, needed to finance capital assets (in gen-
eral all those illiquid postures in capital assets such as
plants and equipment, buildings, etc.). Usually these fi-
nancings are made partly with own funds and partly
with external ones; we can assume that banks finance
current production and that the present stock of capital
assets can be financed also through other financial inter-
mediaries or directly by private savers, with instruments
whose liquidity is directly linked to their convertibility
in bank money [51.14]. As we mentioned, Minsky de-
fines money as a particular type of obligation, created as
production process activities, investments and postures
on capital assets are getting financed.

It is important to remark that, according to Minsky,
agents’ ultimate purpose is not material production it-
self, but accumulation of money (production of money
with money) through speculation, by holding portfo-
lios of activities that are not quickly convertible into
money which means, by engaging in financial postures
(i. e., any capital value fromwhich to expect future prof-
its for instance machines, but also securities). There
are three kinds of financial postures for the acquisition
and ownership of activities not quickly convertible into
money, including investment goods: hedge, speculative
and Ponzi. Minsky argues that the stability of the eco-
nomic system is deeply dependent on the mix of these
financial postures: the greater the presence of hedge fi-
nancing, the greater the stability of the structure, while
on the other hand, the presence of excessive specula-
tive and Ponzi financing will increase the tendency of
an economy to become more and more unstable.

A necessary though not sufficient condition for their
financial profitability is that the expected gross capital
income exceeds the total payment commitments over
time. In particular [51.9]

Gross Capital Income D
Total Receipts From Operations

�Current Labor and Material Costs

and

Gross Capital Income D
Principal and Interest Due on Debts

C Income Taxes C Owners Income :

This means that the total receipts of a business firm can
be divided into the payments for current labor and pur-

chased inputs and a residual, gross capital income that
is available to pay income taxes, the principal and inter-
ests on debts, and to be used by the owners.

Back to our sorting, a hedge financing unit implies
that CIF (quasi-rents) from participation in income pro-
duction exceeds debt payment commitments (principal
plus interests) in every period and for each interest rate.
Hence, a sharp rise in interest rates cannot reverse the
condition where the actual value of capital assets ex-
ceeds the book value of debts. The actual value of
activities is always non-negative even in the presence
of very large changes in interest rates. A hedge unit is
expected to be very liquid; there is no expectation that
cash flows from operations will be lower than balance-
sheet commitments at any time; therefore, there is no
expectation that one will have to refinance. However,
some idle cash and superfluous assets are kept aside to
cover possible disappointments in expectations [51.17].
As time passes debt decreases, while equity and idle
cash (retained for precautionary purposes) increase.

A speculative financing unit implies that cash flows
from participation in income production, when totaled
over the foreseeable future, exceed outstanding debt,
but in the near term it is expected that cash flows from
operations will not cover the capital component induced
by debt (even if they are always sufficient to cover inter-
ests); therefore at least in the short term negative cash
flows are expected. A refinancing is thus necessary, but
only for the capital component of debt, thereby expos-
ing the unit to interest rates fluctuations. A speculative
unit may get more easily into troubles than a hedge unit
because for a certain set of interest rates the activity ac-
tual value is positive, but a sudden increase can convert
profits into losses.

A Ponzi finance unit is a speculative financing unit
for which the net income portion from short-term cash
flows is less than near term interest payments on debt.
A Ponzi finance unit implies that cash flows from op-
erations do not even cover cash disbursements due to
interest payments. The unit bet on a favorable variation
under market conditions and/or on gaining an excep-
tional profit that allows compensation of initially accu-
mulated losses (e.g., who speculates at bullish trend).
Both speculative and Ponzi units can fulfill their pay-
ment commitments only by borrowing again (or by dis-
posing assets). The amount of refinancing of Ponzi units
is greater than that of the speculative units, since the
former must refinance in order to cover both princi-
pal and interest. In this case, the refinancing process is
needed both to cover not only the capital components of
balance sheet cash commitments but also their income
components [51.16]. Debt increases over time till the
(expected) realization of a final profit (that reverses the
sign of the investment expected actual value). It has to be
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noted that Ponzi financing can be hard to detect because
it can be hidden by (creative) accounting practices.

We can identify two kinds of risk: economic risk
and financial risk. Economic risk is linked to the pos-
sibility not to come up to firm’s expectations about
future profits, because of a sudden unforeseen wors-
ening of commodities’ markets conditions. Economic
risk can arise because of lower incomes or higher ex-
penditures than expected. Causes may be several, for
instance a hike in the price for raw materials, lapsing
of deadlines for construction of a new operating fa-
cility, disruptions in a production process, emergence
of a serious competitor on the market, the loss of key
personnel, the change of a political regime, natural dis-
asters, etc. Financial risk (which is an umbrella term
for any risk associated with any form of financing)
is related to the possibility of unexpected worsening
of financial markets conditions. Risk may be taken as
downside risk, the difference between the actual re-
turn and the expected return (when the actual return is
lower), or the uncertainty of that return. Risk related to

an investment is often called investment risk. Risk re-
lated to a company’s cash flow is called business risk.
The science that has evolved around managing market
and financial risk under the general title of modern port-
folio theory was initiated by Harry Markowitz in 1952
with his article, Portfolio Selection. We can therefore
argue that hedge financing units are exposed only to
economic risk, while speculative and Ponzi financing
units are exposed both to economic and financial risks,
thus making these two positions unstable and fragile.

As we have mentioned, the stability of an economy
depends upon the mixture of hedge, speculative, and
Ponzi financing, and in turn, the weight of Ponzi and
near-Ponzi speculative finance is conducive to instabil-
ity. During a tranquil period of economic growth, the
weight of speculative and Ponzi financing can increase
a lot because of euphoric expectations about the future.
Thus, for these kinds of positions a rise in interest rates
can transform a positive net worth into a negative net
worth; and these together can intrinsically produce the
conditions for interest rates to swing.

51.2 The Financial Theory of Investment

51.2.1 Aggregate Profit Determination

“A capitalist economy works well as an investing econ-
omy, for investment generates profits” [51.18, p. 104].
Profit expectations make debt financing possible: in-
vestment takes place because positive future profits are
expected, but these profits will be forthcoming only if
future investment takes places. This means that invest-
ments are the key variable in order to determine whether
or not debt payment commitments will be met.

In order to determinate aggregate income, Min-
sky [51.10, pp. 515–516] builds on Kalecki’s equation
of aggregate profit [51.19], which assumes a world
where investment takes place, workers spend all their
wages in consumption, and capitalists’ profits are all
saved.

CDWcNcCWINI ; (51.3)

with CD consumption, Wc D money wage rate in the
production of consumption goods, WI D money wage
rate in the production of investment goods, Nc D em-
ployment in consumption goods, NI D employment in
investment goods, WcNc D wage bill in the production
of consumption goods, andWINI Dwage bill in the pro-
duction of investment goods.

Assuming that PcQc is consumption (C) summed
over all goods, then

PcQc DWcNcCWINI ; so that (51.4)


c D PcQc �WcNc DWINI ; (51.5)

where 
c are profits in consumption goods. Thus, prof-
its in consumption goods equal wages in investment
goods.

Profits in investment goods 
I are instead


I D PIQI �WINI D 
I : (51.6)

Since 
IC
C D 
 , and PIQI D I, we have


 DWINIC
I D I : (51.7)

Kalecki’s result can be expanded to


 D ICDf (51.8)

if government is introduced (DfD government deficit),
if consumption out of profits (C) and savings out of
wages (s) are allowed, then we have


 D ICDfCC
 � sW (51.9)

and


 D ICDfCC
 � sWCBPS (51.10)

if the economy is open (BPS D balance of payments).
Total profits are the sum of capitalist consump-

tion, investment, public deficit, net external surplus
(exports minus imports) minus workers’ savings. To-
day’s profits depend on today’s investment; they equal
investment in a world in which we imagine work-



Part
I|51.2

1072 Part I Models in Engineering, Architecture, and Economical and Human Sciences

ers consuming all their wage and capitalists saving all
profit. The curve that represents financing with internal
funds is a function of realized investments, from which
gross profits and so internal resources for further in-
vestments depend. At a micro level, firms’ investments
depend on expected profits (and on the level of inter-
est rates as well), while at a macro level realized profits
depend on the overall level of business firms’ invest-
ments.

Since both investment and positions in capital assets
must be financed, as a result financing terms influ-
ence prices of capital assets, the effective demand for
investment and the supply price of investment out-
puts [51.16]. Once the determinants of investment are
understood, a complete theory of financial instability
can be constructed.

51.2.2 The Two-Price Model and
the Determination of Investment

The two-price model is the analytical tool by which
Minsky integrates his theory of money and finance into
his theory of investment. From a microeconomic per-
spective, it is necessary to consider the price of capital
assets as a key variable for investment. Such price em-
bodies firms’ changeable profit expectations, making
investment an unsteady component of demand. Accord-
ing to Keynesian theory, the investment is governed by
the marginal efficiency of capital, which is the marginal
rate of profit expected from investment. The calcula-
tion of investment opportunity cost is carried out by
comparing the marginal efficiency of capital with the
interest rate. The limit of investment corresponds to the
point at which, for increasing interest rates, marginal
efficiency decreases. The Keynesian approach to invest-
ment theory was criticized by Kalecki who pointed out
that it only allows us to determine the ex-post level of
investment, but says nothing about ex-ante investment
choices. In fact, entrepreneurs make their calculations
of investment opportunity cost, by taking into account
the present prices of capital goods and not the future
ones. Investment and ownership of capital assets are
indeed undertaken in the expectation that they will pro-
duce money. Financial assets (which are commitments
to pay cash over some period) have current prices,
which are the capitalization of the future cash flows as
laid down in contracts [51.16].

The first set of prices is prices of current output
and includes the price of consumption goods and the
price of investment goods. With respect to consumption
goods, producers have given short-term expectations
about costs and demand. They fix prices to recover di-
rect costs (the main component being, in the aggregate

closed economy, money wages) and to earn a residual:
deducting costs, they obtain gross profits. With respect
to investment goods, we have the supply price of capi-
tal assets (pi) that is determined by adding a mark-up to
direct costs of production (a price sufficient to induce
a supplier to provide new capital assets). If external
(borrowed) funds are involved, then the supply price of
capital also includes finance costs (interest rate, fees,
etc.), such increase is due to the presence of lender’s
risk. The second set of prices is prices of capital as-
sets, which in particular affects the determination of the
demand price (pk) of investment goods. Demand price
of capital assets (securities) pk is the maximum price
that the investor is willing to pay. Minsky argued that
it is strictly dependent on the amount of borrowings of
external funds required: the higher is the weight of ex-
ternal finance, the greater the risk of insolvency for the
buyer. That is why a borrower’s risk has to be incorpo-
rated in the demand price for capital assets. The amount
of an investment depends on the ratio between the de-
mand price of investment goods and the supply price of
new capital goods.

The demand curve of a capital good is positively
correlated with the long-term expected profits obtained
from it and with the money supply, while is nega-
tively correlated with the debtor’s risk (more on debtor
and creditor risk later on in this section). The supply
curve of a capital good is positively correlated with
production costs, with the producer’s short-term profits
expectations and with the creditor’s risk. As we can see
in Fig. 51.1, investments increase until pk � pi, where
I D I1.

For each investing unit, and for investment in gen-
eral, a mix of gross retained earnings and external
finance is needed [51.16]. The amount of investment

0

Internal financing

I0 I1

E

A

I

pk, pi

pk

pi

Fig. 51.1 The determination of the (real) investment level
in the presence of risks (after [51.20])
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Fig. 51.2 Investment during the boom phase (after [51.20])

(at a micro level) is determined in the way shown in
Fig. 51.1, where pk and pi represent, respectively, the
demand price the investor is ready to pay for a certain
type of investment good, and the supply price that is
the price at which the producer of the investment good
offers the latter. The equilateral hyperbola A represents
all possible levels of investments that can be financed
given the amount of internal funds, for each level of
capital goods prices. Self-financing D piI0. Given the
supply unit price of capital goods pi and the amount
of internal resources for self-financing, beyond I D I0,
it is necessary to resort to external financing. It follows
that, beyond such level I0 the demand and supply curves
shapes modify, because of the rising of the borrower
and lender risk (both increasing in I).

The borrower’s risk is the subjective risk linked to
the possibility that an increase in the amount of financ-
ing made by using external funds reduces the safety
margin (due to increased illiquidity), thus reducing the
investor’s portfolio diversification. Therefore, beyond
the internal financing threshold, the demand price pk,
will reduce as investment grows. The lender’s risk,
which is subjective as well, objectifies in the form of
interest expenses and increasing burdens. Hence, in the
effective capital asset supply price must also include the
(increasing) cost of external financing. Kalecki’s princi-
ple of increasing risk is therefore intrinsically stated in
Minsky’s analysis. The principle states that, as expected
external funds increase, there is an expected increase in
the debt–equity ratio, which affects the perceived risk of
engaging in an economic activity with external funds.
The profit equation and the principle of increasing risk
highlight the importance of financial factors in the de-
termination of investment.

The determinants of investment at a micro level are
then dependent on:

0 I0 I'1I″1 I1

A

I

pk, pi

pk

pi

Fig. 51.3 Investment during the recession phase (af-
ter [51.20])

� The investor’s (buyer of capital goods) profit ex-
pectations; hence, on quasi-rents, which in turn
influence the demand curve for capital goods posi-
tion.� The capital goods producer’s production costs and
mark up, which influence the capital goods supply
curve position.� The borrower and lender’s perceived risks, which
act respectively on both the demand and supply
curves (for I > I0). The greater the borrower’s and
lender’s risks are, the lower is the investment level
(ceteris paribus).� The inherited leverage (debt/equity ratio) level from
past operations, which influences the availability of
self-financing resources.

We can show how both demand and supply curves
behave during the economic cycle. During the growth
phase, we can observe (Fig. 51.2) an investment boom:

� Optimistic profit expectations and reduced per-
ceived risks cause an increase in the amount of
demand for new capital goods, causing the supply
curve to shifts downward.� A multiplication of financing activity, a reduction in
interest rates and thus an increase in indebtedness.� A general increase of investments, the beginning of
an economic boom.

During the recession phase (Fig. 51.3):

� Profit expectations are pessimist, and perceived
risks increase.� The amount of financing activities reduces and/or
interest rates increase.� Investment level reduces triggering an economic re-
cession.
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51.3 The Financial Instability Hypothesis Versus the Efficient Markets
Hypothesis

The two fundamental propositions of the financial in-
stability hypothesis are the following [51.16]:

1. Capitalist market mechanisms cannot lead to sus-
tained, stable-price, full-employment equilibrium.

2. Serious business cycles are due to the financial at-
tributes that are fundamental to capitalism.

These two propositions are in sharp contrast with
the neoclassical theory which holds that unless ex-
ogenous forces disturb economy, the system will
remain self-sustaining, with stable-prices and full-
employment. Minsky criticizes standard economic the-
ory because of its bad performance in explaining reality.
According to him, the crisis – in economic theory –
has two facets: logical holes appeared in conventional
theory and the impossibility for conventional theory
to explain financial crises. The first failure lies in its
complete non adherence to empirical evidence. Clas-
sical economic theory, which has many variants such
as theory of efficient markets, classical or neoclassical
theory, general equilibrium theory, mainstream eco-
nomic theory (including old and new Keynesian theory)
lies on the mantra that free markets can cure any eco-
nomic disequilibria that may arise, while government
interference has to be considered as a problem. With
respect to the second failure, Minsky criticizes the clas-
sical efficient market theory that assumes all agents to
be able to know their future intertemporal budget con-
straints and act accordingly thus avoiding loan defaults,
insolvency, and bankruptcy events. According to such
a theory, future can be predicted efficiently thanks to the
collection and analysis of reliable information on both

the probability of events that have already occurred and
the probability of events that will occur in the future.
In such a context perfect information is considered to
be available to all decision makers. Rational agents are
therefore not involved in insolvency problems thus, ac-
cording to such theories, financial crises are impossible
to happen.

In Minsky’s theoretical framework, agents make
arbitrages between the assets (productive and finan-
cial) they own on the basis of their future expected
rate of return from income and capital gains [51.16].
Their fundamental speculative decision is which as-
sets to keep and which to sell, and how to fund their
investments [51.12, 16]. Following Keynes, Minsky ex-
plains the mechanism through which human beings
use practical equivalents as a convention which is re-
tained until it confirms reality, but abandoned when
evidence becomes different and in contrast with it.
Practical equivalents are the process through which (in
a situation of uncertainty) a decision is taken making
uncertain propositions equivalent to certain ones. These
conventions are used ad hoc for practical purposes.
Conventions play a central role in Minsky’s analysis.
In normal times, there is always a consensus that ex-
ists and stabilizes the decision-making process [51.21].
Hence, in order to make decisions, agents construct
mental models of how they think the economic system
works and will work in the future. They know that these
are representations of reality that do not replicate the
true model; economic agents thus know that they can
be systematically wrong. Errors are possible since the
future is uncertain.

51.4 Irving Fisher’s Debt-Deflation Model

This section deals with Irving Fisher’s debt-deflation
model, its explanation, and application to interpret fi-
nancial crises and recessions. After the 2007 crash and
financial ruin, Fisher’s theories have shown to be fun-
damental in determining the underlying mechanisms of
the crisis.

Fisher’s theory of great depressions is based on the
interaction of an initial situation of over-indebtedness
which, in conjunction with a dynamic process of defla-
tion, produces a contracting economy. Fisher explicitly
ties loose money to over-indebtedness, triggering spec-
ulation and asset bubbles. If over-indebted units hit by
an exogenous shock start facing problems with debt

commitments, they begin to liquidate debt through dis-
tress selling of their assets at decreasing prices.

Fisher outlines the nine factors which interact with
each other to create the process of boom to bust for
a Great Depression:

1. Debt liquidation leads to distress selling and to
2. Contraction of deposit currency; this contraction of

deposits and of their velocity, caused by distress
selling, leads to

3. A fall in the level of prices (a swelling of the dollar)
4. A still greater fall in the net worth of business
5. A fall in profits
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6. A reduction in output, trade, and employment.
These losses, bankruptcies, and unemployment,
lead to

7. Hoarding and
8. A further reduction in the velocity of circulation.

The above eight changes cause (9) a fall in the
nominal rate of interest and a rise in the real rates of in-
terest. The way out, according to Fisher, is reflation; the
lender-of-last-resort function of central banks and gov-
ernment have to support the financial system through
stimulating it with fiscal measures.

51.4.1 Debt Deflation as a Cycle Theory

During the peak of the Great Depression of 1929, Irving
Fisher wrote The Debt Deflation Theory of Great De-
pressions [51.22], following his previous work Booms
and Depressions [51.23] with the aim of finding an
explanation for those years’ dramatic events. As depres-
sion worsened, in 1932, Fisher became convinced that
the crisis could not be simply interpreted as a down-
turn in the business cycle, however severe, but that
was something radically different which needed a new
theoretical explanation. In January 1932, therefore, he
began to devise a new theory of great depressions, based
on the interaction of two most important factors: (i) an
initial situation of over-indebtedness; (ii) a dynamic
process of deflation. The main point of the theory is that
over-indebtedness acts in conjunction with deflation to
produce a contracting economy causing bankruptcies,
rising unemployment, and falling profits. Irving Fisher
was the first economist to emphasize the potential con-
nections between violent financial crises, which lead to
fire sales of assets and falling asset prices, with general
declines in aggregate demand and the price level.

The author starts with investigating the 1929–1932
debt-deflationary situation by listing (in logical order)
the nine factors he recognized to be the cause of such
trend, describing each one of them. The first main
factor, as we just mentioned, is over-indebtedness. Ac-
cording to Fisher, debts are an intrinsic feature of
a monetary economy and they are essential both for pro-
duction and distribution processes; over-indebtedness
is that degree of indebtedness that “multiplies unduly
the chances of becoming insolvent” [51.23, p. 9]. It
is a matter that affects both singular individuals and
whole communities and it means that debts are too
high relatively to other economic factors. As lenders
and borrowers have become too incautious and, at
a point, over-indebtedness is discovered, distress selling
is likely to arise. The debtor begins to liquidate some
of its assets (both tangible and intangible ones option-
ally) to run after its debt commitments, and/or debtor’s

bank or broker cash-in its collateral; hence, the debtor
becomes victim of distress selling either on its own ini-
tiative and on initiative of its creditors. The process of
distress selling perverts the demand and supply equi-
librium because in this particular event sales are not
made – as Fisher [51.23] points out – in order to attract
the highest possible price. Since distress sellers are be-
ing forced to sell, they usually do not receive a price
as favorable as if they were able to wait for ideal selling
conditions; the effect of a whole community involved in
distress selling is a reduction in the general price level.

Linked to distress selling and stampede liquidation
(as he defines the anxious selling of assets to repay
debts), Fishers argues that such a situation has a ma-
jor effect on the volume of currency (deposit currency)
in circulation, shrinking it. The author is referring to
debts to commercial banks which are paid by checks
out of a deposit account, implying the disappearance
of that amount of deposit currency. Thus, the reduction
of circulating money is tied to debt-volume, especially
debts to commercial banks. Such a disturbance passes
to prices, with a consequent reduction in the price level
(deflation) in other words, a swelling of the currency.
This situation can be simply explained as Fisher did in
the The Purchasing Power of Money [51.24, p. 25]:

“From the mere fact, therefore, that the money spent
for goodsmust equal the quantities of those goods
multiplied by their prices, it follows that the level of
prices must rise or fall according to changes in the
quantity of money, unless there are changes in its
velocity of circulation or in the quantities of goods
exchanged.”

Fisher uses the equation of exchange to assume that
an increase in the quantity of circulating money has
some tendency to raise the price level, and vice versa. In
any given year, PT DMV: the price level multiplied by
the yearly volume of trade is equal to the money in cir-
culation multiplied by the number of times it circulates
in a year.

Though, if we consider debts in real terms, we can
realize how each unit of money that has to be paid by
the debtor becomes bigger: he receives less money for
its liquidating assets while at the same time owning the
same amount of money as before on its debts. The acts
of liquidation actually enlarge the real value of debts
instead of reducing them. Fisher refers to this effect by
introducing the third factor, the price level (deflation)
and by pointing out that both creditors and debtors do
suffer from what in literature is called Money Illusion,
meaning that a few people are able of recognize the real
significance of a unit of money by measuring howmany
goods that a unit can buy – and therefore, understanding
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the real value of money and not the mere nominal one.
Because of this misunderstanding [51.23, p. 18]:

“The creditor is unaware of receiving more than he
is properly entitled to, and the debtor is unaware of
paying more than he properly owes. One gains and
the other suffers [. . . ].”

Fisher argues that the point of the economic cycle
at which stampede liquidation starts and a mass pay-
ment by the weaker debtors – which in turns produces
the swelling of the currency damaging stronger debtors
as well as weaker ones – takes place, a vicious spiral
begins and a depression is on its way. Once the mass
payment begins, each individual is forced to do so: if
he stays out, the mass liquidation will swell its whole
debt instead of only part of it. The two most impor-
tant processes of debt-deflation theory are those Fisher
calls The Debt Disease (over-indebtedness) and The
Dollar Disease (a swelling currency), while decreased
currency volume is just a link between the two [51.22,
p. 341]:

“Disturbances in these two factors – debt and the
purchasing power of the monetary unit – will set
up serious disturbances in all, or nearly all, other
economic variables.”

The fourth main factor is Net Worth: the fall of
prices reduces the value of business assets while liabil-
ities remain fixed, hence net worth value shrinks. The
fifth factor is linked to deflation as well, and it is Prof-
its. Because of the decreased value of receipts relative
to that of expenditures (which we can assume as almost
fixed) profits are reduced, and sometimes turned into
losses. A depression might be defined as the contrac-
tion of net worth and profits. Variation in profits (and/or
in profits’ expectations) causes the variation in the gen-
eral strategy of the firm, in particular with respect to
current production and investment decisions. The sixth
main factor therefore contains the three variables that
are consequently affected by a fall in profits, which are
Production, Trade, and Employment that come out of
worsened. All this factors taken together produce a lack
of confidence and pessimism (the seventh factor, Op-
timism and Pessimism) that translates into a general
rush toward money: phenomena of hoarding thus multi-
ply. The velocity of circulation of money reduces since
people are scared and begin to spend less and slowly;
thus deflation worsens again and consumption contracts
even further (If, e.g., the currency is halved and it now
also moves at half velocity than in the past, it will do
only a quarter of its former work. Prices and/or trade
must contract in the same degree) The effort by each
agent to improve his own position leads to a worsening
of the overall situation: “Every man who hoards does it

for his own protection; yet by hoarding he aggravates
the very condition that started his fear” [51.23, p. 36].
The ninth and last factor is the Rate of Interest: since
every debt bears interest, we can expect that a cycle-
tendency in the former will produce a cycle-tendency in
the latter. The disturbance consists in the fact that dur-
ing depression nominal interest rates remains relatively
low, while real interest rates are actually rising. We
know that from the Fisher equation, we have iD rC
 ,
where i is the nominal interest rate, r is the real interest
rate, and 
 the inflation level. Since during a depres-
sion currency is swelling (deflation), the debt that for
instance was contracted last year worthing 100$, with
a nominal interest rate of 5%, today will worth 106 of
last year’s $; thus, if 
 D�1, the real interest rate is not
5, but 6%.

The Debt-Deflation Theory of Great Depressions
is the explanation Fisher gives to describe the appar-
ent prevailing boom-bust pattern of the economic cycle.
With his Cycle Theory, Fisher defines different types
of economic cycles and their possible causes. He dis-
misses the idea of the business cycle as being a single,
self-generating one as a myth. In its place he intro-
duces the notion that there are many interacting cycles
within the economy, also interacting with noncyclical
forces such as growth and chaotic tendencies. He di-
vides cyclical tendencies into two types, forced cycles
and free cycles. Forced cycles are imposed onto the
economy by outside forces, such as the yearly season
cycle, day–night cycle, and monthly and weekly cycles
imposed by religion and custom. The free cycle is self-
generating and is commonly thought of when referring
to the business cycle.

According to Fisher, each case of over-indebtedness
has its own set of starters that, thanks to their in-
vestment decisions, initially triggers a boom economy.
Over-indebtedness causes can be various; according to
Fisher, the most common one appears to be the presence
of new opportunities and/or big profits perspectives,
as compared with ordinary actual profits and interest.
Investment opportunities can be represented by new
inventions, new industries, and development of new re-
sources, opening of new lands or new markets. Easy
money is the biggest cause of over-borrowing [51.22,
p. 349]:

“The public psychology of going into debt for gain
passes through several more or less distinct phases:
(a) the lure of big prospective dividends or gains in
income in the remote future; (b) the hope of selling
at a profit, and realizing a capital gain in the imme-
diate future; (c) the vogue of reckless promotions,
taking advantage of the habituation of the public
to great expectations; (d) the development of down-



Modeling in the Macroeconomics of Financial Markets 51.4 Irving Fisher’s Debt-Deflation Model 1077
Part

I|51.4

right fraud, imposing on a public which had grown
credulous and gullible.”

The psychological factor is a critical one: agents
have the perception that a new era has begun, and they
start to be less cautious and risk-averse. They overlook
profits perspectives and over-indebt themselves, thus
giving start to the vicious cycle that sooner will trigger
a depression.

51.4.2 How Debt Deflation Model
Fits the Great Depression

According to Fisher, the debt deflation model well suit
what happened in the United States and in Europe
between 1929 and 1932. The World War propelled a se-
ries of inventions – not only destructive ones – and
a number of technological improvements (especially in
the manufacturing sector) begun to spread up and the
American economy faced an investment boom. This
situation encouraged many firms to borrow heavily in
the expectation of higher profits, including those in the
farming sector, stimulated by the sharply rising demand
for food. The process that led to over-indebtedness
found its starters in those investors incentivized by in-
novations on the expectation of high future profits.

In corporations, the practice of preferring invest-
ment in equities rather than bonds became the rule.
The Wall Street crash was the detonator, triggering the
downward spiral predicted by the debt deflation theory.

With regard to the first factor, over-indebtedness,
Fisher was deeply convinced that on the eve of the stock
market crash many firms and households were heavily
indebted, as well as the government itself. One of the
factors behind such enormous amount of debt was cer-
tainly the war.

Between 1929 and 1932, mass debt-liquidation took
place, decreasing all American debts by 23% – except
public debt, which increased. Deposit banks lost 21%
of its volume and 61% of its velocity. The commod-
ity price index decreased, losing 38%; industrial stocks
lost 77%. In regard to net worth performances, they
are best indicated by the number of firms’ bankrupt-
cies, around 29 000 in 1931; net profits of 163 industrial
and noncorporations became losses. Production, em-
ployment, and trade all kept falling. However, with
reference to the United States, it is also necessary to
consider other aspects. Booms and Depression accu-
rately reconstructed the dramatic events of 1929–1932
that had thrown the world into depression: in particular,
the link between bank failures in Austria and Germany
(United States was the main lender of both countries),
the ensuing crisis of pound (motivated by the huge
amount of short-term credit granted to these countries

by the British monetary authorities) and the simultane-
ous speculative attack on American gold reserves. This
in particular, as Fisher wrote, demoralized the US bank-
ing community, spread hoarding and prompted bank
runs.

51.4.3 How Debt-Deflation Model
Fits Current Economic Conditions

Although inflation has been the norm during the latter
half of the twentieth century, there were long peri-
ods in the history of the United States during which
prices actually fell. In 1836, the money supply con-
tracted by at least 30% pushing prices down. Between
1875 and 1896, prices fell in the United States by 1:7%
per year. Between 1930 and 1933, prices fell almost
10% per year. In 2008–2009, the United States expe-
rienced the first deflation since the 1950s. In 2009,
the Fed has doubled the money supply in less than
a year and lowered interest rates to almost zero in or-
der to fight deflation. Deflation’s threats are several, in
particular the possibility for nominal interest rates to
reach very low levels thus increasing real interest rates.
Moreover, if nominal rates reach the zero level, central
bank monetary policies will be ineffective and econ-
omy could be stuck into the so-called liquidity trap.
The liquidity trap is defined as a situation in which the
short-term nominal interest rate is zero. In this case,
many argue, increasing money in circulation has no ef-
fect on either output or prices. The liquidity trap was
originally a Keynesian idea and contrasts with the quan-
tity theory of money, that expects prices and output to
be, roughly speaking, proportional to money supply.
According to Keynesian theory, money supply has its
effects on prices and output through the nominal inter-
est rate. Increasing money supply reduces the interest
rate through a money demand equation, while lower
interest rates stimulate output and spending. The short-
term nominal interest rate, however, cannot be less than
zero, based on a basic arbitrage argument: no one will
lend 100 dollars unless he/she gets at least 100 dollars
back. This is often referred to as the zero bound on the
short-term nominal interest rate. Hence, the Keynesian
argument goes, once the money supply has been in-
creased to a level where the short-term interest rate is
zero, there will be no further effect on either output or
prices, no matter by how much the money supply has
been increased. The ideas which underlie the liquidity
trap were conceived during the Great Depression, when
the short-term nominal interest rate were close to zero.
At the beginning of 1933, for example, the short-term
nominal interest rate in the United States – as measured
by three-month Treasuries – was only 0:05%. Sixty
decades later another example is that of Japan where
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Fig. 51.4 US 12-month percent
change in CPI for All Urban Con-
sumers (CPI-U), not seasonally
adjusted, Jan 2013–Jan 2014. Source:
Bureau of Labor Statistics. CPI
Detailed Report Data for January
2014 Blank Cells = Data not available
because it has not been released by the
Bureau of Labor Statistics
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Fig. 51.5 Inflation (%) – EU and Advanced Economies. Source: In-
ternational Monetary Fund, April 2011 World Economic Outlook

the short-term nominal interest rate collapsed to zero in
the second half of the 1990s: the Bank of Japan more
than doubled the monetary base through traditional and
nontraditional measures to increase prices and stimulate
demand.

Once the economy moves toward a deflationary sit-
uation, it shifts from a relatively short-lived recession
to a much more serious and persistent depression. The
perspective of future lower prices damages investment
by decreasing them, lowers demand, and raises un-
employment immediately causing a mass transfer of
wealth from debtors to creditors. Usually, such wealth
redistribution has no first-order impact on the economy.
However, in the face of large shocks, deflation in the
prices of assets leads to a decline in the nominal value
of assets on banks’ balance sheets. For a given value of
banks’ liabilities, also denominated in nominal terms,
this deterioration in banks’ assets threatens insolvency.
As banks reallocate assets away from loans to safer gov-
ernment securities, some borrowers, particularly small
ones, are unable to obtain funds, often at any price. Fur-
thermore, if bank portfolio reallocation is long-lived,

the shortage of credit for these borrowers helps explain
the persistence of the downturn. As the disappearance
of bank financing forces lower expenditure plans, ag-
gregate demand declines and contributes again to the
downward deflationary spiral.

In order to apply the debt deflation theory for an
understanding of twentieth and twenty-first century’s
financial crises, we must first expand it to an open
economy setting. The international contest characteriz-
ing our age is different from 1930s’ one when capital
movements were small; globalization patterns are the
crucial feature of these era where financial deregula-
tion (the so-called Washington consensus) had led to
high levels of indebtedness, especially in the South East
Asia. Risky-kind of debts, allowed throughout complex
financial transactions related to securitized debt obliga-
tions as well as to derivatives financial contracts, and
in general the boom of financial innovations (leading
to decreases in capital goods prices) are typical causes
propelling units to further indebted themselves. The
financial system results in a complex structure bear-
ing more and more risk: when over-indebtedness is
reached, a pro-cyclical boom spiral begins. As a conse-
quence of excessive financialization and deregulation,
the Washington consensus as a matter of fact increased
the possibility of a rising endogenous excessive in-
debtedness, thus causing (as in Fisher’s theory) debt
deflationary processes [51.25], asset devaluation, and
recession.

It could seem that the current financial crisis, since
2007, is evidence against Fisher’s theory since it did not
imply a significant deflation in consumer prices. The
US consumer price index fell 2:1% in the year ending
in July 2009 (Fig. 51.4), but it was an isolated event,
caused substantially by a sudden and catastrophic drop
in commodity prices. Still, the rate of annual inflation
measured by the consumer price index did fall from
the 3:4% average for the four years between Septem-
ber 2004, until the Lehman crisis in September 2008
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down to 0:7% for the two years from October 2008 to
October 2010. If people expected the 2004–2008 rate
of inflation to continue, then the decline of nearly three
percentage points in inflation for last two years has al-
ready, as of this date, magnified the real value of debts
by over 5%. Moreover, if the low inflation is widely ex-
pected to continue for a while, it will lower long-term
bond yields, amplifying the real value of debts relative
to precrisis expectations by even more. Declining long-
term bond yields push up the real value of long-term
debts immediately, even more than the immediate de-
cline in prices affects the real value of money today.
The effects on balance sheets are of course disruptive
to business, to confidence, and thus to the aggregate
economy.

From Figs. 51.5–51.7, we can observe the inflation
trends in Japan, United States, and the European Union
(this latter compared in the same figure with those of
Advance Economies) starting from 1980 to 2016 (data
contain projections). In all cases, the inflation rate cal-
culated using the Current Consumer Price Index shows
its declining performance, reaching the lowest level in
2008 corresponding to the financial crisis.

That is probably enough to give substantial sup-
port to Fisher’s debt-deflation theory in the current era.
It is particularly notable that in the recent crisis there
has been a mortgage refinancing boom. The otherwise
large effect of inflation was, in a sense, reduced be-
cause many mortgage holders exercised the call option
to move to a lower interest-rate mortgage. Anyway re-
lying on call provisions clearly is not the key to solve
instability of purchasing power. Because they are one-
sided, that is, they protect borrowers against the risk of
declining inflation, but do not protect lenders against
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Fund, April 2011 World Economic Outlook

the risk of increasing inflation, they have the effect of
increasing the cost of borrowing.

51.5 Policy Implications and the Shareholder Maximization Value Model

51.5.1 Stability is Destabilizing

The central idea in Minsky’s financial instability hy-
pothesis is that a solid economic system can transform
itself into a fragile and unstable one due to endogenous
changes in cash flows [51.13, p. 12]:

“The financial instability hypothesis states that
tranquil growth and prosperity in modern capi-
talist economies naturally bring about changes in
cash-flow interconnections leading from solidity to
fragility, and that the normal functioning of the
economy may easily convert fragility into open fi-
nancial crisis.”

Minsky’s financial instability hypothesis incorpo-
rates the concept that stability is destabilizing: it is
during tranquil growth periods that conditions for an
economic crisis are laid down. When the economy
is basically constituted of hedge financing positions
and there are good safety margins about future posi-
tive profits, a financial crisis can happen only because
of an unexpected drop in incomes. At the contrary,
an economic system increasingly based on specula-
tive units is going to be intrinsically much exposed
to financial crises since even small financial markets
fluctuations will have great rebounds on real vari-
ables. In particular, an increase in interest rates can
cause:
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� The impossibility of refinancing for speculative
units that must sell their assets� A drop in prices, income, and expected and realized
cash flows of each unit� An overall increase in the level of indebtedness.

We can start by analyzing the process through
which an economic system switches from stable to
unstable by imagining a financially robust economy,
where almost every agent is in a hedge-financing po-
sition. The economy experienced cycles (including re-
cession phases) in the past, but is now in tranquil
prosperity. Agents remember past crises: they main-
tain, therefore, ample margins of safety in their liability
structures, and balance sheets are awash with cash and
very liquid assets. As long as the economic develop-
ment goes on without shocks, optimistic forecasts are
validated. Banks and firms expect large positive future
quasi-rents, and bet on an upward trend in the value of
real and financial assets. As growth goes on, optimism
propagates and firms have the opportunity to rise their
debt–equity ratio associated both with higher short-
term financing of fixed capital and long-term financial
assets. Banks, that are profit seeking units, have interest
in allowing firms’ requests for funds, thus they also start
using innovative financial instruments to increase credit
availability. The improvement of expectations, the re-
duction for liquidity preference and of safety margins,
and the expansion of quasi-money (financial innova-
tions) cause an increase in capital assets demand and
prices. Such a context is the midst of an investment
boom which, in turn, drives production and sustains
profits (note that these latter are an important factor for
lenders’ decision making). Optimism propagates and
indebtedness increases again. The presence of low in-
terest rates make financial leveraging affordable, and
raises the conditions of fragility of the whole system.
Nonetheless until euphoric expectations are realized,
there is no way to stop financial fragility growth. With
the emergence of a state of euphoria, speculation has
two main aspects: (1) owners of capital assets speculate
by financing with external funds ownership of invest-
ment goods and securities; (2) families and firms spec-
ulate on financial activities they own and on the way
they can finance ownership of such activities [51.12]. In
particular, speculative positions of families, firms, and
banks are characterized by a high ratio between finan-
cial commitments and income. The intrinsic presence of
a temporal shift in the financing process becomes cru-
cial when units understand that they overvalued their
expectations and that they now have to face a liquid-
ity problem linked to high debt payment commitments.
Units are thus forced to refinance. This process sooner
or later will make interest rates to grow (banks are

indebted as well), reducing the actual value of invest-
ments: it translates into a reduction of safety margins.
We shall recall that banks have long-term activities, due
to the financing of investments, while they have short-
term liabilities. With an increasing number of loans
during the boom phase, this temporal structure can de-
termine a condition where cash COF are not covered
by CIF in each period. Banks are forced to increase in-
terest rates in order to face increased liabilities. This is
the upper turning point of the cycle. In order to avoid
bankruptcy, indebted units sell their activities at de-
clining prices (triggering debt-deflation), with a debt
revaluation in real terms, and a loss of liquidity. It fol-
lows a drop of investments, demand, and profits, that
are dragged down by pessimistic expectations.

In the course of an economic crisis, speculative ac-
tivities that were undertaken during the boom period
are the first to collapse; moreover, these will also have
rebounds on hedge activities because of the so-called
interconnections of budgets, that is, our financial sys-
tem is a stratified one, where one unit’s debts reflect
into another’s credits. The number of bankruptcies –
households’ insolvency included – increases, and assets
price deflation prolongs as far as Ponzi and the most of
speculative units exit the market. In this phase, liquid-
ity preference reaches its maximum level, investments
activity almost stops; income, profits, and assets value
drop, while unemployment raises. The only positive as-
pect of a financial crisis is that, according to Minsky,
it lowers the financial fragility of the system, which
is a necessary endogenous condition for the following
economic recovery.

To sum up, Minsky argues that our economy is
unstable because of capitalist finance. In particular, if
a mixture of hedge, speculative and Ponzi positions, and
of internal and external financing can rule innocuously
for a while, but, at some stage – encouraged by a pe-
riod of economic boom and widespread euphoria – they
will breed endogenous incentives for units to change
the mix, shifting toward riskier financial positions and
more external financing. It follows an investment boom
phase where debt–equity ratios raise and margins of
safety erode. The severity of the subsequent financial
crisis (and recession scenario) will depend on the rela-
tive size of government intervention and on the breadth
of the central bank’s lender-of-last-resort action.

51.5.2 From the Debt Deflation Model
to Policy Proposals

Fisher argued that one of the causes of the collapse of
US economy in 1929 (and subsequent depression that
lasted until 1933) was the choice by the Federal Re-
serve to abandon the stabilization policy that had been
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pursued during the twenties by Benjamin Strong, Gov-
ernor of the Federal Reserve, who died in 1928. Fisher
was convinced that it is always economically possible
to stop or prevent long depressions simply through re-
flation [51.26], in other words, pursuing a monetary ex-
pansion to bring prices back up to their pre-29 levels
at which debts were contracted. An essential point in
Fisher’s plan was the belief that pursuing an increase in
demand, even if necessary, was inevitably only a first
step. To get out of a depression, a substantial rise in
prices was needed. A second point is the transmission
mechanism which explains how an expansionary mon-
etary policy can induce an increase in output and prices.
An increase in the means of payment available to agents
produces an increase in aggregate demand,which in turn
boosts prices. As already mentioned, during a serious
depression, agents tend to hoard their own liquid assets,
thus it may be argued that a greater supply of liquid-
ity could have no real effect. But Fisher was aware of
this point. In the second half of 1932, the worst period
of the Depression, he became a supporter of a plan for
stamped money. Stamped money was a promise of pay-
ment issued by a public body or municipality, usually
with the guarantee of a bank, which circulated as a ban-
knote but that, within a given period of time, could be
taken out of circulation and converted into legal tender.
Its peculiarity was that it was subject to a periodic tax
(for example two cents per dollar per week) in the form
of a stamp that had to be affixed on the back of the note.
Thismade the plan a self-liquidating operation at no cost
to the finances of the authority that issued the notes. The
notes were obviously characterized by an high velocity
of circulation, as every agent had an evident interest in
spending the scrip quickly so as to avoid the tax [51.22].

51.5.3 Financialization, Neoliberalization,
and the 2008 Crisis

The so-called subprime crisis has been the peak of
a decade of a housing boom in the US economy, stimu-
lated by a number of regulatory changes of the financial
system which gradually moved it toward conditions of
fragility. The subprime crisis can be thus interpreted as
a so-called Minsky moment which soon transformed
into a so-called Minsky meltdown; excessive finan-
cialization and deregulation led to over-indebtedness,
debt-deflation, asset devaluation, and recession. AMin-
sky meltdown is when financial instability becomes
so acute that only an immediate, global, and massive
government intervention can avoid a systemic banking
failure. A Minsky meltdown thus starts when the Min-
sky moment is so intense to trigger a recession.

The world that emerged after the Great Depression
was characterized by low private debts, high govern-

ment debt (war finance), and a lean financial system.
Such features boosted rapid economic growth, corpo-
rations mostly used retained profits to finance expendi-
tures, finance was kept small, regulated, and relatively
irrelevant, risky financial practices were outside com-
mercial banking. Over time a process of neoliberal-
ization (see next section) changed all those regulations
which were relaxed or defeated by financial institution
through innovations. Private debt grew, and risky prac-
tices emerged. The weight of finance moved away from
institutions toward markets – the so-called originate
to distribute model. Weakened labor through part-time
practices and lower remuneration was emerging (often
under the label of labor flexibilization.Money manager
capitalism and practices such as securitization were
born and spread over.

Neoliberalization
In the 1980s, the President of the United States, Ronald
Reagan and the Prime Minister of the United Kingdom
Margaret Thatcher were pushing the free-market doc-
trine across the world to make privatization and deregu-
lation policies politically viable out of their countries.
Deregulation of the banking system spread from the
United States to Europe to many developed countries
and to the emerging economies of the Asian tigers, Rus-
sia, and Thailand.

Neoliberalism started as an intellectual movement
in the 1980s and then transformed in the so-called
Washington Consensus in the 1990s. The ideological
roots of neoliberalism can be traced to the liberal the-
ory of self-regulating markets developed during the
belle époque and later, thanks to the contributions of
Friedman and Hayek. The term Washington Consen-
sus is used to describe the policy prescriptions given
by the economist John Williamson as a baseline of
directions for nations in need of assistance from in-
ternational economic entities such as the World Bank
and the International Monetary Fund. The Washington
Consensus was originally laid out in 1989, and refers
to all the most evident neoliberal policies: free trade,
flexible labor, active individualism, anti-statism, and
the cutting of institutional welfare policies, in partic-
ular after-war Keynesian ones. Neoliberalism is thus
a set of political beliefs which firstly include the be-
lief that the only legitimate intervention of the state in
economic life is that of safeguarding individual, espe-
cially commercial, freedom as well as private property
rights.

During the Thatcher and Reagan governments, the
IMF was supporting worldwide liberalization of capi-
tal movements; in 1997 a global agreement on financial
services was made with the supervision of the World
Trade Organization [51.27].
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Through a process of neoliberalization US banks
were experiencing deregulation and were increasingly
investing in foreign-exchange trading, expanding ge-
ographically as well as widening their range of ser-
vices. With the concept of neoliberalization, we refer
to the processes of regulatory restructuring under post-
1970s and post-2008 capitalism. As argued by Peck et
al. [51.28], such a process implies: commoditization,
movement of huge amounts of capital and specula-
tive (innovative) financial tools throughout the world in
search of profit opportunities, privatization, deregula-
tion, and trade liberalization.

Since the 1970s, a new kind of global economy has
started to shape. Restrictions on capital have been pro-
gressively reduced, free currency exchange, free world
trade, and free capital circulation were intensifying. At
the same time, extensive privatization was taking place,
while a process of weakening of the negotiation power
of labor, and its flexibilization through part-time and
lower remuneration was emerging. Such a set of poli-
cies, summed up with an aggressive dismantling of the
welfare state, has produced a declining share in both
real wages and investment, and thus slower growth of
effective demand. In particular with respect to the US
case, Reagan increased government military expendi-
tures, which resulted the only demand component with
a positive tendency and the public deficit was worsened
by tax reductions.

In such a sociopolitical context, finance appeared
to be increasingly valuable. It is however only dur-
ing the 1990s that a complete picture of the new
economy was clear; labor is progressively subdued to
finance, consumers are increasingly over-indebted and
class power is gradually restored. Federal Reserve’s
Chairman Greenspan was the promoter of a number
of financial deregulatory measures. More importantly
his monetary policy goals have shown to be signifi-
cantly different from those of the post-WWII era, which
were focused on full employment and rising real wages.
Greenspan’s policies gave prominence to fight infla-
tion rather than unemployment, thus rising wages were
brought down since considered inflationary; but as Pal-
ley [51.29] argues, the same logic was not applied to
raising profits (in accordance with the Chicago School
theories). Under Reagan the conjunction of restrictive
monetary policies and expansive fiscal policies, the dif-
ferential in the level of interest rates in favor of the
United States led to capital inflows and to a revaluation
of the US dollar.

Money Manager Capitalism
Minsky’s work on structural economic change [51.16]
and on the financial instability hypothesis is not only
useful for explaining the economic changes of the pe-

riod between 1945 and 1966, but it catches a broader
historical analysis to help interpret the subsequent de-
velopments of the capitalistic system and the evolution
of the financial structure. Minsky [51.30] argues that
capitalist economies undergo various stages of devel-
opment. During expansionary periods, financial inno-
vations prosper, in turn relaxing financing constraints,
and leading to increased investments. This implies an
increasing reliance on outside sources of funding and
debt leveraging that, in turn, boosts investment, aggre-
gate demand, and profits. Minsky believes that capitalist
economies which own such a structure – based on
reinforcing expectations and on the possibility of in-
creasing financial innovations – are intrinsically prone
to boom and bust cycles. Indeed, when an endogenous
shock causes a shift in entrepreneurial prospects, in-
vestment will drop bringing down aggregate demand
and profit too. A wave of risk aversion and desire of
liquidate debts leads to bankruptcies and debt-deflation
progresses – unless the Big Government and the Big
Bank intervene.

The evolution of the US financial industry in the
post-WWII period shows the emergence of various in-
novative instruments and institutions. Especially during
the inflationary period of the 1970s, the differential be-
tween securities and mutual funds yields and those of
insured deposit institutions was increasing, thus leading
to new profit opportunities and the birth of money mar-
ket funds. Minsky [51.31, p. 12] defined the five stages
of capitalistic development in the United States,

“(i) commercial capitalism, (ii) industrial capitalism
and wild-cat financing, (iii) financial capitalism and
state financing, (iv) paternalistic, managerial and
welfare state capitalism, and (v) money manager
capitalism.”

We focus on the transformation from what Minsky
calls managerial capitalism – shaped by the experiences
of the Great Depression and World War II – to the cur-
rent system of managed-money capitalism (which he
believed had emerged by the early 1980s).

During the period of managerial capitalism (the
post-war period) the financial structure was conserva-
tive, with low debt levels and contained speculation;
firms owned most of their net positions in governmental
debt. Macroeconomic conditions were generally stable
and the accumulation of wealth was possible, as well as
distributed equally. But it is during such conditions that
money manager capitalism is born, especially because
of the shared confidence in profitable future. During
the 1970s inflation, financial and technological innova-
tion led funds to flow from bank deposit accounts to
mutual funds and securities. Money manager capital-
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ism is defined as one dominated by highly leveraged
funds (in particular pension and mutual funds) search-
ing for the maximum return within an environment
made of little regulation or supervision of financial in-
stitutions and underestimation of risk. Money managers
mix nontransparent and intricate instruments that have
the quality to quickly spread throughout the world. Mar-
ket stimulates managers to bear high risk by giving
them greater remunerations.

Managed-money capitalism is part of the trend to-
ward an increase in the proportion of financing that
takes place through markets rather than intermedi-
aries [51.30, p. 70].

Securitization of home mortgages began in the early
1980s. As Minsky saw it emerging, he understood the
risks it would imply, and in 1987 he wrote a Policy Note
telling that such an instrument was the result of the in-
creased importance of money manager capitalism (the
market) and the decline of banks (commercial banks).

Financialization: A Finance-Led Economy
From the mid-1980s, the growth of financial sector in-
debtedness has been huge: from one-fifth of GDP to
120% of GDP [51.32], especially because of the grow-
ing securitization process and the issue of increasingly
volatile products into portfolios to fund positions in se-
curities. As we mentioned in the previous paragraph,
the relative stability of the post-war period led to the
increase of financial innovations, easy credit availabil-
ity, higher competition, and leverage ratios. Thanks to
such easy credit, asset prices started rising, prompting
other financial innovations and raising leverage ratios
again. This in turn caused loans to expand, especially
those for home buying, thus raising real estate values,
expanding loans even further and increasing leverage
ratios in an attempt to cover the raised value of real
estate. This structure can be considered a Minskyan’s
Ponzi position.

The wave of financialization after the 1980s has
been huge. With the term financialization [51.29], we
refer to the process through which financial markets,
financial institutions, and financial actors (élites) ac-
quire importance and are able to seriously influence
economic policies as well as economic outcomes. The
relationship between financialization and neoliberal-
ism is strong: neoliberalism and its counterpart in
globalization are heavily sustained by an extraordi-
nary expansion and promotion of financial activity.
Those who support financial deregulation improvement
have argued that financialization provides superior risk-
management [51.33, p. 6]:

“for example, securitization was supposed to slice
risk into different parts (by means of different se-

curities) and allocate it to those who were best
equipped to hold it”

in a sense thus increasing the stability of the entire sys-
tem. At the opposite, it could be argued that since the
beginning of the financialization era, a series of ma-
jor crises (such as the debt crisis in 1982, the Savings
& Loans crisis in the USA in the 1980s, the Peso cri-
sis in 1994, the 1998 Asian Crisis, the Dot.com bubble
in 2000, and lastly the current global financial crisis,
started in 2007) have showed this assumption to be un-
sustainable.

During the post-1980s era, financial markets greatly
expanded and put increased pressure on nonfinancial
corporations (NFCs) to generate increasing earnings
and distribute them to financial markets. Firms that
failed to meet financial markets’ expectations faced fall
in stock prices and threats of hostile takeovers. Such
environment produced what Crotty calls the neoliberal
paradox [51.34]. Unable to increase their profits due to
adverse conditions in the product markets, firms were
forced to pay an increasing share of their internal funds
to financial markets.

Financialization gave birth to two new models of
growth. The Anglosaxon growth model, based on con-
sumption (consumption-led growth model), and the
German, Japanese, and Chinese model, based on ex-
port (export-led growth model). The two models rely
on each other. The Anglosaxon countries developed
a credit-financed consumption as the most dynamic
component of demand growth and a current account
deficit and capital inflows, while in the other group
of countries consumption remained low, but demand
growth was fuelled by very high exports. The US,
the UK, Ireland, and Greece ran large current account
deficits, whereas Germany, Japan, and China had large
surpluses. International imbalances have played a major
role in the debate on the causes of the 2008/2009 crisis.
As argued by Stockhammer [51.33], financial global-
ization and liberalization led to exchange rate crises.
Exchange rates changes are determined by capital flows
an amount of capital inflows can reverse because of
a sudden shock and thus rapid withdrawal. This can
lead to exchange rate crises which are furthermore
made possible because of the widespread practice of
the currency-carry trade in international markets. By
implication, assets and liabilities will then be denom-
inated in different currencies; thus abrupt exchange rate
realignments may have disastrous effects on firms’ or
banks’ balance sheets. Exchange rate crises have been
a common feature of emerging economies, such as for
Mexico in 1994, and in the case of South East Asian
crisis of 1997–1998 and Argentina in 2001. Exchange
rates crises all have led to long-lasting recessions.
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Second, capital flows liberalization has allowed
some countries to run current account deficits (much
more than during the BrettonWoods agreement period).
Because the balance of payment is composed of the cur-
rent account and the capital account, a deficit in the
current account can be balanced by net capital inflows
allowing countries to run current account deficits and
balancing them by attracting capital inflows.

Financialization has profound effects on income
distribution. The dominance of capital against labor has
been one of the results of the neoliberal break-up of la-
bor stability. For instance, in the US, Europe, and Japan,
wages are stagnating since the 1980s.Wages stagnation
has been spurred by increasing income inequality, the
rise of the so-called rentiers income and the growth in
the financial sector especially in the form of bonuses.

With respect to the economic environment we have
just described, the mainstream corporate governance
doctrine spreading from the Anglo Saxon countries
to Europe and to the Emerging Markets has been the
shareholders value maximization theory. This concep-
tion argues that since the firm belongs to stockholders,
managers should run it in order to maximize share-
holders value. Such a process leads to increases in
dividend disbursements and share buybacks. At the
same time management remunerations are increasingly
linked to profit and stock market value, which in turn
increases managers’ incentives to keep stock prices on
a high level. It has been argued [51.35] that one of the
main causes of US growing inequity is the stock-based
compensation of the executives. The key management
change has been from a retain and invest strategy
to a downsize and distribute one (on organizational
restructuring see [51.36]). Shareholder maximization
value practices were born in the United States in the
1980s, then spread to UK and to continental Europe
as well. In the 1990s, both Germany and Japan lead-
ing executives were calling for the adoption of more
American-style corporate practices, in order to compete
in increasingly globalized capital markets. Convergence
hypothesis theories highlight the role of global capi-
tal flows in eliminating inefficient forms of governance,
since the early 2000sOECD andWorld Bankwere bust-
ing the adoption of common standards.

Neoclassical shareholder theory defines sharehold-
ers as the only residual claimants of a firm, they bear

the risk of business success/failure and the return/loss
they get is what has left after other stakeholders have
been paid. Furthermore, they are the only stakehold-
ers which have an incentive in investing productive
resources [51.37]. The problem with the concept just
described is that it does not consider workers as resid-
ual claimants as well. Freeman and Evan [51.38] and
Blair [51.39] argue that workers do own like share-
holders the status of residual claimants because they
invest in firm-specific human capital with the expec-
tation of having returns from such investment during
their future career. They do bear risk as well, because
they would suffer in case of lack of inter-firm labor
mobility. This vision is much more related to the stake-
holder theory [51.40]: managers should take decisions
so as to take account of all stakeholders of a firm
(not only financial claimants, but also employees, cus-
tomer, communities, etc.). Evan and Freeman [51.41,
pp. 102–103], asserted that “management has a duty of
safeguarding the welfare of the abstract entity that is the
corporation” and of balancing the conflicting claims of
multiple stakeholders to achieve this goal. They further
argued [51.41, pp. 102–103]:

“A stakeholder theory of the firm must redefine the
purpose of the firm. [. . . ] The very purpose of the
firm is, in our view, to serve as a vehicle for coordi-
nating stakeholder interests.”

The shareholder value orientation leads to increases
in dividend disbursements and share buybacks, since
management remunerations are increasingly linked to
profit and stock market value which increases man-
agers’ incentives to keep stock prices on a high level.

With respect to the role of the state in the economy,
from the 1980s onward, it was a priority of neo-liberals
to downsize its presence in the economy. Stockham-
mer [51.33] shows that the state share, as measured
by the size of state employment and transfers, has not
been reduced in most OECD countries (except for Ire-
land, United Kingdom, and Netherlands); at least there
has not been a growth in the share of state interven-
tion, but the level has remained as its 1970s level.
Nonetheless privatizations and deregulations have in
practice reduced the influence of the state into the econ-
omy.
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51.6 Integrating the Minskyian Model with New Marxists
and Social Structure of Accumulation (SSA) Theories

Since the summer of 2007 to the spring of 2008 the
Global Financial Crisis has been spreading through-
out the world. Furthermore, since late 2009 fears of
sovereign debt crises in the euro zone including Greece,
Ireland, Spain, and Portugal arose. In the European
Union, especially in countries where sovereign debts
have increased sharply due to bank bailouts, bond yield
spreads widened and risk insurance on credit default
swaps between these countries and other EU members,
most importantly Germany, grew.

I hereby argue that Minsky’s financial instability
hypothesis needs to be combined with the sociopolit-
ical scenario (i. e., a neoliberalized and financialized
economy) described in the earlier sections. I indeed
agree with the structural Keynesian synthesis [51.29,
42] of the new Marxists view [51.43] and of the so-
cial structure of accumulation SSA theory [51.44]. In
interpreting the crisis, a common aspect stressed by
these theories is the acknowledgment on the critical
role played by the neoliberal model and its adoption
by many advanced economies in the 1980s. These ap-
proaches indeed believe that the crisis has its roots in the
real economy; this could seem at first is in contrast with
the pure Minskyan explanation of crises as endogenous
financial system processes of excessive optimism and
indebtedness. Nonetheless it will help us to generate
a more extensive comprehension of the subject of our
work.

Both New Marxists and SSA theorists adopt an
under-consumptionist position according to which the
economy cannot reach full employment because of the
lack of demand caused by an excessive wage squeeze.
The newMarxists use a monopoly capital mode of anal-
ysis to explain the crisis, arguing that it is the result of
the three decades of wage stagnation and widening in-
come inequality caused by the contradictions inherent
in the neoliberal model of growth. In this perspec-
tive Karl Marx was the first to argue that capitalism
produces recurring and increasingly dangerous crises
because of its inherent feature to direct large amounts of
wealth toward a few pockets of wealthy elites, leaving
a growing number of people without the possibility of
affording to buy goods and services produced by firms.
It follows the emergence of an industrial reserve army
of poor and unemployed, and a contracting economy.
The new Marxist (e.g., [51.45]) theory – as well as that
of Marx, Minsky, and Fisher – stresses the role of ac-
cumulation of private debt as a means of sustaining the
cycle. However, the new Marxist framework does not
incorporate the mechanisms of Minsky’s financial in-

stability hypothesis, even if the role of debt as a means
of sustaining the cycle is a common feature.

The SSA theory focuses on the problem of neolib-
eral wage-squeeze and exploitation, interpreting stag-
nation as a purely real phenomenon caused by a lack
of aggregate demand caused by a worsened income
distribution. Such an approach does not by the way in-
corporate the financial instability hypothesis as well.

On the other hand the third approach, the structural
Keynesianism, developed by Palley [51.29, 42], offers
a synthesis of the two points of view. First, it shares the
Marxist perspective that there is a real economy prob-
lem regarding a wage squeeze and an unequal income
distribution, which ultimately gives rise to a Keynesian
lack of aggregate demand. Second, structural Keyne-
sianism recognizes that finance plays a critical role
in fuelling asset price bubbles and over-indebtedness
which sustains the lack of demand caused by the wage
squeeze. Then it adds two other remarks:

� By assuming that financial innovation and deregula-
tion are the sources to fuel demand, it is possible to
incorporate Minsky’s financial instability hypothe-
sis into the structural Keynesian approach.� It takes into consideration the US model of global
economic engagement in causing the crisis, that
spreads throughout the world by means of three
channels: leakage of spending on imports, off-
shoring of jobs, and off-shoring of new investment.

As mentioned, the processes identified in Minsky’s
financial instability hypothesis play a critical role in
the actual crisis, but we must consider a larger eco-
nomic scenario involving the neoliberal growth model
implemented around the 1980s. Thus integrating the
structural Keynesian approach into the Minskyan one,
financial markets have been the means through which
the neoliberal model of growth could regenerate and
sustain demand escaping its stagnationist tendency.
This explains why the crisis took the form of a financial
crisis; financial markets have been the place where to
sustain and generate demand in order to counteract the
wage squeeze. Economic policy deteriorated the work-
ers position and neoliberalism used financial innovation
to sustain increasing lacks of demand.

Minsky’s financial instability hypothesis explains
how the neoliberal growthmodel avoided stagnation for
so long and could reproduce through over-indebtedness
and leverage (produced in financial markets) instead of
wage growth, leading to the crash identified by Minsky.
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With respect to structural Keynesianism, newMarx-
ists and SSA conclusions about the cure for the crisis,
they show differences only in terms of degree of op-
timism. They all endorse the belief that monetary and
fiscal policies are not sufficient to restore full employ-
ment: they identify the need to reverse neoliberalism
and restore the link between wages and productivity

growth. Structural Keynesians believe it is possible to
manage appropriate institutions that, combined with
traditional Keynesian policies, can produce full em-
ployment and shared prosperity. NewMarxists and SSA
theorists are more pessimistic and they see an institu-
tional design with a larger public sector and more na-
tionalization, especially regarding the financial sector.

51.7 Risk and Uncertainty

In the previous section, we have been dealing with a few
macroeconomics theories of investment and financial
markets. In the theoretical frameworks described, the
concepts of risk and uncertainty have from time to time
emerged. We have for instance mentioned the issue of
lender’s and borrower’s risks in the Minskyian model
for investments, as well as the role of risk and uncer-
tainty in investment decisions (e.g., the determination
of the (real) investment level in the presence of risks).
As mentioned, according to Keynes, investors’ specu-
lative decisions about what assets to retain and what to
sell is based on a mechanism through which human be-
ings use practical equivalents as a convention which is
retained until it confirms reality, but abandoned when
evidence becomes different and in contrast with it.

This example about agents modelling for investment
in the presence of uncertainty, and the use of practical
equivalents as a mechanism to make decisions, is one of
the various models advanced in the economic theory –
as well as in business studies – to introduce uncertainty
in economics agents decision-making processes.

51.7.1 Models of Risk and Uncertainty
in Economics and Business Studies

The topic of uncertainty is prominent in the twen-
tieth century’s economic discourse, starting with the
marginalist revolution of Carl Menger, the Austrian
School, and then thanks to the seminal contributions
by John Maynard Keynes and Frank Hyneman Knight.
Standard neo-classical economics assumes that actors
have complete knowledge of means-end relationships
and they maximize their utility on the basis of a given
set of knowledge, technology, and preference ordering.
The notion of complete knowledge allows for the func-
tioning of markets according to the neoclassical model
and for the development of Pareto optimal equilibria.
Much of twentieth-century economics, especially Gen-
eral Equilibrium Analysis, deals with the mathematical
formulation of the functioning of the economic sys-
tem under conditions of perfect knowledge, and perfect
rationality. The notion of incomplete knowledge can

be traced back to the marginalist revolution, with Carl
Menger, and the Austrian School of Economics.

The Austrian School looks at the human limits in
cognitive capacity as the crucial source of uncertainty
in the production process [51.46]. Furthermore, it sees
uncertainty in terms of limited knowledge of future
outcomes, and uses such an assumption to assert that
rational state-planned production activities are not con-
ceivable. Only recently, attention has been devoted to
the analysis of imperfect markets, as a result of incom-
plete information [51.47].

One of the most important contributions to the
conceptualization of uncertainty in Economics is the
seminal work by Knight titled Risk, Uncertainty, and
Profit [51.48]. The author argues that agents are not
able to produce optimal forecasts of all future states;
therefore, in a dynamic economy, they cannot make de-
cisions leading to equilibria outcomes. According to
Knight, disequilibria are caused by uncertainty because
omniscience is not possible. Uncertainty undermines
perfect information and therefore the ability to predict
the distribution probability of future instances (i. e., it is
difficult for the decisionmaker to predict the probability
whereby future outcomes will arise). In the Knight-
ian acceptation of uncertainty, not only it is difficult
to estimate the frequency distribution of future possi-
ble outcomes, but often it is even hard to classify events
themselves. Neither they can be grouped on the ba-
sis of features of similarity, nor it is helpful to make
reference to the past (e.g., a series of historical data) be-
cause some events are, just, not knowable. In all these
cases, decision makers face a situation pervaded by un-
certainty. Instead, in those cases when (i) either the
distribution of the outcomes can be drawn in advance or
(ii) it can be induced by looking at historical data (us-
ing this criterion to group instances) – decision-makers
face a situation of risk (Sect. 51.7.1).

Risk, Uncertainty, and Profit has been the object of
several interpretations by the literature. For instance,
LeRoy and Singell [51.49] have interpreted Knightian
uncertainty in light of the agency theory [51.50], stating
that in some situations insurance markets can operate
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thanks to the possibility to calculate and reduce risk,
while in other situations they would collapse because
of moral hazard and adverse selection (i. e., because
of conditions of uncertainty). Also, Langlois and Cos-
gel [51.51, p. 457] interpret Knight’s characterization
of the firm as

“the system under which the confident and venture-
some ‘assume the risk’ or ‘insure’ the doubtful and
timid by guaranteeing the latter a specified income
in return for an assignment of the actual results”

stressing the different risk aversion faced by the en-
trepreneur and the worker.

The entrepreneurship literature has argued that busi-
ness decisions often deal with unique situations where
objective probabilities or chance are immeasurable, and
that entrepreneurial action is affected by uncertainty
and ultimately involves strategies to cope with it [51.52,
53]. According to classical theories of entrepreneur-
ship (e.g., [51.48, 52, 54]), entrepreneurial behavior is
the fundamental engine that influences the environment
through innovation. Schumpeter argues that the willing-
ness to bear uncertainty is intrinsic to entrepreneurial
activity and is given by the innovative act of creating
new combinations. According to the Schumperterian
view, the role of entrepreneurial action in coping with
uncertainty determines the success of the firm.

A variety of definitions of the concept of uncer-
tainty exist in business studies literature. Uncertainty
in Organization Studies is seen as lack of informa-
tion for, and knowledge in decision making [51.55,
56]. It is also postulated as resulting from the indis-
tinct and convoluted causal configuration underlying
the internal operations of the firm, its environment,
and the complex relationship between the firm and
the environment [51.57]. Uncertainty is viewed as
a product of unpredictability [51.58], environmental
turbulence [51.59], and the complexity of influential
variables [51.60]. Further, uncertainty is also a tangi-
ble facet of the external environment, and at the same
time a perceptual attribute internal to managerial deci-
sion making [51.61].

In the Organization Studies, literature uncer-
tainty [51.55, 56, 62, 63] is often found under the label
of environmental uncertainty or perceived environmen-
tal uncertainty, the former referring to variation of
conditions in the organizational environment, the lat-
ter to the ability of management in predicting such
variation. According to transaction cost economics
(TCE) [51.64], environmental uncertainty is one of
sources – together with behavioral uncertainty and as-
set specificity – determining the choice for a firm to
perform the transaction using the market (i. e., outsourc-
ing the transaction) or hierarchy (i. e., internalizing the

transaction). Moreover, TCE has modeled behavioral
uncertainty as a situation where the greater the asset-
specificity of an investment, the greater the threat of
opportunistic behaviors. Asset-specificity is a feature
of all those investments that have value only within
a specific transacting relationship, and lose value out-
side such transaction. Asset-specificity give rise to what
in the literature is known as the hold-up problem mean-
ing that, in a bilateral transaction, after one party has
made the asset-specific investment, the other may take
advantage of such specificity to appropriate of some
rents expected to be earned with the investment through
opportunistic behavior.

In the Agency Theory framework “uncertainty is
viewed in terms of risk/reward trade-offs, not just in
terms of inability to preplan” [51.50], while according
to the Resource-Based View approach [51.65] a distinc-
tion between risk and uncertainty exists [51.65, p. 56]:

“[. . . ] the fact that the future can never be known
with accuracy means that the planning of busi-
ness firms is based on expectations about the future
which are held with varying degrees of confidence
[. . . ] Uncertainty refers to the entrepreneur’s confi-
dence in his estimates or expectations; risk, on the
other hand, refers to the possible outcomes of ac-
tion, specifically to the loss that might incurred if
a given action is taken.”

Uncertainty and Knowledge
In Economics models of uncertainty are usually incor-
porated into economic actors’ decision-making [51.66–
70] and uncertainty is generally defined as a lack of
knowledge about the state in the future. Keynes [51.3]
investigated the role of the quantity and quality of in-
formation owned by agents in their decision-making
process and the role of incomplete information as being
the core of uncertainty. The Keynesian conceptualiza-
tion of uncertainty is not distant from the Knightian
one. Indeed, the former believed that some social pro-
cesses cannot be classified as ergodic or deterministic.
These are the outcome of decision-making processes
and thus behaviors are guided by two factors: the
creation of premises through the imagination and the
making of choices on the basis of nondeterministic
forces like animal spirits. Arrow describes uncertainty
as follows [51.3, pp. 33–34]:

“Uncertainty means that we do not have a complete
description of the world which we fully believe to
be true. Instead, we consider the world to be in
one or another of a range of states. Each state of
the world is a description which is complete for all
relevant purposes. Our uncertainty consists in not
knowing which state is the true one.”
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From a micro perspective, if we look at theories of
the internationalization of the firm – especially at those
labeled as Process Theories – the impact of knowledge
and learning gained through international experience
emerges as crucial to the pace and direction of firms’
internationalization activities, especially those taking
place after the first stages of international growth. The
most famous Process Theory is the Uppsala Model de-
veloped by Johanson and Wiedersheim-Paul [51.72]
and Johanson and Vahlne [51.73]; it theorizes that firms
internationalize following a (linear) learning process:
they first approach closer markets and subsequently
more distant ones (distance in this stream of literature
not only refers to geographic distance, but also to dif-
ferences for instance in terms of culture, institutions,
etc.). The level of commitment in a market (i. e., the
mode of investing in that country) changes according
to the learning path: the first internationalization stages
are carried out only by engaging in (unsolicited) export
activities, while the last ones entail establishing wholly
owned subsidiaries. The Swedish authors advanced two
basic assumptions:

� The lack of knowledge about foreign markets and
operations is an important obstacle to the develop-
ment of international operations.� The necessary knowledge can be acquired mainly
and preferably through operations abroad.

These hypotheses hold for the two directions of
internationalization that were distinguished, (a) the in-
creasing involvement of the firm in the individual
foreign country – vertical expansion – and (b) the suc-
cessive establishment of operations in new countries –
lateral expansion. The determinant of the time order of
such expansions and their geographical disposition is
determined by the psychic distance between the home
and the import/host country. Psychic distance is one
of the pillars on which the Uppsala model is built and

Uncertainty

External
(dispositions)

Distributional
(frequencies)

Singular
(propensities)

Reasoned
(arguments)

Introspective
(confidence)

Internal
(ignorance)

Fig. 51.8 Variants of uncertainty (after [51.71])

refers to the “sum of factors preventing the flow of
information from and to the market, and is often corre-
lated with geographical distance” [51.72, p. 308]. Given
the previous considerations, Johanson and Vahlne de-
rived that internationalization is the product of a series
of incremental decisions in small steps, rather than large
foreign production investments at single points in time.
In other words, internationalization is intended as the
consequence of a process of incremental adjustment to
changing conditions of the firm and its environment.
Subsequent models about the internationalization of the
firm, that is, the Innovation-Related Internationalization
Models can be rightly regarded as behaviorally oriented
theories and the organization’s internationalization pro-
cess can be considered as influenced by (i) the lack of
knowledge by the firm, especially experiential knowl-
edge; and (ii) uncertainty associated with the decision
to internationalize.

Figure 51.8 illustratesKhaneman and Tversky’s phe-
nomenology of uncertainty [51.71]. The primary distinc-
tion refers to two loci to which uncertainty can be at-
tributed: the external world and our state of knowledge.
The second level distinguishes four prototypical vari-
ants of uncertainty that arise depending on the nature
of the data that “the judge might consider in evaluating
probability” [51.71, p. 152]. External uncertainty can be
assessed in two ways: (i) a distributional mode, where
the instance in question is part of a class of similar cases,
for which the frequency distribution is known, or it can
be estimated; or (ii) a singularmode,where probabilities
are estimated by the propensity of that particular case to
happen. Internal uncertainty can be either (a) reasoned
or (b) introspective, but in both cases it reflects (partial)
subjective ignorance, rather than disposition of exter-
nal objects. The statement “Copenhagen is much colder
than Milan” reflects a process of “sifting and weigh-
ing” [51.71, p. 154], while the statement “I think her
name is Anna, but I am not sure” expresses a certain
level of confidence based on an introspective judgment.

Epistemic Issues About Probability Beyond
Models of Risk and Uncertainty

The academic debate born during the 1920s and 1930s
around probability and risk can be basically divided into
two streams: objectivists and subjectivists. The formers
are scholars arguing that probabilities are real, intrinsic
in nature, hence discoverable through logic or statistical
estimates. The latters are scholars asserting that proba-
bilities are human beliefs [51.74]. Theories assuming
that probability is merely a type (and not an object) of
knowledge include the subjectivists, including Savage
and Friedman, and some objectivists, including Keynes.
Scholars that, on the opposite, suppose that probabil-
ity exists as a part of external reality include, among
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others, Knight and proponents of the rational expecta-
tions hypothesis [51.75]. In proposing a simple lexicon
to discuss of probability, [51.76] argues that there are
only two basic ideas of what probability is. One of these
is the idea that the probability of an event is its long-run
frequency of occurrence. Following Hacking’s classi-
fication of probability types, a fist conception is that
probability is based on the proportion, percentage, or
fraction of times that an event occurs in repeated trials:
this is called aleatory probability (from the Latin word
for a dice game, alea). The other conception of proba-
bility focuses on the uncertainty of the final outcome;
hence, a probability is the degree of belief that one has
in a hypothesis given some evidence. Because this con-
ception depends on one’s knowledge of the likelihood
of an event, rather than solely on its relative frequency,
it is called epistemic probability (from episteme, the
Greek for knowledge). In addition to the aforemen-
tioned dichotomy, we can then distinguish between
objective and subjective conceptions of probability. In
the former, probabilities are unique and have the same
value for all individuals, in the latter are individuals
themselves assigning values to probabilities.

Knight distinguishes three types of probability situ-
ations [51.48, p. 225]:

1. A priori probability. Absolutely homogeneous clas-
sification of instances completely identical except
for really indeterminate factors. This judgment of
probability is on the same logical plane as the
propositions of mathematics (which also may be
viewed, and are viewed by the writer, as “ulti-
mately” inductions from experience).

2. Statistical probability. Empirical evaluation of the
frequency of association between predicates, not
analysable into varying combinations of equally
probable alternatives. It must be emphasized that
any high degree of confidence that the proportions
found in the past will hold in the future is still
based on an a priori judgment of indeterminate-
ness. Two complications are to be kept separate:
first, the impossibility of eliminating all factors not
really indeterminate; and, second, the impossibility
of enumerating the equally probable alternatives in-
volved and determining their mode of combination
so as to evaluate the probability by a priori calcula-
tion. The main distinguishing characteristic of this
type is that it rests on an empirical classification of
instances.

3. Estimates. The distinction here is that there is no
valid basis of any kind for classifying instances.
This form of probability is involved in the greatest
logical difficulties of all, and no very satisfactory
discussion of it can be given, but its distinction from

the other types must be emphasized and some of its
complicated relations indicated.

In (1) and (2), probability judgments are referred
to as a priori probability and statistical probability,
respectively. Concerning a priori probability, Knight
stresses the “absolutely homogeneous classification of
instances completely identical except for really inde-
terminate factors” [51.48, p. 224]; and in referring to
statistical probability,Knight emphasizes that “any high
degree of confidence that the proportions found in the
past will hold in the future is still based on an a priori
judgment of indeterminateness” [51.48, p. 225]. In the
third type of probability situation the relevant judgment
that is formed is referred to as an estimate. The first type
of uncertainty is commonly referred to as risk, against
which we can insure. Such a classification has been
often translated by commentators into a differentia-
tion between objective and subjective probabilities. For
subjectivist theorists including, for example, Savage,
Ramsey, and Friedman, probability cannot be known
and it is the degree of belief in a given proposition
or event, held by an actual individual at some specific
point in time. On the contrary, scholars such as Lucas
(in conversation with Klamer [51.77]) focus on the fact
that what matters in terms of uncertainty is not that we
do not know the probabilities but that we do not know
the classification of outcomes.

With the aim of answering the question whether
“are probabilities, as understood with economic anal-
yses, a property of this external material reality, or are
they only a property of knowledge?” Lawson [51.75, p.
40], works out different accounts in the notion of prob-
ability from the perspective of realism. The choice of
such a stance is justified as useful for the need to state
the presence of an [51.75, p. 39]

“objective material (physical and social) world
which exists independently of consciousness (or of
any individual consciousness in the case of the so-
cial) but which is knowable by consciousness.”

Indeed, the author distinguishes amongst direct re-
alism, dualism, and interactionist realism. Figure 51.9
and Table 51.1 illustrate Lawson’s argument.

� Direct realism: According to such a perspective
knowledge is reality.� Dualism: Appearances and reality are separate and
distant from each others. Inside dualism, we can
distinguish among two streams of thought that are
empiricism and rationalism. The former gives pri-
mary role to sensory experience in knowledge (e.g.,
Locke), while the latter gives central role to reason
where first chaotic impressions are at a later mo-
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Direct realism

Dualism: appearances
and reality are separate and

distant from each others

Subjectivists
(e.g. Savage, Friedman,

Ramsey)

Objectivists
(e.g. Keynes)

Rational expectations
theory

 Probability is an object
 of knowledge and
- something possessed by agents
- attached by them to propositions

Probabilities
do not exist
as part of
material

reality bu are
merely

aspects of
knowledge

Knowledge
insolves

perception
and different

forms of
inference

(1921, p.204)

Appearances and subjectivity
are intertwined

Probability is a type and it is
 - learned
 - discovered
 - known

Empiricism Rationalism

Interactionist
realism

Keynes Knight

Fig. 51.9 Different notions of
probability from the stance of
realism (after [51.75])

Table 51.1 Classification of prominent accounts of probability and uncertainty in economic analysis (after [51.75])

Probability is a property if knowledge
or belief

Probability is also an object of knowl-
edge as a property of external material
realty

Uncertainty corresponds to a situation
of numerically measurable probability

Subjectivists (e.g., Savage, Friedman) Proponents of the rational expectations
view (e.g., Muth, Lucas)

Uncertainty corresponds to a situation
of numerically immeasurable probability

Keynes Knight

ment transformed and ordered by processes of the
human reason (e.g., Kant).� Interactionist realism: Appearances and reality are
intertwined. Knowledge is an active process where
though, theory, and practice have equal weights in
the process.

Expected Utility Theory and Subjective Expected
Utility Theory Models. In the last 60 years, the lead-
ing theories of choice in economics and psychology
have been the expected utility (EU) theory of [51.78]
and the subjective expected utility (SEU) theory of
Savage Leonard [51.79]. EU assumes that the prob-
abilities of outcomes are known. Agents’ preferences
are represented by real-valued utility functions where
preferred choices correspond to higher utility, and the
utility of a choice is the EU of expected possible out-
comes weighted by the probability of their occurrence.

In SEU, probabilities are not necessarily objectively
known, decision makers face uncertain states and are
assumed to have subjective probabilities attached to
these states. Under the SEU, axioms preferences ca
be represented by expected utilities that use subjective
probabilities to weigh the probability of outcomes’ oc-

currence. The theory combines the von Neumann and
Morgenstern EU approach withDe Finetti’s [51.80] cal-
culus of subjective probabilities. The key elements of
EU theory are (1) a value function that is concave for
gains, convex for losses, and steeper for losses than for
gains, and (2) a nonlinear transformation of the prob-
ability scale, which overweight small probabilities and
underweight moderate and high probabilities [51.81].
SEU theory was first developed by Savage (inspired by
Ramsey and De Finetti), and then derived by Anscombe
and Aumann in an approach that essentially combined
EU and SEU. According to subjective probability the-
ory – typically represented by the Bayesian approach –
it is possible to assign numerical probabilities to virtu-
ally any proposition or event probability is the degree
of belief in a given proposition or event held by an indi-
vidual at a specific point in time. According to [51.75]
for this group of scholars, probability is only epis-
temic, a property only of knowledge or belief, that does
not necessarily has to correspond to external reality.
As Weatherford [51.82, p. 226] asserted a “subjectivist
[. . . ] recognizes that his opinion is the final authority
[. . . ]. There is no correct reference class, since there is
no correct probability.”
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A person’s subjective probability regarding the truth
of a proposition (or the occurrence of an event) is re-
vealed by the odds at which that person is exactly
indifferent between betting for and against the propo-
sition (or event) [51.83, p. 338]:

“For example, if a person is willing to accept to pay
P� for a gamble that pays S if proposition h is true
and nothing if h is false, then for P�=S to express the
person’s subjective probability it is necessary that
the person be also willing to receive P� for a gamble
that involves a loss of S if A is true and nothing if A
is false.”

This requires very precise beliefs, but presumably
allows subjective probabilities to be assigned even to
unique events [51.84]. According to Keynes, no propo-
sition is subjectively probable, meaning that the likeli-
hood for it to happen depends on our belief in it.

Radical Subjectivists, amongwhich we can mention
Shackle [51.85] and Lachmann [51.86], have a sub-
jectivist view of expectations. The key point is that,
for Shackle and his followers, imagination cannot be
brought under the cover of reason: “expectation under-
mines the view of conduct as purely rational” [51.85, p.
xvii]. According to such a view, agents vary not only in
their tastes but also in their expectations, that is, in their
visions of the future [51.87, p. 29]:

“In this view, the future is not so much unknown as
it is nonexistent or indeterminate at the time of deci-
sion. The agent’s task is not to estimate or discover,
but to create. He must therefore exercise imagina-
tion.”

The Concept of Ambiguity. EU theory has been for
several decades the dominant normative and descrip-
tive model of decision-making under uncertainty, but
at the same time a substantial body of evidence shows
that decision makers systematically violate its basic as-
sumptions [51.81].

The most famous challenge to SEU has been posed
by the Ellsberg paradox. Nonetheless similar problems
were argued earlier by Knight [51.48, pp. 218–219]
as well as by Keynes [51.88]. Much empirical evi-
dence Camerer and Weber [51.89], inspired by Ells-
berg [51.90] and others, shows that people prefer to bet
on events they know more about, even when their be-
liefs are held constant. In Ellsberg’s [51.90, p. 657], am-
biguity is the “quality depending on the amount, type,
reliability, and unanimity of information,” or “Ambigu-
ity is uncertainty about probability, created by missing
information that is relevant and could be known” as de-
fined by Camerer andWeber [51.89, p. 325]. According
to these Authors it is misleading to suppose that ambi-

guity about outcomes and ambiguity about probabilities
are parallel conditions or treatment variables [51.89, p.
331]:

“If people are averse to ambiguity about which
outcome will occur, but outcome probabilities are
known, then they are risk averse and consistent with
EU. But if people are averse to ambiguity about
the probability of an outcome, they are ambiguity
averse and inconsistent with SEU. The two kinds of
ambiguity are fundamentally different.”

Ergodicity and Nonergodicity. Ergodic theory has
been explicitly developed in the theory of stochastic
processes although the term derives from statistical me-
chanics [51.91]. Samuelson has argued that economics’
claim to be scientific rests on the acceptance of the
ergodic hypothesis [51.92]. To Keynes the source of un-
certainty was in the nature of the real – nonergodic –
world. It had to do, not only – or primarily – with the
epistemological fact of us not knowing the things that
today are unknown, but rather with the much deeper
and far-reaching ontological fact that there often is no
firm basis on which we can form quantifiable probabili-
ties and expectations at all. Post-Keynesians economists
typically distinguish between ergodic and non ergodic
processes: the latter involving fundamental uncertainty
and non ergodicity can be used to explain the existence
of firm in the long run [51.93]. The fact that real social
and economic processes are nonergodic is given by the
pervasive presence of uncertainty.

Davidson [51.94] stresses the distinction between
ergodic and nonergodic world and argues that uncer-
tainty is associated with the latter situation. He con-
cludes that the implication of this is that the inverse
of knowledge, unknowledge, that is (fundamental) un-
certainty, must be expounded in terms of the ergodic
theory. The concept of ergodicity is described byDavid-
son [51.94, p. 6] as a situation in which

“the probability distribution of the relevant vari-
able calculated from any past realization tends to
converge to the probability function governing the
current events and with the probability function that
will govern future outcomes.”

The assumption of bounded rationality – conceived
by Herbert Simon – refutes the assumption of ratio-
nality in the classical economic theory of the firm,
arguing that its limits arise distinctly (i) when risk and
uncertainty are introduced into the demand function,
the cost function, or both; and (ii) when we assume
that actors have incomplete information about all al-
ternatives for their choices [51.95]. When uncertainty
is introduced, a maximization behavior is replaced
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by an approximation one, and actors do not optimize
choices, but approximately optimize them: a satisfying
behavior in decision-making is found to be more appro-
priate [51.95].

51.7.2 Models of Risk

There are numerous conceptions of risk both in the
economics and business studies literature. According
to most of the literature in economics, finance, and
strategic management risk is associated to a variation
in outcomes’ performance.

Luce and Raiffa [51.96, p. 13] distinguish among
three types of situations under which the decision-
maker is in the realm of certainty, risk, or uncertainty:

1. Certainty is a situation where each action is known
to lead invariably to a specific outcome.

2. Risk is linked to situations where each action leads
to one of a set of possible specific outcomes, each
outcome occurring with a known probability.

3. Uncertainty, where actions may lead to a set of
consequences, but where the probabilities of these
outcomes are completely unknown.

Business risk is defined to be the “risk inherent in
the firm, independent of the way it is financed” [51.97,
pp. 207–208] and it is related to the variability of net
operating income or net cash flows.

Financial risk is defined as the added variability of
the net cash flows of the owners of equity that results
from the fixed financial obligation associated with debt
financing and cash leasing [51.98]. Financial risk can
be identified by the following equation [51.99, p. 561].

FRD 	2

cx� I �
	1

cx
; (51.11)

where 	1 is the net standard deviation of net cash flows
without debt financing; 	2 is the standard deviation of
cash flows with debt financing, but before the deduc-
tion of debt servicing payments, cx is the expected net
cash flows without debt financing; and I are fixed debt
servicing obligations.

The most important paradigm of risk emerged in the
financial economics literature during the past quarter
century is part of the set known in the literature as the
SBL model (i. e., Sharpe–Lintner–Black model), known
in the strategic management literature as the Capital
Asset Pricing Model (CAPM). Such a model was devel-
oped by Sharpe [51.100], Lintner [51.101] and refined
by Black [51.102] as an extension and simplification
of earlier work by Markowitz [51.103]. The CAPM’s
main predictions and are summarized by Fama and
French [51.104, p. 427]. Most of the studies using the
CAPM [51.100, 101] framework employ measures of:

1. Systematic risk reflecting the sensitivity of the re-
turn on a firm’s stock to general market movements.

2. Unsystematic risk refers to the extent to which
general market movements cannot explain a firm’s
stock return.

Systematic and unsystematic risks are standard
measures of risk for stockmarket return data.Miller and
Bromiley [51.105] found that both types of risk, defined
with accounting data, influenced performance. The def-
inition of risk as unpredictable variation in business
outcomes has to be found also in accounting litera-
ture in the form of return on assets, and return on
equity. Hence, one measure of risk based on financial
ratios is, for instance, the debt-to-equity ratio: a stan-
dard measure of corporate financial leverage reflecting
a company’s risk of bankruptcy [51.106, 107], and cap-
ital intensity, that is, the ratio of capital to sales.

Although the CAPM was developed explicitly for
use in a finance context, it has been widely employed
also in the field of strategic management, especially re-
garding issues related to corporate diversification strat-
egy or in situations where maximization of stockholder
wealth is taken as the primary objective of the firm.
Variance is also a widely measure of risk used in the
strategic management literature. Risk has been rarely
addressed as a specific area of study in strategy formula-
tion [51.108]. An analysis of the role of risk in strategic
planning is given byGluck et al. [51.109] with the iden-
tification of four phases in the development of strategic
management within a firm.

In the acceptance that risk is variation from an ex-
pected probability distribution of outcomes, the relative
magnitude of risk could be defined by the amount of
dispersion in that distribution such as the standard devi-
ation or variance:

1. Variance is a measure of the variability of a mea-
sured datum from the average value of the set of
data;

	2 D 1

n

nX

iD1

.xi� x/ : (51.12)

2. Standard deviation is a measure of the dispersion of
a set of data from its mean. The more spread apart
the data, the higher the deviation. Standard devia-
tion is calculated as the square root of variance

vuut	2 D 1

n

nX

iD1

.xi� x/ (51.13)

Since distributions with different shapes and differ-
ing amounts of downside risk (the difference between
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the actual return and the expected return) can have the
same variance, measures such as skewness and kurto-
sis can be used to better quantify the risk that is not
adequately described by variance alone. Value at risk
(VaR) is a widely used risk measure of the risk of loss
on a specific portfolio of financial assets. For a given
portfolio, probability and time horizon, VaR is defined
as a threshold value such that the probability that the
mark-to-market loss on the portfolio over the given time
horizon exceeds this value (assuming normal markets
and no trading in the portfolio) is the given probability
level. Given some confidence level ˛ 2 .0; 1/, the VaR
of the portfolio at the confidence level ’ is given by the
smallest number l such that the probability that the loss
L exceeds l is not larger than (1� ’)

VaR˛ D inf fl 2 RWP .L > l/
 1� ˛g
D inf fl 2 RWFL .l/� ˛g : (51.14)

51.7.3 Models of Uncertainty

Several decades ago, Knight and Keynes, each in his
own way, discussed uncertainty as a notion distinct
from something else, which Knight called risk. The
Keynesian approach to uncertainty comes straight from
his studies on probability, we previously mentioned in
the Treatise on Probability, and notion of logical proba-
bility.

Keynes on Uncertainty
The manner in which Keynes deals with uncertainty
appears, on its face, quite similar to that of Knight.
According to Keynes [51.88, p. 15]; the probability is
the “degree of truth of a proposition contained in the
evidence,” and the weight of the argument of a given
proposition is the measure of the disbelief in the truth
of such a proposition [51.88, p. 84]

“There appear to be four alternatives. Either in some
cases there is no probability at all; or probabili-
ties do not all belong to a single set of magnitudes
measurable in terms of a common unit; or these
measures always exist, but in many cases are, and
must remain, unknown; or probabilities do belong
to such a set and their measures are capable of be-
ing determined by us, although we are not always
able so to determine them in practice.”

Uncertainty is linked to the concept of perfect
knowledge and to the problem of investment decisions
under uncertainty (the weight of the arguments).

In Keynes’s concept of uncertainty not only some
premises may be unknown at the moment of decision
but they may also actually be unknowable. Uncertainty

means the acknowledgement of the impossibility of
dealing logically with this complexity

Keynes suggested that agents form their expecta-
tions based on how much weight they put on different
possibilities of outcomes (i. e., they for subjective prob-
abilities). In order to clarify his concept of uncertainty,
we may quote a famous passage from The General
Theory of Employment, Interest, and Money [51.3,
p. 214]:

“The sense in which I am using the term is that in
which the prospect of a European war is uncertain,
or the price of copper and the rate of interest twenty
years hence, or the obsolescence of a new inven-
tion, or the position of private wealth-owners in the
social system in 1970. About these matters there is
no scientific basis on which to form any calculable
probability whatever. We simply do not know. Nev-
ertheless, the necessity for action and for decision
compels us as practical men to do our best to over-
look this awkward fact and to behave exactly as we
should if we had behind us a good Benthamite cal-
culation of a series of prospective advantages and
disadvantages, each multiplied by its appropriate
probability, waiting to be summed.”

It seems that Keynes viewed the world as con-
sisting of different degrees of uncertainty rather than
in a dichotomy of uncertainty and probabilistic cer-
tainty. A related issue raised by Coddington [51.110]
is whether or not certainty is obtainable. Moreover in
Keynes’ account such certainty corresponds to know-
ledge. Keynes, however, does consider that knowledge
and thus certainty are obtainable, he distinguishes be-
tween two types of knowledge: knowledge that is ob-
tained directly and that which is obtained indirectly.

The distinction between risk and uncertainty in
Keynes regards the distinction between short-term and
long-term expectations. Unlike short-term expectations,
long-term expectations (investments) do not entail con-
tinuous process of daily revision on the basis of actual
market outcomes, rather involve long-term and largely
irreversible commitments in advance of actual market
outcomes. A risky situation is characterized by stable
deterministic and stochastic components of which the
decision maker has a very high degree of knowledge; all
the range of future possible outcomes is known [51.111,
p. 626],

“decision-makers are essentially backward looking,
looking at past outcomes as a guide to future ac-
tions. Decision makers act on the assumption that
the causal structure will remain fixed, at least in
the short term, and form their expectations accord-
ingly.”
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An uncertain choice situation is that the probabil-
ity distribution is partially, or totally unknown because
only partial knowledge is possible for future outcomes
and their likelihood. In such a situation, past offers lit-
tle guidance to actual decision-making and firms have
to form long-term expectations for investment deci-
sions [51.111, p. 627]:

“Decision makers have to be forward-looking and
scientific, in the sense of being willing to entertain
alternative hypotheses about the causal structure
and possible future outcomes, and able to interpret
new information as confirming or disconfirming ev-
idence that increases/decreases the degree of belief
in any specific hypothesis.”

According to Minsky [51.31, p. 359] in its remarks
upon receiving the Veblen-Commons award:

“The uncertainty that permeates the economics of
Keynes and the economics of bounded rational-
ity is due to the un-sureness about the validity
of the model of the economy that enters in the
decision process. Action involves a suspension of
disbelief by both sides in the negotiations, and
economic success fosters such a suspension. Gov-
ernment institution building can be interpreted as
adding dimensions to the economywhose behaviors
are not as uncertain as that of market-determined
variables.”

According to Minsky, at a systemic level, money
manager capitalism doubled with New Deal reforms
have drastically increased the level of uncertainty.

Post-Keynesians on Uncertainty
Dequech [51.112] contends that uncertainty has proved
to be a key concept in post-Keynesian economics. Im-
portant theoretical implications have stemmed from it:

1. It is the source for liquidity preference
2. Some post-Keynesians have derived a privilege of

short-run analysis from uncertainty [51.113]
3. The possibility of structural breaks and sudden

shifts in behavior [51.3, 114] and
4. The rejection for ergodicity [51.114].

The post-Keynesian Scholar argues that the ratio-
nale for the existence of the firm is not that it is efficient
in the sense that it reduces transaction costs. Rather
the institutional form of the firm is chosen to deal with
uncertainty. Scholars of different schools of heterodox
economic though have identified situation of uncer-
tainty of a more radical type, that is, characterized by
the possibility of creativity and structural change, hence
by “significant indeterminacy of the future” [51.112].
In a dynamic context, “the future cannot be anticipated

by a fully reliable probabilistic estimate because the fu-
ture is yet to be created” [51.112, p. 41]. Such a kind of
more radical uncertainty does not only refer to the lack
of information needed to assess the probability distri-
bution of future outcomes, rather to the impossibility of
even imagining an event. This argument has clear an-
tecedents in the work of Shackle [51.85], who is against
the use of probability distributions, even subjective
ones, in situations of fundamental uncertainty. A similar
point has been raised against both the rational expecta-
tions hypothesis and SEU theory by Bausor [51.115],
Davidson [51.116], and Vickers [51.113], among oth-
ers.

According to Dequech, in his acceptation of uncer-
tainty, Keynes refers both to situations of ambiguity
and of fundamental uncertainty, without explicitly dis-
tinguishing between them. There is still disagreement
around the interpretation of Keynesian uncertainty,
based on the author’s treatise. Some commentators
have argued that uncertainty refers to an absence of
numerically determinate or even comparable probabil-
ities, while, others contend that Keynesian uncertainty
is measured by weight [51.112].

The concept of fundamental uncertainty claims that
significant parts of economic decisions are made un-
der conditions where the outcome of these decisions
is not subject to a probabilistic calculus, but rather
cannot be determined by scientific means. Thus, deci-
sions under such circumstances are based on emotions
or conventions. Typically, such conditions apply to de-
cisions that involve a long time horizon and involve
irreversible costs, what Shackle called crucial experi-
ments. Fundamental uncertainty is a result of the fact
that economic processes in the real world do not follow
ergodic pattern. Under such circumstances no probabil-
ity distribution for outcomes can be given. This inability
to give probability does not merely reflect the lim-
ited knowledge or information processing abilities of
humans, but is a reflection of the openness of the histor-
ical process in which human societies and economies
evolve.

Scholars such as Carabelli [51.117], Davis
[51.118], and Arestis [51.119] see the problem of
agents’ uncertainty about each others’ expectations
as being the fundamental source of general uncer-
tainty [51.120]. Since we can never know for certain
at what degree other people will be thinking about
how average opinion will be forming its expectation
of itself, we cannot ever know for certain what other
peoples’ expectations of average opinion will actually
be. This dependence of people for each other on the
formation of their expectations, opens up the possibility
of sudden mass changes of these expectations, and such
an event goes under the name of mob psychology.
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Knight on Uncertainty
As already mentioned, one of the most important con-
tributions to the conceptualization of uncertainty in
economics is the seminal work of Knight, Risk, Un-
certainty, and Profit [51.48]. Knight has both a con-
ceptualization of what uncertainty is, and how indi-
viduals cope with it. Knight’s theoretical framework
begins by studying some with some very crucial points
of the theory of thought. Among many other defi-
nitions [51.89] the economic understanding of risk,
uncertainty, and ignorance has its origin in [51.48].
There has been a considerable discussion and disagree-
ment about over the meaning of Frank Knight’s risk
and uncertainty [51.121], considering his two most fa-
mous contributions Risk, Uncertainty and Profit, and
Profit and Entrepreneurial Functions [51.122]. A most
common definition of risk is that it is related to out-
comes that can be insured against, and uncertainty to
outcomes that cannot be insured against [51.123]. Such
an interpretation builds on the Knightian distinction of
three possible future outcomes, and related probabili-
ties: (i) a priori, (ii) statistic, and (iii) estimates which
we have described in the previous section, hence on
the measurability/immeasurability of probabilistic out-
comes [51.48, p. 20, Emphasis author’s own]:

“It will appear that a measurable uncertainty, or risk
proper, as we shall use the term, is so far different
from an unmeasurable that it is in effect not an un-
certainty at all. We shall restrict the term uncertainty
to cases of a nonquantitative type.”

Outcomes of the first (i) and second (ii) type can be
grouped together as they are homogeneous instances,
and hence, they can be insured against, while outcomes
of the third type, of which we do not neither know the
distribution (iii) nor we can draw it from historical data
cannot be grouped, and insured against. Outcomes of
the first and second type are risky, outcomes of the
third type are uncertain. Outcomes subject to risk can
be insured against, either through traditional insurance
contracts or by holding a portfolio of stocks. LeRoy and
Singell [51.49] offer a refinement on the insurance inter-
pretation claiming that Knight anticipated the literature
on the failure of markets as a result of adverse selection
and moral hazard.

The second interpretation of Knight’s distinction of
risk and uncertainty relates to the difference between
situations in which profit cannot exist (because of the
presence of risk), and those in which profit can arise
(thanks to the presence of uncertainty). Knight’s aim
in Risk, Uncertainty, and Profit [51.48] was to explain
profit as the reward for bearing uncertainty [51.48, p.
232]:

“It is this true uncertainty which [. . . ] gives the
characteristics form of enterprise to economic or-
ganization as a whole and accounts for the peculiar
income of the entrepreneur.”

A further interpretation is the one by Langlois and
Cosgel [51.51], which claims that the Knigthian distinc-
tion refers to states of the world that can be conceived
and those that cannot. A risky decision is defined as
a decision with a range of possible outcomes with
a known probability for the occurrence of each state
(e.g., a fair roulette game); or the probabilities are not
precisely known and a decision has to be made un-
der uncertainty (e.g., sport events and elections). In this
sense, decisions under risk can be seen as a specific case
of decisions under uncertainty with precisely known
probabilities.

A practical example of the difference between
Knightian risk and uncertainty is the one given byGuer-
ron-Quintana [51.124, p. 10]. Suppose to throw a coin
knowing that it is fair, and the unknown is whether the
coin will land heads or tails. Since it is fair, we know
that the odds for each flip to have either head or tail are
50-50. In such a case we know exactly the odds of each
of the possible events: 50% heads and 50% tails, and
we have this knowledge before starting the experiment.
This is an example of Knightian risk. A second exper-
iments involves flipping a coin that is no longer fair,
furthermore the coin is replaced with a new (and unfair)
coin after each flip. In this case we do not know the odds
of obtaining heads, the only thing we know is that the
coin will land either heads or tails. If we were thinking
about flipping the coin 100 times, we could not (before
we start the experiment) tell how many times the coin
will land on heads. This is an example of Knightian un-
certainty.

Game Theory
Game theorists study uncertainty about the strategic
choices of other players. They deal with uncertainty
by reducing economy to a static equilibrium in which
all economic activities take place at fixed one point in
time. We can distinguish among three major stages in
the development of game theory. The first one, classi-
cal game theory, is defined by John von Neumann and
Oskar Morgenstern. The axioms for the concept of in-
dividual rational player making decisions in the face of
certainty and uncertainty are developed. Such a player
does not assume that the other players also act ratio-
nally. In contrast, modern game theory is defined by the
Nash player who is not only rational but assumes that
all players are rational to such a degree that they can
coordinate their strategies so that a Nash equilibrium
prevails. The more recent, third stage in the develop-
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ment of game theory, new game theory, is defined by the
so-called Harsanyi player. This player is rational but
knows very little about the other players, e.g., their pay-
off functions or the way they form beliefs about other
players’ payoff functions or beliefs.

Uncertainty in General Equilibrium Theory
The General Equilibrium Theory, as developed mainly
by Arrow and Debreu in the 1950s, sets out to prove
that the possibility of a competitive equilibrium in the
economy does exist and that such an equilibrium is
Pareto efficient. The analyses of Arrow and Debreu deal
with uncertainty about the environment. The world is
divided into two sets of variables: decision variables,
which are control-led by economic agents, and envi-
ronmental variables, which are not controlled by any
economic agent. The General Equilibrium Theory was
claimed by Arrow and Debreu both in a mathematically
rigorous manner, but also rests on specific assumptions.
Most importantly they assume the so-called dated, con-
tingent commodities that allow for future markets for
all goods, through which agents can determine their en-
tire production and consumption plans, for they know
the prices of all goods in all future periods, and they
can insure them against all eventualities. Indeed, there
exist markets for all actual and future goods because of
the assumption that all economic actors share the same
information.

Arrow himself sought the limitation of the General
Equilibrium Analysis in light of informational asym-
metries, leading to agency problems, moral hazard and
adverse selection. Once asymmetric information is con-
sidered it leads to the arising of market failures hence
Pareto-inefficient markets.

New Institutional Economics
According to Alchian [51.125], uncertainty arises from
at least two sources: imperfect foresight and human
inability to solve complex problems containing a se-
ries of variables even when an optimum is definable.
Under uncertainty each action is identified with a dis-
tribution of potential overlapping outcome. As Knight,
Alchian sees uncertainty as the precondition for profits
to arise. And coping responses are made by imitation of
observed success; adaptive behavior via imitation pro-
vide opportunities for innovation.According to scholars
of New Institutional Economics, such as Hodgson and
Demsetz institutions have a cognitive function con-
tribute reducing the mentioned complexity, and there-
fore ultimately to reduce perceived uncertainty.

Transaction Costs Economics
TCE [51.64, 126, 127] theory assumes that firms’ effi-
ciency is maximized given a static set of knowledge,

technology and preference. Bounded rationality and op-
portunism are the two behavioral assumptions about
human factors of transaction cost theory [51.128]. The
former refers to the impossibility for individuals to re-
trieve information, and process it without error. The lat-
ter deals with the manifestation of opportunistic behav-
iors of two types: asymmetric information, and moral
hazard. According to Williamson, the consequences of
bounded rationality are less severe when transactions
take place in a context with little environmental un-
certainty. Williamson builds on Koopmans distinction
among primary, secondary, and third type uncertainty.
Primary uncertainty reflects a lack of knowledge about
states of nature, such as the uncertainty regarding nat-
ural events, whereas secondary uncertainty refers to
a lack of knowledge about the actions of other economic
actors. Primary uncertainty also corresponds closely to
state uncertainty as described by [51.61], in that both
refer to the lack of knowledge about various states of
nature. The third type of uncertainty might arise from
opportunism, “self-interest seeking with guile” [51.129,
p. 56].

Behavioral uncertainty relates to the informational
problems that ensue from the coexistence of bounded
rationality and opportunism [51.130]. “In circum-
stances where behavioral uncertainty is a pervasive and
surrounds asset specific investments, then market based
transaction costs are likely to be high” [51.130, p. 420].
Behavioral uncertainty in an international perspective
arise from the inability of a company to predict the be-
havior of individuals in a foreign country. Hierarchical
ownership conveys the right but not the means to con-
trol a foreign operation. Controlling foreign operations
is a special skill that requires time to develop and refine.
When a firm lacks such internal control mechanisms,
it may reduce the chances of opportunistic behavior
by shifting control to a foreign agent. Firms lacking
international control related experience tend to prefer
nonequity modes of entry.

Behavioral Uncertainties. They arise from the in-
ability of a company to predict the behavior of in-
dividuals in a foreign country. According to trans-
action cost theory, behavioral uncertainty may lead
to opportunistic behavior involving cheating, distor-
tion of information, shirking of responsibility, and
other forms of dishonest behavior. In order to mini-
mize opportunisms, a company has to develop some
type of control mechanisms, such as internal con-
trol, achievable through hierarchical ownership that
gives the firm a legal right to control the actions of
foreign-based employees. However, hierarchical own-
ership conveys the right but not the means to control
a foreign operation. Controlling foreign operations is
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a special skill that requires time to develop and refine.
When a firm lacks such internal control mechanisms,
it may reduce the chances of opportunistic behavior
by shifting control to a foreign agent. Firms lacking
international control related experience tend to pre-
fer nonequity modes of entry. Behavioral uncertainties
may be an especially important influencing factor for
small and medium enterprises (SMEs), they tend to rely
on the managerial abilities of one/two entrepreneurs.
SMEs may not have the ability or willingness to es-
tablish a competent managerial control structure in
another country and in most cases will not have the
ability to send their own people to a foreign coun-
try for any extended period of time [51.131]. There-
fore, behavioral uncertainties may discourage SMEs
from organizing foreign operations in a hierarchical
form.

Environmental Uncertainties. They are created by
the target market environment, and refer to the risks
associated with the host country, for example the abil-
ity to enforce contracts and control or other types
of political and legal risks [51.64]. In other words if
a company desires increased control, it has to com-
mit additional resources. However, by committing ad-
ditional resources, a firm increases its exposure to
external environmental risks. In countries with high
environmental uncertainty, companies may be better
off selecting nonequity, low investment entry modes.
By following a low-resource commitment strategy in
an uncertain market, a company can retain flexibility
and, if the need arises, switch partner organizations
or exit the market entirely, if the situation so dic-
tates.

The Subjectivist School
As Hey [51.132] argues subjective expected utility
theory, which is intrinsically bound up with subjec-
tive probability theory, is the very “foundation stone
of the Economics of Uncertainty” [51.132, p. 130].
In addition, Diamond and Rothschild [51.133] pro-
vide a collection of thirty papers in a volume entitled
Uncertainty in Economics, all of which associate un-
certainty with the Ramsey/Savage subjectivist view of
probability. And in their expository survey of the “an-
alytics of uncertainty and information” this view of
uncertainty is also adhered to by [51.68]. Agents are op-
timal forecasters, and, in the individual’s mind personal
(as Savage calls them) probabilities regarding future
prospects at the moment of choice govern future out-
comes. These subjective probabilities need not coincide
with objective distributions, even if well-defined objec-
tive distributions happen to exist.

The Rational Expectations School
During the 1970s and 1980s, significant theoretical
contributions have been made in the general area of
uncertainty and expectations covering the modeling of
individual decision-making under uncertainty to the im-
plications of rational expectations in temporary general
equilibrium and macro models.

Theory of Rational Expectations [51.134, 135] ar-
gued that Keynesian economics was fundamentally
flawed in that it relied on the assumption of adap-
tive or exogenous expectations. In Sargent’s argument,
bounded rationality means that the agents in the econ-
omy are unsure about the degree of rational belief that
is warranted in the model that they use at any time to
guide their action. Thus, in Sargent’s artificial world, in-
tractable uncertainty is pervasive because the agents in
the model need to learn the properties of the model from
experience. The self-seeking agents are uncertain (or
unsure) in their knowledge artificial world, intractable
uncertainty is pervasive because the agents in the model
need to learn the properties of the model from experi-
ence. The self-seeking agents are uncertain (or unsure)
in their knowledge of the economy and they accept that
others are also unsure. Sargent’s definition of uncer-
tainty is similar to the Minskyan one.

The theory of rational expectations deals with the
uncertainty of future events by assuming that agents
can anticipate rationally the choices of other agents us-
ing the information they hold from the observation of
past behavior of the agent. The models assume that
economic actors behave as if they know the structure
of the economy so they can deduce optimal forecasts
despite the ongoing changes in the economy. If no ob-
jective probabilities can be calculated, the expectations
of agents are modeled by using Bayesian decision the-
ory, which operates with subjective probabilities.

Therefore, the model used to deal with situa-
tions of uncertainty does not change fundamentally for
economists even if they assume the absence of objec-
tive probabilities because agents can attach subjective
probabilities to outcomes, provided that actors share
the same information and the same subjective probabil-
ities. Bayesian rationality can be integrated into static
economic analysis. This claim has been empirically
challenged with the argument that the degree of fore-
knowledge and rationality attributed to agents in these
advanced economic models becomes increasingly so-
phisticated and it becomes more and more unlikely that
economic actors understand all relevant variables of the
model properly. But this in itself does not yet constitute
a theoretical challenge that would affect the theoretical
validity of economic decision-making models that deal
with uncertainty.
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52. Application of Models from Social Science
to Social Policy

Eleonora Montuschi

The use of models in social science is now widely
acknowledged, and well beyond cosmetic or il-
lustrative purposes. However, the details and the
mechanics of their use still prove hard to pin down.
Equally, the usefulness of social scientific models
in social practice and intervention is often chal-
lenged by a number of contentious and recurrent
issues. One of these issues is ontological: How
do model descriptions and aspects of social re-
ality relate to each other? Often the descriptions
offered by models are thin and unrealistic. Can
we (and how much) learn about what goes on in
the real-social world by analyzing the way/s that
world gets described or explained by a model?
A second issue is methodological: why using mod-
els when we can design experiments in the social
world that are able, with some rigor, to inform us
on what works? Nowadays there is an established
trend to prefer the results achieved, for example,
by well-conducted randomized control trials, by
many considered the golden rule to doing good
and useful social science.

In this chapter, we will first show some of the
limitations and costs of using models in represent-
ing real-life situations, and suggest some strate-
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gies by which we can still formulate informative
inferences from model to target system. We will
then point out some of the virtues and benefits
of using models (particularly causal models) when
what is at stake is not only answering the question
what works in policy terms, but alsowhy it works –
or, even more interestingly, why it does not work
in given circumstances.

Ever since it was acknowledged that models do not
only perform a cosmetic or a heuristic function but,
more substantially, can capture parts or features of the
real world and fulfil an explanatory function, a vast
philosophical literature has been developed on the
many ways model ontology and reality relate to each
other [52.1–4] (This change in perspective originates
in the shift from the syntactic to the semantic view
of theories in the philosophy of science, between the
1960s and the 1970s.). Models can simplify, approxi-
mate, idealize, or abstract from target systems (e.g., the
behavior of a gas, the trajectory of a planet, the deci-
sion of a board committee, long-term average inflation
rates, the migration movements of a population in a suc-

cession of historical periods) that often appear complex
and difficult to be described or comprehended as they
stand. Despite differences in construction, one feature
that all models – be it formal/quantitative, or qualita-
tive, or a combination of the two – have in common
is that of being representational devices [52.5]. Mod-
els’ representational power is displayed by establishing
appropriate relationships with the target system (this is
a theory, or a phenomenon, depending on the models
concerned). Appropriate in what sense? How are these
relationships established?

The World in the Model – the allusive title of a re-
cent book by Morgan [52.6] – points us in two equally
suggestive directions of thought. It refers to the world
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the model creates, out of its own premises, variables,
operations and conditions. Or it questions what of the
world as we know it (or don’t know it) gets captured
(portrayed, described, explained) by a model.

Undoubtedly some models create ontologies that
take shape out of their own principles and goals. But
when, for example, we try to represent the real func-
tioning of, say, a magnetic field, or a chemical reaction,
or a decision on whether to implement a certain edu-
cational policy, how far do these ontologies travel from
model to target?

A problem that is consistently pointed out in the vast
and heterogeneous literature on models is that a good
number of them offer descriptions of imaginary situa-
tions (model ontologies) which, compared to the target
situations (real-world ontologies), are both thin (they
are built on very few details) and, more worryingly, un-
realistic (the details they are built on are untrue). These
are models that routinely use a mixture of formal and
natural language and that are built in such a way as
to provide their results by deductive inference. It is,
however, pointed out that thin and unrealistic assump-
tions prove necessary to these models in order to obtain
the degree of rigor they aspire to, namely the type of
rigor achieved deductively by means of controlled vari-
ables and operationalized language [52.7]. Therefore,
thin and unrealistic assumptions are not a problem for
the models as such. They nonetheless become a prob-
lem when a “result that must occur given characteristics
different from those in the target inform conclusions
about what will happen in the target.” [52.7, p. 3]. The
problem just described takes then the form of the fol-
lowing question: Can thin and unrealistic premises in
the model give rise to realistic conclusions concerning
the target? When the target is the world (real, occur-
ring situations in the world we live in and that we
try to explain, predict, etc.) then the problem becomes
deep indeed. This does not imply that unrealistic as-
sumptions prevent us from learning something valuable
about targets, but how exactly does this happen requires
clarification.

In the first half of this chapter, we will pay spe-
cific attention to this problem, by showing the virtues
as well as the limits of using the imaginary to model
the real. The domain of reality where this problem will
be tested is that of social settings. Modeling decisions,
individual behaviors, social conducts, and social causes
inevitably confront us with the issue of how much and
how well does a model construction guide us into de-

scribing, understanding, and predicting what goes on
in the complex realms (and often the vagaries) of real
decisions, behaviors, etc. – as the first example ana-
lyzed in the following section will prove. If models
in social science are to be explanatory and not just il-
lustrative, if what they describe is to be of real use
and guide in intervening on problematic or contentious
social situations, the nature of their assumptions and
the quality of their inferences deserve careful analytic
scrutiny.

Learning how to master the use of models in social
analysis will also bring us to address another impor-
tant issue. Nowadays there is a consistent movement
toward the use of experiments in the social world, and
particularly certain types of experiments (e.g., RCTs)
are considered to be the best methodology to under-
stand and intervene on social problems. We intend to
show how social experiments on their own do not of-
ten secure the understanding and the effective answers
they promise to offer, and how the appeal to adequately
formulated models (and a good use of them) is able to
explain why. In the second half of the chapter, we will
deal with how a particular category of models – causal
models – relates to some types of social experiments,
and with what consequences. We will briefly describe
what causal models are, and we will then detail what
we can learn from using them that we cannot appre-
hend by following a strictly experimental methodology.
A number of examples will assist us in this task. They
will point out:

1. How causal models can identify what necessary fac-
tors are decisive in increasing the chances of success
of a course of action or an intervention

2. How using these models makes us realize how the
results of an experiment can work in different con-
texts, or identify the reasons why they do not/cannot
work in some

3. What is entailed by the expression why something
happens the way it happens, and why causal model
are well equipped to achieve this goal.

The overall aim of this chapter is not to provide
a comprehensive taxonomy of social models, nor to of-
fer a literature review (a task well pursued in Chap. 42
in this handbook). Here we focus on a selected range
of issues that make us reflect on the use and usefulness
of models (or at least some types of models) in social
practice.
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52.1 Unrealistic Assumptions

Cartwright claims that at least some models function
like Galileian thought experiments. With these models,
arguably, unrealistic assumptions are a necessity, not
a hindrance. What is a Galileian thought experiment?
In Cartwright’s own words [52.7, p.4]:

“A Galileian thought experiment isolates a single
factor to observe its natural effect when it oper-
ates on its own, and without impediment. [. . . ] In
a Galileian thought experiment it is the principles
built into the model that determine what the effect
must be. [. . . ] the thought experiment has only the
factors in it that we put there. So we can be sure that
confounders are absent but we cannot be sure the ef-
fect is right because that depends on the principles
we provide in the model.”

Two bodies move inertially only in the absence of
forces, only if they move in a Euclidean framework,
only if they travel on geodesics (shortest distance be-
tween two points), etc. The loss of skills during periods
of unemployment makes unemployment persist in the
future if skills matter to productivity, if the creation of
new jobs is motivated by firms’ expected profit, if loss
of skills is predominantly due to unemployment and not
to other factors, etc. This model was studied by Pis-
sarides in [52.8]; discussed in [52.7].

So, there is no guarantee that we learn the right
lesson vis a vis the factors singled out by the model.
Nonetheless, these models have a virtue, namely that
of eliminating all sorts of intervening circumstances
and interferences real situations are frothed with. And
this somehow breaks it even vis a vis real experiments,
where also we are not sure whether an effect is due to
natural law or to intervening confounding factors.

However, the problem with this way models func-
tion is, if we follow Cartwright, that they find them-
selves by necessity introducing much more unrealistic
assumptions than those required to isolate the factor
from confounders. So, for example, in order to isolate
a particular cause we need to produce a suitable back-
ground for that cause to operate appropriately (causes
do not work in isolation). Or else, things are to be
presented in rather particular ways within the model
if calculations are to be made possible, and often this
requires mathematically tractable descriptions which
take into account almost exclusively the results that the
model is equipped to handle. So these models end up
being over-constrained. They are to include all the con-
ditions and factors that the model requires in view of
successfully isolating its factors. This indeed becomes
a problemwhen we include all these conditions and fac-
tors in the deduction of the results in the model: learning

a lesson that goes outside the rather special framework
set out by the model andmeets its target proves difficult.

Part of the problem, Cartwright argues, is that we
wrongly try to learn a lesson directly from the model,
and from within its own boundaries and premises. We
expect that a model behaves like a fable, from which
amoral can be extracted. For example, in a fable like the
one constructed by Lessing – “a marten eats the grouse;
a fox throttles the marten; the tooth of the wolf, the fox”
(Lessing 1759, Sect. I, p.73; quoted in [52.9, p. 39]) –
the moral can be read out of the fable itself – the weaker
is always prey of the stronger. With models we find our-
selves in a different situation. The move from the model
to the target is not written in the model, nor should be
provided by it. And it is not obvious, nor automatic.
We might need a good deal of interpretation, theory,
empirical work, etc. to fill in the gap between what is
stated in the model and what the model, in its own lan-
guage, points out about its target (outside the model).
Filling the gap, and in ways that cannot be straightfor-
wardly inferred from stated premises, is the way models
pursue the task of letting us learn a lesson that goes
beyond their boundaries. That is why it has been sug-
gested [52.9] that we should think of them as if they
were parables – where morals are not written within
them but where “the prescription for drawing the right
lesson must be supplied from elsewhere” (from Greek
parabolein! to set beside; para D besides; ballein D
to throw).

Besides, when we refer to a moral, there are two
aspects to consider: what the moral says literally (the
weaker is prey of the stronger) and howwe value what it
says (it is wrong that the stronger takes advantage of the
weaker). If the former aspect is difficult to infer directly
from the model, the second is even more difficult – as
we will point out by means of the example to follow.

52.1.1 Quality of Life

By means of this first example I will analyze a model
of measurement of a social concept that is particularly
relevant in terms of both research design and policy
implications. I refer to the model of QALY (Quality
Adjusted Life Year) that is meant to assess the worth of
a treatment/intervention in the context of the quality of
life of a patient, and by comparison with other patients’
life expectancies. Models of this sort are certainly
timely if we consider that, at least in modern Western
society, there has been a considerable progress in cures,
care, and medical technology, as well as improvements
in early diagnosis of potentially terminal illnesses, or of
those pathological conditions possibly leading to lethal
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illnesses. As a consequence, there has been an increase
in the occurrence of so-called chronic or degenerative
diseases, which modern medicine is able to treat and,
within limits, to control by postponing the moment of
acute crisis and eventual terminal resolution.

Due to this emergent scenario, a new social atti-
tude toward the process of illness and death has come
forth. Taking care of the extension of time that mod-
ern medicine is able to secure to more or less severely
diseased people has become a form of social duty for
institutions and social organizations in modern Western
society. Social investment on care leads to improved
conditions of care, and better conditions of care mean
increased opportunities for survival.

This new scenario, however, clashes with the well-
known and established fact of the limited resources
that can be allocated to care/cure in our societies. So
the quality of life as extended by social and medical
progress is to be assessed in the context of how limited
resources can be best distributed in view of maximizing
health and health improvements. Cost–utility analyses
and econometric tools have been devised to create stan-
dard measurements that can account for both quantity
and quality of life. Since the 1970s, measuring the qual-
ity of life has become a constant topic of interest for
those social scientists involved in fields of research such
as epidemiology, or health economics, with potential
applications in practice and policy [52.10, 11]. Mod-
els of measurements have been since used widely in
health-care policy making and by institutions such as
the National Institute of Clinical Excellence (NICE) in
the UK.

So, how can we calculate how much quality one’s
life possesses which makes it, objectively and reliably,
both worth living and investing resources on? QALYs
are an interesting case for what we are discussing in
this chapter, as the models on which these measures are
based put forward a series of problems akin to those we
have discussed in the preceding section.

52.1.2 QALY: What Are We Measuring?

QALY stands for Quality Adjusted Life Year. It is a for-
mal tool that allows to quantify the health benefits
consequent to some treatment/intervention, and to make
comparisons with other treatments/interventions. How
does it do that? By valuing health states in terms of
utilities, and by valuing life-years in terms of prefer-
ence weights. Health states are weighted by associating
utility scores to them. Alan Williams summarises the
QALY measurement rationale as follows [52.12]:

“The basic assumption is that it takes a year of
healthy life expectancy to be worth 1, but a year

of unhealthy life expectancy is regarded as worth
less than 1. Between 1 and �1 there are a number
of intermediate states of health (deathD 0), each of
which is given a value. Its precise value is lower
the worse the quality of life of the unhealthy person
(which is what the quality adjusted bit is all about).”

The efficacy of health-care interventions is quanti-
fied not only on the basis of life expectancy (how many
extra years an intervention can predictably grant) but
also on the quality of life that those very interventions
possibly achieve. For example, an intervention that se-
cures 10 years of extra life at full health would have
a QALY value of 10. An intervention that improves
quality of life from 0.5 to 0.8 for a person with a life
expectancy of 30 years, would have a QALY value of 9.
[0.3 (0:8�0:5) multiplied by 30] [52.13].

How is a state of health defined? Typically by
parameters (or dimensions) and levels. For example,
Rosser and Kind [52.14] define a state of health on
the basis of two parameters: an objective invalidity and
a subjective pain. Objective invalidity is subdivided into
eight levels, and subjective pain into four. Both invalid-
ity and pain are not referred to specific diseases (see
Table 52.1).

How are states of health valued? As we saw above,
utilities are attached to health states, based on prefer-

Table 52.1 Classification of states of sickness (af-
ter [52.14, p. 349])

Disability
1. No disability
2. Slight social disability
3. Severe disability and/or slight impairment of perfor-

mance at work. Able to do all housework except very
heavy tasks

4. Choice of work or performance at work very
severely limited. Housewives and old people able
to do light housework only but to go out shopping

5. Unable to undertake any paid employment. Unable
to continue any education. Old people confined to
home except for escorted outings and unable to do
shopping. Housewives able only to perform a few
simple tasks

6. Confined to chair or to wheelchair or able to move
around in the home only with support from an assis-
tant

7. Confined to bed
8. Unconscious
A. No distress
B. Mild distress (slight pain which is relieved by as-

pirin)
C. Moderate distress (pain which is not relieved by

aspirin)
D. Severe distress (pain for which heroin is prescribed)
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ences for different states, and in such a way that the
most preferred (or most desirable) will receive greater
weight (1D full health; 0D death; 0 to 1D not full
health; �1D bad/worse/worst health). The QALYs are
then calculated by multiplying the utility score by the
time spent in each state.

Who attaches utility scores to health states? The
values are normally established via interviews. The in-
terviewees are either members of the public (who are
asked to imagine being in a particular health state), or
patients (who are experiencing, or who have actually
experienced particular health states). There is a lively
debate on who is in a better position to be interviewed
for the purpose of calculation. In Rosser and Kind’s
model, the sample of interviewees is mixed – about
70 subjects including patients, doctors and nurses, and
a number of healthy people. During interviews subjects
were asked first to mark each state according to the
severity of each state (including death), and to express
numerically comparative judgements among states – for
example, howmany times a person in the state x is more
ill than a person in the state y, etc. Then, they were
asked to indicate (by being given appropriate statistical
information concerning the prognosis of patients) the
proportion of resources to allocate for the cure of the
various states.

The scores and data emerging from these calcula-
tions are to be used first of all to establish the quality
of life of a patient as the result of a cure – as in the
intentions of its creators as well as of its supporters
(e.g., Williams [52.15] as quoted in [52.10]). For ex-
ample, a patient who without treatment would continue
to live for a further 20 years in state 4A in Table 52.1
would enjoy 19.28 QALY. If it is assumed that treat-
ment x will facilitate a complete cure and add a further
10 years to the patient’s life, then a further 10.72 QALY
would be yielded. If we assume that an alternative treat-
ment y would give the patient 35 years of life but with
slight disability the QALY can be used to assist decid-
ing which treatment to use [52.10, pp.32–33].

Second, the outcomes of calculations are meant to
assist in deciding in what way available resources for
treatment could be equally and efficiently distributed.
Once the QALY value of a health-care intervention is
calculated and its cost is known, it is in fact possible
to calculate the cost per QALY of each intervention
and provide a direct comparison between interventions
(generally high priority is given to health-care activ-
ity where the cost per QALY is as low as it can be).
Overall, an evaluation on the basis of QALY takes into
account the costs of a range of interventions relative
to the changes in terms of quality of life and to the
projections of life expectancy as a consequence of the
interventions themselves.

On the basis of all these considerations, QALYmea-
surements are taken to be as much objective a tool as
possible to decide, in real-life situations, how limited
resources can be distributed in the community of peo-
ple in need of treatment and care. However, they also
raise a number of controversial issues. Some have to do
with the methods of calculations of quality adjustment
factors, others with the assumptions made by the un-
derlying model of quality these measurements entail. In
what follows I will focus on the latter, as the problems
raised by the model’s assumptions reflect some of the
concerns expressed in the previous section.

52.1.3 Unrealistic Utility Assumptions

The utility model informing QALY measurements as-
sumes that there are facts about human life that can
arguably be used as criteria to decide whether a life is
more worth living than another (or worth living at all).
Good health is one of them: It is a fact that good health
is a highest ranked preference among people. What the
model implicitly asks us to do, then, is first of all to as-
sume a type of ideal life, on the assumption that there
is one that is the most preferable, in the absence of any
intervening circumstances. This is the healthy life. Sec-
ondly, on the basis of this type of life the model asks us
to choose between types of real life, where health ap-
proximates by a multitude and variety of degrees to the
parameter set up by the ideal life. This second assump-
tion (types of lives are equally comparable) becomes,
for example, explicit when, once confronted by the al-
ternative between a brief but healthy life and a long but
unhealthy one we are led by the model’s calculations to
prefer the former. (Of course the extent to which this is
true will depend on the weights.)

Now, these assumptions work for the purpose of the
model (they allow to calculate QALY), but at a cost. As
I said, the model seems to advocate, as a term of com-
parison, a picture of ideal life construed on the basis
of measurable and comparable facts. However, in or-
der for such a picture to work in the way the model
requires, a series of further assumptions must be put
in place that seem to make the model overconstrained,
in the sense explained in the first section. For exam-
ple, it is assumed that what matters is not just life but
a trade-off between life and quality; that the just dis-
tribution of resources maximizes the thing that matters
(qualys); and that a combination of real people’s pref-
erences plus more objective facts such as invalidity and
pain is the way to decide on the quality of life (at least
for the purposes, set out by the model, of deciding on
the distribution of resources).

Equally, the questionnaires the interviews are for-
mulated on assume that: Individuals’ bias toward
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certain kinds of diseases or handicaps are excluded
(weights are assigned by the people interviewed on de-
grees of invalidity and pain independently of types of
illness); individuals’ beliefs (religious, moral, or other)
concerning, for example, the absolute value of human
life do not interfere with assessment, or can be set aside
for the sake of policy deliberation; individuals are, or
can be forced to be (by means of policy) altruistic, in
the sense that they should not expect an action to be per-
formed in their own interest should it prove detrimental
to others (e.g., they would not undertake some medical
treatment which is not widely available because some
other people rather than themselves might benefit from
that very treatment, according to qaly criteria, or from
other treatments at equal cost, etc.). One might indeed
argue that there is a difference between interpreting the
model from the side of the policy that it is meant to
guide or from the side of the individuals that a pol-
icy is meant to protect; and that the reasonableness of
a policy, or the practical issue of how we get everybody
to agree on a course of action, should be treated sepa-
rately from the model. Nonetheless, in order to calculate
benefit in terms of QALYs the model needs to assume
that individuals choose within the constraints described
above.

All this means that an overconstrained model en-
sures that its results follow, but only under the rather
specific and often unusual conditions the model re-
quires for reaching those results. And “[. . . ] unreal-
istic assumptions that overconstrained the results are
a problem for learning lessons that apply elsewhere
[. . . ]” [52.7, p. 4].

There is a further assumption that detrimentally
forces yet more constraints on the model. QALYs, as
we said above, measure benefits in terms of utilities, and
the utilities in QALYs’ terms are the extra years of life,
adjusted for quality, granted to people by allowing cer-
tain treatments. Benefit (this is the model assumption)
is what the model isolates in order to study its effects
without confounding factors. Obviously, when it comes
to health, benefits are important, and QALYs have an
important role to play in guiding how to distribute lim-
ited resources. But if the model is to focus exclusively
on benefit it must introduce extra assumptions to allow
a correct analysis and delivery of outcomes; and this
gets in the way when we then come to read out a moral
from the model that has an impact on real target situa-
tions outside the model.

One of these extra assumptions is the neglect of
fairness. Benefitting from treatment is not the same as
deserving treatment. In real-life situations individuals
(healthy or not) weigh quality not just on their desire
for health but on their desire to live, admittedly as long
and as well as possible, and to a larger or lesser extent

independently of intervening circumstances. A focus on
QALYs seems to obscure fairness: Giving priority to
those who better benefit from treatment is not neces-
sarily the fairest choice. It might make us discriminate
the old for the sake of the young, for example, or more
generally those in a better position to benefit from treat-
ment [52.16, p. 196].

When we use a model to guide us in real-life situa-
tions, the results we aim at should prove to be right both
in the sense of being correct and in the sense of being
just (of the type: the stronger abuses the weaker – and
it is bad that it does so). Instead the moral we read out
of an overconstrained model seems to confuse what is
right in terms of the models’ assumptions with what is
right for reasons that might go well beyond the bound-
aries of the model.

Such confusion might also give the impression, or
the illusion, that the model’s scope is wider than it is.
For example, could the model be used to assist in the
thorny and controversial debates on euthanasia? Indeed,
QALYs are meant to offer guidance in assessing what
makes a life bearable. The state of death is very much
part of the benefit calculus. In the original matrix of
Rosser and Kind’s model (Table 52.1), states such as
being confined to bed with moderate pain or being on
a wheelchair with intense pain were marked on aver-
age by the interviewees at the same level as the state
of death. States like permanent loss of consciousness or
being confined to bed with intense pain received a value
even inferior to that given to death. In such cases, it
would appear well justified to terminate somebody’s
life, both from the side of policy (distribution of re-
sources) and from that of the interest of the individual
in question (bearability of one’s life). Allowing an indi-
vidual in that kind of pain to terminate his or her own
life (or helping him to achieve this) would be based on
an objective assessment of that life’s quality (or lack
of it).

Barrie [52.17, p. 1]:

“In a climate where evidence-based decisions are
valued so highly, numerical measures that provide
a guide to quality may be more widely used and
trusted than general ethical concerns about the el-
derly or very sick that cannot be expressed in the
same quantifiable terms.”

However, social debates surrounding euthanasia
teach us that decisions about the right to die, when the
desire to live has ceased, can hardly be made on the
basis of a concept of quality as calculated in terms of
a benefit for the people whose right to die is at stake.
QALYs calculations seem to assume an equivalence be-
tween the fact that some health states make somebody’s
life so unbearable that he/she is better off dead than
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alive and the idea that actively pursuing the termination
of somebody’s life is more beneficial than any of those
states [52.17, p. 2]. 0 utility score or negative scores in-
dicate that death is preferable, but do not indicate that
death has to be procured or induced. The fallacy in the
underlying reasoning consists of making us infer from
a state of fact (supposedly backed up by empirical ev-
idence: We know how to calculate how bearable a life
is) a state of principle (it is acceptable to allow some-
body to die, or to terminate his/her life). If the model is
to inform a decision regarding the right to die, a whole
series of factors and conditions, well beyond the bound-
aries of the model, must be put in place. Let us see what
some of them are by means of a discussion of some real
cases.

In 1973, George Zygmaniak was involved in a mo-
torcycle accident near his house in New Jersey [52.18,
pp. 177–178]. As a consequence, he was confined to
a hospital bed, paralyzed from the neck down, with no
prospect of recovery and in severe pain. This is a typi-
cal case that in terms of QALYs would receive a utility
score below 0 (e.g., in Table 1 and 2 in Rosser and
Kind’s model above). George Zygmaniak told his doc-
tor and his brother Lester that he did not want to prolong
his life in such a state. In fact, he begged them both
to kill him. One day Lester went to the hospital smug-
gling in a pistol. He asked George once again whether
he wanted his pain to be ended. George, who could not
speak any longer, because of an operation performed in
order to ease his breathing, nodded. Lester shot him.

Several levels of questioning become relevant in this
episode. First, a factual-empirical level: Was George
right in preferring death to life? This is a question that,
as mentioned above, could be put in terms of QALYs.
At a different level we can ask: Was George right in
asking to have his life terminated? Here a QALY cal-
culation runs short of answers for the host of questions
that come to the fore. Did Lester have sufficient evi-
dence to be able to assess objectively, in a “once and for
all” manner, his brother’s physical and emotional con-
dition? Is such evidence to be used as the only deciding
factor in a plea for death? Was Lester entitled to act
upon his brother’s request? Or was he just a murderer?
Should a doctor have taken the responsibility of carry-
ing out the termination of George’s life by less extreme
means (e.g., by giving George a lethal injection)? Were
the actors involved in this episode violating a moral
code, or any particular moral rule (e.g., it is wrong to
kill) – besides violating legal rules? How do the two
sets of rules interact with each other? If, for example,
George Zygmaniak lived, rather than in New Jersey, in
the Netherlands (where doctors are by law entitled to
help their patients to die), would this very fact lift moral
responsibility, and bypass moral judgement for all and

each of the actors involved? These, and more, are the
questions that make the debate on euthanasia so contro-
versial.

A second real case involves an infant known to
the public as Baby Jane Doe who was born on 11
October 1983 in New York suffering from multiple de-
fects, including spina bifida (a broken and protruding
spine), hydrocephaly (excess fluid on the brain) and
microcephaly (an abnormally small brain; in this case
part of the little girl’s brain was actually missing, as
a CAT-scan revealed). The baby’s parents were told
that immediate surgery on the spina bifida abnormality
would have given their baby a 50–50 chance of surviv-
ing until her twenties. However, even in the case that
she did survive that long, their daughter would have
never have a chance to lead a normal life: She would
be severely mentally retarded, physically impaired, par-
alyzed, epileptic, confined to bed, and in constant risk
of serious diseases and infections. Without surgery, the
baby would have died in 2 years.

In the face of all these, the parents chose not to let
the doctors proceed with the surgery. They reasoned
in intuitively QALYs terms: a 50% chance of life ex-
tension with severe disability (supposedly below the 0
score) achieved by means of risky surgical procedure
is worse than a 100% chance of expected 2 years with
severe disability with no surgical intervention.

The questions that can be addressed in this second
case entail an even more complicated set of variables
than the previous case. First, in asking whether the
baby’s parents were right, and justified, in making their
decision, we have to take into account that the deci-
sion was made on behalf of their baby daughter. We
should also acknowledge the fact that the parents’ deci-
sion was probably made taking into account their own
future – practical as well as emotional – in the upbring-
ing of such a severely disabled individual. Secondly, in
asking how and how far did the factual evidence of-
fered by the doctors influence the parents’ decision, the
extent of the disability at stake added strain and un-
certainty to the decision-making process. As a matter
of fact, the medical profession was split over the evi-
dence: For some doctors the baby’s condition was not
as hopeless as had been presented to the parents. In
this uncertain scenario, Lawrence Washburn, a lawyer
associated with some conservative right-to-life groups,
brought the case to the Supreme Court in New York
State to be reassessed, and a federal investigation was
issued against the hospital to determine whether there
had been discrimination against a handicapped person.

The relevant question seems here to be the fol-
lowing: Should everything possible be done in order
to save a severely disabled life? Or else, should the
severely disabled be left untreated since there is no ben-
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efit in prolonging their lives? These questions cannot be
appropriately addressed by resorting to QALY calcu-
lations (or in this case, DALY calculations: Disability
Adjusted Life Year). Health benefits are important, as
we noted above, but if the model QALYs are based on
is to provide a guide to make decisions in real-social
cases, issues of fairness should also be considered. If
we want a moral of the type the weaker is prey of the
stronger to mean that the weaker should be defended
against/protected from the stronger we ought to import
a story into the model (or put the model in the context
of a story) such that fairness to the weaker becomes
as important to the deduction of the model’s outcomes
as it is benefit. Prioritizing treatment on those who are
most likely to benefit from it is not necessarily the
fairest thing to do. This however does not necessarily
mean that QALYs are unusable, it means that “they can-
not entirely determine which decision is the right one,”
a limitation that has not always been acknowledged by
QALYs’ sympathizers [52.16, p. 196].

The two cases just described put us in front of real
dilemmas: How can I put an end to the suffering of
my paralyzed brother? Should I let my severely hand-
icapped daughter die? Faced with the complexity of
such questions, the moral that is supposedly written
into models à la Rosser and Kind appears thin, besides
being dubious. The objective conditions of a state of
health combined with the benefit of treatment are not
sufficient/adequate to conclude that a certain course of
action is to be pursued. The moral of the model is not
simply the logical conclusion of a deductive inference.
To continue with the same example, the concept of
a bearable life brings us to question, by adopting a vo-
cabulary that not only includes reference to the biology
of individuals, whether for a human being all we need
to assess, when we consider bearability, is its QALY
value.

Quality of life in the model is not equivalent to qual-
ity of life in the target system: It is a specific construct of
the model that is simultaneously constrained (and over-
constrained) by the model’s chosen assumptions. The
world in the model in the case of QALY perfectly exem-
plifies the double ontological regime that was pointed
out at the beginning of this chapter (the model creates
a world out of its own premises; the world outside the
model is selectively targeted via the focus created by
the model’s assumptions).

What use can be made of models like Rosser and
Kind’s then? What reliable guidance do/can they offer
to making objective decisions? Their contribution can
be significant (once their formal framework has been
checked for rigor and internal validity) provided that (1)
their limited domain of application is acknowledged;
(2) their contribution to decision making is not taken to
be ready-made (a direct consequence of the objectivity
of the cost-benefit analyses of the model). A lot of fur-
ther work is needed to fill the gap between a model and
the world the model is asked to help us with. A com-
plex background of social, ethical, legal considerations
is to be spelled out. Scientific considerations also enter
this background – in the case of medicine, for exam-
ple, by offering evidence and degrees of care that help
individuals to weigh reasons for and against certain
options, and by taking on some of the responsibility
in suggesting certain options as the most or the least
favorable.

Unrealistic assumptions in the models do not nec-
essarily detract from the objectivity of decisions based
on such models. They however both give boundaries
to what we can be objective about, and force us to
acknowledge the complex and controversial variety of
issues brought forward by the particulars of real-life sit-
uations (as the cases described above point out) that the
model intends to target [52.19].

52.2 Real Experiments, Not Models Please!

So far in this chapter we have showed the limits of using
models in representing target systems (in our examples,
real-life situations) and the costs in terms of including
assumptions that make models work by becoming un-
true to the systems they are meant to target. In the light
of what we pointed out, would then rescuing their ap-
plicability and good use be too demanding a task? Are
we, all in all, better off without them?

There is nowadays an established trend to prefer
the results achieved by well conducted experiments in
social science, and to trust their outcomes over those
pursued by other methodologies. In particular, random-

ized control trials are by many considered the golden
rule to doing good social science, namely science that
produces results that are not only theoretically ade-
quate, but reliable and useful when made available in
practice (e.g., when informing a policy program).

A randomized controlled trial (RCT) is an exper-
iment in which investigators randomly assign eligi-
ble subjects (or other units of study, e.g., classrooms,
clinics, playgrounds) into groups. Each of the groups
receives or does not receive one or more interven-
tions (e.g., a particular treatment). Then the results are
compared, and if the observed outcome is statistically
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significant, then it can be concluded that it has indeed
been caused by the experimenters’ manipulation, that
is, there is a high probability that the intervention actu-
ally works. Blind procedures (single, double, triple, to
even quadruple) are often used to control bias.

Experiments of the type of RCTs ably answer the
question what works that seems to be the question that
most concerns the field of policy making. However, it
is often the case that restricting policy making to an-
swering this question ends up not only in policy failure,
but also in an inability to understand and explain why
something (e.g., an intervention, a treatment, etc.) does
not work, and then possibly put it right. Here is where
models can help, in particular causal models. Being
able to formulate why it works questions give poli-
cies a better chance to work better, or to work at all.
Let’s see what these models consist of and – by means
of a few examples – how and where they prove most
useful.

52.2.1 Causal Models:
How Can They Come to the Rescue

What is a causal model? Described in general terms,
it is a representational tool that describes causal rela-
tions among a set of variables. These models suggest
hypotheses about the presence of, and direction of in-
fluence between, these variables by mapping them by
means of a variety of descriptive devices, such as path
diagrams, flow graphs, or causal pies – to name just
a few (see below for some graphic representations).

The definition of causal models, as set out above,
appears though obscure if relevant bits of terminol-
ogy are not explained. What counts as causal relation?
What are the variables that enter such a relation?Where
do the hypotheses that models suggest come from, or
where are they grounded? Without entering too much
in detail, to understand the functioning and the purpose
of these models the following is, at the very least, es-
sential.

First, what are the items we call variables in
a causal relation? In the social sciences the relata
could be kinds of situations (e.g., mothers’ education
and child survival, size of classes and children per-
formance), or a type of population (e.g., children in
a school, an audience in a theatre, the over-sixty in good
health in a national statistic), or indicators (e.g., ag-
gressive behavior, social isolation, fear of failure in the
context of child abuse, or consumer price index, money
supply, consumer confidence, retail trade sales in the
context of the state of an economy). Variables can be de-
picted at different levels (individual, social, ecological)
or can be described (and indeed constructed) by means
of different theoretical tools, or concepts. Understand-

ing how they are depicted and/or described is important
to understand and evaluate the causal relation in which
they find themselves associated.

Second, a causal relation is not simply an associa-
tion of variables. The goal of a causal model is not only
to express co-variation, but to evaluate how and why co-
variation occurs. This is what constitutes the hypothesis
put forward by the model, that is a suggestion of why
variable x influences variable y and how the way x and
y are related contributes to a certain outcome (output z).

So third, the hypothesis is set out to understandwhat
makes the variables be relevant to each other and draw
a structure that the model is meant to represent. The
hypothesis is formulated by means of a series of as-
sumptions grounded in some background knowledge,
or some theory (when present). The better established
is the background knowledge, or the better accepted
the theory the model appeals to, the better grounded
are the assumptions that help formulating the model’s
hypothesis. Neither background knowledge nor theory
are guarantors that the hypothesis is correct (once and
for all). There is no well-rehearsed recipe to build up
a good causal model. This does not mean that there
is no justification, or degrees of confidence, for how
a model identifies or describes a causal relation. Typ-
ically (though not necessarily) the causal relations in
these models are represented in a statistical form by
means of systems of equations. However, it takes a good
deal of judgment, detailed information, and aware-
ness of local factors – some or none of which, often,
available in advance, or in abstract/general terms – to
achieve any degree of justification. Model building, es-
pecially in the social domain of inquiry, where theories
are scanty and information routinely disputed, is itself
hypothetical, and tentative.

So why are these models useful? Where and how
are they most useful?

52.2.2 Class Size Reduction Programmes

In the 1990s there was growing concern about the
poor performance of primary school children in Califor-
nia [52.20, 21]. A program was implemented to reduce
class size in view of improving children performance.
Not only it appeared plausible that children in small
classes are more closely and easily looked after, and
therefore learn more and better. There was also evi-
dence that this is actually the case. The evidence was
provided by the results of the STAR program, run in
Tennesse starting in 1985. A 4 year RCT, involving
79 schools (around 7000 children from kindergarten
to third grade) looked at how small(er) classes might
lead to improved academic performance. Class size was
brought down from an average of 22�25 children to an
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average of 13�17, and children and teachers were ran-
domly assigned to the smaller classes. The results of
the RCT established that reducing class sizes improved
a number of educational outcomes in children.

California endorsed these results, and in 1996 fed
them into issuing a policy of class-size reduction that,
however, resulted in failure. There were a number of
reasons that accounted for the failure. The reduction
programwas implemented over too short a period (from
spring to the following autumn). California needed to
hire extra teaching staff, and given the short time of
implementation the quality of teachers was not care-
fully assessed. Smaller classes meant more space that
Californian schools did not have, which also meant
that space was taken away from other activities in chil-
dren’s curricula (with consequent decay in other areas
of children’s education, such as music, arts, physical ac-
tivities).

Was there any way to rescue the California program,
and the intuitively plausible idea behind class-size re-
duction? We might think that, in order to achieve that,
more experiments were needed, over longer periods, in
different places in California, or in places other than
California – in view of gaining more data and better
evidence. But perhaps a change in strategy would be
more appropriate, and more efficient in policy terms:
What if the program needed a good causal model? Let
us explore what this second option involves, and why it
might have provided better results [52.22, 23].

First, if we compare the Tennessee and the Califor-
nia programs, two factors consistently emerge that, by
being present in the former context and absent in the
latter, contributed to either success or failure: space and
quality of teaching. These two factors can be mapped
into a number of purpose-built causal models. One of
them is a causal pie showed in Fig. 52.1.

In this model, each slice representing a factor must
be present if we want to have a pie (i. e., make the pol-

Good teachers

Other

Small classes

Classroom
space

Fig. 52.1 An example of pie diagram for improved learn-
ing scores (original drawing by Alex Marcellesi)

icy – reduce class size – hit the target – improved child
education). The point of the pie model might go miss-
ing if we think of factors in terms of slices (indeed, even
if we eat one slice there is still a lot of pie left). Per-
haps a better representation of factors in the pie model
is in terms of ingredients: all the ingredients are equally
necessary to bake our pie; should one of the ingredi-
ents be missing then we end up with no good pie, or
even worse, no pie at all [52.22, p. 63]. Of course, the
pie model can be extended to include more factors than
the two pointed out above, with the result of showing
more accurately what is required for predicting whether
a policy will work.

Another way of representing how the necessary fac-
tors interact and with what results is using causal path
models.

In this type of model arrows link factors in cause-to-
effect relations that include both positive and negative
outcomes (Fig. 52.2). It can also be used to represent
side effects to the policy to implement (which is some-
thing that causal pies are ill equipped to account for:
these can just show what it takes for a pie to be baked,
independently of whether I could get a sore tummy after
eating it).

The graphic resolution of thesemodels does not pre-
vent from representing them quantitatively (e.g., Monte
Carlo simulation).

Good causal models will at the very least pick what
factors are needed to get a policy to achieve (or max-
imize the chances to achieve) a certain outcome, and
what other factors (positive or negative) might a policy
bring into a purported setting of implementation, with
what either beneficial or detrimental outputs. The point
of using these models is to understand, in advance of
implementing a policy, what is needed to increase the
chances for a policy to work in specific settings or cir-
cumstances. The fact that a policy worked there is no
evidence, or reason, that it would work here, let alone
anywhere [52.22, Part II] – as the following example
will clearly show.

52.2.3 TINP and BINP

RCTs provide strong evidence for the conclusions con-
cerning a study population. In this sense, it is said that
well-conducted RCTs are internally valid: on the basis
of agreed upon premises certain conclusions must con-
sistently follow for the target population. The agreed
upon standards are usually identified by a number of
formal requirements, which are taken to secure the con-
sistency of results (the reasons why they obtain and why
they are considered to be valid).

RCTs are often also expected to be externally valid:
The same intervention adopted for the study population
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Fig. 52.2 A path diagram for im-
proved learning scores (original
drawing by David Lane)

has the same result when used with a new population
deemed sufficiently similar. However, how can we de-
cide whether the new population is sufficiently similar?
Often apparent similarities can be misleading, and yet
there is little guidance as to how to apply the findings
of an RCT across contexts. Using causal models can be
of some help here. Let us see how.

Children malnutrition in developing countries is,
and has been for a while, a huge, pressing challenge.
Globally an estimated 165 million children under 5
year of age are stunted (i. e., height-for age below), and
more than 90% of them live in Africa and Asia. An
estimated 101 million are underweight (weight-for-age
below) [52.24].

Several international programs have been launched
over the years to tackle the problem. One of them is the
Bangladesh Integrated Nutrition Project (BINP), imple-
mented in 1995 by the World Bank. It was a growth-
monitoring pilot program, modeled on an acclaimed
successful predecessor, the Indian Tamil Nadu Inte-
grated Project (TINP).

What these programs integrate are nutritional edu-
cation, food supplementation and health measures, with
a particular emphasis on the education aspect. They ad-
mitted children who were growing insufficiently (after
being monitored at purpose-built local weighing cen-
ters) or showed evident signs of malnutrition. They also
targeted the children’s mothers, as well as mothers-to-
be, in the belief that “ignorance, rather than poverty,
was to blame for poor nutrition” [52.25, p. 5]. Both
programs covered rural areas which had on average the
worst nutritional records among children.

However, unlike TINP, the Bangladesh pilot pro-
gram turned into failure when implemented at a national
scale (and it reached almost negligible success at local
scale too). After 6 years, and despite documented ev-
idence that the educational message had reached the
project population target, malnutrition did not fall at

any significant rate [52.26]. On the basis of evidence
of unsatisfactory impact the World Bank discontinued
the project.

Why things went wrong in Bangladesh, and not in
Tamil Nadu?Were Bangladesh and Tamil Nadu not suf-
ficiently similar?

To answer these question let us look at the project
design in terms of a casual pathway model (of the type
discussed with class-size reduction).

Education of
food suppliers

to children

Knowledge
acquisition

Behavioural
change

Improved
nutritional
outcomes

The causal chain, that reconstructs the rationale under-
lying the nutritional program, immediately reveals what
went wrong in rural Bangladesh: here mothers are not
the principal food providers. Men go to the market to
buy food, and mothers-in-law administer food for ev-
erybody in the household.

Educated Bangladeshi mothers could not practice
their newly acquired nutritional knowledge to make an
impact on their children growth.

A further problem emerges if we look at the causal
chain that goes from supplementary food to improved
growth in children. In Bangladesh the food provided by
the program was not often supplementary: Due to the
very impoverished conditions of families, it was given
in substitution of any food, if not ultimately given to
somebody else than children (the leakage effect). This
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shows at least two things: Even a well formulated causal
chain should be open to revision and re-formulation
in the light of emerging local or circumstantial fac-
tors; and the language used to categorize the intervening
variables in the chain should be formulated at the appro-
priate level of abstraction to pick the relevant aspects
that set the causal chain in motion, independently of the
contextual multiple realizability of the categories them-
selves.

In summary, good causal models might provide the
missing link between internal and external validity, and
be a useful guide in moving from there to everywhere to
here, in Cartwright-Hardie terminology. They can help
us see that the same is not the same in different contexts,
and understand why. They are also flexible enough to
endorse the emerging dynamics of the systems they en-
deavour to understand.

52.2.4 Children Mortality
and Inflicted Death

There is one word missing from our discussion: mech-
anism. So far we have referred to causal chains, causal
links, causal paths – none of which are equivalent to
causal mechanisms. Mechanisms better resonate with
the word structure that we encountered while de-
scribing the hypothesis that informs the working of
a causal model. How do mechanism and structure go
together [52.27, 28]?

Imagine a black box. What we call causes enter the
box, and what exit the box are the effects. But what
happens inside the box? What makes the causes cause
the effects? Said plainly, mechanisms are what explain
whyCmakes E happen. They account for what happens
inside the black box. This is why they are sometimes
called generative mechanisms. Causal models model
these mechanisms – if they are to be used explanatorily
to say why certain variables are related in a particular
way and direction. They illustrate the rationale under-
lying a causal chain, or link, etc.

What about structure? A structure is a relatively
stable arrangement of components that brings about
a particular outcome. It is this type of arrangement that
in philosophy of biology is often called mechanism.
And it is this arrangement that a model tries to re-
produce, in view of mapping why something happens
the way it happens. A mechanism is what makes us
see what a structure can achieve, what is its output.
Conversely a structure is what allows a mechanism to
function the way it does.

The expression why something happens the way it
happens requires some unpacking. To say why some-
thing happens we need a mechanism able to explain
why an identified structure of variables achieves an out-

come. To explain the way it happens we need, besides
a mechanism, a number of further conditions (often lo-
cal, or specific to circumstances) that account for the
fact that something actually happens, and in the way it
does (in the circumstances). Modeling a causal mecha-
nism should then include the structure, its functioning,
and the constellation of support factors that jointly ac-
count for the achievement of an outcome [52.22, p. 44].

Let us look at an example similar in some respects
to the one discussed in the previous section [52.29,
pp. 21–23, pp. 162–65]. In a seminal article Caldwell
famously argued that mothers’ education is [52.30, p.
408]:

“the single most significant determinant of these
marked differences in child mortality. These are
also affected by other socio-economic factors but
no other factor has the impact of maternal educa-
tion [. . . ].”

Why? Caldwell does not only rely on empirically
established statistical correlations between rates of mor-
tality among children and the level of education of their
mothers. He tries to unravel the mechanism that relates
the two variables. Mothers’ education is not as such
a cause of anything, we need to explain how it comes
to perform this causal role vis a vis a specific outcome
(decreased mortality rates in children).

Caldwell argues that educated mothers are more ca-
pable to interact with “the modern world” (doctors and
nurses) and been listened to; they become less “fatal-
istic” about illnesses and more pro-active (looking for
alternatives in child care); and their education impacts
on “the traditional balance of familial relationships with
profound effects on child care” [52.30, pp. 409–410].
These are reasons that we would certainly expect to find
in a good causal model explaining the role of educa-
tion in child mortality decline, but on their own they
do not constitute a model of why this is the case. To
build a model, what is also needed is good knowledge
of the causal context where those reasons make sense as
contributing factors, and a good story (D a meaningful
hypothesis) of how they interact and jointly make it be-
lievable that education can perform such a causal role.
In the process of building such a model, we might well
realize first that maternal education requires a host of
further factors (socioeconomic, environmental, biologi-
cal, and ecological) to make the mechanism effective,
besides being believable as a model. Second, it also
requires that the consequences of maternal education
on decreased child mortality (better interaction with
modern world, less fatalism about illnesses, beneficial
changes in familiar relations) identify a stable enough
arrangement of factors that can explain why in a certain
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context maternal education is a believable/justifiable
cause of decreased child mortality. Building causal
models is no doubt complex, building good ones un-
forgivingly demanding!

And yet, building good causal models proves essen-
tial not only for social science knowledge practice, but
also for its impact on policy making and social inter-
vention. To give an example of such use and usefulness
we can take a final look at the following area of appli-
cation.

Inquiries in child abuse deaths normally take the
approach of blaming human error or fault [52.31]. How-
ever these enquiries have not led to any substantial
improvement in professional practice. This, according
to Munro, is due to the fact that inquiries into inflicted
deaths on children take human error not as the starting
point, but as a conclusion. However, errors often oc-
cur within systems that are ill-equipped for preventing
them. A system approach is then a more appropriate line
of enquiry. This consists in tracing the causal chain that
led to a death not so much back to the individual, but to
the structural failure of the system that explains why the
individual committed the error. This is not to abrogate
responsibility but to understand it better, both at indi-
vidual and system level, and to act on those aspects of
the system that allow for mistakes to emerge.

Looking deeply into the causes of error entails iden-
tifying the interacting factors, the organizational con-
text and the available resources that made an outcome
possible: in other words, it entails an understanding of
causes in the context of the social structure and under-
lying mechanism where individuals operate.

In adopting a system approach “the focus is on the
interaction of the different layers of the system so that
a more vivid picture is drawn of how the particular case
fits into its context” [52.31, p. 12]. The vivid picture
is what, using a different language, a model can pro-
vide by mapping the underlying structure of the case
investigated and by means of it explaining its causal
mechanism.

Modeling a case according to this approach (by
means of whatever methods appear appropriate in map-
ping the context) can then prove to be a crucial help not

only in understanding what happened, but also in trying
to prevent it from happening again.

Eight-year-old Victoria Climbie’s death in 2000 is
an instructive case. Victoria was tortured and killed by
her guardians, suffering 128 injuries during months of
abuse and neglect. She was repeatedly hit with shoes,
coat hangers, a hammer, a bike chain. In her last days
she was made to sleep in winter in an unheated bath-
room “bound hand and foot inside a bin bag, lying in
her own urine and faeces” [52.32, p. 13]. In the end
Victoria died of lung, heart, and kidney failure. During
some of the period of her abuse she was seen by four
local authorities’ social workers, two protection teams
from the Metropolitan Police, a specialist from NSPCC
(National Society for the Prevention of Cruelty to Chil-
dren) and staff of two hospitals where she was admitted
as a consequence of severe and suspicious injuries.

What went wrong, it is asked in the Report into her
death? “A lack of good practice” is the answer, and
a consequent breakdown of the entire system [52.32, p.
15]. Therefore the report’s recommendations are “clear
accountability” (who is responsible, especially at the
level of senior and experienced managers) and closer
monitoring of compliance with principles and guide-
lines of good practice. Would these measures, had they
been in place, “detected the poor quality of the ser-
vice offered to Victoria?” This question, argues Munro,
cannot be answered appropriately (and indeed it is not
addressed as such in the report) without a “clearer un-
derstanding of the factors influencing the poor quality
work” of those who were responsible for the failings in
this case [52.31, p. 14]. Munro [52.31]:

“Until we understand why those errors looked the
reasonable thing to do to the individuals at the time,
we cannot devise solutions that ensure that, in the
future, they will be more likely to opt for the right
course of action.”

If devising good causal models that help us de-
tecting why something went wrong (not only what
went wrong) and designing safer systems of protection
might even minimally contribute to prevent the death of
a child, this seems a task well worth pursuing.

52.3 Conclusions

If models are to guide us in making good decisions,
or implementing good social interventions, how can we
handle the unrealism of the assumptions on which some
of them are based? If models are imaginary structures
from which we cannot immediately derive a moral con-
cerning their target systems, how much supplementary
work (and of what type) is needed on them to become an

actual help in learning about real situations? Do models
constitute a good methodology of social intervention or
policy, or are experiments better in providing socially
useful information? Should experimental methodology
be found lacking in some respects, could models (at
least some types of models) be used, and be useful, to
tell us where experiments go wrong? The examples pre-
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sented in this chapter offered some suggestions as to
how to answer these questions, and handle some of the
controversial theoretical issues that emerge when mod-
els are used in social practice. The overall aim was to
show that, if we learn how to use models and what to
expect from their use, they are a real asset both for so-
cial scientific research and for social policy.
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53. Models and Moral Deliberation

Cameron Shelley

It is clear that models embody or encode informa-
tion about moral values and moral conduct that
is frequently important in moral deliberation, that
is, the process of solving moral problems. However,
there is a diversity of views on how models per-
form this function. In part, this diversity is due to
the well-known diversity of views on the concept
of model itself. Naturally, scholars with differ-
ent views of what a model is produce different
accounts of their place in moral deliberation. As
a result, the shared involvement ofmodels in these
accounts has been largely unnoticed. The purpose
of this chapter is to review the main, varying ac-
counts of models and model-based reasoning in
moral deliberation. These accounts include models
as rules, as mental models, schemata, analogies,
empathy, and role models. These accounts em-
phasize different aspects of moral deliberation.
Rule-based accounts tend to emphasize morally
generalized information concentrated in a set of
rules and a cognitive style based on calculation.
Other accounts, such as analogies, empathy and
role models, tend to emphasize morally particular
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information spread out throughout a large set of
source analogs, and reflect the emotional aspects
of moral deliberation. Most accounts concentrate
on information originating with the delibera-
tors, although role models, conversely, emphasize
models that originate outside the deliberators
themselves. Hopefully, this chapter invites further
work on the relationships among the accounts
reviewed within.

Models play an important role in moral deliberation.
For example, someone with a sick friend lacking health
insurance may consider stealing drugs in order to help
out. Reasoning with models may play a role in this de-
liberation: Would it not be right to steal a loaf of bread
if the friend were starving? The latter situation serves
as a model for the former in this case.

The purpose of this chapter is to review recent lit-
erature on the topic of models in moral deliberation.
This objective immediately raises two concerns. First,
the term model is quite flexible, that is, many things
have been counted as models. Thus, the relevant lit-
erature includes approaches that bear only a kind of
family resemblance to one another; cf. [53.1] on moral
hypotheses. The approach in this chapter is to accept

this situation at face value and not attempt to restrict
the subject matter beyond this accepted practice.

The second concern is what constitutes a moral de-
liberation. Here, the approach is more strict. A moral
deliberation is a cognitive process whereby an individ-
ual attempts to solve a moral problem. Amoral problem
is a decision problem in which at least some options for
action are morally permissible whereas others are not.
The aim of deliberation is to identify the option that is
morally preferable.

One effect of this characterization of moral delib-
eration is that it excludes moral theorizing, that is,
reasoning about moral principles or moral values as
such. The focus of this chapter is instead on models
in individual decision-making. Of course, people may
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reason about moral principles in the process of delib-
eration, but that is a complication that will be set aside
here.

Another effect is that thought experiments are also
excluded. Many well-known thought experiments, e.g.,
the trolley problem, rely on models. However, since

these experiments primarily concern the nature or con-
tent of moral intuitions or principles, they are not
considered here.

The sections below deal with accounts of models in
moral reasoning based on rules, schemata, mental mod-
els, analogies, empathy, and role models.

53.1 Rules

The view that moral deliberation is grounded in rule
following is a significant part of modern ethical philos-
ophy. Immanuel Kant [53.2], for example, argued that
moral behavior requires people to form categorical rules
of action and then abide by them. His famous statement
of this view is, “Act only according to that maxim by
which you can at the same time will that it should be-
come a universal law.”

One of Kant’s examples of this process is a person
who sets out to obtain money through a false promise
of repayment. To test the morality of this intention, it
is first framed as a maxim: if I falsely promise repay-
ment, then I can get the money I want. Next, the maxim
is reframed as a universal rule by removing the sub-
jective element: If anyone falsely promises repayment,
then they can get money.

Unfortunately, this rule cannot be willed as a uni-
versal law, that is, a rule that everyone may follow. If
everyone felt free to obtain money by false promises,
then no one would willingly lend money since they
could not trust the promises of others who follow the
same rule. In effect, a world in which everyone feels
free to make false promises is a world where promising
achieves nothing [53.3].

Kant does not argue that people ordinarily reason in
this way when faced with moral problems. Instead, it
is a recommendation about how people can distinguish
moral intentions from others. However, it is clear that
rule following is the foundation of moral deliberation
in his view.

John StuartMill [53.4] also held that ordinary moral
deliberation is comprised of rule following. As is well
known, Mill held that actions are moral exactly when
they conform to the Greatest Happiness Principle: “ac-
tions are right in proportion as they tend to promote
happiness, wrong as they tend to produce the reverse of
happiness.” Mill claims that this principle distinguishes
right actions from others but does not hold that people
actually reason in such terms when faced with moral
problems.

However, he argues that people think in terms of
secondary principles that aid them in making moral
decisions. These he describes as intermediate gener-

alizations and as working in moral reasoning as land-
marks and guideposts do in navigation. The difficulty
of making calculations directly on the basis of the
Greatest Happiness principle means that people need
ready-made rules to follow in ordinary matters of con-
duct. It is only when such secondary principles lead
to contradictions or other difficulties that the primary
principle becomes crucial for practical decision mak-
ing. Mill does not furnish any detailed examples but
does continue on to cite common feelings about moral
problems. For example, in the matter of justice, he says
that, “it is mostly considered unjust to deprive any one
of his personal liberty, his property, or any other thing
which belongs to him by law” [53.4, Chap. 5]. This rule
seems to be an example of a secondary principle that
people apply in moral deliberations. Mill then explores
its relationship to the primary principle.

Like Mill, W. D. Ross [53.5] held that moral de-
liberation consists in the following rules. Unlike Mill,
Ross did not agree that there is a primary principle, such
as the principle of Greatest Happiness, that reconciles
conflicts among rules. Instead, Ross argued that peo-
ple follow a set of what he called prima facie duties or
rules of right conduct. Although he did not furnish an
exhaustive set of these rules, he identified seven impor-
tant ones:

1. Fidelity: People should keep promises and be hon-
est.

2. Reparation: People should make amends for wrongs
done to others.

3. Gratitude: People should repay others who have
done them good turns.

4. Nonmaleficence: People should not harm others ei-
ther physically or psychologically.

5. Beneficence: People should help others improve
their well-being.

6. Self-improvement: People should improve their
own well-being.

7. Justice: People should be fair and distribute benefits
and burdens equitably.

In some moral decisions, these rules can be applied
straightforwardly. For example, the decision to bribe
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a police officer to fix a ticket can be considered to be
a contravention of the duty to justice as it seeks to make
the fixer an exception to traffic law.

In other situations, however, different duties will
suggest incompatible courses of action. Consider an
episode of the TV show Seinfeld where Jerry and his
friends are shown a baby they consider ugly [53.6]. Al-
though the duty of fidelity suggests that they should
admit that the baby is ugly, the duty of nonmaleficence
suggests that they should say that the baby is cute so as
to avoid offending the happy new parents. Jerry and his
friends decide that it is a must-lie situation in which the
duty of nonmaleficence outweighs the duty of fidelity.

Ross’ ideas about prima facie duties have been
developed in the form of defeasible deontic logics.
A deontic logic is a formal logic of permissions and
obligations. A defeasible logic is one in which argu-
ments proceed nonmonotonically, that is, where conclu-
sions may be withdrawn or rejected in the face of new
considerations.

For example, Asher and Bonevac [53.7] develop
such a logic precisely in order to account for moral
dilemmas where different prima facie duties entail con-
tradictory actions. They consider an action from the
Odyssey in which Odysseus orders Neoptolemus to
trick Philoctetes out of a bow that the Greeks need to
obtain victory against the Trojans. Neoptolemus obeys
but regrets his action and later returns the bow to
Philoctetes. Neoptolemus’ reasoning could be under-
stood as follows:

1. Neoptolemus has a prima facie obligation to obey
Odysseus’ order.

2. The order implies that Neoptolemus has an obliga-
tion to trick Philoctetes.

3. Neoptolemus tricks Philoctetes and takes the bow.
4. Neoptolemus has a prima facie obligation of fi-

delity, which implies that he has an obligation not
to trick Philoctetes.

5. Odysseus’ order is unjust, which implies that Neop-
tolemus has done an injustice to Philoctetes in
obeying it.

6. In light of this second obligation and his unjust
act, Neoptolemus has an obligation of reparation to
Philoctetes, which implies that he should return the
bow.

7. Neoptolemus returns the bow to Philoctetes.

The defeasibility of obligations consists of how con-
clusions about them (e.g., 2 above) can be withdrawn in
the light of further evidence (e.g., 4 and 5 above) [53.8].
In other words, it is the arguments for each obligation
that are defeasible, rather than the obligations them-
selves.

These deontic logics were not developed as cogni-
tive models. Nevertheless, they clearly suggest how rule
following might be employed as an account of moral
deliberation. This impression is reinforced by the fact
that such logics have been developed in the Artificial
Intelligence community as accounts of moral reasoning
for agents in general [53.9, 10].

53.2 Mental Models

A related tradition concerning reasoning about per-
missions and obligations is centered on mental mod-
els [53.11]. This research concerns how people under-
stand and reason about states of the kind If A, then C,
where A and C are about things that people ought to
be doing or ought not to be doing. An overview of this
research is provided by Byrne [53.12], which is summa-
rized here.

A fundamental result in this literature is the Wa-
son selection task [53.13]. In this task, people are given
a rule in an if-then form, such as If a card has a vowel on
one side, then it has an even number on the other side.
They are then given four cards from a deck with num-
bers on one side of each card and letters on the other,
e.g., A, B, 2, 3. The task is to select the cards that would
indicate that the rule is violated. The correct answer is
cards A and 3. Notoriously, most people select the A but
not the 3.

Performance on this task changes distinctly when
the if-then rule concerns permissions and obligations.
Consider a rule such as If Paul rides a motorbike, then
he must wear a helmetwheremust is understood as a le-
gal obligation. In the analogous selection task, people
are asked to select violations of this rule from the pos-
sible cases:

1. Paul rode a motorbike.
2. Paul did not ride a motorbike.
3. Paul wore a helmet.
4. Paul did not wear a helmet.

In this version, most people select both 1 and 4.
Since the two tasks have the same structure, the dif-

ference in performance demands explanation. On the
mental models view [53.14], the explanation is that
people tend to represent the tasks differently in their
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cognition. In the abstract case, people consider only
cases allowed by the rule. In the example above, that
would be cards with vowels marked on one side and
even numbers on the other side. Thus, the possibility of
cards with vowels on one side but odd numbers on the
other side is not considered.

In the deontic case, people consider both cases per-
mitted by the rule and cases forbidden by the rule. In the
motorbike example, people consider the case in which
Paul rides a motorbike and wears a helmet, and also the
case in which Paul rides a motorbike and does not wear
a helmet. With this representation in mind, it is easier
for people to realize the relevance of the condition in
which Paul did not wear a helmet to violations of the
rule.

A similar disparity arises in the application of the
deductive argument forms modus ponens and modus
tollens. These forms of argument can be schematized
as follows:

� Modus ponens:

If A; then B
A
Therefore; B

:

� Modus tollens:

If A; then B
Not-B
Therefore; not-A

:

Both argument forms are deductions involving if-
then rules. However, as with the Wason selection task,
people’s performance in applying these rules is quite
different in assertive and deontic cases.

In the assertive case, people are given a rule such as
If Nancy rides a motorbike, then she goes to the moun-
tains, and a statement Nancy rides a motorbike, and are
asked to identify what follows. Most people correctly
infer that Nancy goes to the mountains. In other words,
they apply a modus ponens argument. However, when
given the statement Nancy does not go to the moun-
tains, most people say nothing follows when it actually
follows that Nancy does not ride a motorbike. In other
words, they do not apply a modus tollens argument.

In the deontic case, however, people readily apply
both forms of argument. When given the rule If Paul
rides a motorbike, then he must wear a helmet and the
statement Paul rides a motorbike, most people infer that
Paul wears a helmet. When given the statement that
Paul does not wear a helmet, most people say that it
follows that Paul did not ride a motorbike. By the same
token, when given the statement Paul rides a motorbike

and does not wear a helmet, most people agree that Paul
broke the rule.

As before, the explanation for this disparity between
assertive and deontic cases concerns mental models. In
the assertive case, people think explicitly only about the
case allowed by the rule whereas, in the deontic condi-
tion, they think explicitly about both the permitted and
the forbidden conditions.

Sometimes, if-then rules can convey counterfactual
obligations. For example, if-then rules can convey obli-
gations that do not actually hold. Consider the rule, If
Mary had lived in the 1700s, then she would have had
to have been chaperoned. This rule concerns Mary, who
did not live in the 1700s, and an obligation concerning
her that would have applied the event that she did.

As Byrne [53.12, p. 84] points out, the mental model
of counterfactual obligations is richer even than indica-
tive ones. In an indicative, deontic rule, the permitted
and forbidden cases are represented explicitly, e.g., If
your parents are elderly, then you have to care for them:

� Your parents are elderly and you care for them (per-
mitted).� Your parents are elderly and you do not care for
them (forbidden).

In a counterfactual, deontic rule, the permitted and
forbidden cases are represented, but the additional fact
about Mary is represented as well, e.g., If Mary had
lived in the 1700s, then she would have had to have
been chaperoned:

� Mary lived in the 1700s and she was chaperoned
(permitted).� Mary lived in the 1700s and she was not chaperoned
(forbidden).� Mary does not live in the 1700s and she is not chap-
eroned (factual).

Since the rule is understood as counterfactual, it
prompts people to represent the factual condition ex-
plicitly.

The mental models account of moral reasoning is
similar to the rule-based account in the obvious sense
that both hold moral knowledge to be encoded in the
form of if-then rules with deontic content. Reasoning
with moral knowledge is equated with the construction
of arguments in which these rules are obeyed or vio-
lated.

An important difference between the two is that the
rule-based account provides a mechanism for the con-
duct of moral decision-making, that is, following the
rules. The mental models account is restricted to expli-
cation of how people understand deontic, if-then rules.
It does not explicate how people might employ rules in
the course of moral deliberations.
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53.3 Schemata

Johnson [53.15] allows that some moral deliberation
takes the form of rule following. However, he disputes
that rule following comprises an accurate or adequate
account of the phenomenon. Instead, he argues that
imagination of a certain sort is applied when people
interpret and explore morally problematic situations.
More specifically, he argues that people apply schemata
derived from bodily metaphors when engaged in moral
deliberation.

Moral schemata come in families circumscribed by
the metaphors on which they rest. One such family
rests on the image MORAL INTERACTIONS ARE
COMMODITY TRANSACTIONS, or moral account-
ing. The underlying metaphor is of transactions in the
moral domain being modeled on financial transactions.
In financial transactions, people exchange goods and
money in order to build up wealth. In the moral domain,
people exchange actions that enhance or detract from
well-being. On this understanding, having a duty to
someone is like owing that person a debt. Having a right
is like a debt that someone owes you (i. e., a credit). This
manner of moral reasoning turns up in expressions such
as, Larry owed him a debt of gratitude, and Thomas
paid for his mistake.

The projection of financial accounting with moral
accounting is summarized in Table 53.1 [53.15, p. 42].

The moral accounting metaphor structures a con-
ceptual system of rights and duties that inform moral
decision-making.

Now, in order to make this system operative,
a means for keeping accounts must be added. To accom-
plish this, Johnson proposes that accounting concepts
are added to the financial domain to comprise what he
calls the commodity transaction domain. This domain
includes concepts of valuing actions and comparing
evaluations. Such a system allows people to calculate
that when providing a creditor with eight sheep it is ap-
propriate to discharge a debt of one cow, for example.

Table 53.1 Projection of financial transactions as moral ac-
tions

Financial domain Moral domain
Wealth Well-being
Getting money Achieving a purpose
Earning money Achieving a purpose by honest toil
Payment Actions that increase well-being
Debts Duties
Letters of credit Rights
Debtor Person with a duty
Creditor Person with IOU
Inexhaustible credit Inalienable rights
Contract Exchange of rights

Commodity transaction concepts are added to the moral
domain to comprise the moral transaction domain. The
augmented domain incorporates concepts of a balance
of rights and duties and transactional justice.

The projection of the commodity transaction do-
main to the moral transaction domain is summarized in
Table 53.2.

The concept of transactional justice, grounded in
the commodity transaction metaphor, allows people to
weigh rights and duties, and to discriminate just out-
comes from unjust ones.

With this conceptual grounding in view, people con-
struct schemata that they may apply to make moral
judgments in particular situations. Each schema rep-
resents a set of conditions that are met in a situation
that motivates a decision on how to act morally. John-
son [53.15, pp. 47–49] elaborates five of these schemata
as follows. (The expressions something good and some-
thing bad refer to things of positive and negative utility
or worth.):

1. Reciprocation: One good turn deserves another:� Event: A gives something good to B.� Judgment: B owes something good to A.� Expectation: B should give something good to
A.� Moral inferences: B has a duty to give some-
thing good to A. A has a right to receive some-
thing good from B.� Commercial inference: B pays A for getting
something good by giving something good of
equal price.� Example: You have been so good to me, how can
I repay you?

Table 53.2 Projection of commodity transactions to moral
transactions

Commodity
transaction

Moral
transaction

Commodities Actions, states
Utility of commodities Moral worth of actions or states
Wealth, money Well-being
Accumulation of wealth Increase in well-being
Profitable Moral
Unprofitable Immoral
Giving/taking wealth Performing moral/immoral actions
Account of transactions Moral account
Balance of accounts Moral balance of actions
Debt Owing increase in well-being to

others
Credit Others owe increase in well-being

to you
Fair exchange/payment Justice
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2. Retribution: You will get what’s coming to you:� Event: A gives something bad to B.� Judgment: B owes something bad to A.� Expectation: B should give something bad to A.� Moral inference: B has the right to give some-
thing bad to A. A has a duty to receive something
bad from B.� Commercial inference: B pays A back for re-
ceiving something bad by giving A something
bad.� Example: I will pay you back for that insult!

3. Restitution: I will make it up to you:� Event: A gives something bad to B.� Judgment: A owes something good to B.� Expectation: A should give something good to
B.� Moral inferences: A has a duty to give some-
thing good to B. B has the right to receive
something good from A.� Commercial inference: A pays B by giving
something good.� Example: You owe me an apology for your rude-
ness!

4. Revenge: An eye for an eye, a tooth for a tooth:� Event: A gives something bad to B. A will not
give something good to B.� Judgment: A owes something bad to B.� Expectation: B should take something good
from A.� Moral inferences: A has a duty to give some-
thing good to B. B has a right to receive some-
thing good from A.

� Commercial inference: B exacts payment from
A.� Example: I will make you pay for what you did!

5. Altruism/charity:What a saint!:� Event: A gives something good to B. B cannot
give something good to A in return.� Judgment: B owes something good to A.� Expectation: B does not give something good
to A. A accumulates moral credit even without
a debtor.� Moral inferences: A has no duty to give some-
thing good to B. B has no right to receive
something good from A.� Commercial inference: B receives something
good from A without incurring a debt.� Example: That was a selfless act.

The charity schema is different because it results
in an accounting imbalance. However, the donor may
hope for rewards from parties other than the recipient
of the charity, such as an enhanced reputation or good
kharma.

The moral accounting metaphor is not the only im-
portant metaphorical basis for moral deliberation. There
is also what Johnson calls the EVENT STRUCTURE
metaphor. On this metaphor, achieving a goal is like
motion along a path. A right is like a right of way, a path
that presents no obstacles. A duty is a requirement to
cede right of way to others [53.15, pp. 42–43]. This
metaphor also informs a set of schemata that people
employ to make moral decisions. Several further moral
schemata are discussed in [53.16].

53.4 Analogy

Perhaps the clearest application of models to moral
deliberations comes with analogical or case-based rea-
soning. In such reasoning, instances of previously con-
sidered moral problems are applied to current ones.
Such reasoning has long been a subject of psycholog-
ical research [53.17].

For example, consider a moral analogy used dur-
ing deliberations over the Cuban Missile Crisis in 1962
within the Kennedy administration [53.18]. Senior of-
ficials in the administration considered several ways
to respond to the arrival of Soviet nuclear missiles
in Cuba. One such option was to launch a surprise
attack on Cuba in order to destroy the missiles be-
fore they could be used. Although initially favored by
Robert Kennedy, the option was abandoned, in part,
because of an analogical argument made by CIA Direc-
tor John McCone and Under Secretary of State George

Ball. They argued that a surprise attack on Cuba would
be morally akin to the surprise attack on Pearl Har-
bor by Japanese forces that brought the USA into the
Second World War. The latter was admitted by all to
be a saliently immoral act and the analogy helped to
change the minds of several hawks in the administra-
tion, including Robert Kennedy.

In the analogy, the known or source (or base) analog
is the Japanese attack on Pearl Harbor. The problem-
atic or target analog is a surprise attack by American
forces on Cuba. There are clear similarities between
the two cases, including that both involve attacks with-
out a declaration of war and both concern nations that
are already unfriendly towards each other. Of course,
there are notable differences. For example, Pearl Harbor
was a sneak attack by an authoritarian regime against
a democratic one, whereas a sneak attack by the USA
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against Cuba would be the reverse. Also, some simi-
larities appear unimportant, such as the fact that both
attacks would be launched against islands.

Psychological research sheds some light on this
situation. Analogical reasoning in general typically
involves at least two processes, selection of source
analogs and alignment of source and target analogs.
The selection process is dominated by overt similari-
ties. In this case, that would include the sneaky and the
military nature of the attacks, and the fact that both at-
tacks would be launched against islands. The alignment
process is dominated by the construction of systemic
mappings between source and target analogs [53.19].
The alignment between the two analogs could be cap-
tured roughly as in Table 53.3.

The analogy is represented as follows [53.20]. The
top three rows are attribute mappings, that is, simple
items from the source and target analogs that are aligned
in the analogy. The middle three rows are relational
mappings, that is, relations between the attributes of
each analog that are aligned in the analogy. The bot-
tom two rows are system mappings, that is, relations
between the relations of each analog that align in the
analogy.

The system mappings structure the entire analogy
and capture the thrust of the comparison. The first sys-
tem mapping suggests that Japan surprised the USA at
Pearl Harbor in order to carry out its attack. Likewise,
the USA would surprise Cuba in order to carry out its
attack. The second system mapping suggests that for
Japan to surprise the USA implies that Japan stands for
the values of a dictatorship. Likewise, for the USA to
surprise Cuba implies that the USA stands for the values
of a dictatorship. This representation roughly captures
the sentiment of George Ball who argued that a surprise
attack [53.18, p. 63]:

“would cut directly athwart everything we have
stood for in our national history, and condemn us
as hypocrites in the opinion of the world.”

Table 53.3 Analogy between Pearl Harbor attack and at-
tack by USA on Cuba. The top three rows are attribute
mappings, the middle three relational mappings, and the
bottom two system mappings

Source (Pearl Harbor) Target (Cuba)
Japan USA
USA Cuba
dictatorship dictatorship
attack(Japan,USA) attack(USA,Cuba)
surprise(Japan,USA) surprise(USA,Cuba)
stand-for(Japan,dictatorship) stand-for(USA,dictatorship)
in-order-to(surprise,attack) in-order-to(surprise,attack)
imply(surprise,stand-for) imply(surprise,stand-for)

As noted above, people are more likely to be influ-
enced by an analogy if that analogy exhibits system-
aticity or structural coherence. This implies that the
attributes and relations of each analog are included in,
and structured by, the system predicates, and that the
mappings are one-to-one and between similar items.

The influence of emotions in analogical delibera-
tions is also illustrated in the Pearl Harbor example.
Tierney [53.18] notes that the surprise attack on Pearl
Harbor had become a canonical example in American
culture of criminal conduct in warfare. Thus, the idea
that the USA should engage in similar behavior was
somewhat shameful. This aspect of the analogy reflects
the element of hypocrisy that Ball refers to in the USA
taking such an action. At a more personal level, the
notion of imitating the actions of the Japanese high
command was distasteful to President Kennedy. He had
fought against the Japanese in the Second World War
and regarded the prospect of another such conflict with
displeasure. Moreover, the prospect of playing the role
of Tojo was loathsome to him.

On the theory of emotional coherence [53.21], such
emotional valences play an important role in delib-
eration. The negative emotional valance attached to
surprise military attacks in the Pearl Harbor case would
attach to the surprise-attack-on-Cuba scenario as well.
That negative valence would, in turn, prompt decision
makers to view it negatively as well.

The role of analogies in the larger picture of moral
deliberation has long been a matter of debate. In the
past, analogies have been viewed as a positive and in-
dispensable part of moral deliberation. More recently,
analogies have largely been viewed as inferior to rule-
based deliberations because of their relative lack of
generality and thus have been demoted to a secondary
role [53.22]. Cognitive models of analogical deliber-
ation place it in a variety of relationships with other
forms of deliberative reasoning.

For example, Dehghani et al. [53.23] place analo-
gies in a subordinate role relative to rule-based reason-
ing in their Moral Decision-Making (MoralDM) simu-
lation. MoralDM contains two modules for deliberating
about moral problems. The first is a first-principles
reasoning module that implements a qualitative, utili-
tarian calculus. In short, it evaluates potential actions
or nonactions based on its evaluation of the utility of
their outcomes. The second is an analogical reason-
ing module that constructs analogies, if possible, from
a knowledge base, analogies that are systematic and
deal with a matter of similar magnitude to the problem
at hand. The analogy module allows the system to make
evaluations based on nonutilitarian grounds and to pro-
vide solutions to problems that the rule-based module
is unable to solve.
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Another simulation incorporating analogies and
rules is W.D., named after W.D. Ross [53.10]. W.D.
is primarily an implementation of Ross’s notion of
defeasible duties, discussed above, and thus is pri-
marily a rule-based system. However, the problem of
deciding when some duties supercede over others is
treated not as an intuitive judgment but as a matter
of case-based reasoning. More specifically, where the
order of duties is not clear, W.D. reasons by identi-
fying decisions that are most consistent with a set of
solved cases. The method is inspired by Rawls’s [53.24]
account of reflective equilibrium and involves mak-
ing generalizations drawn from solved cases, which
are then tested by comparison to further cases un-

til a conclusion is reached. Although not intended as
a cognitive model, W.D. illustrates how analogical de-
liberation may be viewed by scholars interested in
ethical reasoning.

On Thagard’s [53.21] coherence theory, analogical
coherence is one among several sorts of considerations
that participate in ethical deliberations. Such delibera-
tions bring many kinds of mental representations into
play, such as rules, explanations, means-ends relation-
ships, along with analogies. Decisions are made based
on resolving the course of action that best coheres with
all such elements as they appear in the problem. On this
account, analogies play not a subordinate role but are
simply one consideration amongst others.

53.5 Empathy

Empathy appears to be an obvious example of the de-
ployment of models in moral deliberation. Informally,
empathy involves placing oneself in another’s shoes,
that is, understanding how another person is feeling by
imagining how it might feel to be in that person’s po-
sition. Empathizing with someone may then create the
sense that one is obligated to act, e.g., to help out. Thus,
empathy is both model-based and moral in nature.

Explicating this characterization requires some cau-
tion. The notion of empathy is a relatively recent
one, reaching back to accounts of sympathy given by
David Hume and Adam Smith [53.25], but has been
defined and adapted in a variety of ways. It has de-
veloped variously in different fields, including philos-
ophy [53.26], social psychology [53.27], developmen-
tal psychology [53.28], cognitive science [53.29], and
neuroscience [53.30]. Any treatment of empathy must
begin by specifying how the term is to be understood.

In broad terms, empathy is one among many ways
that people have of understanding or reading the minds
of others [53.31]. One such way is to theorize about
or mentalize what other people are thinking. This ac-
tivity is focused on the beliefs and attitudes of others
instead of on their immediate feelings. Since empathy
is focused on feelings, it should be distinguished from
detached consideration of the perspectives of others.

Also, empathy should be distinguished from sym-
pathy. Both concern feelings and one’s relation to other
people. However, sympathizing with someone does not
necessarily mean feeling the way the other person
does [53.32]. It is possible to sympathize with a person
who is angry or depressed, for instance, without feeling
angry or depressed oneself.

Finally, empathy should be distinguished from emo-
tional contagion [53.32]. For example, a study of people

on the Facebook social network showed that users ex-
posed mainly to positive messages mainly produced
positive messages, whereas people exposed mainly
to negative messages mainly produced negative mes-
sages [53.33]. It seems that the users in this experiment
just took on the mood of the producers of the messages
that they read. Simple emotional contagion lacks the
explicit identification of one person with another indi-
vidual that defines empathy.

So, empathy can be taken more narrowly as under-
standing how another person feels by sharing a sim-
ilar feeling through explicit identification with that
person. In this narrow sense, empathy with another
person can be modulated in various ways [53.32].
In other words, empathy with another person may
be facilitated or inhibited by the following four fac-
tors:

1. Characteristics of feeling: It may be easier to
empathize with someone experiencing a negative
rather than a positive feeling, an intense rather than
mild feeling, and feelings involving primary rather
than secondary emotions.

2. Relationship with target: It may be easier to em-
pathize with a person whom the empathizer likes or
cares for, and for a person who is not upset with the
empathizer.

3. Characteristics of the empathizer: Empathy seems
to vary with the age, gender, and past experience of
the empathizer. Men, for example, seem less likely
than women to empathize with people who are per-
ceived to deserve their suffering.

4. Situational factors: It is easier to empathize with
someone when the cause of their feeling is known
or evident, and salient. Someone crying for an ap-
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parently trivial reason, for example, may not elicit
empathy.

These characteristics of empathy suggest that it in-
volves more than a shared feeling with another person.
Empathy comprises an assessment of a situation in
general and the place of the empathizer within it in par-
ticular.

Barnes and Thagard [53.26] argue that empathy
is realized through analogy. That is, empathy involves
a systematic mapping between the empathizer (the
source) and the target. Consider the experience of
watching a figure skater fall during a televised perfor-
mance. Few viewers will have ever attempted a triple
Salchow or anything resembling it but many will em-
pathize with the skater nevertheless. Often, it is written
all over their faces. This empathy may arise because
viewers are able to construct an analogy with a different
episode involving themselves, e.g., falling down during
a foot race at school. A representation of this analogy
can be seen in Table 53.4.

In this analogy, the empathizer constructs a system-
atic set of mappings in which a personal experience re-
sulting in disappointment is compared with the experi-
ence observed for the skater. The empathizer recalls an
episode of falling and injuring a knee during a race, re-
sulting in losing the race. In one of the mappings, disap-
pointment felt by the empathizer is mapped to the disap-
pointment displayed by the skater. Moreover, the map-
ping allows the empathizer to transfer the effect of that
recollected disappointment to the scene on television.

This view of empathy helps to account for some
of its features noted above. It is easier to map simi-

Table 53.4 Analogy between a racer and a figure skater

Source (foot race) Target (figure skating)
racer skater
track ice
knee groin
race competition
disappointment disappointment
hit(racer,track) hit(skater,ice)
injure(racer,knee) injure(skater,groin)
lose(racer,race) lose(skater,competition)
feel(racer,disappointment) display(skater,disappointment)
cause(hit,injure) cause(hit,injure)
cause(injure,lose) cause(injure,lose)
cause(lose,feel) cause(lose,display)

lar feelings, for example, and feelings that are more
intense. Also, people can empathize only if they have
some past experience for which a strong analogy can be
constructed.

On this description, empathy is not itself a form
of moral deliberation [53.34]. That is, feeling empathy
for someone need not change the attitudes or actions
of the empathizer [53.35, pp. 327–335]. It is possible,
for example, for a juror to feel empathy for an accused
person without denying that the behavior of the accused
was wrong and criminal. However, empathy does some-
times move people to compassion, that is, feeling sorry
for a distressed person and offering assistance. People
are more likely to give money to beggars, perhaps, if
they can imagine themselves in the others’ place. It is
this connection with compassion, and perhaps other af-
fective dispositions to assist others, that gives empathy
a role in moral deliberation.

53.6 Role Models

The term role model first appears in the scholarly litera-
ture in 1957 in connection with the practice of medical
students who often choose a senior figure in the profes-
sion to imitate and to use as a standard for evaluating
their own performance [53.36]. However, the concept
was quickly generalized to any individual who served
as a reference that others might emulate or measure
themselves against. In the literature, a role model can
refer to a person who serves as a model with respect
to a single role, e.g., doctoring. A person who serves
as a reference individual for general purposes could be
considered a hero or idol instead. However, the distinc-
tion is not always observed.

Typically, a role model is a person who is regarded
by the modeler as someone who has attained higher sta-

tus or position, possesses superior knowledge or skills,
and has achieved more than the modeler. Modelers may
set themselves the goal of emulating the behavior of the
model, of internalizing the attitudes of the model, or
both [53.37]. It is also possible for people to adopt infe-
rior persons as role models in the event they are seeking
to save themselves from moral degradation or immoral
deeds [53.38].

In the social psychology literature, the study of
role models has concentrated on the impact of choos-
ing a model on the socialization of the modeler, ways
in which the comparison affects the modeler’s self-
assessment and conduct [53.38]. For present purposes,
role models are of interest when modelers choose them
for their excellence in moral values or conduct.
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The process of deliberating by applying a role
model seems to be analogical [53.39], that is, modelers
place themselves in analogical correspondence to the
model, as discussed above. The stronger the analogy,
the more apt the role model.

Some moral role models exhibit an excellence of
character that the modeler seeks to emulate. For exam-
ple, Rosa Parks is widely considered to be a role model
for people who advocate for civil rights. She refused to
vacate her seat in the whites-only area of a city bus in
the 1955 Montgomery bus boycott. The incident is still
held up today as an exemplar of a courageous person
protesting social injustice [53.40].

Rosa Parks could serve as a role model for a young
American black woman seeking to protest inequality
for black Americans. However, she could also serve as
a role model for people of other ethnic backgrounds
who are concerned about other social injustices. For ex-

ample, a white male might take part in a public rally to
advocate for a path to citizenship for American immi-
grants from Latin America, in spite of the disapproval
of his neighbors. The two episodes do not much resem-
ble each other but the protestor may take the view that
if Rosa Parks can brave the disapproval of racist po-
lice and citizenry, then he can endure the frowns of his
neighbors as well. The systemic coherence between the
source and target still makes this mapping a strong one.
Also, the analogy transfers an emotional sense of re-
solve that is important in galvanizing action.

In some ways, a role model is the reverse of empa-
thy. In the case of empathy, a person imagines what it
would be like to be in another person’s place. In the case
of role models, a person imagines what it would be like
if another person were in the modeler’s place. Thus, it
is not surprising that both sorts of deliberation should
be similar, that is, analogical, in character.

53.7 Discussion

The use of models is clearly important to moral de-
liberation and it can be represented in many different
ways. These ways include rules, schemata, mental mod-
els, analogies, empathy, and role models. The diversity
among these approaches illustrates both the complexity
of moral deliberation and the breadth of the concept of
model. In view of the discussion above, it is instructive
to consider this diversity further.

One obvious difference in accounts of models in
moral deliberation is the emphasis they place on the
role of emotions. Approaches based on rules, schemata,
and mental models emphasize the cognitive component
of moral deliberation with models. That is, the pri-
mary concern is with the concepts that the deliberator
has and uses in the process of deliberation. Approaches
based on analogies, empathy, and role models, however,
emphasize more of the affective aspect of moral delib-
eration, though without neglecting its conceptual side.
Some of this diversity may harken to the view, perhaps
originating in the Enlightenment, that moral delibera-
tion should be a matter of dispassionate calculation.
As a psychological matter, moral deliberation is often
emotionally charged, and no complete account of it can
overlook this fact.

Similarly, accounts of moral deliberation vary ac-
cording to the importance they grant to universal versus
particular considerations. In the rules approach, for
example, deliberations qualify as moral because they
employ a small set of rules that concern moral values.
The rules are combined dynamically in various ways in
order to derive conclusions about moral problems that

work to guide the modeler. The rules are universal in
the sense that they can be applied to many different sit-
uations.

In the analogical approach, models may be drawn
from a large population of source analogs that each ap-
ply to perhaps relatively few situations. These analogs
are particular in the sense that the guidance they pro-
vide is more limited. Also, analogs do not combine with
the same readiness and flexibility as rules. Approaches
based on rules and mental models fall on the universal
side of this spectrum, whereas analogies, empathy, and
role models fall on the particular side, with schemata
being somewhere in between.

Another source of diversity among accounts here
concerns the location of resources for deliberation.
Most accounts are internalist in the sense that they rep-
resent deliberators as reliant solely on resources internal
to them during the process of deliberation. The rule
account, for example, assumes that the deliberator has
rules sufficient to reach a conclusion, with the alterna-
tive being a simple failure to resolve the moral problem
at all. The schemata, mental models, and analogies ac-
counts are similar in this regard.

Other accounts are externalist in the sense that they
represent deliberators as relying also on resources that
are external to them. The role model account, for exam-
ple, assumes that people consider the qualities, feelings,
and actions of other people in the course of delibera-
tion. Similarly, people who empathize with others look
outside themselves for the means to resolve moral prob-
lems they face.
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As Magnani [53.1] notes, resources that support
moral deliberation, moral mediators, are not limited
to other people and would extend to our technological
means and to cultural resources. For example,Dehghani
et al. [53.41] explore howpeople use analogieswith cul-
tural narratives to make prosocial moral choices. Stories
of the moral decisions made by cultural heroes illustrate

for people how moral problems may be appropriately
resolved. In effect, the heroes function sometimes as fic-
tional role models. The external dimension of models in
moral deliberation could be further explored.

Acknowledgments. Thanks to Paul Thagard for dis-
cussion of earlier drafts of this chapter.
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